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Abstract

■ A single pulse of TMS (spTMS) during the delay period of a
double serial retrocuing working-memory task can briefly res-
cue decodability of an unprioritized memory item (UMI). This
physiological phenomenon, which is paralleled in behavior by
involuntary retrieval of the UMI, is carried by the beta frequency
band, implicating beta-band dynamics in priority coding in
working memory. We decomposed EEG data from 12 partici-
pants performing double serial retrocuing with concurrent
delivery of spTMS using Spatially distributed PhAse Coupling
Extraction. This procedure decomposes the scalp-level signal
into a set of discrete coupled oscillators, each with a compo-
nent strength that can vary over time. The decomposition
revealed a diversity of low-frequency components, a subset of
them strengthening with the onset of the task, and the majority

declining in strength across the trial, as well as within each delay
period. Results with spTMS revealed no evidence that it works
by activating previously “silent” sources; instead, it had the
effect of modulating ongoing activity, specifically by exaggerat-
ing the within-delay decrease in strength of posterior beta com-
ponents. Furthermore, the magnitude of the effect of spTMS on
the loading strength of a posterior beta component correlated
with the disruptive effect of spTMS on performance, a pattern
also seen when analyses were restricted to trials with “UMI-lure”
memory probes. Rather than reflecting the “activation” of a
putatively “activity silent” UMI, these results implicate beta-
band dynamics in a mechanism that distinguishes prioritized
from unprioritized, and suggest that the effect of spTMS is to
disrupt this code. ■

INTRODUCTION

TMS works on the principle that when a brief (< 1 msec)
magnetic pulse is passed through the scalp, a current is
induced in the brain tissue experiencing this pulse (e.g.,
Walsh & Rushworth, 1999). The experimental procedure
of applying a single pulse of TMS (spTMS) while concur-
rently recording the EEG has provided many important
insights about human neurophysiology and about links
between neurophysiology and behavior. For example,
when spTMS is delivered over occipital versus parietal ver-
sus frontal cortex, the resultant spectral perturbations are
most prominent at 8 Hz, 19 Hz, and 29 Hz, respectively,
suggesting different natural frequencies for the corticotha-
lamic circuitry in these three regions (Rosanova et al.,
2009). Although these results were derived when partici-
pants were at rest, their functional relevance is demon-
strated, for example, when spTMS is delivered to induce
the visual perception of a phosphene. When occipital cor-
tex is targeted, phosphene induction is dependent on pre-
spTMS power and phase in the alpha band of the EEG
(e.g., Samaha, Gosseries, & Postle, 2017; Romei et al.,
2008), and when parietal cortex is targeted, phosphene
induction is dependent on pre-spTMS power in the low

beta band (12–22 Hz; Samaha et al., 2017). These results
suggest that oscillations at these frequencies reflect fluctu-
ations of cortical excitability and/or of temporal windows
for the routing of signals.

spTMS phosphene induction results also highlight a
question about the physiological bases of the spTMS
spectral perturbation (e.g., Rosanova et al., 2009). One
possibility is that this response results from the triggering
(or driving) of a new source of activity in the brain—that is,
that one or more circuits that were previously inactive
become “activated” by the pulse of induced current.
Alternatively, a second possibility is hinted at by a further
comparison of spTMS phosphene induction resulting
from occipital versus parietal stimulation: Despite the
dependence of these two protocols on the state of dis-
tinct frequency bands pre-spTMS, the poststimulus cor-
relates of phosphene perception were highly similar
across the two (Samaha et al., 2017). This is consistent
with the idea that functionally effective spTMS may arise
from the modulation of ongoing activity (e.g., because of
phase reset and/or modulations of the amplitude of
endogenous oscillations).

Adjudicating between “activation” versus “modulation”
accounts of evoked responses measured at the scalp is
notoriously difficult, due in part to the fact that the signal
recorded at each electrode is a blend of signals from
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multiple underlying sources. And because there is always
oscillatory power in the signal preceding the delivery of
the pulse, one cannot know the extent to which spTMS-
related changes in sensor-level activity are because of
the “activation” of previously silent sources (and/or to
the “deactivation” of previously active sources) versus
to the modulation of the power and/or phase of ongoing
sources of activity. In this report, we sought to overcome
this challenge by transforming an EEG data set with a
decomposition procedure that extracts patterns of activity
that are more informative of the underlying sources. The
procedure is called Spatially distributed PhAse Coupling
Extraction (SPACE). Conceptually, SPACE is an extension
of parallel-factor analysis that relies on a plausiblemodel of
a neurobiological rhythm: a spatially distributed oscilla-
tion with energy in a range of frequencies, and involving
between-sensors phase relations that can vary over fre-
quencies (van Der Meij, van Ede, &Maris, 2016). The result
is a set of topographically overlapping components separated
by their patterns of between-sensors phase coupling, their
spectral content, and their variable presence over trials. In
other words, SPACE effects a decomposition of the EEG
signal measured at the scalp into components comprising
discrete coupled oscillators that can be construed as aris-
ing from discrete sources. When applied to an spTMS data
set, we reasoned that an “activation” mechanism of the
spTMS spectral perturbation would manifest as the
appearance/disappearance of components time-locked
to the delivery of spTMS. Absence of evidence for
spTMS-related appearance/disappearance of components,
in contrast, would bemore consistent with a “modulation”
account.

The data set to which we applied the SPACE decompo-
sition was collected while participants performed a double
serial retrocuing (DSR) working memory (WM) task
(Fulvio & Postle, 2020). We chose this data set because
the “activation” versus “modulation” accounts of the
mechanisms of spTMS have theoretical implications for
the interpretation of a functional effect of spTMS delivered
during the DSR task. In this task, two items are presented
as samples and then one of the two is cued as the one that
will be tested by the impending recognition probe (i.e., a
“retrocue”). Importantly, the uncued item assumes the
status of a “unprioritizedmemory item” (UMI) that is irrel-
evant for, and therefore should not influence, the assess-
ment of the impendingmemory probe. A key finding from
this task is that, on trials when the UMI is presented as the
recognition probe—that is, as a “lure” that participants
should reject as a nonmatch–spTMS delivered before
these lure probes selectively increases the likelihood that
participants will (incorrectly) endorse them. That is,
spTMS increases the likelihood that the UMI will intrude
on the recognition decision (Fulvio & Postle, 2020; Rose
et al., 2016). Thus, by analogy to how spTMS to occipital
or parietal cortex can trigger the perception of a phos-
phene, spTMS delivered during the delay period of a
WM task can be construed as triggering the involuntary

retrieval of unprioritized information being held in WM.
The way that it does so has important implications for
how this unprioritized information had been represented.
In particular, did spTMS activate the UMI from an “activity-
silent” state (Rose et al., 2016; cf. Stokes, 2015; Barak &
Tsodyks, 2014), or did spTMS modulate an ongoing oscil-
latory state that had kept it in an active, but “action-null,”
functional state (cf. Wan, Ardalan, Fulvio, & Postle, 2024;
Wan, Menendez, & Postle, 2022; Wan, Cai, Samaha, &
Postle, 2020; Yu, Teng, & Postle, 2020)?
The phenomenon of the spTMS-triggered “involuntary

retrieval” of the UMI has been studied previously with EEG
(Rose et al., 2016).1 At the beginning of the trial, an active
representation of both stimuli could be decodedwithmul-
tivariate pattern analysis applied to the broadband EEG
signal, and this decoding was also successful when
restricted to bandpass-filtered signal from the alpha band
(Rose et al., 2016). Then, following the first cue, decodabil-
ity of the uncued item declined to baseline levels, a pattern
that parallels its transition to the functional status of UMI.2

When spTMS was delivered after this loss of decodability
(and before probe onset), however, the decodability of
the UMI was transiently recovered. Furthermore, this
recovery of decodability was isolated to signal in the beta
band (Rose et al., 2016). In addition to this specific evi-
dence for a possible role for beta-band oscillatory dynam-
ics in the spTMS-triggered “involuntary retrieval” from
WM, there is a growing body of literature establishing,
more generally, an important role for beta-band activity
in other aspects of working memory function (ElShafei,
Zhou, & Haegens, 2022; Proskovec, Wiesman, Heinrichs-
Graham, & Wilson, 2019; Haegens, Vergara, Rossi-Pool,
Lemus, & Romo, 2017; von Lautz et al., 2017; Siegel,
Warden, & Miller, 2009; Axmacher, Schmitz, Wagner,
Elger, & Fell, 2008; Deiber et al., 2007; Tallon-Baudry,
Bertrand, Peronnet, & Pernier, 1998). Consequently,
SPACE-identified components in the beta band were a
focus of the work reported here.
To summarize, for the current report, we first carried

out a neurobiologically informed decomposition of EEG
data collected from participants performing the DSR WM
task and then carried out three sets of hypothesis-testing
analyses. The first addressed the general question of
whether the spTMS-related spectral perturbation of the
EEG is better understood as a consequence of an “activa-
tion” or a “modulation”mechanism. The second exploited
the method’s ability to quantify individual component
strengths at varying points in time to characterize the
task-related and spTMS-related dynamics of low-frequency
components of the EEG during the DSR task. The third
assessed the consequences for behavior of the effects of
spTMS on these low-frequency components. The results
from these analyses emphasize an important role for oscil-
latory dynamics in the beta band and illustrate ways in
which a neurally informed, data-driven decomposition of
EEG data can yield novel insights that could not be
obtained from analyses of untransformed data.

1828 Journal of Cognitive Neuroscience Volume 36, Number 9

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/36/9/1827/2464916/jocn_a_02194.pdf by U
niversity of W

isconsin, M
adison, Jacqueline Fulvio on 14 August 2024



METHODS

Behavioral results from this experiment have been
reported previously (Fulvio & Postle, 2020).

Participants

Fourteen neurologically healthy members of the Univer-
sity of Wisconsin–Madison community, with no reported
contraindications for magnetic resonance imaging (MRI)
or TMS, were recruited for the study. The target sample
size was 12, a number chosen according to an a priori
power analysis based on the behavioral results of Experi-
ment 4 of Rose and colleagues (2016) that indicated that
12 participants would be needed to achieve 80% power in
the critical behavioral comparison of interest (see Fulvio &
Postle, 2020).3 Each of the 14 participants underwent a
structural MRI scan and participated in three sessions of
WM task performance with concurrent EEG and spTMS,
each on separate days. Data from two individuals were
excluded because of noncompliance with task instructions
during the behavioral sessions resulting in a final sample
size of 12 participants (five female participants) with age
range of 18–28 years (M = 21.7 years), all right-handed.
All participants had normal or corrected-to-normal vision
with contact lenses (eyeglasses were not compatible with
the TMS targeting apparatus), and all reported having
normal color vision. The research complied with the guide-
lines of the University of Wisconsin–Madison’s Health
Sciences Institutional Review Board. All participants gave
written informed consent at the start of each session and
received monetary compensation in exchange for
participation.

Experimental Procedure

The experiment took place over four separate sessions. The
first session involved an MRI scan, which acquired the
anatomical image used to guide spTMS during the three
behavioral sessions. During each behavioral session,
participants performed two WM tasks, a DSR task and a
single retrocue task. (For the current study, we analyzed
data collected during the DSR task only.) The tasks were
carried out in alternating blocks, with each of the three
sessions comprising eight 30-trial blocks. The order of
the blocks was switched across sessions within partici-
pants and counterbalanced across participants.

Double-serial Retrocue Task

The DSR task (Figure 1A) began with the simultaneous
presentation of two sample items, one drawn from each
of two of three categories (faces, words, and dot
motion—see Fulvio and Postle [2020] for more details
about the stimuli), with one item presented above central
fixation and one item below (2 sec), followed by 5 sec of
fixation (Delay 1.1), followed by a 500-msec cue (Cue 1;

dotted line) whose location (i.e., above or below fixation)
indicated which of the two samples would be tested,
followed by 4.5 sec of fixation (Delay 1.2), followed by a
recognition probe (1 sec) and response period (1 sec).
Then, the trial continued with a second 500-msec cue
(Cue 2) followed by Delay 2 (4.5 sec) and Probe 2
(1 sec, plus an additional 1-sec response capture window).
Cue 2 appeared in the same location as Cue 1 on 50% of
trials. The intertrial interval was 2 sec.

Participants indicated a “match” or “nonmatch” judg-
ment as to whether the probe stimulus was a match to
the cued memory item by keyboard button press. Fifty
percent of probe stimuli were matches of the cued item,
30% were nonmatches drawn from the same stimulus
category as the cued item, and 20% were the uncued
item from that trial’s memory set (i.e., lures). Participants
were not explicitly told that the uncued memory item
could appear as lures; nevertheless, lures were scored as
“nonmatches.” When the response was registered, feed-
back was provided—the fixation cross turned green for
correct responses, red for incorrect responses—for the
remainder of the response window. Throughout each
block, the TMS coil was positioned to target area IPS2 in
the right hemisphere, and spTMS was delivered (unpre-
dictably) as follows: On and 25% of trials, spTMS was deliv-
ered during both delay periods, on 25% of trials, spTMS
was delivered only during the first delay period, on 25%,
spTMS was delivered only during the second delay period,
and on 25% of trials, spTMS was not delivered. Order of
memory set, cued category, and probe type were random-
ized, with the constraint that spTMS was delivered on 50%
of trials of each type.

MRI Acquisition and Preprocessing

Whole-brain images were acquired with a 3 T MRI scanner
(Discovery MR750; GE Healthcare) at the Lane Neuroim-
aging Laboratory at the University of Wisconsin–Madison.
High-resolution, T1-weighted images were acquired for all
participants with a fast spoiled gradient-echo sequence
(8.2-msec repetition time, 3.2-msec echo time, 12° flip
angle, 172 axial slices, 256 × 256 in-plane, 1.0 mm isotro-
pic). The T1-weighted images were processed using the
Analysis of Functional NeuroImages (AFNI) software pro-
gram to al ign each part ic ipant ’s brain with the
MNI152_T1_1mm template. In AFNI, a mark was inserted
in right intraparietal sulcus (coordinate:−22 70 58), which
was used as the target for spTMS (see below).

spTMS Targeting and Delivery

spTMS targeting employed a navigated brain stimulation
system that uses infrared-based frameless stereotaxy to
coregister the location and position of the participant’s
head and that of the TMS coil according to the individual’s
high-resolution MRI (NexStim eXimia). spTMS was deliv-
ered with an eXimia TMS Focal BiPulse transcranial
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magnetic stimulator fit with a figure-of-eight stimulating
coil. spTMS was delivered to the right intraparietal sulcus
target in each participant to achieve an estimated inten-
sity at the stimulation target of 90–110 V/m (60–75% of
stimulator output, depending on the thickness of the par-
ticipant’s scalp, cortex, and depth of the target). The coil
was oriented along the sagittal plane to induce an
anterior–posterior direction of current, with individual
adjustments to minimize EEG artifact. Stimulator inten-
sity, coil position, and coil orientation were held constant
for each participant for the duration of each session.
spTMS was delivered 2–3 sec after cue offset (2.5–
1.5 sec before probe presentation) in steps of 500 msec.
To mask the sound of TMS coil discharge, participants
were fitted with earbuds through which white noise
was played during task blocks, with volume titrated such

that the participants could not detect the click produced
by coil discharge.

EEG Recording and Preprocessing

EEG was recorded with a 60-channel cap and TMS-
compatible amplifier, equipped with a sample-and-hold
circuit that held amplifier output constant from 100 μs
before stimulation to 2 msec after stimulation (NexStim
eXimia). Electrode impedance was kept below 5 kΩ. The
reference electrode was placed superior to the supraor-
bital ridge. Eye movements were recorded with two addi-
tional electrodes, one placed near the outer canthus of the
right eye, and one underneath the right eye. The EEG was
recorded between 0.1 and 350 Hz at a sampling rate of
1450 Hz with 16-bit resolution.

Figure 1. Methodological details. (A) Schematic of the DSR task. Memory sets were composed of two stimuli, one from each of three possible
categories (faces, dot motion, and words). Schematic shows a trial in which a face is presented in the “up” location and a dot-motion patch in the
“down” location. Participants were tested twice on each trial: On 50% of trials, they were tested on both items (as shown); on the other 50% of trials,
they were tested on only one of the items (i.e., same location was cued twice, not shown). spTMS was delivered on 50% of trials during the delay
periods preceding the probes. Participants made “match”/“nonmatch” responses to the probes and were provided feedback via the color of the
fixation cross: green for correct responses (illustrated here following Probe 1) and red for incorrect responses (illustrated here following Probe 2). (B)
Seven 1-sec epochs were extracted from each trial for spectral analysis and SPACE decomposition. (C) For each component, the procedure returned
(i) a spatial amplitude map, (ii) a frequency profile, and (iii) a loading profile, which tracks variation in the component’s prominence across time.
Note that the lightning bolt icon specifies the electrode where spTMS was delivered, and the spatial amplitude map corresponds to a single
component returned by the decomposition. (D) After categorization by topography and frequency, components were classified functionally. “Task
onset-sensitive” components were those whose loading differed statistically between pretrial fixation (E1) and the average of the two Delay 1.1
epochs (E2 and E3). “Within-trial varying” components were whose loadings differed statistically between late Delay 1.1 and early Delay 1.2 (E3 and
E4; “cue-1 varying”) and/or between late Delay 1.2 and early Delay 2 (E5 and E6; “cue-2 varying”).
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Data were processed offline using EEGLAB (Delorme &
Makeig, 2004) with the TMS-EEG signal analyzer open-
source EEGLAB extension (Mutanen, Biabani, Sarvas,
Ilmoniemi, & Rogasch, 2020; Rogasch et al., 2017) and
Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2011)
toolboxes in MATLAB. We followed the TMS-EEG analysis
pipeline (https://nigelrogasch.github.io/TESA/). For delay
periods for which no spTMS was delivered, a dummy
spTMS event tag was added at a latency that matched
the most recent spTMS-present trial delay period. Then,
electrodes exhibiting excessive noise were removed and
the data were epoched to−12 sec to 8 sec around the first
spTMS event tag (Delay 1.2) and −4.5 sec to 4.5 sec
around the second spTMS event tag (Delay 2). The data
were down-sampled to 500 Hz. To minimize the TMS arti-
fact in the EEG signal, the data were interpolated using a
cubic function from−2 to 30 msec around the TMS pulse.
This interpolation was also carried out on delay periods on
which TMS was not delivered. Next, the data were band-
pass filtered between 1 and 100 Hz with a notch filter cen-
tered at 60 Hz. Independent components analysis was
used to identify and remove components reflecting resid-
ual muscle activity, eye movements, blink-related activity,
residual electrode artifacts, and residual TMS-related arti-
facts. Electrodes with excessive noise were interpolated
using the spherical spline method. Finally, the data were
rereferenced to the average of all electrodes that were
included in the independent components analysis.
The spTMS-related influence on the signal captured by

the electrode directly below the TMS coil (P2) was
assessed in three ways. First, spTMS-evoked potentials
were extracted for the P2 channel using the TMS-EEG sig-
nal analyzer toolbox, for the data epoched to the first
spTMS pulse and to the second spTMS pulse for each par-
ticipant. These spTMS-evoked potentials were then aver-
aged across participants, and a 95% confidence interval
was computed for each time point. Two additional analy-
ses were carried out on spectral transforms of the
data—time–frequency representations (TFRs) and inter-
trial phase coherence (ITC)—as described in the next
two paragraphs.
Spectral transforms of the data were calculated for each

participant with the FieldTrip toolbox, which resulted in
TFRs epoched to the first spTMS pulse and to the second
spTMS pulse, with spTMS-present and spTMS-absent trials
transformed separately. (For spTMS-absent delay periods,
analyses were time-locked to the same postcue timepoint
at which spTMS had been delivered in themost recent trial
during which spTMS had been delivered during that delay
period.) A multi-taper-method convolution was per-
formed on the epoched data. A fixed, three-cycle
Hanning-tapered window of 50 msec was used for every
other integer frequency from 8 to 40 Hz. Spectral esti-
mates for each frequency were baseline corrected on a
trial-by-trial basis by subtracting the mean spectral power
from the 500-msec window preceding spTMS delivery.
The resultant within-subject TFRs were then averaged

across trials by condition (i.e., spTMS-present and
spTMS-absent) and combined across participants. The
two groups of TFRs were then submitted to a cluster-based
permutation analysis to identify time–frequency clusters
that differed significantly between the spTMS-present
and spTMS-absent conditions. The analysis was carried
out on the time window from 0 to 500 msec post-spTMS.
Clusters were defined within the P2 electrode TFR in
which the t statistic corresponding to the difference
between spTMS-present and spTMS-absent trials between
0 and 500msec post-TMS exceeded a threshold of p< .025
(for two-tailed t tests). Those exhibiting above-threshold
differences were then used for the subsequent nonpara-
metric cluster-based permutation analysis, which included
500 random sets of permutations. A significance value of
0.05 was used to threshold the cluster statistic.

ITC was calculated with the FieldTrip toolbox by apply-
ing wavelet decompositions epoched for each delay
period around delivery of spTMS (or comparable time
point for spTMS-absent delays, as with TFR analyses). A
Morlet wavelet at every integer frequency from 4 to
40 Hz was used with a width of seven cycles. The Fourier
spectra of the transform were returned. The ITC values
were computed by dividing the Fourier spectra by the
amplitude and then normalizing across trials. For any point
in time, ITC values near 0 reflect high variability in phase
angle across trials, whereas values near 1 reflect high con-
sistency in the phase angle across trials.

Finally, the cleaned data were further divided into seven
1-sec epochs of interest per trial for the SPACE decompo-
sition analyses (see below) and a multi-taper-method con-
volution was performed on the epoched data. A Hanning
taper was applied to a four-cycle window at each integer
frequency from 5 to 40 Hz, resulting in a frequency-
dependent window length. This window was slid in
50-msec steps through each 1000-msec epoch. This
transform resulted in spectral power values at each of
36 frequencies and 60 channels, sampled every 50 msec
sec, for each 1-sec epoch. These data were used for the
subsequent SPACE decomposition.

SPACE Decomposition

We employed SPACE, amodel-basedmethod that entails a
signal decomposition application of parallel factor analysis
to identify neurobiologically plausible rhythms and charac-
terize “rhythmic components” by patterns of between-
sensors phase coupling. Here, we describe the key aspects
of the analysis pipeline. For a full description of the
method, see van Der Meij and colleagues (2016) and van
der Meij, Jacobs, and Maris (2015).

The SPACE decomposition was carried out for each
participant (n = 12) and session (n = 3), resulting in
36 separate session-level decompositions. We focused
the analysis on the seven 1-sec epochs of each trial within
each session (Figure 1B): (i) fixation (baseline; E1; (ii–iii)
mid- and late-Delay 1.1 (before Cue 1; E2 and E3); (iv–v)
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early- and late-Delay 1.2 (following Cue 1 and flanking the
TMS pulse; E4–E5); and (vi–vii) early- and late-Delay 2
(following Cue 1 and flanking the TMS pulse; E6–E7).
The Fourier coefficients for each epoch returned from
the spectral analysis were used to compute frequency-
and trial-specific cross-spectral density matrices (CSDs)
that reflected both power at different electrodes and
between-phases consistency.

To run the SPACE decomposition, we used the open-
source MATLAB toolbox “NWAYDECOMP” (https://
github.com/roemervandermeij/nwaydecomp). The
frequency- and trial-specific CSDs were concatenated into
a four-way array—Channel × Channel × Frequency ×
Trial—and then submitted to the decomposition proce-
dure, which extracts the components using the iterative
alternating least squares algorithm, “SPACE-FSP” (the
frequency-specific phase model variant of the decomposi-
tion). Complete modeling details can be found in van der
Meij and colleagues (2015). In brief, per alternating least
squares iteration, four parameters sets (frequency profile,
spatial amplitude map, spatial phase map, and trial profile;
see below) are sequentially updated using ordinary least
squares (with the exception of the spatial phase map,
which requires a different optimization approach [van
der Meij et al., 2016]), whereas the other three are held
constant. The model is as follows:

Xkl⋅ X�
kl ¼ ALk⋅ diagBk⋅ diagCl⋅ Dk⋅ diagCl⋅ diagBk⋅ AL

�
k

þ Ekl

The CSDs (Xkl⋅ X�
kl) are modeled as a product of four

matrices, of which three appear twice (ALk, diag Bk, and
diag Cl) and one appears only once (Dk). The difference
between the model and the observed CSD is the error
term Ekl. ALk corresponds to the sensor-by-components
matrix (with dimensions J × F; where F is the number of
components), which is complex-valued, and is formed by
the spatial amplitude map (specifying the amplitudes of
the complex numbers for each sensor j ) and the
frequency-specific spatial phase map (specifying the
phases of the complex numbers) of each component. Diag
Bk (with dimensions F × F) is diagonal and real-valued,
and contains a weighting (“loading”) of components at
frequency k. When concatenated over frequencies, the
diagonals form the frequency-by-components matrix of
frequency profiles B. Diag Cl (with dimensions F × F )
is diagonal and real-valued and contains the weighting
(loading) of components in a trial l. When concatenated
over trials, the diagonals form the trial-by-components
matrix of trial profiles C. Dk (with dimensions F × F ) is
denoted as a between-components coherency matrix that
describes relations between components, is complex-
valued and conjugates symmetric, and describes the phase
coupling between components at frequency k.

The solution is not analytically defined, so the iterative
approach is designed to extract statistically reliable com-
ponents. An iteration is complete when all four parameter

sets have been updated, upon which the increase in the
quality of the fit is determined. Once subsequent itera-
tions no longer increase the fit beyond a predetermined
relative criterion, the algorithm is said to have converged
and is stopped. On the basis of several test-runs of the pro-
cedure, we initialized the procedure to extract a starting
number of components from the full data set (i.e., all
epochs from the session-level data set being analyzed) to
n1 = 18 components. When the component extraction
from the full data set had been completed, the data set
was then split into two halves (odd and even trials) and
components were extracted from each. If the split-half
extractions were sufficiently correlated (based on a simi-
larity coefficient criterion set to .7), then the procedure
continued (iterated) by increasing the set number of com-
ponents to be extracted in steps of two (i.e., ni = ni-1 + 2),
until the split-half extractions no longer met the estab-
lished criterion. When the iteration failed, a final iteration
occurred, extracting ni-1 – 1 components, which com-
prised the final set returned for the session-level data set.
Because of the computationally demanding nature

of these analyses, we took advantage of the ability to
compute the decompositions of all data sets in parallel,
each employing MATLAB’s pools of 12 “workers” using
the HTCondor system deployed at the University of
Wisconsin–Madison (Center for High Throughput
Computing, 2006; https://doi.org/10.21231/gnt1-hw21).
As described above, the procedure fits four parameter

sets. Upon completion, for each component extracted,
SPACE generates four metrics according to the final
optimized fit (Figure 1C): (i) a spatial amplitude map,
indicating the loading on each channel for the compo-
nent; (ii) a frequency profile, which describes the degree
to which each frequency (in our analyses: 5–40 Hz) is
involved in the phase coupling that characterizes the com-
ponent; (iii) a loading profile, which describes the loading
of that component (in arbitrary units, normalized to a scale
of 1) at each epoch at the level of the individual trials; (iv) a
spatial phase map that describes, per frequency, the
between-sensors phase relations induced by the compo-
nent source. Information from spatial phase maps was
not used in this study.

Component Preselection

Topographic and Frequency Classification

We a priori planned to select beta components from two
scalp locations (posterior and central) and alpha compo-
nents from posterior locations, for subsequent analyses
(Figure 1C and Table 1). For this initial stage of compo-
nent preselection, a component’s frequency category
was based on the peak frequency in its frequency profile,
with peak frequencies < 7 Hz being characterized as
theta-band components, those with peak frequencies of
7–14Hz as alpha-band components, and those> 14Hz as
beta-band components. Topography was characterized

1832 Journal of Cognitive Neuroscience Volume 36, Number 9

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/36/9/1827/2464916/jocn_a_02194.pdf by U
niversity of W

isconsin, M
adison, Jacqueline Fulvio on 14 August 2024

https://github.com/roemervandermeij/nwaydecomp
https://github.com/roemervandermeij/nwaydecomp
https://github.com/roemervandermeij/nwaydecomp
https://github.com/roemervandermeij/nwaydecomp
https://github.com/roemervandermeij/nwaydecomp
https://github.com/roemervandermeij/nwaydecomp
https://github.com/roemervandermeij/nwaydecomp
https://doi.org/10.21231/gnt1-hw21


based on the spatial amplitude map returned by the
SPACE procedure. For each component, we found the
peak channel in this map and categorized it as “poste-
rior,” “central,” or “frontal” based on its location on the
scalp (Figure 1C). (Note that the TMS coil was positioned
over one of posterior channels [P2].) Once these classifi-
cations were complete, we visually inspected the spatial
amplitude map and frequency profile of each posterior
beta, central beta, and posterior alpha component, and
manually rejected from subsequent analyses any that
appeared to be artifactual, that is, exhibiting spatial pat-
terns consistent with muscle or eye movement artifacts,
and/or the frequency spectrum contained sharp disconti-
nuities or multiple peaks.

Functional Classification

The second stage of our component preselection proce-
dure involved a functional categorization that was based
on sensitivity to different elements of the DSR task. We
defined as “task onset-sensitive” those components with
statistically significant differences in component loading
between fixation (E1) and the average of mid- and
late-Delay 1.1 (E2 and E3; Figure 1D). This procedure
was agnostic as to whether these modulations were
increases or decreases from baseline. We defined as
“within-trial varying” components with statistically signifi-
cant differences in trial loading between lateDelay 1.1 and
early Delay 1.2 (E4 and E5; “cue-1 varying”), and/or
between the late Delay 1.2 and early Delay 2 (E6 and
E7; “cue-2 varying”; Figure 1D). Because a component
could be both task onset-sensitive and within-trial varying,
in initial analyses, those that had both properties were
classified as task-onset sensitive.

Hypothesis-testing Analyses

We carried out three sets of statistical analyses to test
hypotheses about posterior beta components: one about
their sensitivity to spTMS and two about their contribution
to WM. Note that because the contrasts used here did not
overlap with the functional classification, we avoided the
problem of “double-dipping.” Our original plan was to
carry out each set of hypothesis-testing analyses twice,
once for task onset-sensitive components and once for

within-trial varying components. However, results for the
two types of component were similar for all analyses
except one, and so in the Results section, unless otherwise
noted, we report the results from the analyses on the com-
bined pool of both types of “task-sensitive” components.

The spTMS-related Spectral Perturbation

The first set of analyses investigated the physiological
effects of spTMS. In particular, we asked whether the
spTMS-related spectral perturbation is best understood
as resulting from the triggering of activity in previously
“silent” circuits (i.e., an “activation” account), the modula-
tion of patterns of activity in circuits that were active
before the delivery of spTMS (i.e., a “modulation”
account), or some combination of the two. We reasoned
that a “spTMS-activated” oscillator would manifest as a
component whose loadings met two constraints: (i) hav-
ing a value close to 0 (operationalized as < 0.001) during
the epoch(s) that immediately preceded spTMS (i.e., E4
and/or E6), and (ii) having a nonzero value (opera-
tionalized as > 0.001) during the epoch(s) immedi-
ately following spTMS (i.e., during E5 and/or E7,
respectively). As a control, to determine how often a
SPACE component might exhibit this pattern by chance,
we performed the same analysis for spTMS-absent trials
and compared the two.

The Dynamics of Low-frequency Components across the
DSR Task, and Their Sensitivity to spTMS

The second set of analyses investigated the task-related
and spTMS-related dynamics of posterior beta compo-
nents. To quantify task-related variability, we fit a linear
mixed-effects model to the posterior beta component
loadings of early and late Delay 1.2 (i.e., E4 and E5) and
Delay 2 (i.e., E6 and E7). Main effects of (i) epoch (two
levels: early; late) and (ii) delay period (two levels: Delay
1.2 and Delay 2) were included in the analysis as fixed
effects. Both variables were coded as categorical variables.
As random effects, the model included intercepts for indi-
vidual components. (Note that for the purpose of this set
of analyses, the full set of components was pooled across
participants, thereby ignoring the factor of participant.) To
quantify the spTMS-related dynamics of posterior beta, we

Table 1. Topographical and Spectral Distribution of Components Extracted Using SPACE Decomposition of EEG Data

Topography

Frequency Range Posterior Central Frontal

Low (theta) 5–7 Hz 107 32 25

Alpha 7–14 Hz 368 106 36

Beta > 14 Hz 115 52 21
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fit a linear mixed-effects model to the posterior beta com-
ponent loadings of the late-delay epochs: E5 and E7. Main
effects of (i) spTMS delivery (two levels: present; absent)
and (ii) delay period (two levels: Delay 1.2 and Delay 2)
were included in the analysis as fixed effects. Both vari-
ables were coded as categorical variables. As random
effects, the model included intercepts for individual com-
ponents. Visual inspection of residual plots did not reveal
any obvious deviations from homoscedasticity or normal-
ity for either model. Both models were fit both with and
without the interaction terms (i.e., between delay period
and epoch for the first model and between spTMS delivery
and delay period for the second model). The interaction
was not significant, and the overall fit of the model was
worse when the interaction was included in both cases,
so we report the results from the non-interaction models.
p Values were obtained from F tests for each term in the
linear mixed-effects models. Post hoc comparisons testing
for statistically significant differences between pairs of
epochs (E4 vs. E5 and E6 vs. E7), and testing for effect of
spTMS in specific delay periods were carried out using
paired-samples t tests. Finally, the model fitting was
repeated for the posterior alpha and central beta
components.

Relating the Effects of spTMS on Posterior Beta
Components to Behavior

For this third set of analyses, we first calculated the per-
centage change in posterior beta trial loadings between
early and late epochs of the delay periods (i.e., from E4
to E5 and E6 to E7, computed as ((early-late)/early)
×100), then we fit linear mixed-effects models to accuracy
(% correct) across trials. Main effects of (i) percentage
change in trial loading across the delay period (continuous
variable), (ii) spTMS delivery (two levels: present, absent;
categorical variable), and (iii) delay period (two levels:
Delay 1.2 andDelay 2; categorical variable) were included
in the analysis as fixed effects. Because each participant
had a single accuracy measurement for each combination
of spTMS delivery and delay period (e.g., % correct for
Probe 1 responses when spTMS was delivered during
Delay 1.2), we computed the median% change in trial
loadings across all components extracted for a given par-
ticipant for each spTMS delivery + delay period combina-
tion, and paired with the corresponding accuracy for
analysis. Interaction terms were not included in the
models, and p valueswere obtained from F tests for each term
in the linearmixed-effects model. We repeated the same anal-
ysis for posterior alpha and central beta components.

Finally, we focused on the 10% of delay–probe pairs for
which the UMI served as the probe (i.e., as a lure). These
have distinct theoretical importance, because worse per-
formance on these probes following spTMS (Fulvio &
Postle, 2020; Rose et al., 2016) provides evidence for a
functional consequence of the spTMS reactivation effect.
Specifically, results from Delay 1.2 and Probe 1 pairs

demonstrate that not only does spTMS rescue decodabil-
ity of the UMI in the EEG, it also increases the UMI’s influ-
ence on behavior, suggesting that spTMS effects a true
change of its priority status of the UMI within WM. For this
analysis, we fit a linear mixed-effects model to accuracy
from delay–probe pairs that presented the UMI as the
probe. As with the previous analyses, percentage change
in component loading was used as a fixed effect term. In
addition, we included an interaction term between TMS
delivery and delay period, because previous analysis of this
data set found that the false-alarm rate to lures was ele-
vated when spTMS was delivered during Delay 1.2, but
not during Delay 2, nor during Delay 1.2 on a single-
retrocue control task for which, unlike the DSR, the
uncued item could be dropped fromWM (rather than held
as a UMI) during Delay 1.2 (Fulvio & Postle, 2020). (Note
that this analysis would necessarily feature many fewer tri-
als than the analysis including all trials, and so would be
less sensitive.) We repeated this analysis for posterior
alpha and central beta components.

RESULTS

We begin with a descriptive summary of low-frequency
components identified via the SPACE decomposition,
followed by the three sets of hypothesis-testing analyses.

Categorization of Extracted Components

Topographic Categorization

Eight hundred twenty-one components with peak fre-
quencies in the 5–7 Hz (theta); 7–14 Hz (alpha) and
14–40 Hz (beta) bands were extracted from the 36 EEG
data sets (12 participants × 3 sessions). For each fre-
quency category, the majority of the components were
localized to posterior areas of the scalp (Table 1). For
the remainder of this report, our emphasis is on posterior
components in the beta band; see Appendix for details of
the categorization of central beta-band components and
posterior alpha-band components.

Functional Categorization

After manual artifact rejection, 103 posterior beta compo-
nents remained, 50 of which were identified as task
onset-sensitive (44 were up-modulated), and 28 were
within-trial varying (but not task onset-sensitive) compo-
nents (Figure 2). Finally, 25 components showed neither
task onset sensitivity nor within-trial variability, and were
excluded from further analysis. For the final set of 78 pos-
terior beta components included in our analysis, each
participant contributed from 2 to 15 components (mode =
9; see Table 2 for functional categorization breakdown).
We carried out the same component preselection proce-
dures for the posterior alpha and central beta components
(see Appendix).
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Figure 2. Characteristics of selected posterior beta components. (A) Peak spectral frequency (Hz) distribution for the 50 task onset-sensitive
components (purple) and the 28 components with exclusively within trial-varying properties (orange). The triangles denote the mean peak
frequency for the two groups (18.22 Hz and 18.39 Hz, respectively). (B) The bar graph depicts the percentage of components up-modulated for
the two categories, with up-modulation corresponding to greater loading for Delay 1.1 than fixation for task onset-sensitive components, and greater
loading for early Delay 1.2 than late Delay 1.1 and for early Delay 2 than late Delay 1.2 for within trial-varying components. (C) Trial loading time
courses for individual components that illustrate each of five characteristic patterns: task onset-sensitive, up-modulated (top row, left); task onset-
sensitive, down-modulated (top row, right); within trial-varying Cue 1 up-modulated (bottom row, left); within trial-varying Cue 2 up-modulated
(bottom row, middle); within trial-varying Cue 2 down-modulated (bottom row, right). Black arrows indicate sample presentation; gray arrows
indicate cue presentation; green arrows indicate probe presentation. (D) Distribution of overlap among the three component types. Note that
25 components did not survive any of the thresholding procedures.

Table 2. Breakdown of Posterior Beta Components

Posterior Beta Component Classification

Task Onset-sensitive Within-trial Varying Cue-1 Varying Cue-2 Varying Residual

Total classified 50 65 (w/ overlap); 11; 62; 25

28 (w/o overlap) 1 27

Participant contributions 0–8 0–6 0–1 0–6 0–5

M = 4.2 M = 2.3 M = .1 M = 2.3 M = 2.1

(w/o overlap) (w/o overlap) (w/o overlap)
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The extracranial EEG arises from the blending of multi-
ple underlying sources (Nunez & Srinivasan, 2006). SPACE
decomposition quantifies these as a spatially and spectrally
diverse set of components exhibiting varying levels of sen-
sitivity to task demands. Notably, only a subset of these
sources display task sensitivity. For the hypothesis-testing
analyses that follow, we focus only on task-sensitive com-
ponents. Furthermore, we present the results of the statis-
tical analyses carried out with task onset-sensitive and
within-trial varying component types combined as a
group, because the results were not appreciably different
when the analyses were performed on the groups sepa-
rately, except where noted.

Physiology of the spTMS-related
Spectral Perturbation

This set of hypothesis-testing analyses addressed the ques-
tion of whether the spTMS-related spectral perturbation of
the EEG is better understood as resulting from an “activa-
tion” or a “modulation” mechanism. They were based on
the reasoning that an “activation”mechanism would man-
ifest as a SPACE component with negligible component
loading during the epoch immediately before delivery of
spTMS, but a robust component loading during the epoch
immediately after the delivery of spTMS. Alternatively, a
“modulation” mechanism would manifest as a change in
component loadings that were already elevated before
spTMS delivery.

We carried out our investigation of the spTMS-related
spectral perturbation on the signal captured by the elec-
trode directly below the TMS coil. As illustrated in
Figure 3, spTMS produced an average evoked response
spanning from ∼−2 μV to ∼2 μV and largely resolving
within 250 msec. The TFR of this response contained an
early, short-duration broadband response (a “spike” that
is likely a byproduct of the fast Fourier transform of the
initial voltage transient) and a burst of elevated power
spanning roughly 7–20 Hz for roughly the first 150 msec
and narrowing to the theta band for an additional roughly
200 msec. ITC showed a similar profile: a broadband spike
followed by elevated values spanning from roughly
5–20 Hz, with peak values in the theta band.

Turning to SPACE components, we first inspected pos-
terior beta component loadings on a trial-by-trial basis dur-
ing spTMS-present delay periods. Negligible pre-spTMS
component loadings (i.e., loadings< .001) were identified
for 4.57% of Delay 1.2 epochs (M = .00002, SD = .0001)
and for 6.96% of Delay 2 epochs (M= .0001, SD= .0002).
For these trials, the average post-spTMS component load-
ings were .0222 (SD = .0198) for Delay 1.2 and .0129
(SD = 0.0161) for Delay 2. If considered alone (i.e., at
face value, without comparison to the control condition),
these results might imply that only a small proportion of
trials (less than 7%) show evidence that could be consis-
tent with an activation account of the spTMS-evoked
response. Importantly, however, repeating this procedure

with the same set of components but during spTMS-
absent delay periods revealed that this pattern was also
present on roughly the same proportion of delay periods:
Delay 1.2: 4.5% of trials; Delay 2: 6.64% of trials. We
repeated the same procedure for posterior alpha and pos-
terior theta component loadings. We found that a mark-
edly higher percentage of these had negligible pre-spTMS
component loadings (alpha: 40.12% of Delay 1.2 epochs
and 43.32% of Delay 2 epochs; theta: 46.33% of Delay
1.2 epochs and 51.77% of Delay 2 epochs). However, as
observed for posterior beta components, similar propor-
tions were observed during spTMS-absent delay periods
(alpha: 40.45% of Delay 1.2 epochs and 43.74% of Delay
2 epochs; theta: 45.5% of Delay 1.2 epochs and 53.97% of
Delay 2 epochs).
These results represent a failure to find evidence for an

“activation” account of the spTMS-related spectral pertur-
bation. By implication, we conclude that the spTMS-
related spectral perturbation may be best understood as
arising from the modulation of activity in ongoing sources
of oscillatory activity. The precise nature of this modula-
tion is the focus of the next section of the Results.

Dynamics of Low-frequency Component Loadings
across Delay Periods, and Their Sensitivity
to spTMS

We now turn to a detailed assessment of how spTMSmod-
ulates delay-period activity during the DSR WM task, with
the results summarized in Figure 4. Beginning with poste-
rior beta components, a linear mixed-effects model
revealed a significant main effect of delay-period epoch,
that is, early versus late; F(1, 309) = 27.206, p< .001, with
loadings decreasing across both Delay 1.2 and Delay 2
( p < .001 for both). A second linear mixed-effects
model revealed a significant main effect of spTMS, F(1,
309) = 7.9977, p = .004, on late-delay period loadings,
with late-delay loadings lower for spTMS-present than
spTMS-absent delay periods ( p < .001 for both delays;
Figure 4A). In addition, the linear mixed-effects model
revealed a significant main effect of delay period,
F(1, 309) = 15.451, p < .001, reflecting the fact that
late-delay period loadings were higher during Delay
1.2 than during Delay 2. A similar pattern of results
was observed when posterior beta components were split
according to whether they were up-modulated or down-
modulated within the contrast used to categorize them
(see Appendix). Therefore, for posterior beta component
loadings, for both delays, the trend was that they declined
across the delay period and that spTMS had the effect of
enhancing this reduction.
Turning to posterior alpha components, although they

showed a qualitatively similar pattern of component load-
ings within and across delay periods, they did not show
sensitivity to spTMS. Specifically, although a linear
mixed-effects model revealed a significant main effect of
delay period epoch, that is, early versus late; F(1, 989) =
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Figure 3. spTMS-related perturbations of the signal measured from the electrode under the coil. (A) Color-coded task schematic for reference in
B–F. (B) spTMS evoked potentials. (C) Time–frequency spectral characteristics time-locked to the first TMS pulse (left column) and to the
second TMS pulse (right column) for trials in which spTMS was not delivered. (D) Same as B but for trials in which spTMS was delivered. The
insets illustrate the difference between the two conditions (spTMS-present – spTMS-absent) from 50 msec before spTMS to 350 msec post-spTMS.
Statistical contrasts of the differences in these time windows reveal positive clusters spanning the theta to beta frequency ranges. (E) ITC for
trials in which spTMS was not delivered (top) time-locked to the first TMS pulse (left column) and to the second TMS pulse (right column). (F) Same
as E but for trials in which spTMS was delivered. Note that because of jitter in spTMS delivery (within 1 sec across trials), there is small temporal
variation in other task components relative to the pulse.
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44.21, p < .001, because of loadings declining from the
early- to late-delay period epochs ( p < .001 for both
delays), a second linear mixed-effects model revealed no
effect of spTMS on late-delay period epoch loadings,
F(1, 989) = 0.988, p = .321 (Figure 4B). Finally, as was
the case for posterior beta, a linear mixed-effects model
revealed a significant main effect of delay period, F(1, 989) =
7.172, p = .008, such that late-delay period loadings were
higher during Delay 1.2 than during Delay 2.

The dynamics of central beta components were mark-
edly different from those of the posterior components.
First, a linearmixed-effectsmodel revealed no effect across
delay periods, that is, early versus late; F(1, 117)= 0.629, p=
.429. Second, a separate linear mixed-effects model
revealed no effect of spTMS on the late-delay period load-
ings for these components, F(1, 117) = 0.015, p = .902
(Figure 4C) but did reveal a significant main effect of delay
period, whereby late-delay period loadings were higher
during Delay 2 than during Delay 1.2, F(1, 117) = 4.778,
p = .031.

To summarize, posterior components in the beta and
alpha bands followed a general profile of declining from
Delay 1.2 to Delay 2, and from early to late across both
delay periods. These results, suggesting involvement in
the WM task, are broadly consistent with the previous
report that the content of to-be remembered information
can be decoded from EEG data bandpass filtered for these
frequency bands (Rose et al., 2016). These two sets of
components differed, however, in that only posterior beta
components were sensitive to spTMS, with spTMS having
the effect of exaggerating the across-delay decline in

component loadings. One possible implication of this lat-
ter result is that it may correspond to the pattern of mod-
ulation that underlies the spTMS-triggered recovery of the
decodability of the UMI. This speculation would receive
further support if, in the final set of analyses (below), this
effect of spTMS is shown to relate to behavior on the DSR
WM task. (The dynamics of central beta components
showed sensitivity to neither time within the delay period
nor to spTMS.)

Relating spTMS Modulation of Low-frequency
Components to Task Performance

The first two sets of hypothesis-testing analyses estab-
lished that the spectral perturbation produced by spTMS
is likely because ofmodulation of ongoing oscillatory activ-
ity and that during the delay periods of the DSR task only
posterior beta components are sensitive to spTMS. In this
final set of hypothesis-testing analyses, we assessed evi-
dence for links between changes in component loadings
and variation in performance on this task, and whether
these interact with spTMS. The first step was important
to do because it would further validate the assumption
that the SPACE decomposition method yields compo-
nents that can be analyzed to assess questions about
brain–behavior correlation. The second was important
because it could provide a stronger support for the plau-
sibility of the idea that a “modulation”mechanismmight
underlie the spTMS-triggered involuntary retrieval
effect.
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Figure 4. Component loadings as a function of trial epoch and spTMS delivery. (A) For posterior beta components, loadings declined from Delay 1.2
to Delay 2 and from early-to-late across both delay periods when spTMS was absent, and this effect that was exaggerated when spTMS was delivered.
(B) Posterior alpha components exhibited task-related decrease of component loadings from Delay 1.2 to Delay 2, and from early-to-late within both
delay periods. They did not, however, show sensitivity to spTMS. (C) Central beta component loadings increased from Delay 1.2 to Delay 2, but
exhibited no other variation related to task or to spTMS. Error bars correspond to ± 1 SEM across the number of components; **p< .01. Blue (A and
C) and gray bars (B) correspond to trials in which TMS was not delivered; yellow bars correspond to trials in which TMS was delivered (all columns).
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Because the dominant pattern in the data was for
component loadings to decrease across each delay
period (Figure 4), we entered loading dynamics into the
model as (early – late), such that a larger positive number
would correspond to a larger drop in loading across the
delay period. For posterior beta components, the linear
mixed-effects model identified a significant negative rela-
tionship between the early-to-late decrease in component
loading and behavioral accuracy, that is, the bigger the
early-to-late decrease in component loading, the bigger
the decline in performance; F(1, 118) = 4.6331, p =
.033. When delay periods were broken out by spTMS

condition, however, this relationship was seen to hold
only when spTMS was delivered, spTMS-present:
F(1, 57) = 7.453, p = .008; spTMS absent: F(1, 59) =
.267, p = .607 (Figure 5A).

For posterior alpha components, we found no evidence
for a relationship between the decrease in component
loading and behavioral accuracy, whether assessed across
all delay periods, F(1, 139) = 1.6418, p = .202, or sepa-
rately for spTMS-present, F(1, 68) = 3.0064, p = .087,
and spTMS-absent delay periods, F(1, 68) = 0. 04372,
p = .835 (Figure 5B). For central beta components, we
found a relationship between the decrease in component
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Figure 5. Relationship between delay-period component modulation and response accuracy for the subsequent probe, collapsed across component
types. (A) Posterior beta components: Recognition accuracy declined with greater decrease in component loading from early-to-late portions of the
delay period; solid black line shows significant fit for all delay–probe pairings, solid orange line shows significant fit for only spTMS-present, delay–
probe pairings, dashed purple line shows nonsignificant fit for spTMS-absent, delay–probe pairings. (B) Posterior alpha components: no relation
between accuracy and component dynamics. (C) Central beta components: Recognition accuracy declines with greater decrease in component
loading from early-to-late epochs of the delay period, with fits significant and comparable whether calculated across all delay–probe pairings, only
spTMS-present pairings, or only spTMS-absent pairings. (D) Posterior beta component modulations preceding lure probes: Recognition accuracy
declined with greater decrease in component loading from early-to-late portions of the delay period when assessed across all trials, and approached
significance for spTMS-present trials, but not for spTMS-absent trials. Each data point corresponds to a single participant + session combination.
Circular symbols correspond to data points from Delay 1.2 to Probe 1 pairings; diamond symbols correspond to data points form Delay 2 to Probe 2
pairings. Orange symbols correspond to data points from spTMS-present delays; purple symbols correspond to spTMS-absent delays. Solid lines
correspond to significant model fits; dashed lines correspond to nonsignificant model fits. Black lines correspond to model fits when trials are pooled
across spTMS condition. **p < .01, *p < .05, +p < .10.
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loading and behavioral accuracy in the same direction
as for posterior beta components, F(1, 69) = 23.592,
p < .001 (Figure 5C). At variance with posterior beta
components, however, this effect was present both
for spTMS-present, F(1, 34) = 13.359, p < .001, and
spTMS-absent, F(1, 32) = 8.3655, p = .007, delay
periods. These results provide important validation of
the assumption that, for a WM task, the SPACE decompo-
sition procedure identifies components that reflect brain
processes that can influence behavior. Furthermore, they
lend further support to the idea that oscillatory dynamics
in the beta band might be of particular importance for the
encoding of priority in WM.

Finally, we focused on the subset of trials with lure
probes because these are how we operationalize the
behavioral phenomenon of spTMS-triggered involuntary
retrieval. (Note that lure probes comprised 20% of trials,
and so this set of analyses features decreased statistical
power.) Beginning with posterior beta components, the
linear mixed-effects model identified a significant negative
relationship between the early-to-late decrease in compo-
nent loading and behavioral accuracy on the lure-probe tri-
als, F(1, 118) = 4.5915, p = .034, but no delay period by
spTMS delivery interaction, F(1, 118) = 0.0857, p = .77.
When broken out by spTMS condition, the relationship
showed a trend for spTMS-present Delay 1.2 and Probe
1 pairings, F(1, 59) = 3.1944, p = .079, but not for
spTMS-absent Delay 1.2 and Probe 1 pairings, F(1, 58) =
1.5617, p = .22 (Figure 5D).4

For posterior alpha components, we identified a signif-
icant negative relationship between the early-to-late
decrease in component loading and behavioral accuracy,
F(1, 137) = 6.4934, p = .012, and no delay period by
spTMS delivery interaction, F(1, 137) = 0.5043, p =
.479. When broken out by spTMS condition, the effects
failed to achieve significance for delay–probe pairings when
spTMSwas delivered, F(1, 68)=2.8755,p= .095, andwhen
spTMS was not delivered, F(1, 68) = 3.6707, p = .059.

For central beta components, we found no main effect,
F(1, 69) = 0.1618, p= .689, and no delay period by spTMS
interaction, F(1, 69) = 0.0898, p= .765. When broken out
by spTMS condition, no relationship was observed for
spTMS-present, F(1, 34) = 3.036, p = .09, or spTMS-
absent, F(1, 34) = 1.8209, p= .186, delay–probe pairings.

This final set of results provides further evidence consis-
tent with the idea that the spTMS-triggered involuntary
retrieval effect arises from beta-band dynamics, possibly
as a consequence of the perturbation of a beta-bandmech-
anism that holds the UMI in an unprioritized state. We
elaborate on this idea in the Discussion section.

DISCUSSION

Previous results showing that a pulse of TMS can rescue
the decodability of an UMI and that this effect can be iso-
lated to the beta-band of the EEG, call for a better under-
standing of how spTMS influences brain activity in a

manner that influencesWMbehavior. In the present study,
we used a method that decomposes the EEG signal into a
set of discrete coupled oscillators (SPACE), applying it to
data from an spTMS-EEG study of theDSRWM task. Focus-
ing on beta-band components localized to the posterior of
the scalp, we found no evidence that spTMS activates pre-
vious “silent” sources. Rather, our results suggest that the
spTMS-related spectral perturbation may be best under-
stood as resulting from abrupt changes in the dynamics
of activity that was already present in the signal before
its delivery, a “modulation” account. Across the DSR task,
the overall pattern was for the magnitude of posterior,
low-frequency oscillators to decline across each delay
period, with only beta-band oscillators additionally sensi-
tive to spTMS, which had the effect of amplifying the
decline. Furthermore, individual differences in the ampli-
tude of the spTMS-related influence on posterior beta
components predicted its effect on behavior. These
results are consistent with the idea that prioritization in
WM may be accomplished, in part, by a reconfiguration
of beta-band dynamics and that spTMS can influence
behavior by perturbing this reconfiguration in a manner
that weakens the priority coding of stimulus information,
thereby facilitating involuntary retrieval of the UMI.
In the skeletomotor system, the beta band is most often

ascribed an inhibitory function. For example, the attenua-
tion of oscillatory power in the beta-band (∼14–30 Hz)
recorded by EEG electrodes at central locations on the
scalp, and contralateral to the response hand, is a well-
established neural marker of manual action planning and
execution (e.g., van Wijk, Daffertshofer, Roach, & Praamstra,
2009; Baker, 2007; Neuper, Wörtz, & Pfurtscheller, 2006;
McFarland, Miner, Vaughan, & Wolpaw, 2000; Salmelin
& Hari, 1994). Invasive recordings implicate primary
motor cortex as an important source of these movement-
related oscillatory dynamics (e.g., de Hemptinne et al.,
2013; Kilavik, Confais, Ponce-Alvarez, Diesmann, & Riehle,
2010). Outside the skeletomotor system, beta-band oscilla-
tions have been associated with several aspects of percep-
tual and cognitive processing, and not all of them well
characterized as “inhibitory.” For example, beta-band
activity has been linked to such functions as maintaining
the existing cognitive set (Engel & Fries, 2010), selecting
a rule (Buschman, Denovellis, Diogo, Bullock, & Miller,
2012), activating a stimulus representation (Spitzer &
Haegens, 2017), (re-)activating relevant neural ensem-
bles maintaining contextually defined categorical decisions
(Rassi et al., 2023), inhibition of cognitive representations
(Wessel & Anderson, 2024), and helping to stabilize work-
ing memory representations against disruption (Kornblith,
Buschman, & Miller, 2016; Kundu, Chang, Postle, & Van
Veen, 2015; Pereira & Wang, 2015). Models of predictive
coding in perception identify the beta band as a critical fre-
quency channel for the top–down propagation of predic-
tion signals (Bastos et al., 2012, 2015). Our results add to
this literature, suggesting a role in the encoding of priority
status in WM.
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Although it was previously hypothesized that the UMI
may be held in an “activity-silent” state (e.g., Rose et al.,
2016), more recent work has shown the UMI to be held
in a state that, although active, is transformed relative to
when it has prioritized status (Wan et al., 2020; Yu, Teng,
& Postle, 2020). Furthermore, computational simulations
suggest that this transformation can be implemented via
the stratification of the stimulus-representing subspace
into “activity-potent” versus “activity-null” representa-
tional substrata (Wan et al., 2024), the latter perhaps cor-
responding to a configuration that is not amenable to read
out for the influence of behavior. One implication of these
developments is that it is no longer necessary to hypothe-
size a mechanism for spTMS whereby it activates previ-
ously “activity-silent” stimulus representations (cf. Rose
et al., 2016). This theoretical evolution receives further
support from the present results, in part because they
failed to find evidence for the “activation” mechanism of
spTMS on which the “activity-silent” account depended.
If spTMS works by modulating ongoing oscillatory

dynamics, as suggested by the results of this study, how
can this be reconciled with its functional effect of trigger-
ing involuntary retrieval of the UMI? In the DSR task, Cue 1
prompts a change in the functional status of both memory
items: The cued item becomes prioritized (relevant for the
impending memory probe), and the uncued item
becomes unprioritized (not relevant for the impending
memory probe, but possibly relevant for the subsequent
one). On the basis of the current results, we speculate that
this priority-based coding may be implemented and
maintained, in part, by a reconfiguration of ensembles
oscillating in the beta-band. Such a scheme could reflect,

for example, a generalization of the model described by
Miller and colleagues (e.g., Bastos, Loonis, Kornblith,
Lundqvist, & Miller, 2018; Miller, Lundqvist, & Bastos,
2018; Lundqvist et al., 2016) whereby beta-band oscilla-
tions in deep layers of pFC act to “close the gate” and pro-
tect the current configuration of synaptic weights from
being overwritten by incoming information carried in
gamma-frequency bursts. From this perspective, the
spTMS-related decreases in posterior beta component
loadings described in the present report may reflect an
alteration, perhaps a weakening, of the priority-based
configuration that is critical for distinguishing prioritized
memory item from UMI status. Involuntary retrieval of an
already-potent lure would be a consequence of this blur-
ring of the representation of which of the two memory
items is the one that was most recently cued.

APPENDIX

SPACE Component Preselection—Posterior Alpha
Component Characteristics

The manual inspection procedure resulted in the removal
of 47 posterior alpha-classified components (11.1%), with
327 components remaining (see Figure A1 and Table A1).
One hundred thirteen task onset-sensitive components
were identified by contrasting trial loadings during pretrial
fixation versus Delay 1.1, when two items were held in
working memory, which had an average peak frequency
of 11.21 Hz (SD= 1.69 Hz). Seventy-six task onset-sensitive
posterior alpha components exhibited an increase in load-
ing (65.5%), and nine exhibited a decrease in loading.
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Figure A1. Characteristics of posterior alpha components selected for the primary analyses. (A) Peak spectral frequency (Hz) distribution for the set
of 113 task onset-sensitive components (purple) and for the set of 135 non-overlapping within-trial varying components (orange). The triangles
denote the mean peak frequency for the two groups = 11.21 Hz and 10.13 Hz, respectively. (B) Percentage of components up-modulated for the two
sets of components, with increases reflecting greater loading during Delay 1.1 after the sample in comparison to fixation for task onset-sensitive
components, and greater loading during early Delay 1.2 compared with late Delay 1.1 and early Delay 2 compared with late Delay 1.2 for within-trial
varying components. (C) Distribution of overlap among the three component types. Note that 89 components did not survive any of the thresholding
procedures.

Fulvio, Haegens, and Postle 1841

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/36/9/1827/2464916/jocn_a_02194.pdf by U
niversity of W

isconsin, M
adison, Jacqueline Fulvio on 14 August 2024



Forty-four within-trial varying components were identi-
fied by contrasting trial loadings between Delay 1.1 and
Delay 1.2 (“Cue 1-varying”), and 194 within-trial varying
components were identified by contrasting trial loadings
between Delay 1.2 and Delay 2 (“Cue 2-varying”). Like
the posterior beta components, the three sets of posterior
alpha components overlapped considerably—the 135
components that were identified only in the within-trial
contrasts related to the cues were included as the
within-trial varying component set.

The average peak frequency of the within-trial varying
components was 10.13 Hz (SD= 1.75 Hz), which was sig-
nificantly slower in frequency relative to that of the task
onset-sensitive posterior alpha components, t(246) =
4.9158, p < .001. Eighty within-trial varying components
had an increase in loading (59.3%), and 55 had a
decrease, a relative proportion that did not vary from
the task onset-sensitive posterior alpha components,
χ2(1) = 0.7662, p = .381.

Eighty-nine of the posterior alpha components were not
identified by any of these contrasts and were excluded
from further analysis. For the final set to be analyzed, each
participant contributed 12–37 components with a mode
contribution of 16. The resulting set of posterior alpha
components were analyzed using the primary statistical
analyses of interest to serve as a basis for comparison/control
in interpretation of the results from the posterior beta
components.

SPACE Component Preselection—Central Beta
Component Characteristics

The manual inspection procedure resulted in the removal
of 14 central beta-classified components (26.9%), with 38
components remaining (see Figure A2 and Table A2).
Eleven task onset-sensitive components were identified
by contrasting trial loadings during pretrial fixation versus
Delay 1.1, when two items were held in working memory,

Table A1. Breakdown of Posterior Alpha Components

Posterior Alpha Component Classification

Task Onset-sensitive Within-trial Varying Cue 1-Varying Cue 2-Varying Residual

Total classified 113 214 (w/ overlap); 44; 194; 89

135 (w/o overlap) 23 112

Participant contributions 2–18 4–19 0–7 9–29 2–15

M = 9.4 M = 11.3 M = 3.75 M = 16.2 M = 7.4

(w/o overlap) (w/o overlap) (w/o overlap)
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Figure A2. Characteristics of central beta components selected for the primary analyses. (A) Peak spectral frequency (Hz) distribution for the set
of 11 task onset-sensitive components (purple) and for the set of 19 non-overlapping within-trial varying components (orange). The triangles denote
the mean peak frequency for the two groups = 17.8 Hz and 18.4 Hz, respectively. (B) Percentage of components up-modulated for the two sets of
components, with increases reflecting greater loading during Delay 1.1 after the sample in comparison to fixation for task onset-sensitive components
and increases reflecting greater loading during early Delay 1.2 compared with late Delay 1.1 and early Delay 2 compared with late Delay 1.2 for
within-trial varying components. (C) Distribution of overlap among the three component types. Note that nine components did not survive any of
the thresholding procedures.
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which had an average peak frequency of 17.8 Hz (SD =
2.1 Hz). Five task onset-sensitive central beta compo-
nents exhibited an increase in loading (45.5%), and six
exhibited a decrease in loading.
Three within-trial varying components were identified

by contrasting trial loadings between Delay 1.1 and Delay
1.2 (“Cue 1-varying”), and 24 task-insensitive components
were identified by contrasting trial loadings betweenDelay
1.2 and Delay 2 (“Cue 2-varying”). Like the posterior beta
and posterior alpha components, the three sets of central
beta components overlapped considerably—the 19 com-
ponents that were identified only in the within-trial con-
trasts related to the cues were included as the within-trial
varying component set.
The average peak frequency of the within-trial varying

components was 18.4 Hz (SD = 2.97 Hz), which did not
differ in frequency relative to that of the task onset-
sensitive central beta components, t(14) = 0.4126, p =
.67. Fourteen within-trial varying components had an
increase in loading (78.6%), and five had a decrease, a

relative proportion that did not vary from the task onset-
sensitive central beta components,χ2(1)= 1.671, p= .196.

Nine of the central beta components were not identified
by any of these contrasts and were excluded from further
analysis. For the final set to be analyzed, each participant
contributed zero to five components with a mode contri-
bution of two. The resulting set of central beta compo-
nents were analyzed using the primary statistical analyses
of interest to serve as a basis for comparison/control in
interpretation of the results from the posterior beta
components.

Dynamics of Low-frequency Component Loadings
across Delay Periods, and Their Sensitivity to
spTMS—Up- versus Down-modulated Components

We addressed whether the nature of posterior beta mod-
ulation (i.e., up- vs. down-modulation) observed in our
preselection contrasts resulted in different dynamics
across delay periods and sensitivity to spTMS (Figure A3).

Table A2. Breakdown of Central Beta Components

Central Beta Component Classification

Task Onset-sensitive Within-trial Varying Cue 1-Varying Cue 2-Varying Residual

Total classified 11 25(w/ overlap); 3; 24; 9

19 (w/o overlap) 1 18

Participant contributions 0–2 0–5 0–1 0–5 0–2

M = 0.92 M = 1.6 M = 0.1 M = 1.4 M = 0.75

(w/o overlap) (w/o overlap) (w/o overlap)
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Figure A3. Component loadings as a function of trial epoch and spTMS delivery. Left: For up-modulated posterior beta components, loadings
decline across both delay periods when spTMS is absent, an effect that is exaggerated when spTMS is present. Late-delay period epoch loadings are
also smaller during Delay 2 than Delay 1.2. Right: Down-modulated posterior beta components decline from Delay 1.2 to Delay 2 and exhibit spTMS
sensitivity. Error bars correspond to ± 1 SEM across the number of components; *p < .05; **p < .01.
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The majority of components were up-modulated. For
these components, a linear mixed-effects model first
revealed a significant main effect of delay period epoch,
that is, early versus late; F(1, 253) = 66.238, p < .001,
whereby loadings declined from the early to late-delay
period epochs ( p < .001 for both delays). A second lin-
ear mixed-effects model revealed a significant main
effect of spTMS, F(1, 253) = 13.516, p < .001, on late-
delay period epoch loadings. Specifically, spTMS had
the effect of reducing trial loadings, that is, the reduc-
tions in loading from early to late-delay period epochs
were greater when spTMS was delivered ( p ≤ .002 for
comparisons in both delay periods). The linear mixed-
effects model did not reveal a main effect of delay
period, F(1, 253) = 2.5546, p = .111, meaning that
late-delay period loadings were not different during
Delay 1.2 versus Delay 2.

For the down-modulated posterior beta components,
the delay period-related component loading dynamics dif-
fered in comparison to the up-modulated components. A
linear mixed-effects model first revealed no effect of delay
period epoch, that is, early versus late; F(1, 53) = .0905,
p = .765, with no change in loadings from the early- to
late-delay period epochs ( p ≥.133 for both delays). A
second linearmixed-effects model also did not reveal a sig-
nificant main effect of spTMS, F(1, 53) = .7364, p = .395,
on late-delay period epoch loadings. However, visual
inspection of the late-delay period epoch loadings with
and without TMS revealed a qualitative pattern like that
observed for up-modulated components, whereby TMS
is associated with a larger reduction in trial loading com-
pared with when TMS was not delivered. A post hoc statis-
tical analysis of these late-delay period differences on trial
loading with and without TMS delivery indicated that the
reduction was significant after the TMS pulses ( p ≤ .0467
for both comparisons). Finally, the linear mixed-effects
model revealed a significant main effect of delay period,
F(1, 53) = 18.116, p < .001, whereby late-delay period
loadings decreased from Delay 1.2 to Delay 2.
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Notes

1. Although we have previously referred to the phenomenon
as “UMI reactivation,” this formulation risks conflation of the
psychological construct of reactivating a mental representation
and the physiological phenomenon of increasing the level of
activity in a circuit. Consequently, when intending the psycho-
logical meaning, we will use “involuntary retrieval.”
2. The initially uncued item can later return to decodability dur-
ing the second half of the trial, if cued by the second retrocue
(LaRocque, Lewis-Peacock, Drysdale, Oberauer, & Postle, 2013).
3. Note that this data set was not originally collected with the
plan to apply the SPACE decomposition, but rather to replicate
and extend the results from Rose and colleagues (2016), with
similar methods. To our knowledge, this is the first application
of the SPACE decomposition to EEG data (previous publica-
tions have featured magnetoencephalography (van der Meij
et al., 2015; 2016), and so we lacked an empirical basis from
which to estimate a priori the sample size that might be needed
to meaningfully relate variation in SPACE components of EEG
signals to behavior.
4. We note that when these analyses were initially carried out
separately for the two categories of posterior beta components,
for task onset-sensitive components, the linear mixed-effects
model applied to the former identified a significant negative rela-
tionship between the early-to-late decrease in component load-
ing and behavioral accuracy, F(1, 90) = 4.8522, p = .03, no delay
period by TMS delivery interaction, F(1, 90) = 0.0411, p = .84,
and when broken out by spTMS condition the relationship was
significant for spTMS-present, F(1, 44) = 11.973, p = .001, but
absent for spTMS-absent, F(1, 45) = 0.0209, p = .89. For within-
trial varying components, in contrast, these analyses yielded no
significant effects.
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