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Abstract

How does the brain prioritize among the contents of working memory (WM) to appropriately

guide behavior? Previous work, employing inverted encoding modeling (IEM) of electroen-

cephalography (EEG) and functional magnetic resonance imaging (fMRI) datasets, has

shown that unprioritized memory items (UMI) are actively represented in the brain, but in a

“flipped”, or opposite, format compared to prioritized memory items (PMI). To acquire inde-

pendent evidence for such a priority-based representational transformation, and to explore

underlying mechanisms, we trained recurrent neural networks (RNNs) with a long short-

term memory (LSTM) architecture to perform a 2-back WM task. Visualization of LSTM hid-

den layer activity using Principal Component Analysis (PCA) confirmed that stimulus repre-

sentations undergo a representational transformation–consistent with a flip—while

transitioning from the functional status of UMI to PMI. Demixed (d)PCA of the same data

identified two representational trajectories, one each within a UMI subspace and a PMI sub-

space, both undergoing a reversal of stimulus coding axes. dPCA of data from an EEG

dataset also provided evidence for priority-based transformations of the representational

code, albeit with some differences. This type of transformation could allow for retention of

unprioritized information in WM while preventing it from interfering with concurrent behavior.

The results from this initial exploration suggest that the algorithmic details of how this trans-

formation is carried out by RNNs, versus by the human brain, may differ.

Author summary

How is information held in working memory (WM) but outside the current focus of

attention? Motivated by previous neuroimaging studies, we trained recurrent neural net-

works (RNNs) to perform a 2-back WM task that entails shifts of an item’s priority status.

Dimensionality reduction of the resultant activity in the hidden layer of the RNNs allowed

us to characterize how a stimulus item’s representation follows a transformational trajec-

tory through high-dimensional representational space as its priority status changes from

memory probe to unprioritized to prioritized. This work illustrates the value of artificial
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neural networks for assessing and refining hypotheses about mechanisms for information

processing in the brain.

Introduction

The ability to flexibly select and prioritize among information held in working memory (WM)

is critical for guiding behavior and thought. To do this successfully, the cognitive system must

solve a fundamental computational problem of how to maintain information in a readily

accessible state while also preventing it from interfering with ongoing behavior. The primary

goal of the work presented here is to investigate how this might be accomplished. If two items

are currently held in WM, one possible solution could be to encode the “unprioritized memory

item” (UMI) into a pattern of synaptic weights [1,2], an “activity-silent” trace [3] that might be

less likely to interfere with the currently active “prioritized memory item” (PMI). Although

some previous neuroimaging studies have reported that the prioritization of one item held in

WM leads to a decrease-to-baseline of the activity level of the UMI [4–6], whether an “activity-

silent” mechanism may contribute functionally to WM remains a topic of vigorous debate [7–

10]. In the present report, we evaluate an algorithmically different solution for prioritization:

the priority-based transformation of the UMI into a representational format that, although

active, is different from that of the PMI. Such a transformation could minimize the likelihood

that the UMI interferes with ongoing behavior.

Experimental tasks used to study prioritization in WM necessarily include multiple steps,

such that information not needed for the impending response (i.e., the UMI) might neverthe-

less be needed to guide a subsequent response. This is often done with retrocues, and two

recent studies using a retrocuing procedure have provided evidence consistent with priority-

based transformation. In one, van Loon and colleagues [11] acquired functional magnetic res-

onance imaging (fMRI) data while first presenting subjects two target images sequentially

(e.g., first a flower then a cow), then indicating with a cue whether memory for the first or sec-

ond presented image would be tested first. Had the cue been a “1”, subjects would next see a

test array of six flowers and indicate whether the target flower appeared in the test array, and

finally a test array of six cows. On this trial, the target cow spent time as UMI, because the cue

indicated that memory for the flower would be tested first. When van Loon et al. [11] applied

multivariate pattern analysis (MVPA) to fMRI data from posterior ventral temporal lobe, they

found that a decoder trained on trials when an item was a PMI performed statistically below

chance when that item was a UMI. Furthermore, a representational dissimilarity analysis indi-

cated that, within their set of 12 stimuli (four cows, four skates, four dressers), each item’s

high-dimensional representation in one state (e.g., as a PMI) was maximally different from its

representation in the other state (i.e., as a UMI). Using a similar retrocuing procedure, Yu,

Teng and Postle [12] found, with multivariate inverted encoding modeling (IEM) of fMRI

data from early visual cortex, that the reconstructed orientation of a grating “flipped” when it

was a UMI relative to a PMI (e.g., a 30˚ orientation reconstructed as 120˚ while a UMI). Fur-

thermore, for data from the intraparietal sulcus (IPS), they observed that the IEM reconstruc-

tion of the location where an item had been presented also flipped when an item’s priority

status transitioned to UMI.

Shifts of priority are also characteristic of continuous-performance tasks, for which shifts of

priority are dictated by task rules rather than by explicit cues. One example, which features

prominently in the work presented here, is the 2-back WM task from Wan and colleagues [13]

(Fig 1). Electroencephalography (EEG) signals were recorded while subjects viewed the serial
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presentation of oriented gratings and judged for each one whether it was a match or a non-

match to the item that had appeared two positions previously in the series. This task entails a

predictable transition through priority states for each item: When an item n is initially pre-

sented, it serves as probe to compare against the memory of item n– 2; after the n-to-n– 2 deci-

sion is made, item n becomes a UMI while item n– 1 is prioritized for the upcoming

comparison with n + 1. Next, once the n + 1-to-n– 1 comparison is completed, item n becomes

a PMI for its impending comparison with item n + 2. To analyze the EEG data, an IEM was

trained on the raw EEG voltages from a separate 1-item delayed-recognition task, and then

tested on the delay periods separating n and n + 1 and separating n + 1 and n + 2 (i.e., when

item n assumed the status of UMI, then PMI). The results, reminiscent of van Loon et al. [11]

and Yu, Teng and Postle [12], indicated that the IEM reconstruction of the UMI was “flipped”

relative to the training data (Fig 2). The authors referred to this transition from PMI to UMI as

“priority-based remapping” (rather than “recoding” or “code morphing”; c.f. [14]), reasoning

that the IEM reconstruction of the UMI would fail if it were represented in a neural code dif-

ferent from the trained model.

Fig 1. 2-back task structure in the Wan et al. [13] EEG study. The presentation of each stimulus is followed by a 50 ms

blank screen, a 200 ms radial checkerboard mask, a variable delay from 2.8 to 3.2 s, and then the next stimulus was presented,

upon which the match vs. non-match response is to be made.

https://doi.org/10.1371/journal.pcbi.1009062.g001
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Two recently published computational models offer some insight into the empirical phe-

nomena that we have described up to this point. One model, by Lorenc and colleagues [15],

was designed to account for a similar flipped IEM reconstruction observed in an fMRI study

using a retrocuing task. This approach was inspired by evidence from nonhuman primates

(NHP) performing WM tasks, in which top-down signals from FEF were shown to alter sev-

eral receptive field properties of neurons in extrastriate visual areas V4 and MT [16]. They cre-

ated simulated data for training IEMs using the basis set that was employed for IEM

reconstructions of empirical data, and subsequently created a test dataset where the basis func-

tion parameters for memory strength, gain, receptive field width, and receptive field centers

were varied. When these parameters were fitted to experimental data, the best solution was a

selective down-modulation of gain in feature-tuned sensory channels paired with a weakly

excitatory top-down signal (i.e., memory strength). A second model, from Manohar and col-

leagues [17], simulated WM performance in a network comprised of hard-coded feature-selec-

tive units and a pool of freely conjunctive units that can form a plastic attractor to keep one

item, a PMI, in a state of elevated activity. When attention shifted away from an item (making

Fig 2. IEM reconstruction of EEG recorded while subjects performed the 2-back task (N = 42, combining data from the pilot study and the preregistered

experiment from Wan et al. [13]). In IEM, voltage from each EEG electrode is construed as a weighted sum of responses from six orientation channels

(modelled by a half-wave-rectified sinusoid raised to the 6th power), each tuned to a specific stimulus orientation, comprising the basis set. Left panel: IEM

reconstruction of the stimulus during the delay in a separate one-item delayed-recognition task. This model was used to reconstruct the stimulus in the 2-back

task. Right panel: Concatenation of the item n and item n + 1 stimulus events to form a trial, across which n transitions from probe to UMI to PMI in the

2-back. On the right are IEM reconstructions corresponding to the two 2 s windows centered in two 2.8 s post-mask ISIs before and after item n + 1,

respectively. “�” indicates p< .01 (two-tailed t test), FDR-corrected for multiple comparisons. As the figure shows, IEM reconstruction of stimulus n is

“flipped” relative to the training data (IEM reconstruction from delayed recognition) when it is a UMI, demonstrating priority-based remapping.

(Reconstruction of the PMI was unsuccessful.) For delayed-recognition IEM reconstruction (940–1040 ms from stimulus onset), t(41) = 4.12, p< 0.001. For

UMI reconstruction of 2-back (-2400 –-400 ms relative to n + 1 onset), t(41) = -3.02, p = 0.009; for PMI reconstruction of 2-back (1150–3150 ms from n + 1
onset), t(41) = -1.60, p = 0.116.

https://doi.org/10.1371/journal.pcbi.1009062.g002
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it a UMI), it remained briefly encoded in a residual pattern of strengthened connections, and,

under some conditions, inhibition from activity in other parts of the network produced an

“inverted” representation of UMI. Although this model successfully reproduced other empiri-

cal findings using simulated data, such as the temporary reactivation of the UMI by a nonspe-

cific pulse of excitation, it was not used to account for empirical neural data.

It is instructive to consider the two models reviewed above from the perspective of the

framework of Marr and Poggio [18]: They address distinct computational problems–prioritiza-

tion within WM [17] vs. removal from WM [15]–they propose different algorithmic solu-

tions–inhibition via biased competition [17] vs. excitation paired with selective gain

modulation [15]–yet they observe similar patterns of neural implementation–flipping. Of par-

ticular relevance for our interests here is that although the details of their algorithmic opera-

tions differ, both models are constrained to finding only one class of solution: changing the

strength of attention. Importantly, neither allows for the alternative that we will test here,

which is the transformation of an item’s representational geometry.

Previous WM research has implicated representational transformation as a solution to a

third computational problem for WM: the retention of information in the face of distraction

(e.g., [14,19]). Our goal with the present work was to explore the possibility that the computa-

tional problem of prioritization in WM might also be solved algorithmically via representa-

tional transformation. To accomplish this we turned to artificial neural networks (ANNs),

which have been playing an increasingly prominent role in providing mechanistic insights

into, and generating novel hypotheses of, phenomena in cognition and neuroscience [20–24].

In the current work, we use recurrent neural networks (RNNs) with an LSTM architecture

[25] to perform a 2-back WM task modeled on [13]. LSTMs can generate flexible behavior

guided by long-range temporal dependencies, and can solve complex tasks such as speech rec-

ognition [26] and machine translation [27]. Moreover, LSTM might be a good model for WM

tasks due to its gating-based architecture, reminiscent of the cortico-striatal mechanisms

believed to gate information into and out of WM [28,29]. By comparing the stimulus represen-

tational schemes embedded in the EEG and RNN data, we hope to reveal whether humans and

RNNs might employ similar algorithmic principles. Given that the RNNs are optimized to

solve the 2-back task, we can also potentially use the RNN results to evaluate whether the algo-

rithm that humans use reaches optimality.

Our approach was to train RNNs to perform the 2-back task, and then first use Principal

Component Analysis (PCA) of the activity of the RNN’s hidden layer to visualize its represen-

tational dynamics. This revealed a smooth rotational transformation of stimulus representa-

tions over the course of the trial. This trajectory provided novel, independent evidence that the

transition of the functional role of an item from memory probe to UMI to PMI is accompanied

by transformations of its representational format. However, because PCA does not allow for

the isolation and quantification of variation attributable to specific task dimensions (of partic-

ular interest here, priority status and the match/nonmatch decision), we carried out two addi-

tional sets of analyses. First, we applied demixed Principal Component Analysis (dPCA; [30])

to the RNN data in order to identify distinct low-dimensional subspaces occupied by the neu-

ral representations of the UMI, the PMI, and the RNN’s decision. We then quantified the tem-

poral dynamics of these representations within the subspaces and the geometric relationships

between the subspaces. Finally, we used this analysis of the RNN data to derive quantitative

hypotheses with which to assess evidence that the EEG data from Wan et al. [13] may also

show evidence of priority-based transformation. The results of these hypothesis tests provide

novel insights about priority-based transformations of stimulus information that are carried

out by the human brain.
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Methods

Ethics statement

The experimental protocol for the Wan et al. [13] EEG study (the data from which was ana-

lyzed in this paper), along with the informed consent form, was approved by the University of

Wisconsin–Madison Health Institutional Review Board (protocol no. 2016–0500). Prior to

each experimental session, written informed consent was obtained by lab personnel listed on

the IRB-approved protocol.

Behavioral task

In each experimental block of the 2-back WM task, both human subjects (N = 42) and RNNs

(N = 20) were serially presented a sequence of stimuli drawn from a closed set of six different

identities (128-stimulus blocks for humans, 20-stimulus blocks for RNNs). The task was to

indicate, for each stimulus, whether or not it matched the identity of the stimulus that had

been presented 2 positions earlier in the series. Each EEG subject performed 4 blocks and each

RNN performed 200 blocks.

Recurrent neural network (RNN) model

RNN architecture. Twenty RNNs with an LSTM architecture were trained and simulated

using the Python-based machine learning package PyTorch. Specifically, we used the default

LSTM architecture in PyTorch with its default initializations. Initially, we trained 10 networks

that consisted of 6 input neurons and 7 LSTM hidden units, which were linearly rectified and

linearly read out to a single output neuron (Fig 3). We initially chose to use 7 units because

this was the smallest number that solved the task with network solutions that were highly con-

sistent across training instances (as evaluated by representational dynamics from the PCA

visualization). Networks with other numbers of hidden units (up to 256) gave qualitatively

similar results. Subsequently, we repeated the procedure with RNNs with 60 LSTM hidden

units to match the dimensionality of our EEG data, and with an input structure simulating the

orientation stimuli in the human 2-back task of Wan et al. [13].

Stimuli. For 7-hidden-unit networks, the identity of each stimulus presented to the net-

work was denoted by an integer randomly generated between 1 and 6. The stimulus input took

the form of a one-hot vector, with only the unit corresponding to the stimulus identity acti-

vated (e.g., [0, 0, 1, 0, 0, 0] for stimulus #3; we also explored RNNs trained on metrically vary-

ing input vectors following the basis function used to build IEMs in Wan et al. [13], and these

yielded similar results, see Fig A in S1 Text). For 60-hidden-unit networks, to simulate the ori-

entation stimuli, we instead employed 2 input units taking the vector [cos 2θ, sin 2θ], where θ
denotes the orientation angle of each stimulus used in Wan et al. ([13]; 10˚, 40˚, 70˚, 100˚,

130˚, 160˚). We multiply the angle θ by 2 to reflect the circular structure of the oriented grating

stimuli, which have a period of 180˚ (i.e., a K˚ stimulus is identical to a 180˚ + K˚ stimulus).

The multiplication by 2 ensures that this is also true for the corresponding inputs: cos (2 �

(180˚ +K˚)) = cos(2K˚) and sin (2 � (180˚ + K˚)) = sin (2K˚) (see Fig B in S1 Text for more

details). To simulate the delay period in the human task, we installed 2 “delay” timesteps fol-

lowing the presentation of each stimulus (with an input of [0, 0, 0, 0, 0, 0]; no delay timesteps

after the last stimulus in the sequence). A “stimulus event” consisted of the presentation of

stimulus n and its following two delay timesteps. To evaluate the UMI-to-PMI representational

transition of stimulus n, we refer to the concatenation of each two consecutive “stimulus

events” as a “trial”.
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A scalar output was read out from the LSTM internal state by linearly rectifying the hidden

state and then applying a linear layer. The network was then trained to output 1 (match) or 0

(non-match) during stimulus presentation depending on whether the presented stimulus (n)

matched the stimulus presented two stimulus events back (n—2). Each stimulus sequence

comprised 18 “trials” (as defined above–note that because no delay period followed stimulus

#20; the last “trial” contains stimuli #18 and #19), and only 16 trials were analyzed (because the

first two stimulus events had no target outputs: not enough stimuli preceded them for there to

be a match/non-match decision). We generated 200 random stimulus sequences for training

the RNNs and 200 random sequences for testing the trained networks. Because the human

2-back task had a ratio of 1:2 between match and non-match trials, we generated random

sequences that satisfied the criterion that each sequence had to contain at least 5 match trials.

The outcome was that training sequences had an average of 5.55 match trials (SD = 0.78) and

testing sequences an average of 5.46 match trials (SD = 0.70).

Fig 3. RNN model architecture. Shown is the architecture of the 7-hidden-unit RNNs. (A) One-hot vectors corresponding

to each of the 6 stimulus types are fed into the input layer, which projects to an LSTM layer with 7 hidden units. This hidden

layer in turn projects to an output unit with a binary target activation (0 = non-match, 1 = match). (B) Example input and

target output sequences. Two delay timesteps were installed after each stimulus presentation timestep to emulate the delay

period in the 2-back EEG task. 60-hidden-unit RNNs have the same architecture except that they have 60 LSTM hidden

units, and two input units that take a vector [cos 2θ, sin 2θ] (θ denoting the angle of grating orientations used in Wan et al.

[13]) instead of a one-hot vector.

https://doi.org/10.1371/journal.pcbi.1009062.g003
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RNN training and testing. The internal state of the RNNs was initialized to 0, and weights

and biases were initialized to random values, following the standard initialization of the

PyTorch LSTM implementation. The 7-hidden-unit RNNs were trained using the Adam sto-

chastic gradient descent (SGD) algorithm for 5000 iterations ([31]; learning rate = 10−3). In

each iteration, a batch of 20 sequences was randomly selected (with replacement) from the 200

training sequences. The loss function minimized was the mean squared error between output

activity and target output across all timesteps.

We observed that after 5000 iterations of training, most RNNs had excellent performance

on the training data. We therefore stopped training at this point and evaluated each RNN on

an independently sampled set of 200 test stimulus sequences to assess generalization to arbi-

trary stimulus sequences. The network’s performance accuracy was calculated as the percent-

age of trials (across all 200 sequences in the test set) on which the network made a correct

response, where a response was deemed correct if the absolute difference between the activa-

tion of the output neuron and the target output was smaller than 0.5. We set a criterion level of

performance accuracy of 99.5% for the networks. A total of 12 7-hidden-unit networks were

trained, 2 of which were discarded due to below-criterion performance, leaving 10 RNN’s for

our analysis. All RNNs trained had the same architecture, hyperparameters and training/test-

ing sequences. The only thing that differs across these 10 networks is the random initialization

of the RNN weights prior to training. For subsequent analyses, the activity timeseries of the

LSTM hidden layer units from all 3200 trials (16 trials x 200 sequences) in the training data set

were used.

After analysis of the 10 successfully trained 7-hidden-unit networks, we repeated these

training procedures and trained 10 RNNs with 60 units in the LSTM layer (batch size = 20,

learning rate = 10−3, 1500 iterations), so as to generate RNN data matching the dimensionality

of our EEG data sets.

PCA visualization of the LSTM layer activity. We extracted from each network the activ-

ity of the 7 hidden units in the LSTM layer from all 200 training sequences and used Principal

Component Analysis (PCA; implemented using Python’s ‘scikit-learn’ library) to project these

7-dimensional activity patterns onto the top two dimensions accounting for the most variance

across all training sequences and timesteps. We then visualized each stimulus n’s transition

from probe to UMI to PMI within this subspace by plotting the dimensionality-reduced activ-

ity across the 9-timestep time course of a trial. These 9 timesteps comprised the presentations

of stimulus n, n + 1, n + 2 and the delay timesteps that followed each (i.e., delay 1:1 and delay
1:2; delay 2:1 and delay 2:2; and delay 3:1 and delay 3:2; Fig 4, “unlabeled” column). Note that,

once a decision has been made about item n + 2, item n is no longer relevant for the task, so

the delay 3:1 and delay 3:2 timesteps illustrate the evolution of the representational structure of

n after it has presumably been “dropped from WM”.

To see how the representation of stimulus n evolves as it transitions from being a UMI to a

PMI, we colored the activity patterns according to the identity of stimulus n (Fig 4, “stimulus”

column). As explained in the Introduction, the memory of stimulus n is a UMI during the

delay period after the presentation of stimulus n (i.e., during delay 1:1 and delay 1:2; because it

is not needed for the upcoming n– 1-to-n + 1 comparison), and then becomes a PMI during

the delay period after the presentation of stimulus n + 1 (i.e., during delay 2:1 and delay 2:2; in

preparation for the imminent comparison with n + 2). We focused on the delay 1:2 and delay
2:2 timesteps (highlighted by blue and red squares) to characterize the UMI-to-PMI represen-

tational transformation.

To visualize the representation of the RNN’s decision, we re-plotted the same activity pat-

terns but colored them according to the correct response (“match” or “non-match”) to the n-

to-n + 2 comparison when n + 2 was presented (Fig 4, “decision” column; n-to-n + 2
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comparison timestep highlighted by yellow square). Note that, by construction, the RNN’s

actual response is the correct response in at least 99.5% of trials, so this coloring can be effec-

tively thought of as the RNN’s true response in each of these trials.

WM-specific dimensionality reduction via dPCA

Demixed Principal Component Analysis (dPCA; [30]) was employed to identify dimensions of

RNN and EEG activity relevant to the stimulus representation in WM. Traditional PCA identi-

fies dimensions that maximize the total variance of the recorded activity patterns across all

task variables, such as time, stimulus, and decision. Demixed PCA, on the other hand, identi-

fies dimensions of activity that contain variability specific to individual task variables. Given a

task variable of interest (e.g., stimulus identity), the dPCA algorithm groups recorded activity

patterns according to this variable and then extracts dimensions that maximize variance across
groups (e.g., activity patterns evoked by different stimuli) while also minimizing variance

within groups (e.g., activity patterns evoked by the same stimulus, but at different points in

time and with different decisions). Here, we used this method to identify dimensions of activ-

ity that were strongly modulated by the identity of the UMI or PMI during the delay period.

To extract the demixed Principal Components (dPCs) of UMI-related variance, we mini-

mize the following loss function:

VUMI;WUMI ¼ arg min
V;W

X

s;t

jjð�xs � �xÞ � VWTðxst � �xÞjj2

where xst is the neural activity at time t averaged over all trials in which stimulus s (s being one

of the 6 stimuli) was the UMI (trial averaging was necessary to average away noise), �xs ¼
1

T

PT
t¼1
xst is its mean over time, and �x is the global mean over all trials and timepoints. This

least squares optimization problem is called reduced-rank regression, and admits a closed-

form solution [30]. This objective seeks to capture fluctuations in activity, �xs � �x, arising from

changes in the UMI stimulus and independent of time, as we expect the WM representation to

stay stable over the late delay period. We refer to the columns ofWUMI as the UMI dPCs, and

call the subspace spanned by the columns of VUMI the UMI subspace. We similarly extracted

PMI dPCs,WPMI, and a PMI subspace, VPMI, by exactly repeating the above operation but with

the index s now indexing the PMI stimulus rather than the UMI stimulus.

In order to extract dimensions of activity specific to WM, we sought to restrict the above

optimization to activity patterns during the late delay period. For the RNN’s, this led us to uti-

lize a single timepoint: the second timestep of the delay period (i.e., t only takes on a single

index; cf. delay 1:2 (for UMI), delay 2:2 (for PMI) in Fig 4). For the EEG data, we used time-

points from the second half of the delay: t2[-1400ms, 0ms] (for UMI) and t2[2150ms,

3550ms] (for PMI) relative to stimulus n + 1 onset.

For the purposes of visualization we extracted only two dPCs (i.e. V andW each have two

columns only), so as to obtain two-dimensional projections, zst , of the neural activity. These

projections were computed using the dPCs (WUMI orWPMI) as follows,

zst ¼W
Tðxst � �xÞ

It is these two-dimensional vectors that are plotted in Fig 5 using the simulated RNN data (xst
is the 7- or 60- dimensional internal LSTM state vector) and in Fig 6 using the EEG data (xst is

the 60-dimensional vector of signals recorded at each EEG channel).

For estimating the geometric relationships between stimulus and decision subspaces (Fig

7), we estimated decision dPCs,Wdec, and a decision subspace, Vdec, by capturing variability
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arising from changes in the subject’s decision, xs;dt � �xst , as follows,

Vdec;Wdec ¼ arg min
V;W

X

s;t

jjðxs;dt � �xstÞ � VW
Tðxs;dt � �xÞjj2

where xs;dt is the is the neural activity at time t averaged over all trials in which stimulus s was

the probe and response d (“match” or “non-match”) was the decision made by the subject (or

RNN), �xst ¼
1

2
xs;@match@
t þ xs;@non� match@

t

� �
is its mean over the two decisions, and �x is again the

global mean over all trials and timepoints. We again used two dPCs, in accordance with previ-

ous analyses of WM subspaces [32]. In this case, we only considered timepoints during the

decision time period: t2[200ms, 700ms] relative to stimulus onset for EEG and t = stimulus

presentation timestep for RNN. See “UMI/PMI/decision subspace analysis” section below on

how the relationships between the different subspaces (VUMI, VPMI, and Vdec) were then

quantified.

Percent variance explained calculations were performed as follows. Percent global variance

explained by the ith dPC, wi (i.e. the ith row of the decoder matrixW), was calculated using

the corresponding column vi from the encoder matrix V by

1 �

P
s;tkðx

s
t � �xÞ � viwTi ðx

s
t � �xÞk2

P
s;tkðxst � �xÞk2

The percent stimulus variance explained was defined as

1 �

P
skð�x

s � �xÞ � viwTi ð�x
s � �xÞk2

P
skð�xs � �xÞk2

Characterizing the dynamics of the UMI-to-PMI transformation

To characterize the continuous dynamics of the UMI-to-PMI transformation in stimulus-rele-

vant dimensions, we quantified the evolving geometry of the stimulus representation visual-

ized in Figs 5 and 6 by fitting a scalar transform, k, that minimizes the squared difference

between the stimulus representation at a given timepoint and the transformed early-delay

UMI representation,

k̂t ¼ arg min
k

X

s

jjWTðxst � �xtÞ � kW
Tð�xs � �xÞjj2

where �xs here is our estimate of the UMI, estimated by averaging activity patterns, xst , over all

timesteps t during the first half of the first delay (delay 1:1 for RNN and -2800 to -1400 ms rela-

tive to stimulus n + 1 onset for EEG). The index s, which refers to the stimulus presented prior

to this delay, therefore corresponds to the identity of the UMI stimulus. In Figs 5B, 5D and 6B

we plot these best-fitting scalars as a function of time over a whole trial, as the activity transi-

tions from representing the stimulus as a UMI to representing it as a PMI. To isolate structure

within the WM-relevant subspaces, we fit this transformation to low-dimensional projections

through the UMI dPCs,WUMI, or PMI dPCs,WPMI.

Note that before computing these projections we center the activity vectors by subtracting

their mean at the corresponding timepoint, �xt ¼ 1

S

P
s¼1;::;Sx

s
t . This is because we are specifically

interested in how the representational format of the stimulus in WM changes over time, rather

than changes in the absolute encoding of these stimuli. This analysis only sought to capture

how the relationships between the different stimulus representations change over time.
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UMI/PMI/decision subspace analysis

To quantify the relationship between UMI, PMI and decision subspaces calculated from equa-

tions above, we used a metric developed by Panichello and Buschman [32]. This metric mea-

sures the alignment between corresponding pairs of dPC encoding vectors as follows:

UMI� PMI subspace alignment ¼ jvUMI
1
� vPMI

1
jjvUMI

2
� vPMI

2
j

UMI� decision subspace alignment ¼ jvUMI
1
� vdec

1
jjvUMI

2
� vdec

2
j

PMI� decision subspace alignment ¼ jvPMI
1
� vdec

1
jjvPMI

2
� vdec

2
j

where the dot denotes the Euclidean dot product, and the bars denote absolute value. Here,

vUMI
1
; vUMI

2
are the 1st and 2nd UMI dPC encoding vectors, i.e., the two columns of the matrix

VUMI. The analogous definition holds for the PMI and decision dPCs: vPMI
1
; vPMI

2
are the col-

umns of VPMI; vdec
1
; vdec

2
are the two columns of Vdec. Note that under the standard dPCA for-

mulation used by Kobak et al. [30] and used here, the encoding vectors are all norm 1. These

dot products can therefore be interpreted as cosines of angles between the pairs of vectors, and

the subspace alignment metric can be interpreted as a product of two cosines.

To turn this metric into an angle, we took the inverse cosine of each alignment metric in

the three equations above. These are the angles plotted in Fig 7.

EEG dataset

60-channel EEG data were acquired and preprocessed as per procedures described in Wan

et al. [13]. Raw EEG voltages were used for all analyses. Because data from the pilot and repli-

cation experiments from Wan et al. [13] yielded very similar IEM reconstruction results, they

were combined to yield a dataset of 42 subjects. As is the case with the RNN data, after exclud-

ing the first two stimuli from each block there were 126 stimulus events and hence 125 trials

per block. Each stimulus event (stimulus presentation followed by a delay) lasted 3550 ms. A

third of the trials in each block were ‘match’ trials and the other two thirds were ‘non-match’

trials. EEG data from all trials (both correct and incorrect) were included in the analyses. For

each stimulus n, during the delay period after its onset, stimulus n– 1 had the status of PMI

and n had the status of UMI.

Results

Behavioral results of EEG study

Mean accuracy was 86.1% (SD = 5.6%), mean d’ was 2.40 (SD = 0.65), and mean response time

was 0.82 s (SD = 0.18 s).

Visualizing LSTM activity using PCA

PCA was carried out on the 7D LSTM hidden layer activity from the training data, and the

resultant dimension-reduced activity from all 3200 trials projected onto the 2D-space con-

structed by the first 2 principal components (Fig 4, “unlabeled” column). This revealed that

representations tended to cluster into band-like manifolds that appeared to rotate over the

course of the trial (i.e., from timestep n to timestep n + 2). Next, to get a sense of the stimulus

representational structure and how it evolves over time, we colored the data points for each

trial according to the identity of stimulus n (Fig 4, “stimulus” column). This revealed that,

across trials, stimulus representations were organized into stimulus-specific “stripes” that at
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Fig 4. PCA visualization of LSTM hidden layer activity of an example 7-hidden-unit network (#7). Shown is a 9-timestep

time course of the 2-back task, running from stimulus n to delay 3:2. Column 1 and 2: timestep labels and example input

vectors. Column 3: Time course of dimensionality-reduced LSTM hidden layer activity. Each dot in the figures indicates the

unit activity from a single trial. Column 4: Same as Column 3 but now each color corresponds to one of the six stimulus types,

indicating stimulus n’s identity, and the black dashed lines illustrate the “schematic” stimulus coding axis. Blue and red squares
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some timesteps cut across the band-like manifolds (delay 1:1 and delay 1:2), and at others were

perfectly overlaid on them (delay 2:1 and delay 2:2). These “stripes” thus defined a stimulus-

coding axis. (That is, a stimulus’s identity can be read out based on its location along this axis.

A schematic illustration of this axis is superimposed on some of the timesteps from Fig 4,

“stimulus” column, with a black dashed line.) It is noteworthy that, at timestep n + 2, the con-

figuration of individual trials is different than at timestep n. This reflects that fact that items

serve different functions at these two timesteps–probe at timestep n andmemorandum at time-

step n + 2. Indeed, if one were to re-color timestep n + 2 according to stimulus n + 2’s identity,

this frame would be identical to the configuration of stimulus n at timestep n, which means

that n + 2 and n are in opposite locations in PCA space (e.g., in Fig 4, the azure-colored stimu-

lus trials occupying the right side of PCA space at timestep n are on the left side of the space at

timestep n + 2).

Finally, to get a sense of how the RNN’s decision was represented, we colored each data

point according to whether or not the correct response at the end of the trial was “match” (i.e.,

at timestep n + 2; Fig 4, “decision” column). This revealed that, when n is compared with n
+ 2, activity in trials requiring a “match” response converged onto the two central bands,

whereas activity in non-match trials converged to the flanking bands. This organization thus

defined a decision-coding axis, in that the correct response at a given trial can be read out

based on the location of the RNN’s internal state along this axis. A schematic illustration of

this axis is superimposed on timestep n + 2 from Fig 4, (“decision” column, with a black

dashed line).

Over the course of a trial, n’s stimulus-specific axis appeared to rotate counterclockwise (in

the PCA plane) as it transitioned from UMI (during delay 1:1 and delay 1:2) to PMI (during

delay 2:1 and delay 2:2). This likely reflects, in part, transitions between the functional roles of

probe (timestep n), then UMI, then PMI. Thus, we can hypothesize the following functional

account of the representational trajectory through a trial of, say, an azure-colored stimulus

from Fig 4. At timestep n, its representational structure puts it on one of the central bands if it

matches item n– 2 (and therefore elicits an output of [1]), or on a band to the right of center if

it does not match item n– 2. These two locations are separated along the decision-coding axis.

Next, as it acquires the functional status of UMI, it transitions to a configuration that is not

compatible with decision-making, as evidenced by the fact that every azure stimulus is located

along a “stripe” that is parallel to the decision-coding axis at timestep n + 1 (stated another

way, the stimulus-coding axis at timestep n + 1 is orthogonal to the decision-coding axis). Dur-

ing delay 2:1 and delay 2:2 the item’s representation continues to rotate in the same counter-

clockwise direction on a trajectory that brings it back into alignment with the decision axis,

but now on the “opposite side” of the PCA space, reflecting the fact that it is a PMI. (I.e.,

for azure items, probes cluster on the right side of PCA space, PMIs on the left side.) At time-

step n + 2, the band occupied by this item will depend on its match/nonmatch status. From

this we can further hypothesize that the function of this rotational trajectory might be to pre-

vent the remembered representation of n from influencing the n– 1 versus n + 1 decision (at

timestep n + 1).

highlight the two delay timesteps used to identify UMI and PMI dPCs, respectively. Column 5: Same as Column 4 except that

the colors now correspond to stimulus n’s status for the n-to-n + 2 comparison that occurs at timestep n + 2 (green: match

trials, blue: nonmatch trials). Black dashed line at timestep n + 2 (yellow square) illustrates the decision-coding axis. As can be

seen in Column 5, the stimulus coding axis rotates counterclockwise (in the image plane) over time such that it becomes

“perpendicular” to the decision axis at timestep n + 1 and aligns with it at timestep n + 2. Percent variance explained: PC1–

72.2%, PC2–15.7%.

https://doi.org/10.1371/journal.pcbi.1009062.g004
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Whatever the intuitive appeal of these hypotheses, PCA is not well suited to reveal the struc-

ture most relevant for representing a given task variable (e.g., UMI/PMI status, decision, . . .),

because PCA is completely agnostic about which task variables the neural activity depends on.

We therefore next sought to more directly visualize the structure of the UMI, PMI, and deci-

sion representations by incorporating these task-relevant variables into our dimensionality

reduction method.

Visualizing LSTM representations using dPCA

Unlike PCA, which attempts to capture all variability across all time and all trials, dPCA seeks

to capture variability dependent on specific task variables. By applying this dimensionality

reduction method to neural activity during the delay period–during which the stimulus is held

in memory–we can identify the dimensions most relevant to the representation of the stimulus

in WM. By projecting the timeseries data into the subspaces spanned by these dimensions, we

can visualize the temporal evolution of the geometry of the stimulus representation. This

would allow us to test quantitatively the hypothesis that, for a given item n, its representational

format while it is a UMI is transformed into a representational format that, although active, is

different from that of the PMI.

RNN with 7 LSTM units. We applied dPCA to the 7D data from the RNNs to identify the

top two UMI-selective dPCs (at the delay 1:2 timestep) and the top two PMI-selective dPCs (at

the delay 2:2 timestep). The first two dPCs of the UMI subspace accounted for 97.4% of the

total stimulus variance of the trial-averaged data. The first two dPCs of the PMI subspace

accounted for 99.8% of the total stimulus variance (see Table A in S1 Text for additional infor-

mation). Comparison of the trial-averaged population activity during the first delay period

(delay 1:2) and second delay period (delay 2:2) reveals that, the way in which the stimulus is

represented changes over time as it transitions from an unprioritized (UMI, in the first delay

period) to a prioritized state (PMI, in the second delay period). The stimulus can be read out at

both of these timepoints, but the relationship between stimulus and population activity is

reversed (e.g., in Fig 5A, top row, the ordering along the 1st dPC at delay 1:2 is orange-yellow-
purple-pink-teal-green, whereas at delay 2:2 it is green-teal-pink-purple-yellow-orange). This is

true regardless of whether we project this representation through the UMI dPCs (Fig 5A, top

row) or the PMI dPCs (Fig 5A, bottom row). Iteratively projecting trial-averaged activity from

each timestep onto these two dPC subspaces suggested that the evolution of stimulus represen-

tational format across the trial is such that its projection onto the 1st dPC of the PMI–the axis

that is critical for readout of the memory item against which the impending probe is to be

compared at timestep n + 2—is minimal at timestep n + 1. (Note that this corresponds to the

0-crossing of the scalar transform, as described in the next paragraph.)

To quantify these dynamic changes in the stimulus representation across the various stages

in the trial, we fit a scalar transformation from the trial-averages at timestep delay 1:1 to the

trial-averages at every other timestep (see Methods). The value of this best-fitting scalar trans-

form for each timestep is plotted in Fig 5B. Relative to the UMI subspace (i.e., dPCA on time-

step delay 1:2), an item’s representational format was relatively stable (i.e., unchanging) for the

first half of the trial, with the scalar transform close to 1.0, then, after timestep n + 1, shifted to

a steady rate of transformation for the remainder of the trial, with the 0-crossing of the scalar

transform (indicating the reversal of the stimulus-activity mapping) occurring at timestep

delay 2:1. Relative to the PMI subspace, the representational format began contracting during

delay 1, flipped just before timestep n + 1, and steadily expanding through delay 2. Together,

these results confirm that an item’s representational transformation across the trial proceeds at

a relatively steady rate (consistent with the smooth rotation observed with the PCA (Fig 4)).
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RNN with 60 LSTM units and a circular stimulus set. Although the results from the 7D

RNN data produced quantitative predictions about the priority-based transformation of infor-

mation held in WM, their direct applicability to the EEG data from Wan et al. [13] would be

complicated by two factors. First, there would be a difference in dimensionality between the

two datasets (7D for the RNN, 60D [corresponding to 60 channels] for the EEG). Second,

whereas the six stimuli used to train the RNNs with 7 LSTM units were unrelated to each

other, the six stimuli used in Wan et al. [13] were orientations equally spaced within the circu-

lar range of 180˚. Therefore, our next step was to repeat the procedure described up to this

point, but with 10 RNNs with 60 LSTM units each, trained on six stimuli drawn from a circular

space. Results with the resultant 60D data would constitute the hypotheses that we would then

test with the EEG data from Wan et al. [13].

To incorporate circular stimuli into our RNN model, we used 2D inputs taking the value

[cos 2θ, sin 2θ], matching the periodicity of the oriented grating stimuli used in the task

(where a 0˚ stimulus is equivalent to a 180˚ stimulus). We then constructed the six stimulus

inputs by simply plugging in the six stimulus angles used in the EEG experiment. With these

modifications, we trained 10 LSTMs with 60 hidden units to perform the 2-back task

at> 99.5% correct. We then applied dPCA to the resultant 60-dimensional data from these

RNNs. In this case, we found the UMI and PMI representations to have circular structure (Fig

Fig 5. Stimulus trial-averages of RNN hidden layer activity projected into UMI and PMI subspaces over the course of a trial (stimulus n to delay 2:2). (A) Results

from an example 7-hidden-unit network. Dot color indicates stimulus n’s identity. (B) Time course of scalar transform over the course of a trial, averaged across 10

networks. Blue vertical line indicates the timestep when stimulus n + 1 is presented. Light blue shading shows the timesteps that were used to identify the dPCs. The

gray shading around the curve indicates standard error of the mean. The gray dashed lines indicate a scalar transform of 0; the stimulus representational format is

reversed after crossing this line. (C, D) Same as (A, B) but for the 60-hidden-unit RNNs. In C, data points of adjacent stimulus orientation angles are connected by a

gray line.

https://doi.org/10.1371/journal.pcbi.1009062.g005
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5C), spreading across both dPCs rather than just one as we saw in the previous simulations.

More concretely, the first two dPCs of the UMI subspace accounted for 98.7% of the total stim-

ulus variance of the trial-averaged data. The first two dPCs of the PMI subspace accounted for

99.0% of the total stimulus variance (see Table A in S1 Text for additional information).

Based on our analysis of these RNN’s, we derived two predictions that we next sought to

test in the EEG data from Wan et al. [13]:

• UMI-to-PMI representational reversal: as in the 7D RNN, the stimulus representation

reverses as it transitions from being unprioritized (delay 1:2) to prioritized (delay 2:2). That

is, when the stimulus is a PMI (delay 2:2), the colored points in Fig 5C are flipped with

respect to the x- and y-axes compared to when the stimulus is a UMI (delay 1:2). This can be

quantified by characterizing the stimulus representation at each timestep as some scalar

transformation of the representation early in the first delay period (delay 1:1). This scalar

transform remains positive and near 1.0 during the entirety of the first delay period and then

gradually decreases in value and reversing sign during the second delay period (Fig 5D),

illustrating a reversal in the representation of the stimulus as it transitions from being

unprioritized to prioritized. This holds true both within the UMI and PMI subspaces.

• Differential alignment of UMI and PMI subspaces with the decision subspace: the role of the

UMI representation in the 2-back task is to hold information about stimulus n in memory

that is irrelevant for the impending decision (i.e., when the subject has to make a judgment

about stimuli n + 1 and n—1). An important property of this representation, then, is that it

should not interfere with that decision. Conversely, the role of the PMI representation is to

provide information necessary for the impending decision–it should therefore be able to

contribute to that decision. We might thus expect, then, that the activity dimensions that are

used to compute the decision should overlap substantially less with the UMI subspace than

the PMI subspace. To assess whether this was the case in the trained LSTMs, we used dPCA

to extract a decision subspace and then used the metric of Panichello & Buschman [32] to

measure the alignment of the UMI and PMI subspaces with this decision subspace. As

expected, we find that, whereas the UMI subspace is largely orthogonal to the decision sub-

space (81.26˚ ± 2.06˚ SD), the PMI subspace has substantial overlap with it (35.25˚ ± 13.25˚

SD; Fig 7). The UMI subspace was also largely orthogonal to the PMI subspace (84.13˚ ±
3.91˚ SD).

Visualizing EEG activity using dPCA

The EEG data from Wan et al. [13] were markedly noisier than the RNN data: The first two

dPCs of the UMI subspace accounted for 69.1% of the total stimulus variance of the trial-aver-

aged data; and the first two dPCs of the PMI subspace accounted for 69.4% of the total stimu-

lus variance of the trial-averaged data.

Regarding the experimental predictions derived from the RNNs in the previous section, we

evaluated whether they held in these data:

• UMI-to-PMI representational reversal: inspection of the data from a single subject (Fig 6A)

shows no signatures of a representational reversal within the first two UMI or PMI dPCs. To

confirm this across all subjects, we fit a scalar transformation from the representation in the

first half of the first delay period to the representation at every other timestep. The average

scalar transformation for each timestep is plotted in Fig 6B. Relative to the UMI subspace,

the trajectory of the best-fitting scalar transformation qualitatively matched that from the

60D RNN, increasing across the delay preceding item n + 1, then (after holding a constant

value across the time interval used to define the subspace) decreasing for the remainder of
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the trial. Unlike the RNN data, however, the scalar transform never reversed sign (Fig 6B,

UMI row). Relative to the PMI subspace, the trajectory for the EEG data started with a steady

increase across the delay preceding item n + 1, reaching its maximum value while item n + 1
was on the screen (i.e., 2 sec. prior to the beginning of the time interval used to define the

PMI subspace), then remaining unchanged for the remainder of the trial (Fig 6B, PMI row).

This indicates that stimulus representations begin transforming toward their configuration

in the PMI subspace, fully achieve it by epoch n + 1 (at which time they have UMI status),

and then maintain this end-state configuration for the remainder of the trial. This trajectory

differs markedly from the 60D RNN, for which the configuration relative to the PMI sub-

space was unchanging until after delay 1:2, then rapidly changing across the second half of

the trial. Also different from the RNN, the scalar transform for EEG did not reverse sign.

These results indicate that representational reversals are not systematically present in the

EEG data as they were in the RNN data. Anecdotally, inspection of the EEG data gave the

impression of considerably more heterogeneity of representational geometry across subjects

(in these first two UMI/PMI dPCs) than we saw across independently trained RNNs.

• Differential alignment of UMI and PMI subspaces with the decision subspace: we found that,

in the EEG data, the UMI and PMI subspaces were both largely orthogonal with the decision

subspace (81.80˚ ± 6.69˚ SD and 82.74˚ ± 8.74˚ SD, respectively; Fig 7). In other words, we

did not observe that the UMI representational subspace had a different geometric relation-

ship to the decision subspace than the PMI subspace. The UMI and PMI subspaces were sep-

arated by an angle of 76.87˚ (SD = 12.33˚).

Tracking the disappearance of information from WM using dPCA

As an exploratory endeavor, we have developed an approach using dPCA to track, at the level of

an individual neural population (artificial or not), the disappearance of stimulus information

Fig 6. Stimulus trial-averages of EEG signal projected into UMI and PMI subspaces over a 2-delay time course (-2800ms to 3550ms

relative to stimulus n + 1 onset). (A) Results from an example subject. Dot color indicates stimulus n’s orientation angle. Data points of

adjacent stimulus orientation angles are connected by a gray line. (B) Group-average time course of scalar transform over the course of a trial

(N = 42). Blue vertical line indicates the onset of stimulus n + 1. Light blue shading shows the time windows that were used to identify the dPCs.

The gray shading around the curve shows standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1009062.g006
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when it is no longer relevant for a WM task. This was motivated by the observation that, for the

three timesteps that follow n + 2, stimulus averages projected into the PMI subspace appeared to

collapse (Fig C in S1 Text)–what one would expect as information “fades out” of WM at the end

of a trial. To quantify this intuition, we start with the three timesteps preceding the onset of stimu-

lus n in the time course of stimulus averages projected into the PMI subspace (see Fig C in S1

Text for an example RNN), reasoning that these will not have any information about stimulus n.

The dispersion of stimulus averages for these timepoints can serve as an empirically derived base-

line of discriminability when a stimulus is not in WM. Then, the timesteps immediately following

stimulus n + 2 (when n is no longer relevant) can be compared against the pre-trial baseline. To

apply this procedure, we would calculate how dispersed the PMI stimuli are from each other at

any given timestep and use the resultant metric as a proxy for stimulus discriminability.

We use a bootstrapping procedure in which, for each individual network, we resample with

replacement the number of trials from each stimulus condition and perform dPCA on the

resampled data as done in the section “WM-specific dimensionality reduction via dPCA” (PMI

subspace). We then compute the dispersion (i.e., the variance) of the six stimulus trial-averages

projected into the PMI subspace, for each timepoint, and repeat the procedure 10,000 times to

construct the baseline (null) distribution of dispersion values. To be conservative in rejecting a

timepoint as having WM information, we choose, in each iteration, the maximum dispersion

value over the values calculated for the 3 timepoints preceding stimulus n to construct this dis-

tribution. We can then compare any timestep of interest with this distribution to determine

whether the dispersion value at the timestep lies beyond the 95th percentile (one-tailed test) of

the baseline distribution: if so, we reject the null hypothesis and conclude that this timestep

does contain discriminable information about item n; if not, we fail to reject the null hypothe-

sis and conclude that we are unable to detect discriminable information about item n in its

PMI dPC subspace. When applied to the network illustrated in Fig 5C, for example, informa-

tion about item n persisted for one timestep after it was no longer relevant, but then was no

longer detectable (Fig C in S1 Text). Unfortunately, this approach cannot be applied to the

data from Wan et al. [13], due to their varying lengths of delay. We leave the application of this

method to human neural signals for future work.

Discussion

Results from previous neuroimaging studies have given rise to the idea that representations in

working memory (WM) undergo a “priority-based remapping” when they obtain the status of

Fig 7. Angles between UMI, PMI and decision subspaces for (A) 60D RNN and (B) EEG data. Black bars indicate standard

error of the mean.

https://doi.org/10.1371/journal.pcbi.1009062.g007
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UMI [11–13], but the mechanism underlying this transformation was unknown. Here, using

neural network modeling and dimensionality reduction techniques, we have identified a tran-

sition through representational space that may reflect a general solution to the computational

problem of needing to hold information in an accessible state (i.e., “in WM”) but in a manner

that won’t influence ongoing behavior. However, noteworthy differences between the transfor-

mational dynamics observed with RNNs versus with human EEG suggest important differ-

ences in implementational specifics, highlighting important questions for future work.

The 2-back task requires information to transition through three distinct functional states:

that of a probe requiring comparison with the mnemonic representation of item n– 2 and an

overt match/nonmatch report; unprioritized (a state that should minimize interference with

the concurrent n– 1 vs. n + 1 comparison and report); and prioritized (in preparation for its

comparison against n + 2). PCA of hidden-layer activity of RNNs underwent a smooth rota-

tion through 180˚ of the 2D space defined by the first two PCs. dPCA of RNNs characterized

distinct subspaces corresponding to these states, and the trajectories between the states.

The organization of these functional subspaces is reminiscent of recent findings from

NHPs performing a retrocuing WM task. Subjects first encoded two stimuli–one above fixa-

tion and one below—into WM, then viewed a cue indicating which one to report. Prior to the

cue, PCA indicated that the above and below items were represented in subspaces of neural

activity separated by a median angle of 79.1˚. After the cue, the selected item transitioned into

a different subspace, and the selected-from-above and selected-from-below subspaces were

closely aligned—separated by only 20.1˚. The authors interpreted this as a transition of the

selected item from a representational format that emphasized the distinction between the two

items to a “template” format that abstracted over location (no longer a relevant parameter)

and facilitated behavioral read-out (specifically, recall; [32]). In our 2-back task, the UMI-to-

PMI transition can be understood as the implicit selection of the UMI that occurs after a

response is made to item n + 1. An important difference between our 2-back task and the ret-

rocuing task of Panichello and Buschman [32], however, is that their task lacked a UMI state.

Rather, after the retrocue, there was no possibility that the uncued item would be needed.

Nonetheless, in the PFC, a representation of the uncued item persisted, and its uncued sub-

space was orthogonal to the template subspace. Therefore, one important question for future

work is whether, and if so how, the transition to UMI differs from the transition to no-longer-

needed (i.e., “dropping” an item from WM).

It is important to note that the RNN modeling that we carried out here is not intended to

simulate EEG data, nor the human brain, which has vastly different structural and functional

architecture from our RNNs. For example, because of the relative simplicity of the RNN archi-

tecture, and the absence of many sources of noise that are characteristic of EEG (e.g., physio-

logical noise, uncontrolled mental activity, measurement noise), the variability and SNR of the

two signals differ markedly. This limits what can be interpreted from direct comparisons

between the two sets of results. Here we summarize where the two approaches have yielded

similar versus dissimilar outcomes, and briefly consider some implications.

Comparison of RNN vs. EEG results

Similarities.

• Stimulus representation in both RNN and EEG data went through a priority-based transfor-

mation, occupying, in turn, two distinct subspaces (UMI and PMI). This indicates that the

UMI was actively represented in both RNN and EEG (c.f., [4–6]. Importantly, it confirms

that, at the algorithmic level, prioritization in WM is carried out, at least in part, by an opera-

tion of representational transformation.
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• The representational trajectories of RNN and EEG data are indicative of an active transfor-

mation, and so cannot be accounted for by inhibition (c.f., [17]).

• The angles between UMI and PMI subspaces (RNN: 84˚, EEG: 77˚), and between UMI and

decision subspaces (RNN: 81˚, EEG: 82˚) were similar for RNN and EEG. These patterns are

consistent with a process that might minimize the influence of the UMI on other concurrent

operations, including the retention of the PMI and the processing of the probe.

Differences.

• Unlike the RNN data, the EEG data did not show evidence of a sign reversal of the best-fit-

ting scalar transform. It remains to be determined if this reflects a fundamental difference in

how the human brain carries out priority-based remapping, or if it may reflect a limitation

of extracranial EEG. (E.g., the dynamics of priority-based transformations are different in

different brain areas of the NHP [32], but comparable inter-regional differences would be

mixed in our whole-scalp EEG data.)

• In the EEG data, the group-average stimulus representation transformed into its final config-

uration in the PMI subspace earlier than in the RNN data (Figs 5 and 6). (Indeed, human

subjects, on average, recoded item n into its UMI and PMI configurations simultaneously,

and then later prepared for item n + 2 by collapsing the UMI structure during delay 2,

whereas the RNNs recoded the item around the time when the priority status of the stimulus

changed.) It is also noteworthy that the rate of this transformation was highly variable across

individual EEG datasets, but not across RNNs. An important question for future research is

whether individual differences in this factor may relate to behavioral performance, as well as

whether it is sensitive to such factors as strategy or reward contingency.

• For the EEG data, the angle between PMI and decision subspaces was 83˚, whereas for the

RNN it was 35˚. This pattern in the RNN data is consistent with close alignment of these two

subspaces that might facilitate comparison of the PMI and the probe. Similar to the point

raised previously, future work is needed to determine whether this difference reflects an

important difference in decision-making between human and RNNs, or if it is a conse-

quence of poor spatial resolution of the EEG data. (E.g., the effects of selection on WM infor-

mation are markedly stronger in the PFC than in the visual cortex of NHPs [32].)

Contributions and limitations of the current work

One important role for the RNN simulations presented here has been to establish the validity

and interpretability of our approach with dPCA. This, in turn, allowed us to use dPCA to eval-

uate neural coding in an EEG data set, including during task epochs for which multivariate

methods had failed to find evidence for an active representation of the PMI (Fig 2). This suc-

cessful application of dPCA to an extant EEG dataset in this study suggests that this approach

may also provide novel insights if applied to the data from studies that have previously been

interpreted as evidence for activity-silent storage mechanisms [4–6]. The fact that dPCA does

not make assumptions about the representational structure of stimuli means that it’s possible

that it could find evidence for stimulus representation where a model-based approach, such as

IEM, has failed. (Indeed, this is what happened with the PMI from the EEG data set in this

study–compare Figs 2 with 6.)

It is also important to note that the RNNs we simulated have a simple architecture, with a

homogeneous LSTM layer, which is, of course, very different from the brain with its heteroge-

neous patterns of connectivity between neurons with varied structural and functional
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properties. The RNN simulations of Masse et al. [33], employing different cell types and explic-

itly simulating factors like receptor time constants and presynaptic depletion of neurotrans-

mitter, offer one promising example for developing more biologically plausible models. Also

missing from our RNN architecture is an explicit source of control, such as that exerted by pre-

frontal and posterior parietal circuits in the mammalian brain. Through extensive training,

our RNNs gradually learned to adjust their connection weights so as to achieve a high level of

performance, but this was only possible because each item presented to the network always fol-

lowed the same functional trajectory (probe, then UMI, then PMI). A hallmark of WM in the

real world is the ability to flexibly respond to unpredictable changes in environmental exigen-

cies. Thus, an important future goal will be to extend the present work to a network with sepa-

rate modules with different connectivity patterns and governed by different learning rules

(e.g., [29,34]), and to a task that requires truly flexible behavior.

Our work complements extant models of attentional prioritization in WM. First, it sheds

light on the prioritization mechanisms of a continuous-performance WM task (2-back), a

design that has recently received less attention than tasks employing retrocuing. Second, com-

pared with the aforementioned computational accounts [15,17], our use of dPCA provides a

data-driven dimensionality reduction approach that does not make assumptions about the

representational structure of stimuli. This allows one to examine the unmodeled structure of

stimuli in the representational space. Third, our dPCA analyses were applied on a subject-by-

subject basis, without assuming that the same representational and/or computational scheme

is employed across individuals. Indeed, recent research has shown that representational biases

of stimulus features vary among individuals in higher-order brain areas [35]. Therefore, this

approach may be helpful for explaining individual differences across many types of cognition.

To conclude, we used ANN simulations to validate the idea, at the level of representational

codes, that shifts of priority status trigger the transformation of stimulus representations in

WM. Applying dimensionality reduction to LSTM hidden layer activity in RNNs revealed the

organization of functionally specific subspaces, and the trajectories between different func-

tional states. This approach translated to EEG data from subjects performing the same task,

revealing similarities and differences between human and machine, and highlighting fruitful

directions for future research.

Supporting information

S1 Text. Fig A. Example 7-hidden-unit RNN trained with input following the basis function

used to build IEMs in Wan et al. [1]. Shown is the 2D visualization of the LSTM hidden layer

activity of this RNN. The network architecture and training procedure are identical to the 7D

RNNs reported in the main text with the exception that the inputs are not one-hot vectors;

instead, they are specified by the IEM basis function: R = sin6(x) (e.g., for stimulus #3, input

vector is [0.0156, 0.4219, 1, 0.4219, 0.0156, 0]). Note that these results are qualitatively similar

to RNNs reported in the main text (Fig 4). Fig B. Generating circular input for 60-hidden-unit

RNNs. Each point on the circle can be characterized by an angle relative to the easternmost

point of the circle. The coordinates of these points within the 2D space on which this circle

lives are given by [cos θ, sin θ]. To construct input vectors used in our RNN model, we mapped

each stimulus orientation θ to the corresponding point on the circle at 2 � θ. The multiplication

by 2 is necessary to match the periodicity of the input vectors to the periodicity of the oriented

grating stimuli, which have a period of 180˚ (i.e., the stimulus at θ is equivalent to the stimulus

at θ + 180˚). Fig C. Empirical test for presence of stimulus information in WM. (A) Time

course of stimulus averages projected into the PMI subspace from an example 60D RNN. Data

points are colored based on item n’s identity. We used the 3 timesteps prior to the presentation
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of n to construct a baseline distribution of dispersion values using a bootstrapping procedure.

Visually, one can see stimulus information collapsing in the PMI subspace across the three

timesteps that follow timestep n + 2, colored squares added to identify them for panel B. (B)

The baseline distribution of dispersion values, with red dashed line indicating the 95th percen-

tile criterion. Magenta, green and orange lines indicate the dispersion values from timesteps

delay 3:1, delay 3:2, and n + 3, respectively. Table A. Cumulative percent variance explained

(PEV) by top dPCs of the UMI and PMI subspaces for 7D RNN, 60D RNN and EEG data. The

percentages of both stimulus and global variance explained are shown.
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