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Abstract

■ The ability to prioritize among contents in working memory
(WM) is critical for successful control of thought and behavior.
Recent work has demonstrated that prioritization in WM can be
implemented by representing different states of priority in differ-
ent representational formats. Here, we explored the mechanisms
underlying WM prioritization by simulating the double serial
retrocuing task with recurrent neural networks. Visualization of
stimulus representational dynamics using principal component
analysis revealed that the network represented trial context
(order of presentation) and priority via different mechanisms.

Ordinal context, a stable property lasting the duration of the trial,
was accomplished by segregating representations into orthogonal
subspaces. Priority, which changed multiple times during a trial,
was accomplished by separating representations into different
strata within each subspace. We assessed the generality of these
mechanisms by applying dimensionality reduction and multiclass
decoding to fMRI and EEG data sets and found that priority and
context are represented differently along the dorsal visual stream
and that behavioral performance is sensitive to trial-by-trial vari-
ability of priority coding, but not context coding. ■

INTRODUCTION

One of the hallmarks of working memory (WM) is its abil-
ity to flexibly prioritize among its contents in the service of
the current behavioral goal. For example, say that you have
just completed a talk at a conference and you see two peo-
ple simultaneously approaching each of two microphones
to ask a question. You turn to the moderator and wait for
them to indicate who will ask the first question, and based
on this, your shift of gaze is guided by your memory of the
location of the cued microphone. To study prioritization
in WM, one line of work has made extensive use of the
double serial retrocuing (DSR) task, in which two sample
items are initially presented and “remembered,” followed
by a blank “no-action” delay, and then a retrocue indicating
which of the two memorized items will be tested by an
impendingmemory probe (see Figure 1A for an example).
This item is said to take on the status of prioritized mem-
ory item (PMI). Because the item that was not cuedmay be
tested later in the trial, however, it cannot be dropped
from memory (i.e., “forgotten”), so it takes on the status
of unprioritized memory item (UMI) until the PMI is
tested. Subsequently, the priority status of both items
resets to neutral until a second retrocue indicates, unpre-
dictably, which will be tested by a second memory probe;
thus, either item can take on the status of PMI during the
second half of the trial. An initial set of studies applying
multivariate pattern analysis (MVPA) decoding to fMRI
and EEG data from participants performing the DSR task
failed to find evidence for an active representation of the
UMI, giving rise to the idea that it might be held in an

“activity-silent” state (LaRocque, Riggall, Emrich, & Postle,
2017; Rose et al., 2016; Larocque, Lewis-Peacock, & Postle,
2014; Lewis-Peacock, Drysdale, Oberauer, & Postle, 2012).
More recently, however, studies using variants of the DSR
task (with fMRI; Yu, Teng, & Postle, 2020; van Loon,
Olmos-Solis, Fahrenfort, & Olivers, 2018) and the 2-back
WM task (with EEG; Wan, Cai, Samaha, & Postle, 2020)
have provided evidence for an active trace of the UMI that
undergoes a transformation relative to the representa-
tional format of the PMI. Specifically, the UMI can produce
significantly below-baseline MVPA decoding (van Loon
et al., 2018) and “opposite” reconstruction with multivari-
ate inverted encoding modeling (IEM; Wan et al., 2020; Yu
et al., 2020).
As an initial step toward better understanding the

priority-based representational transformations observed
in neuroimaging data (Wan et al., 2020; Yu et al., 2020;
van Loon et al., 2018), we had trained recurrent neural net-
works (RNNs) with a long short-termmemory architecture
to perform the 2-backWM task (Wan, Menendez, & Postle,
2022). Visualization of long short-term memory hidden
layer activity using principal component analysis (PCA)
had confirmed that stimulus representations in RNNs also
undergo representational transformations when transi-
tioning between priority states. Specifically, demixed (d)
PCA of these data had identified two representational tra-
jectories, one within a UMI-specific subspace and the
other a PMI-specific subspace, both undergoing a reversal
of stimulus coding axes. Having thus observed similar
priority-based transformational dynamics in the human
brain and in RNNs, we speculated that this type of transfor-
mation might be a computationally rational way to meet
the competing demands of retaining information in WM
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while simultaneously preventing it from interfering with
concurrent behavior (Wan et al., 2022).
Whereas inWan and colleagues (2022) we simulated the

2-back task, the work presented here begins with RNN
simulation of the DSR task. This was important to do
because although the n-back task has been important
for the study of many aspects of WM, it is poorly suited
for the study of the flexible control of behavior with WM.
This is because the n-back is a continuous performance
task in which each item follows the same functional trajec-
tory. For the 2-back, for example, each item n first serves
as a memory probe against which to compare one’s mem-
ory for item n− 2, then transitions to UMI (whereas n+ 1
is compared with the memory of n − 1), then transitions
to PMI (for its comparison with item n + 2), and then
becomes no longer relevant and can be dropped from
WM. The DSR, in contrast, does require online, flexible
control, because the identity of the two retrocues cannot
be predicted before their onset.
At the beginning of each trial of DSR, sample items can

either be presented simultaneously or serially. When items
are presented simultaneously, they necessarily each
appear at a different location, and it is an item’s unique
location that is used by the retrocue to designate it the
PMI. Thus, the location at which an item appears serves
as a critical, trial-specific context. When items are

presented serially, they can appear at the same or different
locations, but if the retrocue designates the prioritized
item by referring to the order in which it was presented
(i.e., “first” or “second”), then it is the item’s ordinal con-
text that is critical for successful performance. Note here
the fundamental distinction between an item’s identity
and the context in which it was presented, and the neces-
sary role played by both. In the DSR task of Yu and
colleagues (2020), for example, stimuli were drawn from
a pool of nine oriented gratings. On any given trial n, it
would not be sufficient to remember that a stimulus with
the identity of, for example, 0° was one of the two pre-
sented, because the 0° stimulus may have already
appeared on several previous trials. To successfully inter-
pret the cue on trial n, it is necessary to also remember
that this stimulus had been presented first or second on
this trial. This latter property is the trial-specific context
in which the item appeared, and it is the binding of an
item’s identity to its trial-specific context that is fundamen-
tal to that stimulus being in the state of being “in WM” on
that trial (Oberauer & Lin, 2017).

The initial motivation for the RNN simulation of the DSR
task that we report here was to better understand the
priority-based transformations summarized above (Wan
et al., 2020; Yu et al., 2020; van Loon et al., 2018). However,
as we report here, these simulations also yielded the

Figure 1. Experimental procedure for (A) the fMRI task, (B) the RNN task, and (C) the EEG task. Figures adapted, with permission, from Yu, Teng,
and Postle (2020; A), and Fulvio and Postle (2020; C).
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unexpected finding that the representation of the first
sample item underwent a dramatic transformation upon
the onset of the second item. That is, before thedesignation
of priority (which would be indicated by the retrocue),
the first item underwent a context-based transformation.
Specifically, whereas it had been represented in a sub-
space defined by the first two principal components
(PCs) of a PCA applied to the hidden layer of the RNN,
the representation of the first item was displaced from this
subspace upon the presentation of the second item, and
shunted to a new subspace defined by the third and fourth
PCs of the PCA. This finding caused us to reconsider our
interpretation of the transformational dynamics observed
in the 2-back task (Wan et al., 2022), because an item’s func-
tional trajectory during that task confounded priority with
context. The aims of this report, therefore, were twofold.
One was to explore, at the algorithmic level, how context-
based representational transformations may differ from
priority-based transformations. This was carried out via
RNN simulations. The second was to leverage what was
learned from the RNNs to assess how the encoding of these
two properties, context and priority, might differ in the way
they influence behavior and in the way they are represented
in the brain.

METHODS

The data presented here derive from three sources: RNN
simulations of a DSR task, reanalysis of data from an EEG
study of DSR, and reanalysis of an fMRI study of DSR.

Participants

EEG

The EEG data set is from 12 healthy young adults (5 female
participants, average age = 21.7 ± 3.2 years, all right-
handed), as described in detail in Fulvio and Postle
(2020). This N was double that of a previous EEG study
for which MVPA decoding results yielded informative pri-
oritization effects (Rose et al., 2016), and so was deemed
satisfactory for the analyses to be carried out here.

fMRI

The fMRI data set is from 13 healthy young participants (10
female participants, average age = 21.1 ± 4.5 years, all
right-handed), as described in detail by Yu and colleagues
(2020). Because IEManalyses of these fMRI data had yielded
informative prioritization effects, this N was deemed satis-
factory for the analyses to be carried out here.

Behavioral Tasks

DSR Procedure

At a generic level of description, a trial in the DSR task
entails testing WM for the sample stimuli with two

successive tests, with a cue preceding each test that indi-
cates, with 100% validity, which sample item will be tested.
The first half of a trial begins with the presentation of two
sample items, followed by a delay period (“Delay 1”) during
which a retrocue is presented at the halfway point, followed
by a memory test. The retrocue (“Cue 1”) indicates with
100% validity which of the two sample items will be tested
at the end of Delay 1, and this “Test 1” can be either a rec-
ognition probe or a recall interface (for orientations, a recall
dial). Because this is the first delay period in the trial, the
portion of the trial that spans between the offset of the sam-
ple stimuli and the onset of Test 1 is considered “Delay 1.”
In addition, however, because the retrocue changes the
nature of how the information being held in WM is pro-
cessed, it is useful to distinguish the precue portion of
Delay 1 as “Delay 1.1” and the postcue portion of Delay 1
as “Delay 1.2.” Indeed, it is the transformation of an item’s
status from neutral (during Delay 1.1) to either PMI or UMI,
during Delay 1.2, that is of primary interest. Upon comple-
tion of Test 1, the two items inWM return to a neutral status
during the response–stimulus interval separating Test 1
from the second retrocue (“Cue 2”), because it is equiprob-
able that either of them will be designated by Cue 2, and
subsequently, after “Delay 2, ” tested by Test 2 (Figure 1B).

RNN Models

The training task (Figure 1B) was modeled after the task
performed in the fMRI study (Yu et al., 2020; Figure 1A),
including the fact that the two sample items were pre-
sented serially. (Different from the fMRI study, however,
the location of the stimulus presentation was not mod-
eled, and so the RNN simulations were carried out as
though both sample stimuli were presented at the same
location.) The training task also deviated from the generic
structure of the DSR in a few ways that accommodated idi-
osyncrasies and constraints of RNN modeling, including
the facts that a “cue” input unit had to input information
to the network at each timestep and that the network had
to output information at each timestep. One deviation was
that each distinct epoch in the trial was the same length:
50 timesteps. A second deviation was that the cue-input
unit input a value of 0 during each timestep when the
priority status of the two items was neutral (i.e., during
sample presentation and the equivalents of the ISIs and
of Delay 1.1), and it input a value of 1 or −1 during each
timestep when either the first or the second sample,
respectively, had the priority status of PMI. A third devia-
tion was that the RNN training task did not include a post-
cue delay period (i.e., a Delay 1.2 or a Delay 2); instead,
Delay 1.1 was followed by an epoch that combined the
roles of Cue 1 and Recall 1, and the second ISI was
followed by an epoch that combined the roles of Cue 2
and Recall 2 (i.e., recall responses were made beginning
coincident with the onset of each cue).
Stimuli were randomly drawn from a pool of oriented

gratings that covered the continuous range from [0°,
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180°] interval (Sample 1:φ and Sample 2: θ). Stimulus loca-
tion was not simulated, and it was possible for φ and θ to
take on the same orientation. Each trial began with the
presentation of Sample 1 (50 timesteps) followed by an
ISI (i.e., blank delay; 50 timesteps) followed by Sample 2
(50 timesteps) followed by Delay 1.1 (50 timesteps)
followed by Cue 1/Recall 1 (50 timesteps; the response
window was the duration of Cue 1). Next came another ISI
(50 timesteps) followed by Cue 2/Recall 2 (50 timesteps).
Cue 2 matched (“stay”) or did not match (“switch”) Cue 1,
unpredictably, and equal number of times.

fMRI: DSR with Ordinal and Location Context, and
Recall Probes

Stimuli were drawn from a pool of nine oriented gratings
that evenly covered the range from0° to 179°, and could be
presented at one of nine locations that, each at a distance
of 8° of visual angle from central fixation, evenly covered
the range of possible locations from 0° to 359° of polar
angle. Each trial began with the presentation Sample 1
(.75 sec) followed by an ISI (.5 sec), followed by Sample
2 (.75 sec), followed by Delay 1.1 (8 sec), followed by a
centrally presented digit (“1” or “2,” Cue 1; .75 sec). After
the ensuing Delay 1.2 (8 sec), a recall dial appeared at the
location that had been occupied by the PMI, and the par-
ticipant had 4 sec to rotate it tomatch theirmemory of that
item’s orientation (Recall 1). Subsequently, after a brief
unfilled interval (.5 sec), a second centrally presented digit
(“1” or “2,” Cue 1; .75 sec) indicated the item to be tested,
after Delay 2 (2 sec), at Recall 2 (4 sec). The critical inde-
pendent variable was continuous error of recall. Cue 2
matched (“stay”) or did notmatch (“switch”) Cue 1, unpre-
dictably, an equal number of times (Figure 1A; see Appen-
dix Figure A1 for the task timeline mapping task events to
time in seconds or TRs).
Because the location of the recall dial indicated the item to

be recalled, a possible strategy would be to ignore the cues
and simply behave based on the location of the recall dial.
However, this strategywas discouragedbecauseof an impor-
tant detail of the procedure. On each trial, the orientation
and the location of each stimulus were selected at random
(with replacement) and independently. Thus, on each trial,
there was a p = .11 chance that the second sample would
have the same orientation as the first and, independently,
a p = .11 chance that the second sample would appear at
the same location as had the first. These contingencies
encouraged participants to notwait for the onset of the recall
dial to recall the orientation of the PMI and, indeed, patterns
of priority-related transformation of the UMI during Delay
1.2, as assessed by IEM, confirmed that participants used
the ordinal cue to guide their behavior (Yu et al., 2020).

EEG: DSR with Location Context and Recognition Probes

Each trial beganwith the simultaneous presentation of two
sample items, one drawn from each of two out of three

possible categories (faces, direction of dot motion, and
words), one appearing above and one below central fixa-
tion (2 sec; Figure 1C). The samples were replaced by a
central fixation symbol (“+”) during an initial delay (Delay
1.1; 5 sec), followed by a dashed line appearing at one of
the two sample locations (.5 sec), indicating that that item
would be the first to be tested (Cue 1). After a second delay
(Delay 1.2; 4.5 sec), during which the cued item had the
status of PMI and the uncued item the status of UMI, an
image serving as a recognition probe appeared centrally
and was either identical to the PMI (“match,” p = .5),
drawn from the same category but a different exemplar
than the PMI (“nonmatch,” p = .3), or identical to the
UMI (also “nonmatch,” p = .2; Probe 1; 1 sec). Probe 1
was replaced by the fixation symbol (Recall 1; 1 sec), and
a response was required during the 2 sec spanning Probe 1
and Recall 1. Next, a dashed line appeared at one of the
two sample locations (Cue 2; .5 sec), thereby designating
the PMI for the following Delay 2 (4.5 sec), then Probe 2
(1 sec), and then Recall 2 (1 sec). Intertrial interval varied
from 2 to 4 sec.

Data were collected during three sessions, each on a
separate day, with each session comprising eight 30-trial
blocks, alternating between blocks of DSR and a single ret-
rocue task (results from single retrocue task not presented
here). During each block, Cue 1 appeared unpredictably at
the “up” or “down” location an equal number of times and,
orthogonal to Cue 1 location, Cue 2 appeared, unpredict-
ably, at the same (“Stay”; Figure 1C, top row) or opposite
(“Switch”; Figure 1C, bottom row) location as had Cue 1 an
equal number of times. Balanced across cue conditions,
single pulses of transcranial magnetic stimulation (spTMS)
was delivered 2–3 sec after the offset of Cue 1 on 50% of
trials and, orthogonally, after the offset of Cue 2 on 50% of
trials. Note that the EEG data used for the “transformation
variability analyses” (see the Analysis Procedures section
below) include epochs with and without spTMS. Although
a key finding from Fulvio and Postle (2020) was a selective
effect of spTMS on one subtype of nonmatching probe,
the analyses carried out for this study would collapse
across this factor. Nonetheless, to confirm that spTMS
did not affect behavior at a more general level, we fit a lin-
ear mixed-effects model to the behavioral accuracy with
main effects of (i) probe position (two levels: first and sec-
ond= specified as an ordinal variable) and (ii) spTMS (two
levels: delivered and not delivered = specified as a cate-
gorical variable). In addition, the interaction between
probe position and spTMS delivery was included in a first
model and omitted in a second model. As random effects,
the models included an intercept for each participant.
p Values were obtained by F tests for each term in the
models. The second model without the interaction term
resulted in a better fit to the data yielding a lower Akaike
information criterion. This model revealed a significant
main effect of probe position (Probe 2 responses were
overall less accurate than Probe 1 responses; F(1, 45) =
5.5479, p = .023, and no main effect of spTMS, F(1, 45) =
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2.8385, p = .099). Thus spTMS did not influence perfor-
mance at the level at which it was considered here.

Experimental Procedures

RNN

Stimulus orientations were fed into the network via 32
orientation-tuned input units whose preferred orienta-
tions spanned the full 180° range and whose response
properties were based on V1 orientation-selective neurons
(Teich & Qian, 2003; Figure 2). A 33rd input unit was used
for retrocue, inputting “0” on each noncue timestep and a
“1” or “−1” (indicating “1st” or “2nd,” respectively) during
each cue timestep. The two output units were trained to
produce cos(2x) and sin(2x) where x was either θ or φ
depending on the cue) so that the 0° orientation had the
same output as the 180° orientation (Figure 2).

Our network had 100 fully connected recurrent units,
and the dynamics ui(t) of each recurrent unit were gov-
erned by the following standard continuous-time RNN
equations:

τ
dxi tð Þ
dt

¼ −xi tð Þ þ
XNrec

j¼1

Wrec
ij uj tð Þ þ

XNin

k¼1

Win
ik Ik tð Þ þ bi

ui tð Þ ¼ f xi tð Þð Þ þ ξi tð Þ
for i = 1, …, Nrec. We introduced nonlinearity using the
rectified linear unit function f(x) = max (0,x). Each recur-
rent unit received input from other units via recurrent
connections with weights specified by the matrixWrec, ini-
tialized orthogonally (Saxe, McClelland, & Ganguli, 2013).
In addition, these units received external input I(t) to the
RNN via weights specified by thematrixWin. Each unit car-
ried two sources of bias: (1) bi, learned during training,
and (2) ξi(t), which represented intrinsic noise in the
network and took the form of white Gaussian (sampled
independently at each timestep) with zero mean. Adding
noise to the RNN during training has been shown to stabi-
lize the results and help find a more canonical solution
(Cueva, Ardalan, Tsodyks, & Qian, 2021). (Note that noise

was not added at testing.) We simulated the approximate
network dynamics using the Euler method for T = 350
timesteps, each having a duration τ/10 (Mante, Sussillo,
Shenoy, & Newsome, 2013). We chose dt/τ = 0.1 similar
to (Cueva et al., 2021), for example, dt= 10 msec and τ=
100 msec, which would make the time scale of our simu-
lations close to that of the fMRI experiment. The outputs
yj(t) were then generated by combining the activities of
the recurrent units based on:

yj tð Þ ¼ g
XNrec

i¼1

Wout
ji ui tð Þ

 !

where g is the tanh activation function.
We optimized the network parametersWin,W rec, b, and

Wout to minimize the mean squared error between the
target outputs and the network outputs:

E ¼ 1
MTNout

XM;T ;Nout

m;t;j¼1

yj t;mð Þ − ytargetj t;mð Þ
� �2

Parameters were updated with the Adam stochastic
gradient descent algorithm (Kingma & Ba, 2014) via
backpropagation through time (Rumelhart, Hinton, &
Williams, 1986), and each network was trained for
10,000 epochs. (See Cueva et al., 2021, for more method-
ological detail.)

fMRI

For each participant, ROIs were defined, both anatomi-
cally and functionally, for eight regions: early visual cortex
(EVC, V1 and V2 merged), IPS0-through-IPS5 (six ROIs),
and FEF (all ROIs cover both hemispheres). First, anatom-
ical ROIs were defined by extracting masks from the prob-
abilistic atlas of Wang, Mruczek, Arcaro, and Kastner
(2015) and warping them to each participant’s structural
scan in native space. To identify a task-related activity,
we modeled each epoch of the task with six boxcar regres-
sors in a general linear model—sample (2 sec), Delay 1.1
(8 sec), Delay 1.2 (8 sec), Recall 1 (4 sec), Delay 2 (2 sec),
and Recall 2 (4 sec) convolved with a canonical hemody-
namic response function, and we also included covariates
to control for motion. We proceeded to create anatomi-
cally constrained functional ROI for bilateral EVC by select-
ing the 500 voxels inside the EVC anatomical ROI with the
strongest loading on the sample regressor and for bilateral
IPS0–5 and FEF by separately selecting the 500 voxels
inside each of IPS0–5 and FEF anatomical ROIs, with high-
est loading on the Delay 1.2 regressor. We selected these
ROIs to facilitate comparison with the original analyses of
this data set (i.e., Yu et al., 2020), and because they cover
regions known to be important for the delay-period repre-
sentation and control of visual information in WM.

Figure 2. RNN input and architecture. Top left illustrates input of a
stimulus (either Sample 1 or Sample 2) with an angular value corresponding
to the peak magnitude of this 32-dimensional vector; bottom left
illustrates that at each timestep the value of the input to the cue input
unit was 0, 1, or −1.
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EEG Data Collection

The experimental procedure from the experiment
reported by Fulvio and Postle (2020) entailed recording
the EEG with concurrent delivery of spTMS on half of
the delay periods of the DSR task. However, because the
original report only included behavioral results (with and
without spTMS), here, we detail the EEG methods.
EEG was recorded with a 60-channel cap and TMS-

compatible amplifier, equipped with a sample-and-hold
circuit that held amplifier output constant from 100 μs
before stimulation to 2 msec after stimulation (NexStim
eXimia). Electrode impedance was kept below 5 kΩ. The
reference electrode was placed superior to the supraor-
bital ridge. Eye movements were recorded with two addi-
tional electrodes, one placed near the outer canthus of the
right eye and one underneath the right eye. The EEG was
recorded between 0.1 and 350 Hz at a sampling rate of
1450 Hz with 16-bit resolution.
Data were processed offline using EEGLAB (Delorme &

Makeig, 2004) with the TMS-EEG signal analyzer open-
source EEGLAB extension (Mutanen, Biabani, Sarvas,
Ilmoniemi, & Rogasch, 2020; Rogasch et al., 2017) and
Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2010)
toolboxes in MATLAB (The MathWorks). The pipeline
followed the TMS-EEG analysis pipeline (https://
nigelrogasch.github.io/TESA/). Then, electrodes exhibit-
ing excessive noise were removed and the data were
epoched to−12 sec to 8 sec around the first spTMS event
tag (Delay 1.2) and−4.5 sec to 4.5 sec around the second
spTMS event tag (Delay 2). The data were downsampled to
500Hz. Tominimize the TMS artifact in the EEG signal, the
data were interpolated using a cubic function from −2 to
30 msec around the TMS pulse, and this interpolation was
also carried out on delay periods on which TMS was not
delivered. (For delay periods for which no spTMS was
delivered [“spTMS-absent”], a dummy spTMS event tag
was added at a latency that matched the most recent
spTMS-present delay period.) The data were bandpass fil-
tered between 1 and 100 Hz with a notch filter centered at
60 Hz. Independent component analysis was used to iden-
tify and remove components reflecting residual muscle
activity, eye movements, blink-related activity, residual
electrode artifacts, and residual TMS-related artifacts. A
spherical spline interpolation was applied to electrodes
exhibiting excessive noise. Finally, the data were rerefer-
enced to the average of all electrodes that were included
in the independent component analysis.
The present analyses included EEG data from all delay

periods (i.e., averaging data from spTMS-present and
spTMS-absent trials and ignoring this factor).

Analysis Procedures

PCA Visualization of the RNN Hidden Layer Activity

We extracted from each network the activity of the 100
recurrent units from all 1000 testing trials (no noise added

to the RNN during testing) and used PCA to project these
100-dimensional activity patterns onto the four dimen-
sions accounting for the most variance across all training
trials separately for each timestep. We then visualized the
representations of each Sample 1 and Sample 2 by plotting
the dimensionality-reduced activity across the 350-
timestep time course of a trial, and coloring the activity
patterns according to stimulus identity, separately, in
three 2-D plots (PC1–2, PC2–3, and PC3–4).

In addition, we plotted the effective dimensionality
(ED) of the data at each timepoint, which is the equivalent
number of orthogonal dimensions that would produce the
same overall pattern of covariation (Del Giudice, 2021).
It is calculated using the following formula:

ED ¼
PN

i¼1 λi
� �2PN

i¼1 λi
2

where λis are the eigenvalues of the covariance matrix of
the N recurrent units’ activities at a certain time point.

Transformational Variability Analyses on EEG and
fMRI Data

The PCA visualizations of RNN activity revealed represen-
tational dynamics, such that stimulus information was rep-
resented differently as a function of ordinal context (first,
second) and as a function of cue identity 0, 1, or −1, cor-
responding to priority status of neutral, PMI, or UMI/IMI).
To assess the functional relevance of these two coding
schemes for human behavior, we assessed the trial-by-trial
variability of context-based and priority-based transforma-
tions, and determined for each whether this variability
related to variability in behavior.

For the representation of context, we first calculated a
template stimulus representational format for each partic-
ipant by averaging the neural activity for each context sta-
tus (“1st” or “2nd” for fMRI; “up” or “down” for EEG) over a
time window corresponding to Delay 1.1, across all trials.
(For the remainder of this section, for simplicity, we will
only refer to ordinal context.) To these two windowed
averages, we applied demixed PC analysis (refer to Wan
et al., 2022, and Kobak et al., 2016, for methodological
details) to derive the first two demixed PCs, thereby con-
structing a Sample 1 template subspace and a Sample 2
template subspace. We then projected individual trial
activity from the same time window into the template sub-
spaces and calculated the “transformational variability
index” (TVI) for that trial’s representational transforma-
tion into the Sample 1 subspace and its representational
transformation into the Sample 2 subspace. TVI was
defined as the Euclidean distance between that trial’s
representation in the subspace and the template represen-
tation, normalized by the distance between the two
template representations in that subspace. (For example,
for trial n, the TVI for the Sample 1 subspace would be the
Euclidean distance between the trial representation
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projected into the Sample 1 subspace and the Sample 1
template [projected into the Sample 1 subspace], divided
by the distance between the Sample 2 template projected
into the Sample 1 subspace and the Sample 1 template
[projected into the Sample 1 subspace].) For the fMRI
data, we used repetition time (TR) 5–7 (8–14 sec) to define
the Delay 1.1 subspaces, and for the EEG data, we used the
entirety of Delay 1.1. (See Appendix Figure A1 for a map-
ping of epochs of interest to a timeline demarcated in
seconds and TRs.)

For priority-based transformations, we followed the
same procedures, but used TR 9–11 (16–22 sec) to define
the Delay 1.2 subspaces and the entirety of Delay 1.2
period for the EEG data and labeled the data according
to priority status (i.e., PMI and UMI).

If the efficacy of a context-based transformation is
important for behavior, smaller TVIs, corresponding to
lower trial-to-trial variability, should be associated with
superior performance. To assess this in the fMRI data,
for each participant, we sorted responses separately for
Recall 1 and for Recall 2, by median split of angular error,
and then calculated, for each response, the average TVI for
each type of transformation (e.g., “What was the average
TVI for the transformation to Sample 1 for low-error vs.
high error responses to Recall 1?”). Then, we performed
paired-samples t tests between group-average, high-error
and low-error TVIs, separately for each subspace, each
brain region, and each response (Recall 1 and Recall 2).
The analysis procedure was similar for the EEGdata except
that the comparison was between incorrect and correct
responses.

To test how the TVI for UMI and PMI covary, we ran two-
sided, Spearman’s rank correlations between the twomet-
rics across all trials for each participant and counted the
number of participants with correlations reaching the sig-
nificance level of α = .05.

Within- and Cross-label Decoding of RNN and
fMRI Data

To assesswhere (andhow) in the brain context andpriority
are represented, we carried out a series of decoding anal-
yses, the inferential logic of which is detailed in Results,
Analyses of fMRI and EEGData, andWithin- andCross-label
Decoding of RNN and fMRI Data sections. To generate
RNN data in a format consistent with the fMRI data set,
RNN data were generated by testing the trained network
on 324 trials of nine possible orientations (counterba-
lanced across the identities of Sample 1, Sample 2, Cue 1,
and Cue 2, to be analogous to the Yu et al. [2020] task), and
subsequently extracting the RNN hidden layer activity. For
the RNN data, we decoded orientation, and for the fMRI
data, we decoded location. (Decoding item location is
generally more sensitive than decoding item orientation,
and so demonstrations of failures of cross-label decoding
of item location would provide stronger evidence for the
encoding of the stimulus property of interest.)

For the RNN data and for the fMRI data from each ROI,
we trained linear support vectormachine (SVM)multiclass
classifiers to decode stimulus identity with a k-fold, cross-
validation procedure and a “one vs. one” coding design
(see Appendix Figure A5 for comparisons with results
from other decoding methods). For context-based decod-
ing, for each participant and at each timepoint, we trained
a classifier with the data labeled as Sample 1 and then
tested it on the data labeled as Sample 1 (within-label
decoding) and with the data labeled as Sample 2 (cross-
label decoding). We then repeated this process by training
on Sample 2, and with fMRI data, for simplicity, we aver-
aged the results to generate the overall accuracies for
within-label decoding and cross-label decoding. For
priority-based decoding, we used the same procedure
except that the labels were PMI and UMI, instead of Sam-
ple 1 and Sample 2, the PMI/UMI label reassigned at Time-
step 301 (for RNN) or TR 15 (28–30 sec; for fMRI) to reflect
identity of Cue 2 (i.e., to account for the fact that priority
status changed partway through “switch” trials). (The
choice of TR 15 as the timepoint to reassign priority status
label was based on the following reasoning: (1) TR 15
reflects Cue 2 onset (23.25 sec) after accounting for the
hemodynamic delay (∼6 sec); (2) data from a different
fMRI study of DSR, Teng and Postle (2024), indicates that
the IEM time courses for “stay” and “switch” trials intersect
at TR 15. See Appendix Figure A1 for a task diagram that
maps task epochs to a timeline that is demarcated in sec-
onds and TRs. For the fMRI data, to evaluate the signifi-
cance of decoding accuracy against chance level (1/9),
we performed one-tailed, one-sample t tests against 1/9
on decoding accuracies across all participants, and cor-
rected for multiple comparisons using the false discovery
rate (FDR) method.

RESULTS

RNN

We trained 10 RNNs using the same training scheme, an
initial one for hypothesis generation and then nine more
for replication.

Performance

After training, the range of mean response error for the 10
networks was 0.33°–0.89° and the range of standard devi-
ations was 0.29–0.66. (For comparison, for human partic-
ipants performing this task in the fMRI study [Yu et al.,
2020], the mean error was 16.84° [SD = 4.49]).

PCA Visualization of Hidden Layer Activity

The dynamical representational patterns observed in all 10
networks were highly consistent, and the results from the
third network are reported here in detail. (See appendices
for results from other networks.) PCA was carried out
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on the RNN hidden layer activity across all timepoints
from 1000 withheld testing trials with Sample 1 and
Sample 2 spanning the [0°, 180°] angular range and the
resultant dimension-reduced activity projected into three

subspaces that were spanned by PC1–PC2, PC2–PC3,
and PC3–PC4, respectively, on a timepoint-to-timepoint
basis (Figure 3; see Appendix Figure A2 for the time
courses of percent variance explained by each of the

Figure 3. Visualization of representational dynamics embedded in hidden layer of RNN No. 3 at each of five representative timesteps across the DSR
task. Each plot contains 1000 data points, one corresponding to each simulated trial, and the symbols indicating that trial’s cue configuration: Cue 1 −
> Sample 1, Cue 2 − > Sample 1 (●); Cue 1 − > Sample 1, Cue 2 − > Sample 2 (▲); Cue 1 − > Sample 2, Cue 2 − > Sample 1 (■); Cue 1 − > Sample 2,
Cue 2 − > Sample 2 (+). In each plot, an example trial of each cue configuration is colored black for better visualization. For each of the five
timesteps, the same data are illustrated in six ways: the top row with the data labeled as Sample 1 and the bottom row with the data labeled as Sample
2, and for each, they are projected into three subspaces. (A) After the presentation of Sample 1 (Timestep 99). Note that because Sample 2 has not
yet been presented, the stimulus values are haphazard. (B) After the presentation of Sample 2 (Timestep 199). With both items in WM, but before
cuing, Sample 1 is now represented in the PC3–PC4 subspace and Sample 2 in the PC1–PC2 subspace. (C) During the presentation of Cue 1 and
generation of Recall 1 (Timestep 214), illustrating a separation-by-priority status in the PC1–PC2 subspace. (A comparable priority-based separation
was visible in the PC3–PC4 subspace earlier during this same epoch [not shown].) (D) During the delay between Cue 1 and Cue 2 (Timestep 298).
(E) During presentation of Cue 2 and generation of Recall 2 (Timestep 312), again illustrating a separation-by-priority status in the PC1–PC2 subspace
but now based on Cue 2. (As with the Cue 1 epoch, a comparable priority-based separation was visible in the PC3–PC4 subspace earlier during this
Cue 2 epoch [not shown].)
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four PCs; movies of network dynamics can be found at
https://osf.io/tnh9x/).

Upon the presentation of Sample 1, its representation
formed a ring in the subspace spanned by the first two
PCs, with relative distances between stimulus values pre-
served (as shown by the smooth color gradient of the ring;
Figure 3A, top left), such that stimulus value can easily be
read out from this subspace. Although there are also
smooth color gradients in the other two subspaces, their
geometry is more complex, making it less clear if they
would support readout. The ring structure in the PC1–
PC2 subspace was maintained across the ensuing ISI (see
Figure 3A and Movie 1 in the OSF repository [https://osf.io
/tnh9x/]). After the presentation of Sample 2, Sample 2’s
identity was represented in the PC1–PC2 subspace, also
in the form of a ring with a smooth color gradient
(although the ring was somewhat “stretched out” relative
to Timestep 99; Figure 3B, bottom left). In parallel, infor-
mation about Sample 1 emerged in the subspace spanned
by PC3 and PC4, in the shape of a ring with a smooth
(albeit “stretched out”) color gradient (Figure 3B, top
right). In effect, whereas Sample 1 was represented in
the PC1–PC2 subspace when it was the only item in WM,
it was shunted to the PC3–PC4 subspace with the presen-
tation of Sample 2, which replaced Sample 1 in the PC1–
PC2 subspace. Thus, before cuing, the RNN encoded the
ordinal context of Sample 1 and Sample 2 by segregating
them in orthogonal subspaces.

Upon the presentation of Cue 1 (at Timestep 201), the
stimulus representations within each subspace separated
into two clusters that were defined by priority status. For
example, Figure 3C illustrates that in the PC1–PC2 sub-
space, at Timestep 214, trials for which Sample 1 was cued
(denoted by triangle and circle symbols) separated from
trials for which Sample 2 was first cued (square and plus-
sign symbols). Throughout the Cue 1 epoch, the axis along
which this separation occurred rotated in multidimen-
sional space over time. Thus, whereas Timestep 214 was
selected for Figure 3C because it clearly shows this
separation-by-priority status in the PC1–PC2 subspace;
the separation was visible in the PC3–PC4 earlier during
this epoch, at Timestep 207 (seeMovie 1 in theOSF repos-
itory [https://osf.io/tnh9x/]). Thus, the RNN encoded pri-
ority status via separation within each subspace.

During the delay between Cue 1 and Cue 2 (Timesteps
251–300), the prioritization clusters merged such that,
before the presentation of Cue 2, information about
Sample 1 and Sample 2 was again clearly observed in the
PC3–PC4 subspace and in the PC1–PC2 subspace, respec-
tively (Figure 3D). Finally, upon the presentation of Cue 2,
the network representation once again separated into two
priority-defined clusters, this time based on Cue 2’s iden-
tity, (i.e., trials for which Sample 1 was cued [denoted by
circle and square symbols] and trials for which Sample 2
was cued [triangle and plus-sign symbols] separated into
two clusters; Figure 3E). Thus, visualization of the repre-
sentational of the RNN recurrent unit activities revealed

that context and priority were represented via different
transformational mechanisms, the former via the segrega-
tion of stimuli to orthogonal subspaces, and the latter via
separation within each subspace.

ED

During the processing of Sample 1, ED initially rose to a
value between 3 and 4 before declining to a value of ≈ 2
during the ensuing ISI (Figure 4). Upon the presentation
of Sample 2, ED rose precipitously to a value close to 6
before declining steadily for the remainder of this epoch
and the ensuing Delay 1.1 to a value just below 3, which
corresponds well to the encoding of a new stimulus and
the segregation of subspaces to represent the ordinal con-
text. The three remaining trial epochs were characterized
by an initial increase of ED to a value of roughly 4 followed
by a decline back to roughly 3. Particularly noteworthy in
these results is the increase in ED following the offset of
Cue 1. Note that because a similar increase in ED was
not observed upon the offsets of the Stimulus 1 or
Stimulus 2 epochs, this effect cannot be simply because
of a transition from one epoch to the next. Rather, this effect
closely resembled those time-locked to the onset of
Cue 1 and to the onset of Cue 2, events that each prompted
the separation of stimuli into priority-defined clusters
(Figure 3C and 3E). Therefore, it may be that the operation
of removing from the network the encoding of no-longer-
relevant information about priority status related to Cue 1—
corresponding to the merging of priority-defined clusters
that was observed in the PCA visualization—is also an oper-
ation that entails a transient increase in ED.

Interim Discussion

We trained RNNs to perform the DSR task and applied
dimensionality reduction to the internal representations
of the network. Visualization of the representational
dynamics yielded several important insights. First, upon

Figure 4. The time course of ED of the hidden layer stimulus
representations of RNN No. 3. The rectangular images above the curve
denote corresponding task events. The black rectangles along the x axis
indicate time periods when a response was being made. (See Appendix
Figure A3 for ED time courses from other networks.)
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presentation of the second sample (and, therefore, before
the first prioritization cue), information representing the
first sample underwent a rotational transformation into
an orthogonal subspace, effectively segregating the two
representations (cf. Panichello & Buschman, 2021). We
will refer to this process as the segregation of the two rep-
resentations, and speculate that it may have served not
only to individuate the two but also to encode the distinct
ordinal context that the network needed to correctly inter-
pret the cues. Second, the encoding of priority status was
accomplished by stratification of each subspace and transla-
tion of the stimulus representation within each to one of two
“priority-specific” strata, a PMI stratum and a UMI stratum.
We will refer to this process as the separation of stimulus
information as a function of priority, and speculate that only
the PMI stratum within each subspace was amenable to
readout by the output layer. The first observation is
important because it emphasizes the importance of
encoding trial-specific context in WM, an operation that has
been underemphasized in previous empirical studies of
prioritization. The second observation is important because
it indicates that the representation of a priority status may
be implemented in a different way than is ordinal
context—via separation within a subspace (via translation)
versus via the segregation of stimulus information to
distinct subspaces (via rotation), respectively.
Because ordinal context and priority are orthogonal

factors in the experimental design, it might seem intuitive
that they would be encoded differently by an RNN.
However, for the RNN, they need not represent two
qualitatively different factors. Alternatively, they may be
construed two dimensions of task context that play out
on different time scales during a single trial. To elaborate,
in this variant of DSR, one dimension of an item’s context
is the order in which it was presented. This can be consid-
ered the “first-order” context because it uniquely individ-
uates an item for the duration of a trial, and it does not
change for the duration of the trial. (It is to such “first-
order” context that Oberauer and Lin [2017] refer when
they state that the binding of context to a stimulus is fun-
damental to that stimulus being in the state of being “in
WM”.) A second dimension of context is priority status,
and this differs from first-order context because its status
can change multiple times within the trial, between “neu-
tral,” “prioritized,” and “unprioritized” (indicated by the
values of 0, 1, and −1, respectively, that are input by the
cue unit). Thus, priority serves as a “second-order” level of
context, one that indicates an item’s in-the-moment status
with respect to the rules of the task and that cannot be
interpreted in the absence of information about first-order
context. These considerations highlight that to fully under-
stand the flexible control of WM, we need to understand
how first-order context is coded in the brain and how it
interfaces with higher-order context to guide thought
and action.
Recent empirical studies that have manipulated

demands on first-order context in WM have implicated

regions of frontal cortex and the intraparietal sulcus (IPS;
for ordinal context, see Fulvio, Yu, & Postle, 2023;
Gosseries et al., 2018; for location context, see Fulvio et al.,
2023; Cai, Fulvio, Yu, Sheldon, & Postle, 2020). In Yu and
colleagues (2020), a study that also manipulated priority,
the location context of differently prioritized orientation
stimuli was found to be preferentially coded in IPS, and
not EVC, although location information was not directly
tested by the task. More recently, Teng and Postle
(2024) used the same stimuli and procedure, but flipped
the roles of context and content, making orientation the
first-order context used to cue memory of an item’s loca-
tion. “Context load” was manipulated via the similarity of
orientation of the two sample stimuli, and individual
differences in context-load sensitivity of activity in IPS
(but not EVC) predicted behavioral sensitivity to this
factor. Generalizing across these studies suggests that
first-order context in WM may be represented more
prominently in areas associated with cognitive control
than in areas associated with stimulus representation.
The same may not be true for second-order context,
because prioritization effects are prominent in EVC (Teng
& Postle, 2024; Yu et al., 2020).

An implication of these considerations is that the results
from the RNNs have highlighted a distinction in informa-
tion encoding—the representation of first-order versus
second-order context—that has previously been underap-
preciated in cognitive neuroscience research. (For exam-
ple, in the 2-back task simulated by Wan and colleagues
[2022], when an item had the status of UMI, it also had
the contextual status of item-that-was-presented-most-
recently [i.e., “1-back”], and when it then transitioned to
the status of PMI, its context simultaneously transitioned
to that of item-that-was-presented-2-back.) What follows,
therefore, are initial attempts to evaluate the relevance of
these RNN results for cognition in the human brain, via
reanalyses of an extant fMRI and an extant EEG data set
from two previous studies of the DSR task.

Analyses of fMRI and EEG Data

The goal of these reanalyses was not to replicate with neu-
roimaging data the same dimensionality-reduction analy-
ses from the RNNs. Previous experience indicates that,
for example, applying demixed PC analysis to human
EEG data does not yield easily interpretable, ring-like, rep-
resentational structure such as seen in Figure 3 (cf. Wan
et al., 2022; Figure 6). This is likely due, in part, to the fact
that, unlike RNNs, human brains are concurrently engaged
in many processes unrelated to the experimental task
(e.g., constantly processing information about the envi-
ronment that is external to the experimental stimuli).
Rather, these reanalyses were intended as initial assess-
ments of the relevance of the RNN results for human cog-
nition. Specifically, they addressed two questions about
the putative distinction between the encoding of first-
order context versus higher-order context (here
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operationalized as priority): Are they dissociable in terms of
their effect on behavior? and Are they dissociable in terms
of where (and how) they are represented in the brain? The
fMRI study used in these reanalyses used a DSR procedure
that was most closely matched to that used with the RNN,
including the fact that it used stimulus order as first-order
context. The fMRI data would also allow for assessment of
possible regional differences in the representation of the
two types of context. In contrast to the fMRI task, the task
used in the EEG study used location as the dimension of
first-order context, and so would allow an assessment of
generalization of what has been observed for ordinal
context (with the RNN and fMRI) to location context. (For
ease of exposition, in the results that follow, we will refer to
first-order context as “context” and second-order context
as “priority,” because priority is the only dimension of
second-order context that is relevant in the DSR task.)

Transformational Variability

One way to compare the neural representation of context
versus priority is to assess their influence on behavior. To
do this, we took an individual differences approach, using
the variability of trial-by-trial encoding of context and of
priority as proxies of the efficacy with which these opera-
tions were carried out (i.e., a participant for whom
context-based or priority-based transformations were
more variable from trial-to-trial might be expected to per-
form worse on the task).

For context-based transformations, results failed to show
evidence that behavior was sensitive to transformational
variability. For the fMRI data (ordinal context), TVIs did
not differ for low- versus high-error trials, for Recall 1 or

Recall 2, in any of the three ROIs (EVC, IPS 0–5, and
FEF), all t(12) < 1.74, n.s. For the EEG data (location con-
text), TVI did not differ for correct versus incorrect trials,
t(11) < 1.37, n.s.
For priority-based transformations, in contrast, there

was considerable evidence that behavior was sensitive to
transformational variability. For the fMRI data, in EVC, TVI
was lower for low-error than high-error trials for the UMI
subspace for Recall 1, t(12) = 1.81, p = .048, and for the
PMI subspace for Recall 2, t(12)= 2.06, p= .031. For IPS0–
5, TVI for the PMI subspace was lower for low-error than
high-error trials for Recall 1, t(12)= 2.04, p= .032, andwas
lower for low-error than high-error trials for both UMI,
t(12) = 3.04, p = .005, and PMI, t(12) = 3.00, p = .006,
subspaces for Recall 2. All other comparisons, including
all for FEF, failed to achieve significance, all t(12) < 1.57,
ns. For the EEG data, TVI was lower for correct trials than
incorrect trials for Recall 1 in both UMI, t(11) = 2.17, p =
.027, and PMI, t(11)= 4.28, p< .001, subspaces (Figure 5).
Additional analyses carried out at the single-subject level

indicated that, for a subset of participants, trial-by-trial
variation in TVI predicted performance (see spTMS A1).
The TVI also offered a metric with which to begin

exploring whether the transformation to PMI and the
transformation to UMI may share a common component
that acts on the two simultaneously (cf. Panichello &
Buschman, 2021). Specifically, we correlated trial-by-trial
TVI for the PMI with trial-by-trial TVI for the UMI (two-
sided), reasoning that evidence of correlation would be
expected if the two do share an underlying mechanism.
For the fMRI data, in EVC, this correlation was significant
at p < .05 for 12 out of 13 participants, in IPS 0–5 for 11
participants, and in FEF for 10 participants. For the EEG

Figure 5. Transformational variability analysis results on fMRI (Yu et al., 2020) and EEG (Fulvio & Postle, 2020) data. (A) Comparisons between
average TVI for high-error and low-error trials across participants from the fMRI data set. (B) Comparisons between average TVI for incorrect and
correct trials across participants from the EEG data set. Top row: priority-based decoding; bottom row: context-based decoding. The subspace from
which the TVI is calculated is indicated in the legends. Asterisks above bars of the same color indicate the significance level of the paired-samples
t tests comparing the average TVI between each two groups.
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data, TVIs for PMI andUMIwere significantly correlated for
10 out of 12 participants. All correlations were positive.

Within- and Cross-label Decoding of RNN and
fMRI Data

To address the question of how stimulus context and stim-
ulus priority are represented in the brain, we applied the
following logic. If a region represents context, any given
stimulus item will be represented differently when it has
the status of, for example, Sample 1 versus when it has
the status of Sample 2. If a decoder applied to data from
this region can be successfully trained to classify stimulus
identity when the data are labeled as Sample 1 (successful
“within-label” decoding), it should fail to decode stimulus
identity when the data are relabeled as Sample 2 (unsuc-
cessful cross-label decoding). If stimulus information in
this region does not incorporate a representation of con-
text, in contrast, any given item’s representational format
will not differ as a function of its context status, and so a
decoder that can be successfully trained on the data
labeled as Sample 1 should succeed at decoding stimulus
identity when the data are relabeled as Sample 2 (suc-
cessful cross-label decoding). (Note that it would not be
possible to use this approach to decode an abstract repre-
sentation of context, independent of stimulus information,
in the Yu and colleagues [2020] data set, because a first
and a second item were presented on every trial and,
furthermore, they were presented within the same TR.)

RNN data. Because RNNs can be trained to perform the
DSR task, it is necessarily true that they represent both

context and priority, and so we first carried out within-
and cross-label decoding of the RNN data to validate the
inferential logic of this approach, intended to assess the
representation of context and of priority in the fMRI data
set. We performed these analyses on the RNN recurrent
unit activities across all 350 timesteps from 324 novel,
counterbalanced trials of nine different orientations using
a linear SVM classifier (Figure 6).

For context-based decoding, we obtained close to per-
fect decoding accuracy when training and testing on the
labels of the same sample throughout the task (note that
for train S2, test S2 decoder performance was at chance
before Timestep 101, because of the absence of informa-
tion about Sample 2 at those time steps). For cross-label
decoding, however, accuracy was at chance level for the
duration of the trial. For priority-based decoding, within-
label decoding accuracy for both PMI and UMI was close to
chance level before Cue 1. With the onset of Cue 1, for
both PMI and UMI, decoder performance rose to close-
to-perfect for the remainder of the trial. For cross-label
decoding, whereas decoding accuracy for both PMI and
UMI was above chance level before Cue 1, for both, it
dropped to chance level with the onset of Cue 1 and
remained there for the remainder of the trial. Both of
these sets of results validated the reasoning that a system
that represents context and priority would not support
cross-label decoding for either factor.

fMRI data. We investigated the anatomical distribution
of the representation of context and priority during the
DSR task by carrying out a series of multiclass decoding
analyses on the fMRI data set (Figure 7). In general (and

Figure 6.Within- and cross-label decoding of stimulus identity averaged across the 10 RNNs. (A) Context-based decoding. Classifiers were trained on
Sample 1/2, then tested on Sample 1/2 (within-label), or tested on Sample 2/1 (cross-label). (B) Priority-based decoding. Classifiers were trained on
PMI/UMI, then tested on PMI/UMI (within-label), or tested on UMI/PMI (cross-label). Solid lines correspond to average classifier accuracy; shaded
error bands correspond to ± 1 SEM. S1 = Sample 1, S2 = Sample 2; R1 = Recall 1; R2 = Recall 2.
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Figure 7. Within- and cross-label decoding analyses from the fMRI data set. (A) Context-based decoding. (B) Priority-based decoding. In each graph,
the two vertical solid black lines indicate Cue 1 and Cue 2, respectively. The blue shading around each curve shows the standard error of the mean.
The horizontal dashed line indicates the chance-level decoding accuracy of 0.11. Red squares below the dashed line indicate time points with
significant above-chance decoding accuracy ( p < .05, FDR-corrected across all time points). Note that the range of the y axis varies from graph to
graph. S = sample; D = delay; R = recall.
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unlike for the RNNs), decoder performance was far from
ceiling and tended to be superior for time points corre-
sponding to trial epochs when stimuli were on the screen.
Importantly, however, we were generally able to decode
the stimulus identity across the whole time course with
above-chance accuracy in every ROI, especially in the time
period between Cue 1 and Cue 2, where one stimulus is
prioritized over the other in WM (within-label rows of
Figure 7). (The one exception was in IPS4 with context-
based decoding; the reason for this is unclear.)
For context, cross-label decoding revealed a marked

posterior-to-anterior gradient: It was successful for the
entirety of the trial in EVC; successful for Cue 2 and Delay
2 epochs for IPS0 and for a smaller number of timepoints
for IPS1 and IPS2; successful only for late Delay 1.2 for
IPS3 and IPS4, and entirely at chance for IPS5 and FEF
(Figure 7A). These results indicate that context was not rep-
resented at the earliest stations of the visual system and
became progressively more prominent at progressively
higher levels of the dorsal stream.
For regions that do represent stimulus context, we can

also use results from these analyses to carry out explor-
atory assessment of alternative accounts of how context
is encoded. In particular, with reference to the results from
the RNNs, is there evidence that the segregation of stimu-
lus representations by context is accomplished by their
anatomical segregation? (That is, in the RNNs, the presen-
tation of Sample 2 prompted the rotation of Sample 1 out
of the PC1–PC2 subspace and into the PC3–PC4 subspace
[Figure 3B]. Might such an operation be accomplished in
the brain by rerepresenting Sample 1 in a different ana-
tomical region than where it had been represented before
the presentation of Sample 2?) To assess this, we
inspected the results from within-label decoding for train
Sample 1, test Sample 1, and train Sample 2, test Sample 2,
and looked for regions that supported within-label decod-
ing of one but not the other. The results did not provide
strong evidence consistent with a separation-by-region
account: Decoding evidence was robust for both Sample
1 and Sample 2 in EVC, IPS0, and IPS1, and progressively
weaker for both in more rostral ROIs. In IPS3, IPS4, and
IPS5, there was a trend toward more robust within-label
decoding for Sample 1 than for Sample 2 during the sec-
ond half of the trial, but nowhere was there evidence for
the opposite trend (Appendix Figure 4A). In the Discus-
sion section, we will return to the question of context-
related transformations in the brain.
For priority, cross-label decoding for EVCwas successful

for the beginning of the trial through late Delay 1.2, after
which it dropped to a level numerically below baseline,
with the exception of two isolated time points during
the second half of the trial. (Note that although planned
statistical comparisons were one-tailed, post hoc
two-tailed tests suggested that cross-label decoding for
several time points beginning with TR 12 were statistically
below chance.) For the remainder of the ROIs, cross-label
decoding was at baseline for the entirety of the trial. This

suggests that priority is represented in every ROI that
we investigated, albeit taking longer to manifest in EVC
(Figure 7B). (See Appendix Figure 4B for within- and
cross-label, priority-based decoding broken out for PMI
and for UMI.)

DISCUSSION

In this study, we initially set out to investigate the mecha-
nisms underlying prioritization on a task in which changes
of priority were not predictable—the DSR task—via visu-
alization of representational dynamics of RNNs trained to
perform the task. Unexpectedly, results from the RNNs
called to our attention the importance of also understand-
ing the representation of an additional dimension of
trial-specific information, the first-order context that
uniquely individuates each item during the trial. Across
model training, validation, and testing, we saw that the
encoding of first-order context was accomplished via the
segregation into orthogonal subspaces of the representa-
tion of the first and second items to be presented. Unlike
first-order context, higher-order context can change
within a trial, a property that is often manipulated with
instructional cues. In the DSR, priority status is the
second-order context, and it is specified, then removed,
and then specified a second time, during the course of
each trial. The encoding of priority was accomplished via
the stratification of each context-encoding subspace into
priority-based strata and the concomitant translation of
the stimulus representation to the appropriate one. Thus,
the RNN indicated that first- and second-order contexts are
encoded via distinct mechanisms, segregation (via rota-
tion) to orthogonal subspaces versus separation (via
translation) within a subspace, respectively. Furthermore,
an ED analysis suggested that the operation of resetting
second-order context (as happens during the ISI separat-
ing Cue 1 and Cue 2 in the RNN version of the task) may
make computational demands that are comparable (in
terms of requiring additional dimensions) to those needed
to establish it.

Because of their architecture, it was necessarily the case
that RNNswould represent both stimuli, and both context-
dependent subspaces, within the same population of 100
units in the hidden layer. In a mammalian brain with mul-
tiple distinct regions, however, this need not be the case. It
could be possible, for example, that whereas the first item
to be presented in the DSR task is initially represented in
EVC, its representation would get “rewritten” to a different
region (e.g., in the IPS) upon the presentation of the sec-
ond item. The results from reanalyses of the fMRI data set,
however, do not support this account for either first- or
second-order context. When considering first-order (i.e.,
ordinal) context, it is first important to note that the
cross-label decoding results failed to find evidence for its
incorporation into stimulus representations in EVC. In
IPS0–2, however, successful within-label decoding for
both Sample 1 and Sample 2 is inconsistent with a
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separation-by-region model. For second-order context
(i.e., priority), the combination in EVC of the failure of
cross-label decoding for much of trial plus successful
within-label decoding for both the PMI and the UMI
suggests that both states of priority are represented at this
earliest level of visual representation. Indeed, the pattern
of statistically negative cross-label decoding during Delay
1.2 and Delay 2 may reflect the same factors that pro-
duced “opposite” results with multivariate analyses in pre-
vious studies of DSR (Wan et al., 2020; Yu et al., 2020; van
Loon et al., 2018). Consistent with the present results,
previous studies have reported the simultaneous repre-
sentation, within the same population of neurons, of
items in subspaces associated with different contexts
(e.g., in auditory cortex of the mouse (Libby & Buschman,
2021) and in pFC of the nonhuman primates (Panichello
& Buschman, 2021).

Consistent with the distinct dynamics observed with
RNNs, reanalyses of an fMRI and an EEG data set estab-
lished that the processing of first- and second-order con-
texts has distinct behavioral and neural profiles for
humans performing the DSR. To assess relations to behav-
ior, dimensionality reduction was applied to the neural
data and TVI derived for each participant for each of the
two levels of first-order context and for each the two levels
of second-order context (i.e., priority). Correlations with
behavior failed to show any evidence that performance
is sensitive to variation in TVI for first-order context,
whether defined by ordinal position (fMRI study) or loca-
tion (EEG study). For second-order context (i.e., priority
for both the fMRI and EEG studies), in contrast, there
was considerable evidence that larger TVIs (indicating
higher trial-to-trial variability) corresponded to poorer
performance. In the fMRI data set, the anatomical distribu-
tion of the representation of order and priority also dif-
fered, with the former absent from EVC and becoming
progressively more robust in more rostral ROIs, whereas
the latter was evident in every ROI that we investigated.
Thus, our results suggest that not only are representa-
tional transformations corresponding to first-order versus
second-order context implemented via different mecha-
nisms, they also differ according to their influence on
behavior and to their distribution in the brain.

These results share some similarities and some differ-
ences with a recent study that recorded neuronal activity
from several brain areas of nonhuman primates perform-
ing a single-retrocue WM task (Panichello & Buschman,
2021). In that study, dimensionality reduction revealed
that, before the retrocue, the two stimuli were repre-
sented in orthogonal subspaces that corresponded to
the location at which each had been presented (i.e., to
their first-order context). Upon cueing, stimulus informa-
tion transformed into different “postselection” subspaces
that retained first-order context and now also represented
selection status (selected/nonselected; i.e., second-order
context). Notably, the representations of “selected upper”
and “selected lower” items were no longer orthogonal.

The degree of cue-triggered representational transforma-
tion was highest in dorsolateral pFC and progressively
weaker in more posterior regions, weakest in extrastriate
visual area V4. One similarity of those results to those
reported here is the initial encoding of first-order context
into orthogonal subspaces. A notable difference between
the two is the nature of the postcue transformations. This
difference is also seen in a modeling study that simulated
the Panichello and Buschman (2021) study using an RNN
architecture similar to the one presented in this report
(Piwek, Stokes, & Summerfield, 2023). Specifically, and
at variance with what we report here, Piwek and
colleagues (2023) found that the representation of the
uncued item became more compressed, and thus less dis-
criminable, in comparison to its initial state. This discrep-
ancy is most likely because of the differing demands of the
single-retrocuing task (Piwek et al., 2023; Panichello &
Buschman, 2021) versus the DSR, in that only for the
DSR does it remain possible that the initially uncued item
might be needed later in the trial. Importantly, this obser-
vation reinforces a central point of the present work,
which is that the computational problem of deprioritiza-
tion requires an algorithmic solution that is different from
compression or other types of inhibition. In other regard,
all of these studies report a pattern of orthogonalized pre-
cue and parallel postcue item representations, suggesting
similar mechanisms for item maintenance and selection.
In the DSR, the representational transformation of one

item into a PMI and the other into a UMI are prompted by
the same cue, a design feature that allows for direct com-
parison of the two processes. For the majority of partici-
pants in the EEG study, and in the majority of ROIs in the
majority of participants in the fMRI study, trial-by-trial var-
iation in the TVIs for the transformation to PMI and for the
transformation to UMI were correlated, a result consistent
with the idea that a common factor underlies both. There
are at least two possible accounts for this pattern of
results that will require future research to adjudicate.
One is a parallel mechanism whereby a single signal is
“split” so as to trigger the simultaneous output gating of
one item into the PMI state and of the other item into the
UMI state. A second is a serial process akin to biased com-
petition (cf. Desimone & Duncan, 1995) whereby a con-
trol signal first selects the cued item, and a consequence
of this item’s transformation to PMI is that it “pushes” the
other item into the UMI state. Importantly, the correlation
of TVIs reported here rules out what had been a third pos-
sibility, which was a “passive” account of the transforma-
tion to UMI whereby the withdrawal of attention would
allow the relaxation of the representation into a default
state such that the relaxation process would not be influ-
enced by the active PMI transformation. Along with the
application of second-order context that is prompted by
the prioritization cue, the time course of ED of the RNN
suggests that the resetting of second-order context part-
way through the trial may be a process that requires as
much active control as does its initial application.
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APPENDIX

Figure A1. Timeline for the Yu and colleagues (2020) DSR task mapping task events to time in seconds and TRs.

Figure A2. Time courses of
percent variance explained by
each of the first four PCs from
the PCA performed on the
recurrent unit activities for
RNN No. 1.
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Figure A3. The time course of ED of the hidden layer stimulus representations of replication RNNs. (A) RNN No. 2. (B) RNN No. 3. (C) RNN No. 4.
(D) RNN No. 5. (E) RNN No. 6. (F) RNN No. 7. (G) RNN No. 8. (H) RNN No. 9. (I) RNN No. 10.
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Figure A4. Within- and cross-label decoding of fMRI data separated by training and testing on each of the two items (i.e., Sample 1/2 for context and
PMI/UMI for priority).
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Figure A5. Comparisons of within- and cross-label decoding from the fMRI data set across various SVM coding designs in MATLAB. (A) Context-based
decoding for EVC. (B) Context-based decoding for FEF. (C) Priority-based decoding for EVC. (D) Priority-based decoding for FEF. In each graph, the blue
shading around each curve shows the standard error of the mean. The horizontal dashed line indicates the chance-level decoding accuracy of 0.11. Red
squares below the dashed line indicate time points with significant above-chance decoding accuracy ( p < .05, FDR-corrected across all time points).
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