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Orthogonal neural encoding of targets  
and distractors supports multivariate 
cognitive control

Harrison Ritz    1,2,3  & Amitai Shenhav    1,2

The complex challenges of our mental life require us to coordinate multiple 
forms of neural information processing. Recent behavioural studies have 
found that people can coordinate multiple forms of attention, but the 
underlying neural control process remains obscure. We hypothesized that 
the brain implements multivariate control by independently monitoring 
feature-specific difficulty and independently prioritizing feature-specific 
processing. During functional MRI, participants performed a parametric 
conflict task that separately tags target and distractor processing. 
Consistent with feature-specific monitoring, univariate analyses revealed 
spatially segregated encoding of target and distractor difficulty in 
the dorsal anterior cingulate cortex. Consistent with feature-specific 
attentional priority, our encoding geometry analysis revealed overlapping 
but orthogonal representations of target and distractor coherence in the 
intraparietal sulcus. Coherence representations were mediated by control 
demands and aligned with both performance and frontoparietal activity, 
consistent with top-down attention. Together, these findings provide 
evidence for the neural geometry necessary to coordinate multivariate 
cognitive control.

We have remarkable flexibility in how we think and act. This flexibility is 
enabled by the array of mental tools we can bring to bear on challenges 
to our pursuit of goals1–6. For example, someone may respond to a mis-
take by becoming more cautious, enhancing task-relevant processing or 
suppressing task-irrelevant processing7, and previous work has shown 
that people simultaneously deploy multiple such strategies in response 
to different task demands3,8–10. Flexibly coordinating multiple cognitive 
processes requires a control system that can monitor multiple forms of 
task demands and deploy multiple forms of control (also referred to as 
the necessity for observability and controllability11). These monitoring 
and regulation processes are fundamental to control and are thought 
to be underpinned by distinct cingulo-opercular and frontoparietal 
neural systems12–19. However, much is still unknown about how multiple 
forms of control are represented across these domains.

Past research on the neural mechanisms of cognitive control has 
often sought to identify representations that integrate over multiple 
different sources of task demands (that is, represent these different 
sources in alignment). For instance, previous studies have proposed 
that the dorsal anterior cingulate cortex (dACC) tracks integrative fea-
tures such as response conflict, effort, value, error likelihood and time 
on task20–27. Because they integrate over different task features instead of 
differentiating between them, these forms of ‘aligned encoding’ (Fig. 1a)  
are ill suited for carrying out multidimensional control. Multidimen-
sional cognitive control requires independent representations that 
can track multiple sources of difficulty and regulate multiple cognitive 
processes (for example, prioritizing multiple sources of information28).

An alternative to aligned encoding—one that would allow the brain 
to separately control multiple processes—is independent encoding, 
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monitoring multiple task demands and prioritizing multiple sources 
of information.

To gain new insight into the representations supporting cogni-
tive control, we drew upon two key innovations. First, we leveraged 
an experimental paradigm we developed to tag multiple control pro-
cesses10. Building on prior work3,30,41,42, this task incorporates elements 
of perceptual decision-making (discrimination of a target feature) 
and inhibitory control (overcoming a salient and prepotent distrac-
tor). We have previously shown that we can separately tag target and 
distractor processing from participants’ performance on this task and 
that target and distractor processing are independently controlled. 
For example, participants adjust target and distractor sensitivity in 
response to distinct task demands (for example, previous conflict or 

which can come in at least two forms. One way the brain can have 
independent representations is by encoding different task features 
in spatially segregated neural populations (‘segregated encoding’; 
Fig. 1b). For example, past work has shown that different subregions 
in the dACC encode distinct task demands, including various forms 
of errors and processing conflict29–34. The brain can instead have inde-
pendent representations that are distributed across units within the 
same population, as has also been observed in the dACC35–37. Within 
a shared population, independent encoding of information occurs 
along a set of orthogonal dimensions or subspaces (Fig. 1c, ‘subspace 
encoding’38–41). Despite this exciting recent work, it remains unclear to 
what extent different components of the cognitive control system lev-
erage these aligned, segregated or orthogonal encoding strategies for 
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Fig. 1 | Task and behaviour. a–c, Three hypothesized encoding schemes. 
In aligned encoding, features are represented similarly—for example, when 
encoding performance variables such as error likelihood or time on task (a). 
In segregated encoding, features are encoded independently, in distinct voxel 
populations (that is, voxel-level pure selectivity40) (b). In subspace encoding, 
features are encoded independently, in overlapping voxel populations (that 
is, voxel-level mixed selectivity) (c). d, Participants responded to a colour–
motion RDK with a button press. The participants responded either to the left/
right motion direction of the RDK (Attend-Motion runs) or on the basis of the 

majority colour (Attend-Colour runs; critical condition). e, We parametrically 
and independently manipulated target coherence (the percentage of dots in the 
majority colour) and distractor congruence (motion coherence signed relative 
to the target response). f, Participants were faster and more accurate when the 
target was more coherent. g, Participants were faster and more accurate when 
the distractor was more congruent with the target. The error bars on the line 
plots reflect the mean and within-participant s.e.m.; the error bars for regression 
fixed-effect β values reflect 95% CIs (N = 29 for all figures).
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incentives10). In conjunction with this process-tagging approach, our 
second innovation was to develop a multivariate functional MRI (fMRI) 
analysis for measuring relationships between feature encoding (that 
is, encoding geometry). Extending recent statistical approaches in 
systems neuroscience35,43,44, we combined the strengths of multivariate 
encoding analyses and representation similarity analyses into a method 
we call ‘encoding geometry analysis’ (EGA). We used EGA to character-
ize whether putative markers of monitoring and prioritization leverage 
independent representations for targets and distractors.

In brief, we found that key nodes in the cognitive control network 
use orthogonal representations of target and distractor information to 
support cognitive control. In the dACC, encoding of target and distrac-
tor difficulty was spatially segregated and arranged along a rostrocau-
dal gradient. By contrast, in the intraparietal sulcus (IPS), encoding of 
target and distractor coherence was arranged along orthogonal neural 
subspaces. These regional distinctions are consistent with hypoth-
esized roles in planning and implementing (multivariate) attentional 
policies12,17. Furthermore, we found that coherence encoding depended 
on control demands and was aligned with both task performance and 
frontoparietal activity, consistent with these coherence representa-
tions playing a critical role in cognitive control (for example, feature 
prioritization). Together, these results suggest that cognitive control 
uses representational formats that allow the brain to monitor and 
control multiple streams of information processing.

Results
Task overview
Twenty-nine human participants performed the Parametric Attentional 
Control Task10 during fMRI. On each trial, the participants responded to 
an array of coloured moving dots (coloured random dot kinematogram 
(RDK); Fig. 1d). In the critical condition (Attend-Colour), the partici-
pants responded with a left/right keypress depending on which of two 
colours were in the majority. In alternating scanner runs, the partici-
pants instead responded on the basis of motion (Attend-Motion), which 
was designed to be less control-demanding due to the (Simon-like) 
congruence between motion direction and response hand3,10. Across 
trials, we independently and parametrically manipulated target and 
distractor information across five levels of target coherence (for exam-
ple, the percentage of dots in the majority colour, regardless of which 
colour) and distractor congruence (for example, the percentage of 
dots moving either in the congruent or incongruent direction relative 
to the correct colour response; Fig. 1e). This task allowed us to ‘tag’ par-
ticipants’ sensitivity to each dimension by measuring behavioural and 
neural responses to independently manipulated target and distractor 
features. Unlike a similar task used to study post-error adjustments3, 
our parametric manipulation of target and distractor coherence allows 
us to better measure feature-specific representations. Unlike similar 
tasks used to study contextual decision-making30,41,45, this task pits 
more control-demanding responses (towards colour) against more 
automatic responses (towards motion), allowing comparisons between 
Attend-Colour and Attend-Motion tasks to isolate the contributions 
of cognitive control46,47.

Performance depends on targets and distractors
The participants had overall good performance on the task, with a high 
level of accuracy (median accuracy, 89%; interquartile range, 84–92%) 
and a low rate of missed responses (median lapse rate, 2%; interquartile 
range, 0–5%). We used mixed-effects regressions to characterize how 
target coherence and distractor congruence influenced participants’ 
accuracy and log-transformed correct reaction times (RTs). Replicating 
previous behavioural findings using this task, the participants were 
sensitive to both target and distractor information10. When target 
coherence was weaker, the participants responded slower (t27.6 = 16.1; 
P < 0.001; Cohen’s d = 3.01; 95% confidence interval (CI), (0.0248, 
0.0310)) and less accurately (t28 = −8.90; P < 0.001; d = −1.65; 95% CI, 

(−0.365, −0.233); Fig. 1f). When distractors were more incongruent, 
the participants also responded slower (t28.8 = 5.09; P < 0.001; d = 0.942; 
95% CI, (0.00603, 0.0141)) and less accurately (t28 = −4.66; P < 0.001; 
d = −0.865; 95% CI, (−0.220, 0.0896); Fig. 1g). Further replicating prior 
findings with this task, interactions between targets and distractors 
were not significant for RT (t28.2 = 0.143; P = 0.887; d = 0.0265; 95% CI, 
(−0.00181 0.00208)) and had a weak influence on accuracy (t28 = 2.36; 
P = 0.0257; d = 0.437; 95% CI, (0.00581, 0.0634)). Models omitting tar-
get–distractor interactions provided a better complexity-penalized fit 
(RT ΔAIC = 17.7, accuracy ΔAIC = 1.38).

Segregated encoding of target and distractor difficulties
Past work has separately shown that the dACC tracks task demands 
related to perceptual discrimination (induced in our task when target 
information is weaker) and related to the need to suppress a salient 
distractor (induced in our task when distractor information is more 
strongly incongruent with the target12,30–32,48). Our task allowed us 
to test whether these two sources of increasing control demand are 
tracked within common regions of the dACC (reflecting an aggregated 
representation of multiple sources of task demands) or whether they 
are tracked by separate regions (potentially reflecting a specialized 
representation according to the nature of the demands).

Targeting a large region of the dACC—a conjunction of a cortical 
parcellation with a meta-analytic mask for ‘cognitive control’ (see ‘fMRI 
univariate analyses’ in Methods)—we found spatially distinct signatures 
of target difficulty and distractor congruence within the dACC. In cau-
dal dACC, we found significant clusters encoding the parametric effect 
of target difficulty (Fig. 2a; the negative effect of target coherence is 
shown in green), and in more rostral dACC we found clusters encoding 
parametric distractor incongruence (the negative effect of distractor 
congruence is shown in blue). Supporting this dissociation, the spatial 
patterns of target and distractor regression weights were uncorrelated 
across dACC voxels (t28.0 = 1.32; P = 0.197; log Bayes factor (log(BF)) = 
−0.363; 95% CI, (−0.111, 0.515)). These analyses control for omission 
errors, and additionally controlling for commission errors produced 
the same whole-brain pattern at a reduced threshold (Extended Data 
Fig. 1). We also found that the most rostral portion of our dACC mask 
responded to target ease (Extended Data Fig. 2).

To further quantify how feature encoding changed along the lon-
gitudinal axis of the dACC, we used principal component analysis (PCA) 
to extract the axis positions of dACC voxels (see ‘dACC longitudinal 
axis analyses’ in Methods) and then regressed target and distractor β 
weights onto these axis scores. We found that targets had stronger dif-
ficulty coding in more caudal voxels (t27.9 = 3.40; P = 0.00204; d = 0.631; 
95% CI, (10.6, 42.8)), with a quadratic trend (t26.5 = 4.48; P < 0.001; 
d = 0.85; 95% CI, (38.2, 103); Fig. 2b). In line with previous work on 
both perceptual and value-based decision-making30,49–52, we found that 
signatures of target discrimination difficulty (negative correlation with 
target coherence) in caudal dACC were paralleled by signals of target 
discrimination ease (positive correlation with target coherence) within 
the rostral-most extent of our dACC region of interest (ROI) (Extended 
Data Fig. 3). In contrast to targets, distractors had stronger incongru-
ence coding in more rostral voxels (t28.0 = −2.87; P = 0.00781; d = −0.533; 
95% CI, (−55.6, −9.25)), without a significant quadratic trend. We used 
participants’ random-effects terms to estimate the gradient location 
where target and distractor coding were at their most negative, find-
ing that the target minimum was significantly more caudal than the 
distractor minimum (signed-rank test, z28 = 2.41, P = 0.0159). Target and 
distractor minima were uncorrelated across participants (r27 = 0.0282, 
P = 0.880, log(BF) = −0.839), again consistent with independent encod-
ing of targets and distractors.

As additional evidence that target-related and distractor-related 
demands have a dissociable encoding profile, we found that the crosso-
ver between target and distractor encoding in the dACC occurred at 
the boundary between two well-characterized functional networks53–55. 
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Whereas distractor-related demands were more strongly encoded ros-
trally in the Control network (particularly in regions of the dACC and 
insula corresponding to the Control C subnetwork54,56), target-related 
demands were more strongly encoded caudally in the Salience / Ventral 
Attention (SVA) network (Fig. 2c,d). Including network membership 
alongside long axis location predicted target and distractor encoding 
better than models with either network membership or axis location 
alone (ΔBIC > 1,675).

Independent encoding of target and distractor coherence
We found that the dACC appeared to dissociably encode target and 
distractor difficulty through spatially segregated encoding, consist-
ent with a role in monitoring different task demands and/or specify-
ing different control signals12. To identify neural mechanisms for the 
implementation of this control through the prioritization of targets 
versus distractors, we next tested for regions that encode target and 
distractor coherence (the amount of information in a feature, regard-
less of which response it supports). On the basis of previous research, 
we might expect to find this form of selective attention in the posterior 
parietal cortex17,57,58. We explored whether target and distractor coher-
ence share a common neural code (for example, as a global index of 
spatial salience), or whether these features are encoded distinctly (for 
example, as separate targets of control).

An initial whole-brain univariate analysis showed that overlapping 
regions throughout the occipital, parietal and prefrontal cortices track 

the feature coherence (the proportion of dots in the majority category) 
for both targets and distractors (Fig. 3a; conjunction in yellow). These 
regions showed elevated responses to lower target coherence and 
higher distractor coherence, potentially reflecting the relevance of 
each feature for task performance. Note that in contrast to distractor 
congruence, distractor coherence had an inconsistent relationship 
with task performance (RT: t27.0 = 2.08; P = 0.0468; d = 0.394; 95% CI, 
(8.33 × 10−5, 0.0107); accuracy: t28 = −0.845; P = 0.406; d = −0.157; 95% CI, 
(−0.085, 0.0338)), suggesting that these neural responses are unlikely 
to reflect task difficulty per se.

While these univariate activations point towards widespread and 
coarsely overlapping encoding of the feature coherence (potentially 
consistent with aligned encoding; Fig. 1a), they lack information about 
how these features are encoded at finer spatial scales. To interrogate 
the relationship between target and distractor encoding, we devel-
oped a multivariate analysis that combines multivariate encoding 
analyses with pattern similarity analyses, which we term EGA. Whereas 
pattern similarity analyses typically quantify relationships between 
representations of specific stimuli or responses (for example, whether 
they could be classified59), EGA characterizes relationships between 
encoding subspaces (patterns of contrast weights) across differ-
ent task features, consistent with recent analysis trends in systems 
neuroscience35,36,43,60–62. A stronger correlation between encoding 
subspaces (either positive or negative) indicates that features are 
similarly encoded (that is, that their representations are aligned and 
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a second-order polynomial regression. We used these regression β values to 
estimate the minima for target and distractor tuning (that is, the locations of the 
strongest difficulty effects), finding that the target difficulty peak (the vertical 
green line) was more caudal than the distractor incongruence peak (the vertical 
blue line). c, Plotting the uncorrected whole-brain response, the distractor 
incongruence responses (blue) were strongest in the Control C subnetwork 
(red), in both the dACC and anterior insula. d, Blood-oxygen-level-dependent 
responses across levels of target coherence and distractor congruence, plotted 
within the whole dACC ROI (left), or the SVA network and Control network parcels 
within the dACC ROI (right). GLMs: a–c, Feature UV; d, Difficulty Levels (Table 1). 
Throughout, the error bars reflect the mean and within-participant s.e.m. (N = 29).
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thus confusable by a linear decoder; Fig. 1a), whereas weak correla-
tions indicate that these representations are orthogonal (and thus 
distinguishable by a linear decoder59). In contrast to standard pattern 
similarity, the sign of these relationships is interpretable in EGA, reflect-
ing how features are coded relative to one another. Relative to standard 
encoding analysis, simulations revealed that EGA maintains sensitivity 
under high levels of noise (Extended Data Fig. 3). We estimated this 
encoding alignment within each parcel, correlating unsmoothed and 
spatially pre-whitened patterns of parametric regression β values 
across scanner runs to minimize spatiotemporal autocorrelation63–65. 
This cross-validated similarity further allowed us to anchor our analy-
sis on the measurement reliability of encoding profiles (that is, the 
self-correlation of encoding patterns across cross-validation folds66,67).

Focusing on regions that encoded both target and distractor infor-
mation (parcels where both group-level P < 0.001), EGA revealed clear 
dissociations between regions that represent these features in align-
ment versus orthogonally. Within the mid-level visual cortex and the 
superior parietal lobule (SPL), target and distractor representations 
demonstrated significant negative correlations (Fig. 3b, red), reflect-
ing (negatively) aligned encoding. In contrast, the early visual cortex 
and IPS (see Fig. 3c for the anatomical boundaries) demonstrated 
target–distractor correlations near zero (Fig. 3b, black), suggesting 
encoding along orthogonal subspaces.

To bolster our interpretation of the latter findings as reflecting 
orthogonal (that is, uncorrelated) representations rather than merely 
small but non-significant correlations, we employed Bayesian t-tests 
at the group level to estimate the relative (log10) likelihood that these 
encoding dimensions were orthogonal or correlated. Consistent with 
our previous analyses, we found strong evidence for correlation (posi-
tive log(BF)) in more medial regions of the occipital and posterior 
parietal cortex (for example, the SPL) and strong evidence for orthogo-
nality (negative log(BF)) in more lateral regions of the occipital and 
posterior parietal cortex (for example, the IPS; Fig. 3d). Control analy-
ses confirmed that coherence orthogonality was not due to encoding 
reliability, as a similar topography was observed with disattenuated 
correlations (normalizing correlations by their reliability; Supple-
mentary Fig. 1). Further supporting these results, our BF analyses were 
robust to the choice of priors (Supplementary Fig. 2).

While our analyses support independent encoding of targets and 
distractors within the same parcel, we further explored whether fea-
ture information is reflected in overlapping voxels (that is, voxel-level 
mixed selectivity40). Simulations revealed that the alignment between 
absolute encoding weights can differentiate between pure and mixed 
selectivity, and parietal coherence representations bore this signature 
of voxel-level mixed selectivity (Extended Data Fig. 4), consistent with 
the subspace encoding hypothesis.

These results have focused on the coherence of different features 
regardless of the response they support, demonstrating that the SPL 
exhibits aligned representations of target and distractor coherence. 
Past decision-making research has separately demonstrated that the 
SPL tracks the amount of evidence supporting specific responses42,68,69, 
which we found was also true for our task. In addition to encoding target 
and distractor coherence, the SPL and visual cortex tracked target and 
distractor ‘evidence’ (the proportion of dots supporting a rightward 
versus leftward response; Fig. 3e). EGA revealed orthogonal evidence 
representations between targets and distractors, in the same areas with 
aligned coherence representations (compare Fig. 3d,e), consistent with 
previous observations of multiple decision-related signals in the SPL68.

We complemented our whole-brain analyses with ROI analyses in 
areas exhibiting reliable encoding of key variables, focusing on core 
frontal regions linked with cognitive control (the dACC and lateral pre-
frontal cortex (lPFC)) and parietal regions linked with decision-making 
and attention (the SPL and IPS12,15). Consistent with our analyses above, 
we found that target and distractor coherence encoding was aligned in 
the SPL but not in the IPS (Fig. 4a, compare with Fig. 3d), whereas the 

SPL encoded target and distractor evidence. Directly comparing these 
regions (Supplementary Table 1), we found stronger encoding of target 
evidence in the SPL, stronger encoding of target coherence in the IPS 
and stronger target–distractor coherence alignment in the SPL. Unlike 
our univariate results, we did not find distractor congruence encoding 
in the dACC (though this was found in the lPFC and IPS). Instead, the 
dACC showed multivariate encoding of target coherence and evidence.

To further characterize how feature coherence and evidence are 
encoded across these regions, we performed multidimensional scaling 
over each region’s task representations (Fig. 4b and refs. 64,70). Briefly, 
this method allows us to visualize—in a non-parametric manner—the 
relationships between representations of different feature levels (for 
example, levels of target coherence), by estimating each feature level 
separately within a general linear model (GLM) and then using singular 
value decomposition to project these patterns into a 2D space (see 
Methods for additional details). We found that coherence and evidence 
axes naturally emerge in the top two principal components in this 
analysis within the dACC, SPL and IPS. Coherence axes (light to dark 
shading) are parallel between left (blue) and right (brown) responses, 
suggesting response-independent encoding. In these components, 
evidence encoding appeared to be binary, in contrast to parametric 
coherence encoding (we found similar whole-brain encoding maps 
for binary-coded evidence; Supplementary Fig. 3). Critically, whereas 
coherence encoding axes in the SPL were aligned between targets 
(circles) and distractors (diamonds; confirming aligned encoding), in 
the IPS these representations formed perpendicular lines (confirming 
orthogonal encoding). When we visualized higher dimensions, we 
found that the IPS did appear to have weak encoding alignment between 
target and distractor coherence in higher dimensions (Extended Data 
Fig. 5). Nevertheless, the orthogonal encoding in the first two principal 
components is sufficient for a downstream region to have an independ-
ent read-out of feature-specific coherence. These analyses both help 
visualize cross-region dissociations in encoding profiles and validate 
the idea that task features are encoded in a monotonic fashion.

Finally, to explore the divisions between the SVA and Control 
networks evident in the univariate analyses, we split up our two pre-
frontal ROIs by their network membership (Extended Data Fig. 6). In 
the dACC, we found that SVA parcels tended to have stronger feature 
encoding than Control parcels. Interestingly, in these SVA parcels, 
several features were aligned with the target evidence dimension, 
consistent with recent human electrophysiology findings35. In the lPFC, 
we found that Control parcels, but not SVA parcels, encoded distractor 
congruence (Control: t28 = 3.60; two-tailed P = 0.0012; log(BF) = 1.45; 
95% CI, (0.0037, 0.0135); SVA: t28 = 0.57; P = 0.57; log(BF) = −0.64; 95% CI, 
(−0.0046, 0.0082); Control − SVA: t28 = 3.27; P = 0.0029; log(BF) = 1.12; 
95% CI, (0.0025, 0.0111)). This distractor congruence encoding 
was present in the lPFC in Control A/B parcels (t28 = 3.66; P = 0.001; 
log(BF) = 1.51; 95% CI, (0.0041, 0.0146)), but not significantly in Control 
C parcels (t28 = 1.86; P = 0.073; log(BF) = −0.0448; 95% CI, (−0.0006, 
0.0136)). This network-selective encoding of congruence is consistent 
with the univariate results in the dACC (Fig. 2).

Control demands dissociate coherence and evidence 
encoding
Our findings thus far demonstrate two sets of dissociations within 
and across brain regions. In the dACC, we found that distinct regions 
encode the control demands related to discriminating targets (caudal 
dACC) versus overcoming distractor incongruence (rostral dACC). In 
the posterior parietal cortex, we found that overlapping regions track 
the coherence of these two stimulus features but that distinct regions 
represent these features in alignment (SPL) versus orthogonally (IPS). 
While these findings suggest that this set of regions is involved in trans-
lating between feature information and goal-directed responding, they 
only focus on the information that was presented to the participant on 
a given trial. To provide a more direct link between feature-specific 
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encoding and control, we examined how the encoding of feature coher-
ence differed between matched tasks that placed stronger or weaker 
demands on cognitive control. So far, our analyses have focused on 
conditions in which the participants needed to respond to the colour 
feature while ignoring the motion feature (Attend-Colour task), but 
on alternating scanner runs the participants instead responded to the 
motion dimension and ignored the colour dimension (Attend-Motion 
task). These tasks were matched in their visual properties (identical 
stimuli) and motor outputs (left/right responses) but critically dif-
fered in their control demands. Attend-Motion was designed to be 
much easier than Attend-Colour, as the left/right motion directions 
are compatible with the left/right response directions (that is, Simon 
facilitation3,10). Comparing these tasks allows us to disambiguate 
bottom-up attentional salience from the top-down contributions to 
attentional priority47,71–73.

Consistent with previous work10, performance on the 
Attend-Motion task was better overall (mean RT, 565 ms versus 725 ms; 
sign-rank P < 0.001; mean accuracy, 93.7% versus 87.5%; sign-rank 
P < 0.001). Unlike the Attend-Colour task, performance was not 
impaired by distractor incongruence (that is, colour distractors; RT: 
t28 = −1.39; P = 0.176; d = −0.0438; 95% CI, (−0.00629, 0.000577); accu-
racy: t28 = 0.674; P = 0.506; d = 0.0847; 95% CI, (−0.0913, 0.147)). To 

investigate these task-dependent feature representations, we fit a GLM 
that included both tasks. To control for performance differences across 
tasks, we analysed only accurate trials and included trial-wise RT as a 
nuisance covariate, concatenating RT across tasks.

Whereas the encoding of both colour and motion coherence was 
widespread during the Attend-Colour task (Fig. 3), coherence encod-
ing was consistently weaker during the less demanding Attend-Motion 
task (Fig. 5a). Coherence encoding was weaker during Attend-Motion 
whether classifying according to goal relevance (comparing targets 
or distractors) or the features themselves (comparing motion or col-
our). Task-relevant ROIs revealed that coherence encoding was effec-
tively absent during the easy Attend-Motion task (Fig. 5b), consistent 
with coherence encoding in these regions depending on the control 
demands of the Attend-Color task47,74.

In contrast to these stark task-related differences in coherence 
encoding, we found that neural encoding of the target evidence (col-
our evidence in the Attend-Colour task and motion evidence in the 
Attend-Motion task) was preserved across tasks, including within the 
dACC, lPFC, SPL and IPS (Fig. 5b). Consistent with previous experiments 
examining context-dependent decision-making36,41,42,45,73,75,76, we found 
stronger target evidence encoding relative to distractor evidence 
encoding, in our case in the evidence-encoding SPL (Attend-Colour: 
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Fig. 3 | EGA dissociates target and distractor encoding. a, Parametric 
univariate responses to weak target coherence (green; the percentage of dots in 
the majority colour), strong distractor coherence (orange; percentage of dots 
with coherent motion) and their conjunction (yellow). Statistical tests (two-tailed 
t-tests) are corrected for multiple comparisons using non-parametric TFCE. 
b, Alignment between target and distractor coherence (two-tailed t-test on 
correlation values), within parcels where both were jointly reliable (two-tailed 
P < 0.001, uncorrelated). Representations were negatively correlated in the SPL 

(in gold; Kong22 labels) and uncorrelated in the IPS (in white; Kong22 labels). 
c, Anatomical labels for parietal regions, based on the labels in the Kong22 
parcellation. d, Bayesian analyses provide explicit evidence for orthogonality 
in the IPS (that is, negative BF; theoretical minima, −0.71). e, Coherence coded 
in terms of evidence (that is, supporting a left versus right choice). Target and 
distractor evidence encoding overlapped in the visual cortex and SPL and was 
represented orthogonally. GLMs: a, Feature UV; b–e, Feature MV (Table 1).
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t28 = 4.26, right-tailed P < 0.001, d = 0.790; Attend-Motion: t28 = 2.37, 
right-tailed P = 0.0124, d = 0.4403). We also found that target evi-
dence encoding during Attend-Motion was aligned with that during 
Attend-Colour, both for motion evidence encoding (‘stimulus axis’; SPL: 
t28 = 2.08; right-tailed P = 0.0236; d = 0.386; 95% CI, (0.0009, 0.0095); 
IPS: t28 = 2.24; right-tailed P = 0.0167; d = 0.416; 95% CI, (0.0016, 0.0114)) 
and target evidence encoding (‘decision axis’; SPL: t28 = 5.87; right-tailed 
P < 0.001; d = 1.09; 95% CI, (0.0109, 0.0199); IPS: t28 = 3.64; right-tailed 
P = 0.0011; d = 0.676; 95% CI, (0.0056, 0.0154)). These axis alignments 
are again in agreement with previous experiments, though note that 
target evidence is often manipulated separately from the motor 
response. Whereas our experiment replicates previous observations 
of the neural representations supporting contextual decision-making, 
we now extended these findings to understand how putative atten-
tion signals (that is, feature coherence) are encoded in response to 
the asymmetric inference that is characteristic of cognitive control77.

Feature coherence aligns with task performance
Feature coherence encoding (that is, feature strength, regardless of 
response or congruence) depends on task demands, consistent with 
a role in cognitive control. To further understand this relationship 
between coherence encoding and control, we next explored how 
coherence encoding was related to task performance. We tested this 
question by determining whether feature coherence representations 
were aligned with performance representations (that is, alignment 
between stimulus and behavioural subspaces78). Specifically, we 
included trial-level RT and accuracy in our first-level GLMs. Encoding 
of performance was itself highly robust: most parcels encoded RT and 
accuracy, with the strongest encoding in cognitive control regions 
(Extended Data Fig. 7). Across the cortex, RT and accuracy were nega-
tively correlated, again most prominently across the cognitive control 
network. To explore the behavioural relevance of coherence represen-
tations, we tested whether coherence encoding was aligned with the 
voxel patterns encoding task performance.

We found that the encoding of target and distractor coherence 
was aligned with performance across frontoparietal and visual regions  
(Fig. 6a–b). If a region’s encoding of target coherence reflects how 
sensitive the participant was to target information on that trial (for 
example, due to top-down priority), we would expect target encoding 

to be positively aligned with performance on a given trial, such that 
stronger target coherence encoding is associated with better per-
formance and weaker target coherence encoding is associated with 
poorer performance. We would also expect distractor encoding to 
demonstrate the opposite pattern—stronger encoding associated 
with poorer performance and weaker encoding associated with better 
performance. We found evidence for both patterns of feature–perfor-
mance alignment across the visual and frontoparietal cortex: target 
encoding was aligned with better performance (faster RTs and higher 
accuracy; Fig. 6a), whereas distractor encoding was aligned with worse 
performance (slower RTs and lower accuracy; Fig. 6b).

Next, we examined whether performance–coherence alignment 
reflected individual differences in participants’ task performance in our 
main task-related ROIs (Figs. 3 and 4). In particular, we tested whether 
the alignment between features and behaviour reflects specific rela-
tionships with speed or accuracy, or whether it reflects overall increases 
in evidence accumulation (for example, faster responding and higher 
accuracy). Within each ROI, we correlated feature–RT alignment with 
feature–accuracy alignment across participants. We found that in the 
dACC and IPS, participants showed the negative correlation between 
performance alignment measures predicted by an increase in process-
ing speed (Fig. 6c). People with stronger alignment between target 
coherence and shorter RTs tended to have stronger alignment between 
target coherence and higher accuracy, with the opposite found for 
distractors. While these between-participant correlations were present 
within targets and distractors, we did not find any significant correla-
tions across features (between-feature: all P > 0.10), again consistent 
with feature-specific processing. These analyses were qualitatively 
similar after partialing out the reliability of coherence and performance 
encoding (Supplementary Table 2). While between-participant analy-
ses using small sample sizes warrant a note of caution, these findings 
are consistent across features and regions. In conjunction with our 
within-participant evidence that feature coherence representations 
are aligned with performance efficiency, these findings support a role 
for coherence encoding in adaptive control.

Feature coherence aligns with frontoparietal activity
Across the frontal, parietal and visual cortex, encoding of target and 
distractor coherence depended on task demands and was aligned with 
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performance. Since this widespread encoding of task information prob-
ably reflects distributed network involvement in cognitive control77,79,80, 
we sought to understand how frontal and parietal systems interact. 
We focused our analyses on the IPS and lPFC, linking the core parietal 
site of orthogonal coherence encoding (IPS) to a prefrontal site that 
previous work suggests provides top-down feedback during cogni-
tive control58,79,81,82. Previous work has found that the IPS attentional 
biases lower-level stimulus encoding in visual cortices83,84, and that 
the IPS mediates directed connectivity between the lPFC and visual 
cortex during perceptual decision-making42. Here we extended these 
experiments to test how the IPS mediates the relationship between 
prefrontal feedback and stimulus encoding.

To investigate these putative cortical interactions, we devel-
oped a multivariate connectivity analysis to test whether coherence 
encoding was aligned with prefrontal activity and whether this lPFC–
coherence alignment was mediated by the IPS. We first estimated the 
voxel-averaged residual time series in the lPFC (SPM12’s eigenvariate) 
and then included this residual time series alongside task predictors in 
a whole-brain regression analysis (Extended Data Fig. 8). This analysis 
can be schematized as:

βseed = GLM (Yseed,X) (1)

eseed = PCA (Yseed − Xβseed) (2)

βall = GLM (Yall, [X, eseed]) (3)

The GLM function performs regression on multivariate voxel 
time series Y using design matrix X, and the PCA function extracts 
the first principal component of the residuals. Finally, we used EGA 

to test whether there was alignment between patterns encoding lPFC 
functional connectivity (that is, β values from the residual time series 
predictor eseed) and patterns encoding target and distractor coherence. 
Note that these analyses depend on functional connectivity, a correla-
tional measure that can be subject to confounding85.

We found that lPFC connectivity patterns were aligned with 
coherence-encoding patterns in the visual cortex (Fig. 7a). Stronger 
prefrontal functional connectivity was aligned with weaker target 
coherence and stronger distractor coherence, consistent with pre-
frontal recruitment during difficult trials. Notably, IPS connectivity 
was also aligned with target and distractor coherence in overlapping 
parcels, even when controlling for lPFC connectivity. These effects were 
liberally thresholded for visualization, as significant direct and indirect 
effects are not necessary for significant mediation86.

Our critical test was whether the IPS mediated the relationship 
between lPFC activity and coherence encoding. We compared regres-
sion estimates between a model that only included lPFC residuals 
(‘Solo’ model) and a model that included both lPFC and IPS residuals 
(‘Both’ model). Comparing the strength of lPFC–coherence align-
ment with and without the IPS is a test of whether the parietal cor-
tex mediates lPFC–coherence alignment86. These models can be  
schematized as:

βSolo = GLM (Yall, [X, elPFC]) (4)

βBoth = GLM (Yall, [X, elFPC, eIPS]) (5)

We found that this mediation was strongest in early visual cortex, 
where the alignment between the lPFC and feature coherence was 
reduced in a model that included the IPS relative to a model without 
the IPS (Fig. 7b). The negatively correlated target–lPFC relationship 
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became more positive when the IPS was included (top), and the posi-
tively correlated distractor–PFC relationship became more negative 
when the IPS was included (bottom). Critically, we found that the 
IPS reduced prefrontal–coherence alignment in early visual cortex 
more than the lPFC reduced parietal–coherence alignment (Fig. 7b 
inset and Supplementary Fig. 4a,b), consistent with frontal-to-parietal 
directed connectivity in previous research42,81. Looking within colour- 
and motion-sensitive parcels (determined using task-free localizer 
runs; Methods), we found that this mediation was significant in 
colour-sensitive cortex. The opposite relationship, lPFC mediation 
of IPS connectivity, appeared in higher-level visual cortex for distrac-
tor coherence (Supplementary Fig. 4c,d), though these effects were 
not reliable in explicit contrasts and may reflect projections from 
both regions. Note that we did not see any significant mediation of 
first-order target or distractor coherence encoding by the IPS.

We were primarily interested in alignment with the lPFC due to pre-
vious work implicating these regions in top-down control (for reviews, 
see refs. 12,87), but for completeness we also examined how different 
subnetworks in both the lPFC and dACC aligned with coherence encod-
ing. In the lPFC, we found that the SVA and Control subnetworks had 
similar patterns of alignment (Supplementary Fig. 5). In the dACC, we 
found that the SVA subnetwork had a qualitatively similar profile of 
coherence alignment as the lPFC, but this alignment was absent in the 
Control subnetwork. Whereas this seed–coherence alignment was 
similar across the lPFC and the SVA dACC, unlike the lPFC, we found that 
the SVA dACC failed to demonstrate strong evidence for mediation by 
the IPS (Supplementary Fig. 6).

A final set of analyses examined whether the SPL and IPS demon-
strated different patterns of task-related functional connectivity with 
other regions, given that we found that these regions differentially 
encoded evidence and coherence. When seeding our connectivity 
analyses with SPL activity, we found that SPL activity aligned with evi-
dence encoding in the bilateral motor cortex (Extended Data Fig. 9).  
In contrast, IPS activity did not significantly align with evidence 

encoding, and this seed–evidence alignment in the motor cortex was 
stronger for the SPL than for the IPS, consistent with a putative role for 
the SPL in response selection68.

Discussion
In this experiment, we explored whether neural control systems use 
representations with the same dimensionality as the processes they 
regulate2,5,11. Inspired by behavioural evidence that participants can 
independently control their sensitivity to targets and distractors10, 
we set out to understand whether the neural correlates of monitoring 
and prioritization leverage independent encoding for feature-selective 
control (Fig. 1a–c). We found that key nodes of canonical cognitive 
control networks had orthogonal neural representations of targets 
and distractors. Within the dACC, orthogonal representations of tar-
get and distractor difficulty arose from segregated encoding along a 
rostrocaudal axis. Within the IPS, orthogonal representations of target 
and distractor coherence arose from orthogonal subspaces in overlap-
ping voxels. Consistent with a role in attentional priority, coherence 
representations depended on control demands, task performance 
and frontoparietal activity. Together, these results reveal a neural 
mechanism for how cognitive control prioritizes multiple streams of 
information during decision-making.

Neurocomputational theories have proposed that the dACC 
is involved in planning control across multiple levels of abstrac-
tion12,88–90. Past work has found that control abstraction is hierarchi-
cally organized along the dACC’s rostrocaudal axis, with more caudal 
dACC involved in lower-level action control and more rostral dACC 
involved in higher-level strategy control30–32,34, an organization that 
may reflect a more general hierarchy of abstraction within the PFC31,91–93. 
Consistent with this account, we found that caudal dACC tracked the 
coherence of the target and distractor dimensions, especially within 
the SVA network. In contrast, more rostral dACC tracked incongru-
ence between targets and distractors, especially within the Control 
network. Speculatively, our results are consistent with caudal dACC 
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tracking the first-order difficulty arising from the relative salience 
of feature-specific information, and more rostral dACC tracking the 
second-order difficulty arising from cross-feature (in)compatibil-
ity92, the latter of which may require additional disengagement from 
distractor-dependent attentional capture.

Whereas the dACC encoded feature difficulty (for example, 
distractor incongruence), in the parietal cortex we found overlap-
ping representations of feature coherence (for example, distractor 
coherence). In the SPL, features had correlated coherence encod-
ing (similarly representing low target coherence and high distractor 
coherence), consistent with this region’s transient and non-selective 
role in attentional control94–99. In contrast, the IPS had orthogonal 
representations of feature coherence, consistent with selective pri-
oritization of task-relevant information47,71–73,81,83,94–96,99,100. While the 
IPS primarily encoded features orthogonally (that is, in the largest 
components of our multidimensional scaling analysis), the total coher-
ence across features could also be read out at higher dimensions. The 
ability of the IPS to communicate both orthogonal and aligned coher-
ence representations is consistent with the diverse roles of the IPS in  
attentional control.

Our previous work has demonstrated behavioural evidence for 
independent control over target and distractor attentional priority in 
this task10, with different task variables selectively enhancing target or 
distractor sensitivity (see also refs. 4,101). Orthogonal feature repre-
sentation in the IPS may offer a mechanism for this feature-selective 
control, consistent with theoretical accounts of the IPS implementing 
a priority map that combines stimulus- or value-dependent salience 
with goal-dependent feedback from the PFC17,57,58,80,102.

In the dACC, we found that target and distractor difficulty encod-
ing was consistent with the segregated encoding hypothesis, with 
features evoking univariate responses in distinct but adjacent regions. 
Interestingly, we did not find corresponding encoding of distractor 
congruence in our multivariate analyses within the dACC, potentially 
reflecting the spatial smoothness of this response. However, we did find 
multivariate encoding of distractor congruence in the lPFC and multi-
variate encoding of target and distractor coherence in the IPS. These 
multivariate profiles were consistent with our subspace encoding 

hypothesis. The reason for a mix of segregated and subspace encod-
ing across the cortex is unclear, but this may speculatively reflect the 
segregation across functional networks. Like in the dACC, distractor 
congruence had stronger encoding in the lPFC Control network, albeit 
without the feature segregation (lPFC Control parcels also encoded 
target coherence in an orthogonal subspace). It is possible that these 
network segregations help bind related control processes15,18,80, a 
hypothesis that future experiments should test with targeted para-
digms (for example, with participant-specific functional networks).

By comparing two different task goals (Attend-Colour versus 
Attend-Motion), our study was able to test whether coherence rep-
resentations reflect control-dependent prioritization of information 
processing. Previous research has shown that these tasks differ dramat-
ically in their control demands10. As in previous work, task performance 
was much better in Attend-Motion runs than in Attend-Colour runs, and 
the participants were not sensitive to colour distractors. Consistent 
with previous work on context-dependent decision-making, target 
evidence had similarly strong encoding across tasks, with generalizable 
encoding dimensions for choice and motion directions36,41,45. In contrast 
to these putative decision representations, we found that coherence 
representations disappeared in the easier Attend-Motion task. On its 
own, weaker encoding of colour distractors in Attend-Motion could be 
explained by the weaker bottom-up salience of the colour dimension. 
However, the stark drop in the encoding of target (motion) coherence 
in these blocks cannot be similarly accounted for—these differences in 
target coherence encoding showed the opposite relationship expected 
from salience: better encoding of low-salience colour targets (hard 
Attend-Colour task) and weaker encoding of high-salience motion 
targets (easy Attend-Motion task). Instead, this encoding profile is 
consistent with previous research finding that feature decoding is 
stronger for more difficult tasks47,71,72,103 or when people are incentiv-
ized to use cognitive control104,105.

Critically, the stimuli and responses were matched across tasks, 
helping rule out alternative accounts of coherence encoding based 
on bottom-up stimulus salience, decision-making or eye movements. 
Difficulty-dependent coherence encoding may instead reflect the 
involvement of an attention control system that can separately regulate 
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target and distractor processing, speculatively indexing the top-down 
‘gain’ or ‘priority’ on these features17,58,102. Supporting this account, 
coherence representations in cognitive control regions such as the IPS 
were aligned with performance representations, with target encod-
ing strength aligned with better performance and distractor encod-
ing strength aligned with poorer performance. Individual difference 
in feature–performance alignment was correlated across features, 
consistent with these representations reflecting the underlying pro-
cesses (for example, priority) that give rise to behaviour, rather than 
performance monitoring or surprise (which would probably have the 
opposite relationship—for example, high target coherence aligned 
with poorer performance).

Classic models of prefrontal involvement in cognitive control77,82,106 
propose that the PFC biases information processing in sensory regions. 
In line with this macro-scale organization, we found that coherence 
encoding in the visual cortex was related to functional connectivity 
with the frontoparietal network. In particular, coherence encoding in 
the visual cortex was aligned with patterns of functional connectivity 
to the lPFC, and this feature–seed relationship was mediated by the 
IPS. The results of this multivariate connectivity analysis are consistent 
with previous research supporting a role for the IPS in top-down control 
of visual encoding83,84,107, as well as a Granger-causal PFC–IPS–visual 
pathway during a similar decision-making task42. Here we demon-
strate stable ‘communication subspaces’ between the visual cortex 
and PFC108,109, which can plausibly communicate feedback adjust-
ments to feature gain. With that said, while our interpretation of the 
direction of communication is therefore supported by prior work, 
these connectivity methods are correlational85 and cannot rule out 
the possibility that our mediation findings reflect a bottom-up pattern 
of communication (for example, visual–IPS–PFC). The asymmetric 
mediation between regions (that is, the IPS mediates the lPFC more than 
the lPFC mediates the IPS; Supplementary Fig. 4) rules out a range of 
potential confounders, and these regions were selected on the basis of 
the anatomical connectivity within the frontoparietal network, notably 
through the superior longitudinal fasciculus110. Future research should 
use temporally precise neuroimaging to account for directionality and 
causal manipulations to account for causality (for example, ref. 111) 
and should explore the higher-dimensional connectivity subspaces 
that link different regions103,109. These considerations notwithstanding, 
our findings are consistent with the IPS, a critical site for orthogonal 
feature representations, playing a key role in linking the PFC with early 
perceptual processing.

Collectively, our findings provide new insights into how the brain 
may control multiple streams of information processing. While evi-
dence for multivariate control has a long history in attentional track-
ing28,112, including parametric relationships between attentional load 
and IPS activity113–117, little is known about how the brain coordinates 
multiple control signals2,5. Future experiments should further elaborate 
on this frontoparietal control circuit—for instance, by interrogating 
how incentives influence different task representations104,105,118–120 or 
how neural and behavioural indices of control causally depend on 
perturbations of neural activity111. Future experiments should also use 
fast-timescale neural recording technologies such as (i)EEG or (OP-)
MEG to better understand the within-trial dynamics of multivariate 
control10,121. In sum, this experiment provides new insights into the 
large-scale neural networks involved in multivariate cognitive control 
and points towards new avenues for developing a richer understanding 
of goal-directed attention.

Methods
Participants
Twenty-nine individuals (17 females; age: mean, 21.2 years; s.d., 3.4 
years) provided informed consent and participated in this experiment 
for compensation (US$40; institutional review board approval code: 
1606001539). All participants had self-reported normal colour vision 

and no history of neurological disorders. Two participants missed one 
Attend-Colour block (see below) due to a scanner removal, and one 
participant missed a motion localizer due to a technical failure, but 
all participants were retained for analysis. This study was approved 
by Brown University’s institutional review board.

Task
The main task closely followed our previously reported behavioural 
experiment10. On each trial, the participants saw an RDK against a black 
background. This RDK consisted of coloured dots that moved left or 
right, and the participants responded to the stimulus with button 
presses using their left or right thumbs.

In Attend-Colour blocks (six blocks of 150 trials), the participants 
responded depending on which colour was in the majority. Two colours 
were mapped to each response (four colours total), and the dots were 
a mixture of one colour from each possible response. The dot colours 
were approximately isolument (uncalibrated RGB: (239, 143, 143), (191, 
239, 143), (143, 239, 239), (191, 143, 239)), and we counterbalanced their 
assignment to responses across participants.

In Attend-Motion blocks (six blocks of 45 trials), the participants 
responded on the basis of the dot motion instead of the dot colour.  
Dot motion consisted of a mixture between dots moving coher-
ently (either left or right) and dots moving in random directions. 
Attend-Motion blocks were shorter because they acted to reinforce 
motion sensitivity and provide a test of stimulus-dependent effects.

Critically, the dots always had colour and motion, and we varied 
the strength of colour coherence (the percentage of dots in the major-
ity) and motion coherence (the percentage of dots moving coher-
ently) across trials. Our previous experiments have found that in 
Attend-Colour blocks, participants are still influenced by motion infor-
mation, introducing a response conflict when colour and motion are 
associated with different responses10. Target coherence (for example, 
colour coherence during Attend-Colour) was linearly spaced between 
65% and 95% with five levels, and distractor congruence (signed coher-
ence relative to the target response) was linearly spaced between 
−95% and 95% with five levels. To increase the salience of the motion 
dimension relative to the colour dimension, the display was large  
(~10 degrees of visual angle), and the dots moved quickly (~10 degrees 
of visual angle per second).

The participants had 1.5 seconds from the onset of the stimulus 
to make their response, and the RDK stayed on the screen for this full 
duration to avoid confusing RT and visual stimulation (the fixation 
cross changed from white to grey to register the response). The inter-
trial interval was uniformly sampled from 1.0, 1.5 or 2.0 seconds. This 
intertrial interval was relatively short to maximize the behavioural 
effect, and because efficiency simulations showed that it increased 
power to detect parametric effects of target and distractor coherence 
(for example, relative to a more standard 5-second intertrial interval). 
The fixation cross changed from grey to white for the last 0.5 seconds 
before the stimulus to provide an alerting cue.

Procedure
Before the scanning session, the participants provided consent and 
practised the task in a mock MRI scanner. First, the participants learned 
to associate four colours with two button presses (two colours for each 
response). After being instructed on the colour–button mappings, 
the participants practised the task with feedback (correct, error or 
1.5-second time-out). Errors or time-out feedback were accompanied 
with a diagram of the colour–button mappings. The participants per-
formed 50 trials with full colour coherence and then 50 trials with 
variable colour coherence, all with 0% motion coherence. Next, the 
participants practised the motion task. After being shown the motion 
mappings, the participants performed 50 trials with full motion coher-
ence and then 50 trials with variable motion coherence, all with 0% 
colour coherence. Finally, the participants practised 20 trials of the 
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Attend-Colour task and 20 trials of the Attend-Motion task with variable 
colour and motion coherence (the same as the scanner task).

Following the 12 blocks of the scanner task, the participants under-
went localizers for colour and motion, based on the tasks used in our 
previous experiments30. Both localizers were block designs, alternating 
between 16 seconds of feature present and 16 seconds of feature absent 
for seven cycles. For the colour localizer, the participants saw an aper-
ture the same size as the task, filled with either coloured squares that 
were resampled every second during stimulus-on (‘Mondrian stimulus’) 
or luminance-matched grey squares that were similarly resampled 
during stimulus-off. For the motion localizer, the participants saw 
white dots that were moving with full coherence in a different direction 
every second during stimulus-on or still dots during stimulus-off. No 
responses were required during the localizers.

MRI sequence
We scanned the participants with a Siemens Prisma 3T MR system. We 
used the following sequence parameters for our functional runs: field 
of view (FOV), 211 mm × 211 mm (60 slices); voxel size, 2.4 mm3; repeti-
tion time (TR), 1.2 s with interleaved multiband acquisitions (accelera-
tion factor 4); echo time (TE), 33 ms; flip angle (FA), 62°. Slices were 
acquired anterior to posterior, with an auto-aligned slice orientation 
tilted 15° relative to the AC/PC plane. At the start of the imaging session, 
we collected a high-resolution structural MPRAGE with the following 
sequence parameters: FOV, 205 mm × 205 mm (192 slices); voxel size, 
0.8 mm3; TR, 2.4 s; TE1, 1.86 ms; TE2, 3.78 ms; TE3, 5.7 ms; TE4, 7.62; FA, 
7°. At the end of the scan, we collected a field map for susceptibility 
distortion correction (TR, 588 ms; TE1, 4.92 ms; TE2, 7.38 ms; FA, 60°).

fMRI preprocessing
We preprocessed our structural and functional data using fMRIPrep 
(v.20.2.6)122, based on the Nipype platform123. We used FreeSurfer and 
ANTs to nonlinearly register structural T1w images to the MNI152NLi-
n6Asym template (resampling to 2 mm). To preprocess functional T2w 
images, we applied susceptibility distortion correction using fMRIPrep, 
co-registered our functional images to our T1w images using FreeSurfer 
and slice-time corrected to the midpoint of the acquisition using AFNI. 
We then registered our images into MNI152NLin6Asym space using the 
transformation that ANTs computed for the T1w images, resampling 
our functional images in a single step. For univariate analyses, we 
smoothed our functional images using a Gaussian kernel (8 mm full 
width at half maximum, as dACC responses often have a large spatial 
extent). For multivariate analyses, we worked in the unsmoothed tem-
plate space (see below).

fMRI univariate analyses
We used SPM12 (v.7771) for our univariate GLM analyses. Due to high 
trial-to-trial collinearity from to our short intertrial intervals, we per-
formed all analyses across trials rather than extracting single-trial 
estimates. Our regression models used whole trials as events (that is, 
a 1.5-second boxcar aligned to the stimulus onset). We parametrically 
modulated these events with standardized trial-level predictors (for 
example, linear-coded target coherence or contrast-coded errors) and 
then convolved these predictors with SPM’s canonical hemodynamic 
response function, concatenating our voxel time series across runs. 
We included nuisance regressors to capture (1) run intercepts and (2) 
the average time series across white matter and cerebrospinal fluid (as 
segmented by fMIRPrep). To reduce the influence of motion artefacts, 
we used robust weighted least-squares124,125, a procedure for optimally 
down-weighting noisy TRs.

We estimated contrast maps at the participant level, which we 
then used for one-sample t-tests at the group level. We controlled for 
family-wise error rate using TFCE126, testing whether voxels have an 
unlikely degree of clustering under a randomized null distribution 
(implemented in PALM127; 10,000 randomizations). To improve the 

specificity of our coverage (for example, reducing white-matter con-
tributions) and to facilitate our inference about functional networks 
(see below), we limited these analyses to voxels within the Kong2022 
whole-brain parcellation54,55. This parcellation assigns regional labels 
to parcels (for example, whether parcels are in the ‘SPL’ or ‘IPS’), which 
was used throughout to generate ROIs. Surface renders were generated 
using surfplot128,129, projecting from MNI space to the Human Connec-
tome Project’s fsLR space (164,000 vertices).

dACC longitudinal axis analyses
To characterize the spatial organization of target difficulty and 
distractor congruence signals in dACC, we constructed an analysis 
mask that provided broad coverage across the cingulate cortex and 
preSMA. This mask was constructed by getting a meta-analytic mask 
of cingulate responses co-occurring with ‘cognitive control’ (Neuro-
synth uniformity test130) and taking any parcels from the whole-brain 
Schaefer parcellation (400 parcels54,55) that had a 50-voxel overlap 
with this meta-analytic mask. We used this parcellation because it 
provided more selective grey-matter coverage than the Neurosynth 
mask alone and it allowed us to categorize voxel membership in 
putative functional networks.

Table 1 | fMRI models

Model name Trial selection Predictors (z-scored)

Feature UV No omission 
errors; 
run-concatenated

Target coherence, distractor 
coherence, target evidence, 
distractor evidence, distractor 
congruence; omission errors 
(run-concatenated)

Difficulty Levels No omission 
errors; 
run-concatenated

Separate levels (1, 2, 4, 5) of target 
coherence, separate levels (1, 2, 
4, 5) of distractor congruence; 
omission errors (run-concatenated)

Feature MV No errors; 
run-separated

Target coherence, distractor 
coherence, target evidence, 
distractor evidence, 
distractor congruence; errors 
(run-concatenated)

Evidence Levels No errors; 
run-separated

Levels (1–5, 6–10) of target 
evidence, levels (1, 2, 4, 5) of 
distractor evidence; errors 
(run-concatenated)

Between-Task No errors; 
run-separated

Target coherence, distractor 
coherence, target evidence, 
distractor evidence, 
distractor congruence; errors 
(run-concatenated); RT 
(run-concatenated)

Performance No omission 
errors; 
run-separated

Target coherence, distractor 
coherence, target evidence, 
distractor evidence, distractor 
congruence, RT, accuracy; 
omission errors (run-concatenated)

Performance CX No omission 
errors; 
run-separated

Target coherence, distractor 
coherence, target evidence, 
distractor evidence, 
distractor congruence, RT, 
accuracy; omission errors 
(run-concatenated); seed time 
series (run-separated)

First-level GLMs used for univariate and multivariate fMRI analyses are shown. Coherence is 
the percentage of dots supporting the same response (‘unsigned coherence’). Evidence is 
the percentage of dots supporting a rightward versus leftward response (‘signed coherence’). 
Distractor congruence is the percentage of dots supporting the same response as the target 
dimension. All predictors were z-scored within their run. For difficulty and feature levels, 
we included each level as a separate predictor, with collinearity with the block intercept 
preventing all levels from being included. For Evidence Levels, targets had greater granularity 
due to distractors being coded relative to targets (five levels of congruence led to five 
levels of coherence). For Performance CX, seed time series were included as run-separated 
regressors (see ‘Multivariate connectivity analysis’).
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To characterize the spatial organization within the dACC, we first 
performed PCA on the masked voxel coordinates (y and z), getting a 
score for each voxel’s position on the longitudinal axis of this ROI. We 
then regressed the voxels’ gradient scores against their regression 
weights from a model including linear target coherence and distractor 
congruence (both coded −1 to 1 across difficulty levels). We used linear 
mixed-effects analysis to partially pool across participants and accom-
modate within-participant correlations between voxels. Our model pre-
dicted gradient score from the linear and quadratic expansions of the 
target and distractor βs (gradientScore ~ 1 + target + target2 + distrac-
tor + distractor2 + (1 + target + target2 + distractor + distractor2 | par-
ticipant)). To characterize the network-dependent organization of 
target and distractor encoding, we complexity-penalized fits between 
models that either (1) predicted target or distractor βs from linear and 
quadratic expansions of gradient scores or (2) predicted target/dis-
tractor βs from dummy-coded network assignment from the Schaefer 
parcellation, comparing these models against a model that used both 
network and gradient information.

Encoding Geometry Analysis (EGA)
We adapted functions from the pcm-toolbox and rsatoolbox pack-
ages for our multivariate analyses65,131. We first fit whole-brain GLMs 
without spatial smoothing, separately for each scanner run. These 
GLMs estimated the parametric relationship between task variables 
and blood-oxygen-level-dependent response (for example, linearly 
coded target coherence), with a pattern of these parametric βs across 
voxels reflecting linear encoding subspace59. Within each Schaefer 
parcel (N = 400), we spatially pre-whitened these β maps, reducing 
noise correlations between voxels that can inflate pattern similarity and 
reduce reliability63. We then computed the cross-validated Pearson cor-
relation, estimating the similarity of whitened patterns across scanner 
runs. We used a correlation metric to estimate the alignment between 
encoding subspaces, rather than distances between condition patterns, 
to normalize biases and scaling across stimuli (for example, greater 
sensitivity to targets versus distractors) and across time (for example, 
representational drift). Note that this analysis approach is related to 
‘Parallelism Scores’43, but here we use parametric encoding models and 
emphasize not only deviations from parallel/orthogonal but also the 
direction of alignment between features (for example, Figs. 5 and 7).

We computed subspace alignment between contrasts of interest 
within each participant and then tested these against zero at the group 
level. Since our correlations were less than r = |0.5|, we did not transform 
the correlations before analysis. We used a Bayesian t-test to test for 
orthogonality (bayesFactor toolbox in MATLAB, based on ref. 132). The 
BF from this t-test gives evidence for either non-orthogonality (BF10 
further from zero) or orthogonality (BF10 closer to zero, often defined 
as the reciprocal, BF01). Using a standard prior (Cauchy, width = 0.707), 
our strongest possible evidence for the orthogonality is BF01 = 5.07 or 
equivalently log(BF) = −0.705 (that is, the BF when t28 = 0).

Our measure of encoding strength was whether encoding sub-
spaces were reliable across blocks (that is, whether within-feature 
encoding pattern correlations across runs were significantly above 
zero at the group level). We used pattern reliability as a geometric 
proxy for how well a linear encoder would predict held-out brain data, 
as reliability indicates the similarity between the cross-validated model 
and the best linear unbiased estimator of the within-sample data. We 
confirmed through simulations that pattern reliability is a good proxy 
for the traditional encoding metric of predicting held-out time series59. 
However, we found that pattern reliability is more powerful, due to it 
being much less sensitive to the magnitude of residual variance (these 
two methods are identical in the noise-free case; Extended Data Fig. 3).

When looking at alignment between two subspaces across parcels, 
we first selected parcels that significantly encoded both factors (‘jointly 
reliable parcels’, both P < 0.001 uncorrected). This selection process 
acts as a thresholded version of classical correlation disattenuation66,67, 

and we confirmed through simulations that this selection procedure 
does not increase the type 1 error rate. We corrected for multiple com-
parisons using non-parametric max-statistic randomization tests 
across parcels133. These randomization tests determine the likelihood 
of an observed effect under a null distribution generated by randomiz-
ing the sign of alignment correlations across participants and parcels 
10,000 times. Within each randomization, we saved the maximum and 
minimum group-level effect sizes across all parcels, estimating the 
strongest parcel-wise effect we would expect if there was no systematic 
group-level effect.

Some of our first-level models had non-zero levels of multicollin-
earity, due to conditioning on trials without omission errors or when 
including feature coherence and performance in the same model. Mul-
ticollinearity was far below standard thresholds for concern, generally 
(much) less than 5; a standard threshold is 30 (the ratio between the 
largest and smallest singular values in the design matrix, using MATLAB 
colintest134). However, we wanted to confirm that predictor correlations 
would not bias our estimates of encoding alignment. We simulated data 
from a pattern component model131 in which two variables were orthog-
onal (generated by separate variance components with no covariance) 
but were generated from a design matrix with correlated predictors. 
These simulations confirmed that cross-validated similarity measures 
were not biased by predictor correlations (Extended Data Fig. 10).

To provide further validation for our parametric analyses, we 
estimated encoding profiles using an analysis with fewer parametric 
assumptions. First, we fit a GLM with separate predictors for levels of 
target and distractor evidence (the ‘Evidence Levels’ GLM in Table 1). 
Next, we estimated a traditional (cross-validated) representational 
dissimilarity matrix across all feature levels. Finally, we visualized these 
encoding profiles using classical multidimensional scaling (eigenvalue 
decomposition; Fig. 4b and Extended Data Fig. 5).

Multivariate connectivity analysis
To estimate what information is plausibly communicated between 
cortical areas, we measured the alignment between multivariate con-
nectivity patterns (that is, the ‘communication subspace’ with a seed 
region108) and local feature encoding patterns. We first residualized 
our Performance GLM (Table 1) from a seed region’s time series and 
then extracted the variance-weighted average time course (that is, the 
leading eigenvariate from SPM12’s volume-of-interest function). We 
then re-estimated our Performance GLM, including the block-specific 
seed time series as a covariate, and performed EGA between seed and 
coherence patterns (equations (1)–(3)). We found convergent results 
when we residualized a quadratic expansion of our Performance GLM 
from our seed region, helping confirm that connectivity alignment was 
not due to underfitting. Note that our cross-validated EGA helps avoid 
false positives due to any correlations in the design matrix (see above). 
We localized this connectivity analysis to colour- and motion-sensitive 
cortex by finding the bilateral Kong22 parcels that roughly covered the 
area of strongest block-level contrast during our localizer runs. Note 
that these analyses reflect ‘functional connectivity’, which is susceptible 
to unmodelled confounders85.

To estimate the mediation of lPFC connectivity by the IPS, we 
compared models in which just the lPFC or just the IPS were used for 
EGA against a model where both seeds were included as covariates 
in the same model86 (equations (4) and (5)). Our test of mediation 
was the group-level difference in lPFC seed–coherence alignment 
before and after including the IPS. While these analyses are inherently 
cross-sectional (that is, the lPFC and IPS are measured at the same time), 
we supplemented these analyses by showing that the mediating effect 
of the IPS on the lPFC was much larger than the mediating effect of the 
lPFC on the IPS (Fig. 7b and Supplementary Fig. 4). Unlike traditional 
mediation analyses looking at the first-order change in regression esti-
mates, our analysis looks at the second-order change in the multivariate 
alignment between regression estimates, using the same core rationale.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The unprocessed fMRI data are available at https://doi.org/10.18112/
openneuro.ds004909.v1.1.0. The behavioural data and event timing 
are available at https://github.com/shenhavlab/PACT_fMRI_public.

Code availability
The analysis pipeline and code are available at https://github.com/
shenhavlab/PACT_fMRI_public. The software versions used are MAT-
LAB v.2020a, fMRIPrep v.20.2.6, SPM12 (v.7771), rwls v.4.1, PALM 
v.a119, rsatoolbox_matlab v.1.0, bayesFactor v.1.1, surfplot v.0.1.0 and 
ScientificColourMaps7.
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Extended Data Fig. 1 | Error control analysis. Distractor congruence effect 
when controlling for different types of errors (two-tailed t-test, thresholded at  
p < 0.01 uncorrected). Our primary analysis only analyzed trials without omission 
errors (navy), here plotted at a liberal uncorrected threshold. When we analyze 

trials without omission errors and commission errors (cyan), we see a consistent 
whole-brain topography, albeit at a lower statistical threshold. In both cases, 
relevant errors trials were included as nuisance events.
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Extended Data Fig. 2 | Univariate fMRI response to target ease. Parametric effects of target coherence and distractor congruence (two-tailed t-test, corrected using 
threshold-free cluster enhancement). Here we included the rostral effect of target ease (positive relationship with target coherence) in red. Compare to Fig. 2.
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Extended Data Fig. 3 | Encoding Geometry Analysis (EGA) validation. We 
validated how well we could recover the similarity between linear Gaussian 
models (training: Y = XB + Σ, test: Y' = X′B′ + Σ). Y is the [1000 × 250] activity 
timeseries, X is the [1000 × 1] design matrix, B is the [1 × 250] encoding profile, 
and Σ reflects IID Gaussian noise. In each of our 1000 simulations, we used two 
different methods to recover the similarity between the true training encoding 
profile (B) and the true test encoding profile (B′ = B + N(0,1)), based on noisy 
activity timeseries (Y = XB + N(0,σY); Y′ = X′B' + N(0,σY)). The first method was 
pattern reliability (that is, our EGA method), correlating the encoding profile 
estimated during training ( ̂B = X†Y , † indicates pseudoinverse) with the 
encoding profile estimated during test (B’ = X’†Y’). The second method was 
activity prediction (that is, the traditional encoding approach), correlating the 

ground-truth test activity (Y′) with the predicted test activity (Y’ = X’ ̂B) after 
vectorizing both multivariate timeseries. To simulate the high measurement 
noise inherent to fMRI, we compared these methods under different levels of 
residual SD (σY). a) Estimated pattern reliability tracked the true pattern 
reliability (that is, the true correlation between B′ and B) across the full range of 
residual SD, with some attenuation at high levels of noise b) Unlike pattern 
reliability, activity prediction became much poorer as residual SD increased.  
c) Correlating the true pattern reliability (correlation between B and B′) and 
estimated encoding strength (that is, pattern reliability or activity prediction), 
we found pattern reliability was better correlated with the true reliability, 
particularly at higher levels of noise. d) Both methods had similar performance  
in the absence of a signal (B′null=𝒩𝒩𝒩0, 1)).

http://www.nature.com/nathumbehav
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Extended Data Fig. 4 | Segregation Analysis. a) we used pattern component 
modelling131 to simulate different candidate encoding profiles. ‘Pure Selectivity’ 
reflects the segregated encoding hypothesis, with different voxels (rows) 
encoding different features (columns). ‘Mixed Selectivity’ reflects the orthogonal 
subspace hypothesis, with the same voxels encoding both features. ‘Sparse’ 
models include non-selective voxels. b) By design, all of these encoding profiles 
had the same orthogonal encoding alignment (uncorrelated encoding weights), 
highlighting that this measure is unable to adjudicate between candidate 

encoding profiles. c) These models can be differentiated by correlating their 
absolute encoding weights, testing whether the sensitivity of a voxel to one 
feature is related to its sensitivity to the other feature, ignoring the direction 
of encoding. Pure selective encoding predicts a negative relationship, mixed 
selective encoding predicts no relationship, and sparse mixed selective encoding 
predicts a positive relationship. Similarity matrices averaged over 10,000 
simulations. d) Correlating the absolute encoding weights, we found that the IPS 
profile was consistent with sparse mixed selective encoding.
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Extended Data Fig. 5 | 3D multidimensional scaling. The first three principal 
components of region-averaged condition similarity. Dark lines highlight the 
encoding geometry (connecting target coherence circles and showing the 
average direction for distractor coherence diamonds). Gray lines reflect the 
projection of these trends on different planes of the representational space. 

See legend and Fig. 4b for figure details. Note that in IPS, whereas targets and 
distractors are encoded orthogonally in the first two dimensions (floor), there 
appears to be some alignment in higher dimensions (right wall). In SPL, features 
appear to be aligned in all dimensions.

http://www.nature.com/nathumbehav
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Extended Data Fig. 6 | Feature encoding in frontal networks. a) Similarity 
matrices for ‘Salience / Ventral Attention (SVA)’ and ‘Control’ networks in dACC 
and lPFC, correlating feature evidence (‘Evid’), feature coherence (‘Coh’), and 
feature congruence (‘Cong’). Encoding strength on diagonal (right-tailed 

p-value), encoding alignment on off-diagonal (two-tailed p-value). b) Classical 
MDS embedding of target (circle) and distractor (diamond) representations at 
different levels of evidence. Colors denote responses, hues denote coherence. 
GLMs: A: Feature MV, B: Evidence Levels, see Table 1.
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Extended Data Fig. 7 | Multivariate encoding of task performance. Encoding 
Strength (across-run reliability) for a) Accuracy and b) Reaction Time (B).  
C) Alignment between Accuracy and Reaction Time encoding. Outlined parcels 

are significant at p < 0.05 FWE (two-tailed max-statistic randomization test). 
Parcels in C are thresholded based on the reliability in A and B (both two-tailed  
p < 0.001 uncorrected). GLM: Performance.
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Extended Data Fig. 8 | Connectivity Alignment Schematic. We estimated connectivity encoding by getting the aggregated residual timeseries from our seed regions 
(eigenvariate; left), including these timeseries in our whole-brain GLM (middle), and then testing the alignment between connectivity encoding patterns and task 
encoding patterns (right).
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Extended Data Fig. 9 | SPL alignment with evidence encoding. a) Alignment 
between SPL activity and target evidence encoding. b) Alignment between IPS 
activity and target evidence encoding. c) Differences between SPL-evidence 
alignment and IPS-evidence alignment, showing stronger SPL connectivity.  

Note that target evidence encoding is signed according to the right-hand 
response (contralateral motor cortex should have a positive response).  
Colors reflect two-tailed p < 0.001 (uncorrected), outlines reflect p < 0.05 
(corrected with two-tailed max-statistic randomization test).
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Extended Data Fig. 10 | Cross-validation prevents feature correlations from 
biasing alignment. We used pattern component modeling131 to simulate neural 
data, testing whether feature correlations could spuriously create encoding 
alignment. a) Our design matrix had two simulate runs of two feature timeseries. 
b) Our features were correlated by design (that is, the columns of the design 
matrix were correlated). c) Despite correlation in the design matrix, these 
features were independently encoding in our simulated neural population 
(that is, in two distinct pattern components, which were each reliable across 

runs). d) Correlating our estimated encoding profiles, we found that within-run 
alignment (orange) had a spurious negative correlation (the opposite direction 
of the feature correlations). Critically, our analyses used between-run alignment 
(cyan), which avoids this biasing effect of feature correlations. Intuitively, since 
features are not correlated across runs (that is, they come from different trials), 
they do not produce spurious correlations. Effect sizes are computed across 
10,000 simulations.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection MATLAB 2020a; Psychtoolbox 3.0.15

Data analysis MATLAB 2020a; fMRIPrep 20.2.6; SPM12 (v7771); rwls 4.1; PALM a119; rsatoolbox_matlab 1.0; bayesFactor 1.1; surfplot 0.1.0; 
ScientificColourMaps7
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Data
Policy information about availability of data
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Unprocessed fMRI data is available at https://doi.org/10.18112/openneuro.ds004909.v1.1.0. Behavioral data, event timing, and analysis code are available at: 
https://github.com/shenhavlab/PACT_fMRI_public.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender 17 females and 12 males

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics N/A

Recruitment Participants were recruited through the Brown University subject pool and local advertisements. Sample biases are not 
expected to influence our results.

Ethics oversight This experiment was approved by Brown University's institutional review board (IRB approval code: 1606001539).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our same size was chosen to match recent standards for similar task-based fMRI experiments (e.g., Danielmeier et al 2011: n=20, 336 trials; 
Jiang et al., 2018, n=22, 450 trials; Li et al., 2018: n=20, 585; Shenhav et al., 2018: n=34, 576 trials). Our experiment had n=29 and 1170 trials, 
due in large part to longer 90 min scanning sessions. Analyses were performed after data collection had completed.

Data exclusions No data were excluded from the experiment (i.e., all runs from all participants), except from the trial regression filters (outlined in Methods).

Replication Most analyses depend on cross-validated measure of multivariate encoding.

Randomization Stimuli were randomized within participants, with the constraint of balanced target and distractor coherence levels across runs.

Blinding Blinding was not necessary for within-subject analyses.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants

Magnetic resonance imaging

Experimental design

Design type fast event-related design (main task), block design (stimulus localizers)

Design specifications 12 blocks per subject. 6 Attend-Color: 150 trials, 6 Attend-Motion: 45 trials (interleaved). Trials were 1.5s long, with [1, 
1.5, 2]s I.

Behavioral performance measures Accuracy and reaction time were the primary behavioral measures; no performance criteria were used.

Acquisition
Imaging type(s) Functional

Field strength 3.0

Sequence & imaging parameters We used the following sequence parameters for our functional runs: field of view (FOV) = 211 mm x 211 mm (60 slices), 
voxel size = 2.4 mm, repetition time (TR) = 1.2 sec with interleaved multiband acquisitions (acceleration factor 4), echo 
time (TE) = 33 ms, and flip angle (FA) = 62". Slices were acquired anterior to posterior, with an auto-aligned slice 
orientation tilted 15° relative to the AC/PC plane. At the start of the imaging session, we collected a high-resolution 
structural MPRAGE with the following sequence parameters: FOV = 205 mm x 205 mm (192 slices), voxel size = 0.8 
mm3, TR = 2.4 sec, TE1 = 1.86 ms, TE2 = 3.78 ms, TE3 = 5.7 ms, TE4 = 7.62, and FA = 7°. At the end of the scan, we 
collected a field map for susceptibility distortion correction (TR = 588ms, TE1 = 4.92 ms, TE2 = 7.38 ms, FA = 60").

Area of acquisition whole brain scan

Diffusion MRI Used Not used

Preprocessing

Preprocessing software We preprocessed our structural and functional data using fMRiprep (v20.2.6; (Esteban et al., 2019) based on the Nipype 
platform (Gorgolewski et al., 2011). We used FreeSurfer and ANTs to nonlinearly register structural Tiw images to the 
MNI152NLin6Asym template (resampling to 2mm). To preprocess functional 2w images, we applied susceptibility distortion 
correction using fMRiprep, co-registered our functional images to our T1w images using FreeSurfer, and slice-time corrected 
to the midpoint of the acquisition using AFNI. We then registered our images into MNI152NLin6Asym space using the 
transformation that ANTs computed for the Tiw images, resampling our functional images in a single step. For univariate 
analyses, we smoothed our functional images using a Gaussian kernel (8mm FWHM, as dACC responses often have a large 
spatial extent). For multivariate analyses, we worked in the unsmoothed template space.

Normalization see above

Normalization template see above

Noise and artifact removal We included nuisance regressors to capture 1) run intercepts and 2) the average timeseries across white matter and CSF (as 
segmented by fMiRPrep). To reduce the influence of motion artifacts, we used robust weighted least-squares (Diedrichsen 
and Shadmehr, 2005; Jones et al., 2021), a procedure for optimally down-weighting noisy TRs.

Volume censoring Analyses were masked by the Kong22 atlas for localization & parcel-based analysis.

Statistical modeling & inference

Model type and settings We estimated contrast maps at the subject-level, which we then used for one-sample t-tests at the group-level. We 
controlled for family-wise error rate using threshold-free cluster enhancement (Smith and Nichols, 2009), testing whether 
voxels have an unlikely degree of clustering under a randomized null distribution (Implemented in PALM (Winkler et al., 
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2014); 10,000 randomizations). To improve the specificity of our coverage (e.g., reducing white-matter contributions) and to 
facilitate our inference about functional networks (see below), we limited these analyses to voxels within the Kong2022 
whole-brain parcellation (Kong et al., 2021; Schaefer et al., 2018). Surface renders were generated using surfplot (Gale et al., 
2021; Vos de Wael et al., 2020), projecting from MNI space to the Human Connectome Project's fLR space (164,000 vertices).

Effect(s) tested The primary effects of interest in our standard GLM were target coherence, distractor coherence, distractor congruence, 
response-coded target coherence, response-coded distractor coherence.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Kong22 400 parcellation

Statistic type for inference

(See Eklund et al. 2016)

see above

Correction All corrections were done using randomization testing (TFCE for univariate or max-stat for mulivariate)

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis We adapted tunctions trom the pem-toolbox and ratoolbox packages for our multivariate analyses 
(Diedrichsen et al., 2018; Nili et al., 2014). We first fit whole-brain GLMs without spatial smoothing, 
separately for each scanner run. These GLMs estimated the parametric relationship between task variables 
and BOLD response (e.g., linearly coded target coherence), with a pattern of these parametric betas across 
voxels reflecting linear encoding subspace (Kriegeskorte and Diedrichsen, 2019). Within each Schaefer parcel 
(n=400, we spatially pre-wnitened these dera maps, reducing noise correlations between voxels that can 
inflate pattern similarity and reduce reliability (Walther et al., 2016). We then computed the cross-validated 
Pearson correlation, estimating the similarity of whitened patterns across scanner runs. We used a 
correlation metric to estimate the alignment between encoding subspaces, rather than distances between 
condition patterns, to normalize biases and scaling across stimuli (e.g., greater sensitivity to targets vs 
distractors) and across time (e.g., representational drift). We found convergent results when using (un-
centered) cosine similarity, suggesting that our results were not trivially due to parcels univariate response, 
but a correlation metric had the best reliability across runs.
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