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SUMMARY
To memorize a sequence, one must serially bind each item to its rank order. How the brain controls a given
input to bind its associated order in sequence working memory (SWM) remains unexplored. Here, we inves-
tigated the neural representations underlying SWM control using electrophysiological recordings in the fron-
tal cortex of macaque monkeys performing forward and backward SWM tasks. Separate and generalizable
low-dimensional subspaces for sensory and memory information were found within the same frontal cir-
cuitry, and SWM control was reflected in these neural subspaces’ organized dynamics. Each item at each
rank was sequentially entered into a common sensory subspace and, depending on forward or backward
task requirement, flexibly and timely sent into rank-selective SWM subspaces. Neural activity in these
SWM subspaces faithfully predicted the recalled item and order information in single error trials. Thus,
compositional neural population codes with well-orchestrated dynamics in frontal cortex support the flexible
control of SWM.
INTRODUCTION

Imagine you are filling in your date of birth on a form. You

sequentially recall your birth year, month, and day one by one

and flexibly reorder this sequence based on the requirements

of the form, which could be yy/mm/dd or dd/mm/yy. In this pro-

cess, the brain has to assign a particular item (here, numbers) to

a particular role (year, month, or day). However, whether and

how the brain performs these assignments in a sequence re-

mains a mystery, and little evidence yet shows whether animals

possess such ability.1–3

To encode a sequence, the brain needs to solve the control

problem by flexibly and sequentially updating the flow of infor-

mation into working memory (WM), avoiding interference, and

robustly maintaining them in sequence working memory

(SWM).4,5 One possible solution is a WM ‘‘gate,’’ which assumes

useful information is updated into appropriate WM spaces and

interfering information is kept out.4 Thus, hypothetically, through

this gate, the input items can selectively bind to correct ordinal

positions in SWM while the remembered items are stored in

different WM subspaces to avoid interference.

Similar control mechanisms have been previously docu-

mented in the research at both single and population neural

levels within the motor or premotor cortices, accompanying
All rights are reserved, including those
one or sequential voluntary movements.6–11 For example, single

neurons during the preparation period showed selective activ-

ities to internally generated sequential movements.6,7 At the

population level, it has been demonstrated that sequential rea-

ches were prepared and executed in orthogonal subspaces to

achieve the correct preparatory state for the next reach while

the current reach was still underway.9 Besides the motor cortex,

the frontal cortex is specialized relative to the sensory cortex to

control the flow of information, in particular in WM.4,12 Early con-

nectionist models have demonstrated that the prefrontal cortex

could utilize gating to minimize interference during cognitive

control,13,14 and basal ganglia could control the gating of prefro-

ntal representations.15,16 For example, independent subspaces

were found in the prefrontal cortex to separately represent WM

content and its motor preparation,17 and multiple-item informa-

tion in WM could be transferred using orthogonal subspaces

through selective attention.12 Furthermore, on one hand, it has

been proposed that WM is broadly distributed across sensory

and prefrontal regions,18–20 and the flexible maintaining or con-

trolling of an item inWM could rely on the reciprocal connections

between the prefrontal areas and the sensory cortex,21 on the

other hand, the dynamic process of the gating system (e.g.,

context-dependent selection) could also unfold within the pre-

frontal cortex without interacting with sensory responses.22
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Nevertheless, how the SWM control is represented in the frontal

cortex has not been experimentally explored.

Using two-photon calcium imaging of monkeys, our team

recently demonstrated that prefrontal neural states in SWM

during the late delay period could be decomposed into low-

dimensional disentangled rank subspaces, each storing the cor-

responding item’s visuospatial information.23 Because of the

poor temporal resolution of calcium signals, the neural dynamics

of SWMcontrol (e.g., gating, binding, andmaintenance) have yet

to be investigated. In this study, we trained three macaque mon-

keys to perform novel visuospatial delayed-sequence-sorting

tasks. In each trial, after viewing a sequence of locations and

memorizing it during a short delay, the animal was prompted

to reproduce the sequence by consecutive touches in either

the presented order (forward) or the reverse order (backward).

We used a 157-channel, high-throughput electrophysiological

recording system to record thousands of neurons in the frontal

cortex.

RESULTS

Paradigm and behavior
Three macaque monkeys were trained to learn delayed-seq-

uence-sorting tasks (Figure 1A). On each trial, spatial sequences

with 1, 2, or 3 items were visually presented during the sample

period, while the monkey had to fixate on the dot at the center

of the screen. Each sequence item was drawn (without replace-

ment) from one of the six spatial locations of a ring (or hexagon).

Monkeys had tomemorize the sequences for a 1.15–1.55 s delay

with fixation and reproduce the sequences by making sequential

touches to the appropriate locations on the screen. In different

sessions, monkeys were required to touch the locations in either

the presented order (forward) or the reverse order (backward)

(Figure 1A; see STAR Methods). As the sequence length was

randomized for each trial, monkeys could not anticipate the

number of items before a trial. A water reward was given to mon-

keys after the correct completion of the sequence.

Overall, the threemonkeys performed the tasks well: themean

percent correct rate at each rank of length-1, -2, and -3 se-

quences was significantly higher than chance (Figure 1B, all p

<< 0.001, two-tailed t test). When making errors, monkeys

were more likely to choose an item spatially close to the target

(Figures 1C and S1A–S1C) and confuse an order with the

neighboring order (Figures 1D and S1A–S1C). The behavioral

performance (details in Figure S1) was broadly consistent with

the previous findings in monkeys.1,23,24

Recordings and single-neuron responses
A 157-channel microdrive electrode array25 was implanted in the

frontal areas of the three monkeys (Figures 1E and S1D), mainly

covering the prefrontal cortex and the premotor cortex. In total,

6,790 neurons were recorded when monkeys performed the two

tasks (monkey O: 3,829 neurons, monkey G: 1,890 neurons, and

monkey L: 1,071 neurons; Table S1).

Neural responses exhibited diverse and mixed task-related

activities. Two types of neural activities were immediately

apparent. We first found neurons showing stimulus-evoked ac-

tivities during the sample period. This type of neuron transiently
2 Neuron 112, 1–13, October 23, 2024
encoded spatial items upon each stimulus onset, with identical

item selectivity across ordinal ranks (Figure 1F, the neuron tuned

to item 3 at all three ranks). We also discovered neurons that

showed sustained activity during the delay period. Such neurons

exhibited conjunctive coding for rank and item after the appear-

ance of the stimulus and maintained the information throughout

the delay (Figures 1G–1I). For example, there were sustained

neurons selective to item 1 at rank 1 (Figure 1G), items 1 and 6

at rank 2 (Figure 1H), and item 6 at rank 3 (Figure 1I), respectively.

Crucially, the stimulus-evoked and WM-sustained activities

were not always present in separate sets of neurons. Instead,

these two kinds of activities seemed deeply entwined at the sin-

gle-neuron level (see the proportion of mixed coding neurons in

three monkeys in Figures S1E and S1F). For instance, the

example delay-selective neurons in Figures 1H and 1I also

showed selectivity during the sample period. Since we only

collected neural data with length-2 trials for monkey L, the further

analysis with length-3 sequences mainly included data from

monkeys O and G.

Dynamics in frontal neural subspaces in the
forward task
In line with our prior two-photon calcium imaging findings,23 we

hypothesized that the task variables (i.e., sensory andWM) could

be separately represented in low-dimensional subspaces in the

frontal cortex’s neuronal state space. Specifically, we postulated

that each rank WM is represented in a distinct low-dimensional

subspace. In addition, before binding with ordinal rank, we ex-

pected that spatial items presented during sample periodsmight

be transiently encoded in a shared low-dimensional sensory

subspace. In these subspaces, the evolution of the task repre-

sentations throughout the entire trial could be tracked, allowing

us to examine the dynamic control process underlying the SWM.

To evaluate our hypothesis of rank-shared sensory subspace

and rank-specific WM subspaces, we extended the static linear

decoding approach in our prior SWM study23 to a method that

addressed the intricacies of evolving dynamics. In this method,

the weights of each subspace were first estimated using an initial

decoding template (e.g., decoding rank-1 item in the delay

period for rank-1 WM subspace, or decoding items at all ranks

in their corresponding sample period for rank-shared sensory

subspace), and then refined using an optimization procedure

that features adaptive decoding timewindows and decoding tar-

gets (see STAR Methods). For instance, for length-2 sequences,

the identification of sensory subspace (subspace-1 shown in

Figure 2A) involved a joint effort to maximize the decoding accu-

racy of both rank-1 and rank-2 items within a time window after

their onset. By contrast, the identification of rank-1 WM sub-

space (subspace-2 in Figure 2A) relied on the decoding accuracy

of rank-1 items during the delay period. The temporal dynamics

of task variables are then unveiled through the rise and fall of in-

formation content in the corresponding subspace quantified by

the decoding accuracy.

We first analyzed length-3 sequences in the forward task and

identified four subspaces: one sensory and three rank-WM sub-

spaces (Figure 2B; see Figure S2A for the explained variance for

each subspace and Figure S2B for the contribution of each time

point to the identified rank-WM subspaces). In the sensory
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Figure 1. Delayed-sequence-sorting task: design, behavior, and neuronal recordings

(A) Task structure. On each trial, a sequence containing one, two, or three consecutive spatial locations (randomly chosen without replacement) was displayed on

the screen. Monkeys were instructed to memorize the sequence and reproduce it either in the presented order (forward) or in the reverse order (backward), in

separate sessions. A trial was terminated immediately when monkeys made an error response (see STAR Methods).

(B–D) Behavioral performance. (B) Conditional correct rate as a function of ordinal rank for length-1, length-2, and length-3 trials (error bar: SD across sessions;

dashed lines: chance level); all p < 0.001, two-tailed t test. (C and D) Spatial location and ordinal error patterns for only length-3 trials averaged across three

monkeys (error bar: SD; see Figure S1 for more details).

(E) Recording sites. A 157-channel microdrive electrode array was implanted over the frontal lobe. Segmented models of the skull and the microdrive (up left),

models of the skull after craniotomy and the brain (upright), schematic of electrode locations (bottom left), and MRI image of monkey O (bottom right).

(F–I) Example of neurons with stimulus-related (F) and memory-related activity (G–I). In each panel, raster plots (up) and mean firing rates (bottom) were color

coded according to the spatial locations (shown in the first panel of F) at a given ordinal rank (labeled as stimulus 1/2/3). Vertical gray bars: stimulus presentation

window. Note that (F) and (G) were recorded in the forward sessions, while (H) and (I) were recorded in the backward sessions.

See also Figure S1 and Table S1.
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subspace, upon each stimulus onset, the decoding accuracy of

corresponding stimulus information gradually rose, peaked at

the stimulus offset, and then fell back to the chance level after

about 300 ms (Figure 2B, first row). To better visualize this dy-

namic process, we depicted the trajectory of neural activities

within this subspace (Figure 2C, first row): the neural representa-

tion of spatial item information at each rank formed a well-orga-

nized ring structure during the corresponding sample period,

and the rise and fall of this ring structure in this sensory subspace

underlay the transient dynamics of decoding accuracy shown in

Figure 2B.

The remaining three rank-WM subspaces, denoted as

memory-1, -2, and -3 (M1, M2, and M3), respectively, showed

decoding patterns distinct from the one exhibited by the sensory

subspace (Figure 2B). For instance, in the memory-1 subspace,

upon onset of the rank-1 stimulus, the decoding accuracy of

rank-1 item information gradually rose and remained at a high

level throughout the delay. In line with this finding, a persistent

rank-1 ring structure was present throughout the whole delay

period in this subspace (Figure 2C). Similar decoding patterns

and state-space trajectories were found for both memory-2

and -3 subspaces (Figures 2B and 2C). As a control, these ana-

lyses were also performed when including more dimensions of

the subspaces (e.g., 5 dimensions), with similar outcomes as in

the original two-dimension case (Figures S2L–S2O). We also

examined the geometric relationship between these four sub-

spaces by computing both the principal angle and the variance

accounted for (VAF) ratio23 (see STAR Methods). For any sub-

space pair, compared with the controls (different estimations

for the same subspace), we found considerably larger principal

angles (Figure 2D) and smaller VAF ratios (Figure 2E). Similar re-

sults held for the second monkey (Figures S2D–S2F, S2H, and

S2I). Thus, the results confirmed that the four subspaces were

near orthogonal, and the sensory and WM representations
Figure 2. Dynamics of neural population responses in frontal subspac

(A) To examine if the hypothetic rank-shared sensory subspace (e.g., subspace 1)

extended the static decoding approach in our prior work23 to a dynamic method

Methods), capable of addressing the intricacies of evolving dynamics in these l

(note that for length-2 trials, there are 30 sequences in total).

(B) Time courses of single-trial decoding accuracy for stimuli in different ranks (

monkey O. 2-fold cross-validation was used for each session, and the average ac

indicate above-chance decoding performance (p < 0.001, pixel-based permutat

(C) Neural activity trajectories in the identified subspaces with length-3 trials for mo

certain periods. For the sensory subspace, the trajectory is colored according t

period following the color of rank 3. For memory subspaces, the trajectory is co

subspace-1, -2, and -3, respectively).

(D and E) Principal angles (D) and VAF ratios (E) between the identified subspace

control, the principal angle and VAF ratio between 2-fold estimations for the same

from the actual principal angles and VAF ratios (see STAR Methods).

(F) Histograms showing the distribution of latency difference for three sensory-W

latency difference is generated through a bootstrap procedure (n = 1,000 boots

significantly greater than 0 (p < 0.001, Wilcoxon signed-rank test).

(G) Single-trial correlation of item information for sensory-WM subspace pairs. It

sample (delay) period for sensory (WM) subspace (see STAR Methods). Each g

correlation coefficients (S1 in sensory vs. S1 in memory-1, etc.) were significantly

inmemory-2 or S3 inmemory-3, etc.) were not significantly larger than 0 except the

also significantly larger than the unpaired correlation coefficients. Wilcoxon sign

(H) Schematic of the control process in the frontal cortex in the forward task.

See also Figure S2.
were relatively separated in frontal state space at the population

level.

To examine the neural basis of these subspaces at the level of

single neurons, we then projected the unit vector along single-

neuron axis onto different subspaces. The derived square scalar

projections were then used to quantify the contribution of single

neurons to different subspaces23 (see STARMethods). Our anal-

ysis showed that around 34% of neurons contributed to the sen-

sory subspace, 30% for memory-1, 30% for memory-2, and

26% for memory-3 subspace (Figures S2C and S2G for monkey

G), suggesting that these subspaces are broadly distributed in

the frontal population.

Next, we investigated the functional relationship between the

sensory and rank-WM subspaces during the control process.

We first compared the latency of the activities in the sensory

and rank-WM subspaces and found that for each ordinal rank,

the emergence of item information in the sensory subspace

was significantly earlier than in the corresponding rank-WM sub-

space (Figures 2F and S2J; see STARMethods), suggesting that

item information first entered the sensory subspace and was

subsequently routed to the associated rank-WM subspace. If

this sequential relationship holds, we expect to observe a trial-

by-trial correlation of neural activity between sensory and rank-

WM subspaces. We used the single-trial decoding probability

to quantify item information at the single-trial level. We found

that for each rank, items during the sample period in the sensory

subspace and the delay period in the corresponding rank-WM

subspace showed a significant correlation (Figures 2G and

S2K). As a control, for item information at other ordinal ranks

(e.g., rank-1 item in sensory and rank-2 item in memory-2), there

was no or minimal correlation (Figures 2G and S2K).

Thus, the results showed that the sensory and rankWMs could

be represented in separate low-dimensional subspaces within

the same frontal neuronal population,21 even though they are
es in the forward task

and rank-specificWM subspaces (e.g., subspace 2) exist in the neural data, we

featuring adaptive decoding time windows and decoding targets (see STAR

ow-dimensional subspaces. Four examples length-2 sequences were plotted

labeled at the bottom) in the four identified subspaces with length-3 trials for

curacy across all trials in all sessions was shown. Horizontal bars in each panel

ion test, see STAR Methods).

nkey O. Unlike (B), we just showed trajectories of stimuli in certain ranks during

o the ordinal position during the corresponding sample period, with the delay

lored according to the dominant ordinal rank (rank-1, -2, and -3 for memory

s with length-3 trials for monkey O across sessions (see STAR Methods). As a

subspace across sessions were computed, and they are significantly different

M subspace pairs. For each sensory-WM subspace pair, the distribution of

trap resamples of neurons; see STAR Methods). All latency differences were

em information is quantified by averaging the decoding probability during the

ray circle showed the correlation coefficient in a single session. All the paired

larger than 0, while all the unpaired correlation coefficients (S1 in sensory vs. S2

S1 in sensory vs. S2 inmemory-2 pair. The paired correlation coefficientswere

ed-rank test ***p < 0.001, **p < 0.01, and *p < 0.05.
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intensively mixed at the single-neuron level. The control of SWM

in the forward task was reflected in the subspaces’ neural dy-

namics. Specifically, each item was sequentially entered into a

common (sensory) subspace and bound with its associated

rank-WM subspaces for WMmaintenance within the same fron-

tal population (Figure 2H, schema).

Frontal neural states and flexible control in the
backward task
Identical sequence inputs can be reordered, leading to different

behavioral outputs depending on the ‘‘sorting algorithm’’—e.g.,

forward or backward. In the present experiment, monkeys can

sort sequences (Figure 1B), implying the existence of flexible

control mechanisms within the frontal population that could

select appropriate items into their sorted subspaces in SWM.

We found that each rank’s information was rapidly routed into

its associated rank-WM subspace in the forward task. We then

asked whether the backward control was also implemented in

the frontal neurons. We proposed that similar neural subspaces

(e.g., sensory and rank-WM subspaces) would be recruited and

that their dynamics could reflect such flexible control.

In the backward task, the length-1, -2, and -3 sequences were

randomized such that for each trial, the selection of items into the

rank-WM subspaces in SWM depended on sequence length.

Thus, to reverse a sequence, we predicted the WM system

should control: (1) which rank subspace is the item gated into

(‘‘where-to-gate’’)? (2) When is the item gated into WM (‘‘when-

to-gate’’) (see the hypothesis in Figure 3A)? Consider a trial

where items ‘‘a,’’ ‘‘b,’’ and ‘‘c’’ have been sequentially pre-

sented—in the forward task, the ‘‘a’’ (‘‘b,’’ ‘‘c’’) is directly gated

into memory-1 (2, 3) subspace. In the backward task, the

sequence ‘‘a b c’’ (‘‘a b’’ for length-2) has to be reversed and

stored as ‘‘c b a’’ (‘‘b a’’ for length-2) in the delay. Thus, item

‘‘b’’ would be loaded into the memory-2 subspace (i.e., the

ordinal position 2 in ‘‘c b a’’) in length-3 trials and into the

memory-1 subspace (i.e., the ordinal position 1 in ‘‘b a’’) in

length-2 trials (where-to-gate). In addition, unlike the forward

task, where the gating takes place immediately after the presen-

tation of each item, the gating in the backward task can only be

determined by the sequence length (e.g., the existence of the

following items) (when-to-gate). As monkeys learned that the

longest sequence in the block was three, the absence of item

‘‘b’’ or ‘‘c’’ and the presence of item ‘‘c’’ indicated the finish of

the sequence, which could serve as a signal for gating. There-

fore, we hypothesized that the gating time of item ‘‘a’’ would

depend upon the presentation of items ‘‘b’’ and ‘‘c,’’ and the

gating time of item ‘‘b’’ would depend upon the existence of
Figure 3. Flexible control process of subspaces in the forward and ba

(A) Hypothetic illustration of ‘‘where’’ and ‘‘when’’ flexible control. Although the in

they were gated into certain subspaces (‘‘where’’) at certain time points (‘‘when’’

(B–E) Time courses of decoding accuracy (B), state-space trajectories (C), principa

angles and VAF ratios are significantly different from the control. The annotation

(F) Cross-length generalization test in the forward task. Decoders were trained

sessions. Top: cross-validated accuracy for length-3 trials. Middle and bottom:

indicated time windows where the decoding performance was significantly highe

(G) Same as (F), results for the backward task.

See also Figure S3.
item ‘‘c.’’ It is worth noting that, alternatively, monkeys could still

memorize the sequence as ‘‘a b c’’ in the delay of backward task

and reverse it later during the response period. In this case, the

gating subspaces in the backward task would be identical to the

forward task.

With the hypothesis above, using the same subspace identifi-

cationmethod for the forward task, we examined the neural code

of length-3 SWM in the backward task. As predicted, we also

identified four subspaces: one sensory and three rank-WM sub-

spaces (Figure 3B; see Figure S3A for the explained variance for

each subspace). Similar to the forward task, the sensory sub-

space transiently encoded the item information after stimulus

presentation (Figures 3B and 3C, first row), and the three rank-

WM subspaces stably encoded three rank-WMs throughout

the delay, respectively (Figures 3B and 3C, last three rows)—

these subspaces were near orthogonal (Figures 3D and 3E)

and highly distributed across the recorded neural population

(Figures S3B and S4A). A similar result was held for the monkey

G (Figures S3C–S3G and S4B).

To examine the flexibility of SWM control, we used generaliza-

tion tests to examine how the control of where-to-gate is accom-

plished in the forward and backward tasks. As we predicted, in

the forward task, each subspace (e.g., rmemory-1) identified

with length-3 sequences could be successfully generalized to

the same rank-WM subspace (e.g., memory-1) in both length-1

and -2 sequences (Figure 3F) and vice versa (Figure S3I). Howev-

er, in the backward task, the rank-WM subspaces could also be

well generalized across variable-length sequences but in a

length-dependent and reversed manner (Figures 3G and S3I).

For example, successful generalizations could be found be-

tween subspaces of rank-1 (length-1), rank-2 (length-2), and

rank-3 (length-3) memories. This result is consistent with our

aforementioned where-to-gate hypothesis but incompatible

with the possibility that monkeys memorized the past sequence

as ‘‘a b c’’ in the backward task.

We next investigated the control of when-to-gate in both

tasks. In contrast to the forward task, the three rank-WM sub-

spaces in the backward task showed distinct temporal dy-

namics. Specifically, for the length-2 sequence (‘‘a b’’) in the

backward task, the items were stably controlled to fall into

memory-2 and -1 subspaces, respectively, just after confirming

the absence of the third item (red arrows, Figure 3G,middle row).

For the length-3 sequence (‘‘a b c’’), similar to the length-2

sequence, the items were guided into their associated rank-

WM (‘‘memory-3, memory-2, memory-1’’) subspaces after the

onset of the third item (blue arrows, Figure 3G, first row). The

only exceptionwas that items ‘‘a’’ and ‘‘b’’ in length-3 sequences
ckward task

put items (a, b, and c) remained the same in the forward and backward tasks,

) according to the sorting algorithm and the length of the sequence.

l angles (D), and VAF ratios (E) in the backward task formonkey O. The principal

s were similar to Figure 2.

on length-3 correct trials, and accuracy was averaged across all trials in all

generalization test using length-2 and -1 trials, respectively. Horizontal bars

r than the chance level (p < 0.001, pixel-based permutation test).

Neuron 112, 1–13, October 23, 2024 7



A B

C D

E
F

Figure 4. Abstract control for sequence sorting in frontal neural states

(A) Normalized neural contribution and proportion of significantly contributed neurons at the recording channel level (see STARMethods) for both the forward (top)

and backward (bottom) tasks were shown. Each circle represented one channel, its size corresponded to the proportion of neurons with a significant contribution,

and its color was the normalized neural contribution.

(B) Cosine similarities of neural contribution (weighted by the proportion of significantly contributed neurons at the same channel) distribution for the intra-

subspace pairs (opened curves, e.g., forward sensory vs. backward sensory, forwardmemory-1 vs. backwardmemory-1, etc.) as well as for inter-subspace pairs

(filled curves, e.g., forward sensory vs. backward others, forwardmemory-1 vs. backward others, etc.). All the cosine similarities for the intra-subspace pairs were

larger than those of the inter-subspace pairs. ***p < 0.001, t test.

(C) Forward and backward trials with rule cues. In these trials, we trained monkeys to perform the forward or backward task following a cue in the middle of the

delay on a trial-by-trial basis and collected neural data using the same recording technique (see STAR Methods).

(legend continued on next page)
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were loaded slightly earlier than expected (see discussion). A

similar result was held for the second monkey (Figures S3H

and S3J). We also noticed a gap period when the items disap-

peared from the sensory subspace and did not enter into the cor-

responding rank-WM subspace. Thus, after identifying the sen-

sory and rank-WM subspaces in the backward task, we further

searched for the extra subspaces and found some temporary

subspaces that could temporarily hold the item information to

potentially bridge the gap between sensory and rank-WM

(Figures S3K and S3L). Therefore, these results supported our

hypothesis, showing that sequence information flow in the fron-

tal cortex could be flexibly and timely controlled, reflected by the

compositional population codes with separate and generalizable

low-dimensional sensory and rank-WM subspaces and their

length-dependent neural dynamics.

Abstract control for sequence sorting in frontal neural
states
Do the SWMs in the forward and backward tasks share the same

neural subspaces? Furthermore, does the same control system

coordinate the two sorting processes? As the neurons in the two

tasks were recorded in separate blocks but with the same

chronic recording electrodes, we then computed the distribution

of neural contribution (DNC) for different subspaces in the for-

ward and backward tasks at the level of recording channels

(Figures 4A and S4C). Compared with DNC at the single-neuron

level (Figures S4A and S4B), DNC at the channel level is obtained

by averaging the contribution of single neurons within the same

channel (see STAR Methods). We discovered a remarkable sim-

ilarity in the neural substrates of SWM subspaces between the

forward and backward tasks, evident by significantly higher sim-

ilarities in DNCs between the intra-subspace pairs (e.g., forward

sensory vs. backward sensory, forward memory-1 vs. backward

memory-1, etc.) compared with the inter-subspace pairs (for-

ward sensory vs. backward others, forward memory-1 vs. back-

ward others, etc.) (Figures 4B and S4D).

To better confirm that the sensory and SWM subspaces are

shared between the two sequence sorting tasks, we further

trained two monkeys (O and L) to perform the forward or back-

ward task on a trial-by-trial basis (Figure 4C). On each trial, in

the middle of the delay, a visual cue told monkeys whether to

reproduce the sequence forward or backward. Both monkeys

performed the tasks well (Figure 4D). The same population of

neurons (new datasets, 3,219 neurons for monkey O, 727 neu-

rons for monkey L) was recorded for both tasks (see STAR

Methods). For the SWM subspaces, we focused on the neural

activity in the second delay period (Figure 4C), where the

memory-1 and memory-2 subspaces were either maintained or

reversed by the control system. If the two tasks share the

same memory control system, the subspaces should generalize

to each other based on the sorting cue (Figures 4E and S4E). As
(D) Correct rate as a function of ordinal rank (error bar: SD across sessions; das

(E) Cross-sorting-algorithm generalization test for both sensory and rank-specific

to-forward generalization test. Horizontal bars indicated time windows where the

pixel-based permutation test).

(F) Schematic of the control process in the forward and backward task.

See also Figure S4.
predicted, we found that the memory-1 subspace in the forward

task could be generalized to the memory-2 subspace in the

backward task, and thememory-2 (forward) could be transferred

to the memory-1 subspace (backward).

Thus, we propose that the abstract and flexible control coordi-

nates the neural dynamics of how item information is carried

across sensory and rank-WM subspaces to enable general

sequence sorting processes (Figure 4F, schema). It is worth

noting that the details of the item information, such as the spatial

locations, are represented by the activities within each corre-

sponding subspace in our data, implying that this abstract

control guides the general flow of information between neural

subspaces, agnostic to the details of represented items.

Activities in SWMsubspaces reflect the control behavior
Finally, if the identified neural dynamics of SWM indeed repre-

sented the control process, they should predict the monkeys’

behavior—whether that behavior is correct or erroneous. By tak-

ing advantage of recording hundreds of neurons simultaneously

(one session), we next performed the decoding analysis for the

error trials at the single-trial level (see STAR Methods). In both

tasks, monkeys mainly made two types of errors: order and

item errors. We expected that the neural dynamics in the corre-

sponding subspaces could faithfully predict the error information

in single trials.

We first discovered that the decoding accuracy in the sensory

subspace on error trials was similar to that of correct trials (back-

ward: Figures 5A–5C), implying that the sensory information was

propagated to and represented successfully in the frontal cortex

even when monkeys made errors. We next focused on decoding

performance in the rank-WM subspaces in backward trials, as

there were more error trials. For the order errors, most of them

were found in the swap of items between ranks-2 and -3

(69.9%, 900/1,288 trials), e.g., the SWM ‘‘c b a’’ was mistaken

for ‘‘c a b.’’ Remarkably, the decoding trajectory of neural activity

showed a similar swap (Figure 5B), indicating that the control

system gated item information into wrong rank-WM subspaces

during the delay prior to producing the error. For example, item

‘‘b’’ was supposed to be in the memory-2 subspace in the cor-

rect trials (Figure 5A), but on error trials, this item was found in

the memory-3 subspace, and correspondingly, item ‘‘a’’ was

found in thememory-2 subspace (Figure 5B).

For item errors, most trials were found at rank 3 (94.0%, 856/

911 trials), e.g., the SWM ‘‘c b a’’ wasmistaken for ‘‘c b x,’’ where

‘‘a’’ is the target item and ‘‘x’’ is another (incorrect) response

location. Accordingly, the neural activity in the memory-3 sub-

space showed high decoding accuracy for the incorrect item

(‘‘x’’) (Figure 5C), indicating that the control system gated incor-

rect items into associated rank-WM subspaces. We further

differentiated these location error trials using the distance be-

tween the target (‘‘a’’) and the response (‘‘x’’) (Figure 5D). We
hed lines: chance level); all p < 0.001, two-tailed t test.

subspaces. Top: forward-to-backward generalization test. Bottom: backward-

decoding performance was significantly higher than the chance level (p < 0.01,
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Figure 5. Error trials in the backward task

(A) Decoding accuracy in correct trials estimated

the correct trial averaged across all trials in all

sessions. The same decoders as in Figure 3B.

Horizontal bars indicate time windows where the

decoding performance is significantly higher than

chance (p < 0.001, pixel-based permutation test).

We only tested the significance during the sample

period for sensory subspace and the delay period

for memory subspaces (p < 0.01, pixel-based

permutation test).

(B) Decoding accuracy in trials with ordinal swap

error (p < 0.01, pixel-based permutation test).

(C) Decoding accuracy in trials with item error

(p < 0.01, pixel-based permutation test).

(D) Subtypes of item error. Item error trials were

further separated according to the distance be-

tween the correct and reported locations

(p < 0.01, pixel-based permutation test).

See also Figure S5.
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found that when the response item was the neighbor location of

the target (e.g., distance (a,x) = 1), both the target and response

items could be decoded throughout the delay (Figure 5D, left),

suggesting an interference or competition between the neighbor

items in SWM. Importantly, when the distance was long (e.g.,

distance (a,x) > 1), the target item was not gated into SWM sub-

spaces, and the response item seemed to be conjured up at the

late stage of the delay period (Figure 5D, right). This thus

perfectly illustrated the control process in SWM, even when

the controlled item was an internally generated guess. The de-

coding trajectories in rank-WM subspaces for the two monkeys

in all error trials, including other ranks and lengths, and errors in

the forward task are shown in Figure S5.

DISCUSSION

By recording thousands of neurons in the frontal cortex of

macaque monkeys performing visuospatial sequence sorting

(forward and backward) tasks, we revealed compositional pop-

ulation codes of SWM and their well-orchestrated neural dy-

namics in the frontal cortex, supporting the flexible control of

SWM: item information first entered into a common subspace

and subsequently, depending on the sorting algorithm, was flex-

ibly bound with the corresponding rank-associated SWM sub-

space. The neural dynamics of item information—carried across

sensory and rank-WMs subspaces across two tasks—reflected

a general and abstract control system of SWM. Importantly, sin-

gle-trial analyses using error trials showed that neural dynamics

in SWM subspaces could accurately predict monkeys’ error

types (order/item), bridging the gap between the control process

in the frontal cortex and sequence task behavior.
10 Neuron 112, 1–13, October 23, 2024
The frontal control for information
binding in SWM
The distinct sequential neural dynamics

of the identified sensory and rank-WM

subspaces in different tasks indicate

the presence of a control system that
utilizes unique activity patterns of frontal neuronal subspaces

to support flexible sequence-ordering behavior.26,27 However,

the control process may highly depend on the task structures

that animals acquire during learning. For example, in the back-

ward task, information in length-3 sequences was loaded into

SWM subspaces slightly earlier than expected. The exact

reason underlying this deviation remains to be determined. It

may reflect the monkey’s specific strategy when facing a chal-

lenging cognitive control problem. For example, because the

proportion of the length-3 sequence was relatively higher

than the sequence with other lengths, loading relevant informa-

tion into the memory-3 subspace ahead may be able to alle-

viate the heavy cognitive control demand at the time point of

rank-3 onset.

More importantly, we showed that the information flow is

controlled to the proper subspace (where) at a specific moment

(when) across tasks, irrespective of the incoming item (e.g.,

spatial locations). This fact suggests the existence of abstract

contextual representations, which only guide the general flow

of information between neural subspaces, could be agnostic to

the detailed concrete item information. Such abstract control is

essential, as it implies that the same control system could

broadly apply to various cognitive structures with a progression

through ordinal sets, where different stimuli, tasks, and mem-

ories are potentially embedded.

Where is the control circuitry in the brain? Previously, it has

been assumed that sensory inputs are processed in sensory

areas, converging onto the prefrontal cortex, and the reciprocal

connection between sensory and prefrontal networks is what

sustains and controls representations in WM.21 That is, the sen-

sory input is controlled before reaching prefrontal subspaces by
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the nature of reciprocal connections. In this study, instead, we

showed that the control could be implemented within the frontal

cortex, represented by separate and generalizable low-dimen-

sional sensory and rank-WM subspaces. Therefore, the sensory

inputs, WMs, and their controls seem to be instantiated by the

same frontal circuitry.22 However, due to the lack of recordings

from the sensory cortex, the present results do not exclude the

simultaneous presence of the control representation within the

reciprocal connections between brain regions (e.g., between vi-

sual and prefrontal areas and/or between prefrontal and basal

ganglia regions15,28,29). Multiple control circuitries for SWM

may coexist within the brain.

SWM vs. motor planning
Work memory serves as the buffer between past sensations and

future actions, making it vital to understand not only how the

brain encodes and retains sensory information but also how it

plans for its upcoming use. In the current task, the identified ac-

tivities in rank-WM subspaces can also be regarded as prospec-

tive sequential actions selected from memory. Future analyses

and experiments need to explore the dissociation of sensory rep-

resentations and action plans.30,31 In the field of motor control,

previous research has shown neural response patterns of

many cortical areas regarding the transformation from sensory

to single or sequential motor planning.32–34 Previous single-

neuron studies showed rich item-, rank-, or sequence-selective

neurons.7,18–20 Furthermore, the orthogonal representations

were found in the last seminal work, e.g., between motor prepa-

ration and action,8 between WM and motor preparations,17 and

between the memories in different task contexts.12 However,

there is still a lack of a complete framework of how the sequential

control process is implemented in the frontal neural populations.

The extrapolation fromplanning a singlemotor action to planning

a series of motor actions is highly non-trivial. This is because

when there are multiple planned motor actions or memories,

each time a sensory input comes in, depending on the context

or rule, the brain has to select one appropriate memory sub-

space among multiple subspaces, involving a series of complex

gate-in (-off) computations.4,5 For example, in the backward

task, for sequence ‘‘a b,’’ the action ‘‘b’’ has to be routed into

the memory-1 subspace, requiring the memory-1 subspace to

be in the open state while all other memory subspaces are in

the closed state. However, for sequence ‘‘a b c,’’ the same action

‘‘b’’ has to be routed into the memory-2 subspace, thereby req-

uiring the circuit in a completely different state (i.e., memory-2

subspace in the open state while all other memory subspaces

in the close state). This gate-in process, shown in this study, fea-

tures rich and well-orchestrated dynamics involving a complex

control process, perfectly aligned with a series of motor neuro-

science works in which the preparatory null space is described

to be ‘‘expansive.’’ We thus postulate that, after this expansive

transformation, the SWM, with the compositional representa-

tion, can be conveniently retrieved step-by-step through the

neural dynamics, irrespective of the sequence length or trial

types. In future analyses, the relationship between SWM (or

sequence motor planning) and executive motor actions needs

to be systematically investigated, particularly during the period

of SWM retrieval.
Flow control by interactions between hypothetical
frontal subpopulations
An advancing frontier in cognitive neuroscience involves the

identification of non-random mixed-selectivity subpopulations

with the frontal cortex during flexible mental computations.35–37

In an effort to better understand how the frontal circuits learn

and achieve flexible SWM control, we made the following pos-

tulations: (1) multiple mixed-selectivity subpopulations may

serve as the structural underpinning for the control of informa-

tion flow in neural hyperspaces. (2) Items could be selected to

corresponding rank-WM hyperspaces by multiplying their

weight matrices, analogous to the permutation operation in

vector symbolic architectures.38,39 (3) This selection process

could be enabled through a gain-controlled modulation mech-

anism, in which ordinal structure in the long term memory

serves as the internal context (in contrast to the external

context in previous works22) to tune the gain of different sub-

populations. Presumably, the selection process is predeter-

mined by the anatomical connectivity between different sub-

populations, likely formed during the animal’s task learning.40

Nevertheless, this proposal necessitates further rigorous inves-

tigation in the broad domain of cognitive control and neurosym-

bolic computations, holding the potential for addressing the

intricate challenge of information flow control across neural

populations41 or brain areas.42
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METHOD DETAILS

Behavior task
Monkeys were seated in a primate chair facing a 21.5" LED monitor. Eye positions were tracked by an infrared eye-tracking system

(Eyelink, SR Research Ltd) at a sampling rate of at least 250 Hz.

Monkeys initiated a trial by pulling a level and fixating a yellow square at the center of the screen. Once fixated, the square would

turn white, and six circles (2� in diameter, 11� away from the center) would appear after 100 ms. After monkeys gazed at the white

square for another 500 ms, one, two, or three stimuli (flashing white dots chosen from six circles) were displayed sequentially during

the sample period. Each stimulus was displayed for 250 ms, with a random interval of 300 ms to 500 ms in between. After a delay

period (1150�1500 ms), the white square at the center turned blue (‘‘go’’ cue), freeing monkeys from fixation and the pulling of

the level so that monkeys could make the report by touching the locations on the screen during the reproduction period. A trial would

be terminated immediately when one of the following conditions wasmet: (1) monkeys released the level before the go cue appeared;

(2)monkeys looked outside the fixationwindow (2.7�) before the go cue. For the first neural dataset, in different blocks, monkeyswere

required to memorize and touch the locations in either the presented order (forward task) or the reverse order (backward task) of the

sequence shown during the sample period. When monkeys touched correctly, the touched location would flash in white color. Once

an error location was reported, the touched location flashed in blue, and the trial ended. A drop of water or juice was given when the

monkeys correctly reported the whole sequence. The forward and backward tasks were recorded in separate sessions (days). The

spatial sequence and the sequence length were pseudo-randomly selected on each trial. For monkeys O and G, length-1, -2, and -3

sequences were used during the electrophysiological recordings. For monkey L, only length-2 sequences were applied.

Large-scale recording system and surgeries
Wemade simultaneous neural recordings in multiple brain regions by implanting the semi-chronic microdrive recording system (Gray

Matter Research, USA)25 in the left hemispheres of threemonkeys. A 157-channel microdrive electrode array (LS-157, tungsten elec-

trodes, AlphaOmega, �1 MU, 1.5 mm inter-electrode spacing) was used in the frontal cortex. Before surgeries, we first defined the

recording chambers’ locations and head holders’ locations. The recording chamber was localized to cover the prefrontal and pre-

motor cortices as large as possible, and the head holder was localized at the right hemisphere and fixed to the skull with bone cement

and ceramic screws. Based on computed tomography and magnetic resonance imaging for the head of each monkey, the chamber

was form-fitted to the surface of the skull, and the microdrive was form-fitted to the inside brain surface.

After the implantation of the head holder, the following surgeries, including chamber implantation, craniotomy, and microdrive im-

plantation, were performed. During chamber implantation, the chamber was anchored to the skull with bone cement and screws (ti-

tanium), similar to the implantation of the head holder. To seal the junction between the chamber and the skull, the adhesive resin

cement (3M Inc., USA) was applied with Single Bond Universal Adhesive (3M Inc., USA). About one week after the chamber implan-

tation, the fluid in the chamber was swabbed and cultured to ensure sterility. Only the skull within the chamber was removed, and

the boundary of the craniotomy was trimmed to keep aligned with the internal wall of the chamber. A dummy plug (3�5 mm longer

than the depth of the chamber) was used to check the alignment, and a sterility test was also performed after about one week. Before

the implantation of the microdrive, the dura within the chamber was removed and trimmed with micro scissors and forceps. Then the

microdrive was implanted and mounted to the chamber with screws. A dura gel was filled between the bottom of the microdrive and

the cortices as protection.

Two days after the implantation of the microdrive, we began to advance the electrodes. Firstly, the electrodes were lowered fast

until their impedance (impedance tester, nanoZ) fell in the normal range due to the electric insulative dura gel. Then, we moved

the electrodes slowly, checked the spike waveform online, and stopped when the well-isolated spike waveform was picked up.

All the electrodes were lowered into the surface of the cortices within one week in case dura hyperplasia would block the movement

of the electrodes. During the recording sessions, the depths of the electrodes were adjusted appropriately tomaximize the amount of

the simultaneously recorded units.

Electrophysiological recording
We recorded the broadband electrophysiological signals at 40 kHz through a neural recording data acquisition system (OmniPlex,

Plexon Inc.). Eye position signals and event markers were transported to the recording system in real time and stored with electro-

physiological signals. The high-frequency signals (Butterworth filter, 300�8000 Hz) were automatically sorted offline with Ironclust

and manually curated with an offline sorter (Plexon Inc.). Single and multi-units were combined for the data analysis, and units

with mean firing rates less than 1.2 Hz were kicked out.

Single neuron selectivity
To evaluate the tuning properties of single neurons, we first defined four distinct periods using length-3 trials: the onset of each stim-

ulus extending to 50ms after the corresponding stimulus offset (each spanning 300 ms, repeated for three stimulus periods, referred

to as the sample period), as well as 300 ms window before the go cue (referred to as the delay period). Then, we computed the mean

firing rate for each neuron for each period and conducted an ANOVA test accordingly. Neurons displaying selectivity to the present

spatial location during the sample period (ANOVA, p < 0.01 for monkey O; p < 0.001 for monkey G; p < 0.05 for monkey L) were
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defined as stimulus-related, while neurons exhibiting selectivity during the delay period (ANOVA, p < 0.01 for monkey O; p < 0.001 for

monkey G; p < 0.05 for monkey L) were identified as memory-related. Note that stimulus- and memory-related properties are not

mutually exclusive; a neuron can possess both stimulus- and memory-related tuning characteristics. We shuffled item labels for

each trial 1000 times and performed the ANOVA test to get the distribution of shuffled proportion for each group of neurons. Shuffled

proportions for different groups of neurons were calculated by the unique criteria for the corresponding group. All the proportions

were significantly higher than the shuffle level (p<0.001, t-test).

Subspace decomposition
To evaluate our hypothesis of rank-shared sensory subspace and rank-specific WM subspaces, we extended the static linear de-

coding approach in our prior SWM study to a method that addressed the intricacies of evolving dynamics. At its core is an adap-

tive scheme to determine the time windows within which the representation of task relevant variables appear in each subspace.

The time windows and target variables were first estimated by pseudo-population data aggregated from multiple sessions, and

then fixed to train decoders in single sessions. The final results reported in the paper were based on these single-session

decoders.

To better introduce this dynamicmethod, we first recapitulated the static linear decoding approach for a single time point.23 Single-

trial neural activity (x) at time t was linearly projected (W, weight; b, bias) into a two-dimensional subspace

h = Wx +b:

The hidden state (h) was classified against the target matrix (M) to obtain softmaxed scores (p) for all items

p = softmaxðMhÞ:
At time t, the loss for decoding the rank-r item was defined as

lossQðr; tÞ =
1

n

Xn

i

CrossEntropyLossðpðt; iÞ; dir Þ+ regularization;

whereQ= fW;b;Mg is the learnable model parameter set, n is the total trial number, ir is the index for rank-r item in the ith trial, and

regularization refers to penalization on L2 norm of M and normalization of W. The model parameters were then trained through

gradient descent to minimize this loss.

When taking into account the temporal dynamics, the subspaces should represent task variables for an extended period of time.

The problem then became when and what task variables are represented. Therefore, the loss for identifying the subspace in the dy-

namic setting can be expressed as the temporal-weighted sum of the loss at different times:

Loss =
1

T

XT
t

wðtÞ $ lossQðbrðtÞ; tÞ;
where wðtÞ is the temporal weighting factor, and brðtÞ is the target rank for decoding at time t. The temporal weighting factor can be

viewed as a more general form of time windows, where the latter only describes whether wðtÞ> 0.

In the initialization stage, wðtÞ was set as a constant in the delay period for rank-WM subspaces, and in the sample period for

shared sensory subspace, brðtÞ was set to the corresponding rank that we want to decode. In the refinement stage, their values

were evaluated adaptively. Specifically, the optimization process operated through an iterative procedure: given wðtÞ and brðtÞ, the
model parameters Q were updated by minimizing the loss function through gradient descent; based on the derived model param-

eters Q, the decoding rank brðtÞ and temporal weighting factor wðtÞ were updated in the following way.

First, we calculated the mean decoding probability at time t for each rank:

pðr; tÞ =
1

n

Xn

i

pirðt; iÞ

where pir ðt; iÞ is the ir-th element in the softmax scores pðt; iÞ. Then the target rank for decoding at moment t was defined as

brðtÞ = argmaxr pðr; tÞ;
which can be interpreted as the most decodable rank at the moment t in the subspace. Based on the derived decoding rank brðtÞ, the
unnormalized temporal weighting factor was defined as

w0ðtÞ = pðbrðtÞ; tÞ � p0;

where p0 is the baseline probability. Then, the temporal weighting factor wðtÞ was obtained through normalization:

wðtÞ =
w0ðtÞPT
t

w0ðtÞ
:
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The iterative procedure evolved until convergence, culminating in the final projecting weights for the low-dimensional subspaces,

along with the final optimizing time windows and corresponding decoding ranks. During the training, we monitored whether the de-

coded content within the preset time window matched the expectation. If it does not match, wðtÞ and brðtÞ will be reset to their initial

values. As an additional adaptive mechanism to ensure the stability of training, the baseline probability p0 is initialized as chance level

(1/6 for our task) and gradually increased to a maximum value proportional to the max decoding probability.

The task subspaces were sequentially identified one by one. After identifying one subspace, the final w(t) values were stored and

used in estimating subsequent subspaces. Specifically, in identifying the mth subspace, we subtracted the projection of neural ac-

tivity in previous subspaces in the period when wðtÞ> 0.

xn+1ðtÞ = xnðtÞ � WnW
T
n xnðtÞ; for n = 1 to m � 1

where x1 is the original de-meaned neural activity. Once an appropriate number of subspaces are identified, there is an additional

final step to simultaneously optimize the subspaces while updating the w(t) of all the subspaces. Again, the projections of neural ac-

tivity in other subspaces were subtracted when calculating the loss in one subspace.

To make a robust estimation, wðtÞ and brðtÞwere estimated using pseudo-population data sampled from multiple sessions,

following the aforementioned procedure. Then, theywere fixed to train decoders for each session. Note that in this stage, the decoder

for each subspace was trained independently on the same neural activity data without subtracting projections from other subspaces.

These single-session decoders were used to calculate the single-trial decoding accuracy.

Generalized linear regression, subspace identification and decoding
We fit a Poisson GLM model to each neuron, which helped us derive regression coefficients for 18 variables (3 stimuli3 6 items) for

each 50 ms time bin, without overlap. We then reduced the dimensionality by PCA to identify the subspaces. For each memory sub-

space, we averaged the regression coefficients corresponding to a stimulus over the late delay period (100 ms after the last stimulus

offset to the go cue). For the sensory subspace, we selected coefficients related to specific stimuli during their presentation period

(from stimulus onset to stimulus offset). The averaged regression coefficients were used to perform PCA. Then the neural activities

were projected onto those identified subspaces and SVM decoding was performed. Two-fold cross-validation was used to get the

decoding accuracy.

Geometric relationship between subspaces
To quantify the geometric relationship between the decomposed subspaces, we examined the alignment of two subspaces by

computing the principal angle (PA) and variance accounted for (VAF) ratio.43

Given subspaces a and b as well as the associated two-dimensional bases Wa and Wb, to compute PA between them, we per-

formed the singular value decomposition onto WT
bWa such that

WT
bWa = PbCP

T
a ;

where Pa and Pb are 232 orthogonal matrices and C is a 232 diagonal matrix whose elements are the ranked cosines of the PAs q1
and q2:

C = diagðcosð q1Þ; cos ð q2ÞÞ:
Note that the principal angles are ordered from smallest to largest, thus we only reported the first PA q1.

The VAF ratio for subspace pair ða;bÞ was defined as

VAFab =
Var

�
WaW

T
a Gb

�
VarðGbÞ ;

where Gb = WbW
T
b X, and X (N3 K) is the activities of N neurons in K trials. As for the temporal aspect of neural activity, we calcu-

lated the variance for each time point and summed them all.

Neuronal contributions to subspaces in the single neuron level
To quantify the single neuronal contribution to each subspace, we projected the unit vectors along the axis of each single neuron onto

the corresponding sensory or rank-WM subspaces and defined the square scalar projections as the neuronal contribution to the cor-

responding subspace.23,44 For simplicity, denote the contribution of the ith neuron to subspace a as A2
ai. The normalized participa-

tion ratio

NPRa =
1

N

�PN
i = 1 A

2
ai

�2

PN
i = 1 A

4
ai

was used to quantify the proportion of significantly contributed neurons for subspace a.23 For example, an NPR value of 0.4 indicated

the top forty percent of neurons in the session significantly contributed to the subspace.
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Neuronal contributions to subspaces in the recording channel level
Since the neural recordings for the forward and backward tasks were made separately, it is impossible to directly compare the neural

substrates of subspaces across the two tasks. However, since recording channels were invariant across the two tasks, we made

efforts to compare the neuronal contribution distribution at the recording channel level. For each recording channel from each

pseudo-single day (by pooling several consecutive days), we calculated the proportion of significantly contributed neurons and

the averaged neuronal contribution (see Figures 4A and S4A), and then multiplied these two quantities to obtain the proportion-

weighted neuronal contribution in the recording channel level. Based on this metric, the cosine similarities across the shared chan-

nels between the forward and backward tasks for any subspace pair were calculated. Statistical analysis (two-sample t-test without

assuming equal variances) between the intra- and inter-subspace pairs was made. For monkey O, intra vs inter for sensory: p=0, for

memory-1: p=1.01x10-4, for memory-2: p=8.98x10-13, for memory-3: p=2.41x10-6; for monkey G, intra vs inter for sensory:

p=3.22x10-7, for memory-1: p=0, for memory-2: p=3.33x10-16, for memory-3: p=0.

Forward and backward trials with rule cues
To test whether the rank-WM subspaces were shared across the forward and backward tasks, twomonkeys (monkey O andmonkey

L) were further trained to perform the two tasks trial-by-trial. In themiddle of the delay period (500�700ms after the second stimulus),

fruit imagery (cucumber for the forward task and apple for the backward task) was flashed for 250ms to signal the trial type. The ‘‘go’’

cue then appeared after a random delay (500�700 ms), as illustrated in Figure 4C. The remaining task parameters and the recording

specifics were the same as the block trials. Note that, in this task, our analysis focused exclusively on neural activities during the

sample period and the second delay.

Error trial analysis
We applied the single-session decoders trained with correct-trial data to error trials. As shown in Figures 1C and 1D, there were two

main error types, including ordinal and item errors. Together with the fact that monkeys made few errors in length-1 and -2 trials, we

mainly focused on these two error types for length-3 trials. Then, for each error type, the decoding accuracies shown in Figures 5 and

S5 were obtained by averaging across trials from all sessions. For the ordinal error frommonkey O, wemainly showed the swap error

between rank-2 and -3 due to its predominancy in trials (Figure 5B). For the item error from monkey O, aside from the overall

response-3 error result due to its predominancy in trials, we further divided response-3 errors into different subtypes according to

the distance between the error response and the right target, trying to gain a better understanding of the control process underlying

the item error (Figures 5C and 5D). We also included the error profile for other conditions and for monkey G in Figure S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical test of decoding performance in each subspace
To determine the statistical significance of single trial decoding performance in each subspace, we used an extreme pixel-based

permutation test to report the p-values.45 We trained surrogate decoders using the same wðtÞ values but with labels shuffled across

trials. Note that the labels are shuffled at the sequence level rather than the item level. For decoding results in each subspace, we only

used the maximal accuracy value across all the time points. This ensures that the multiple comparisons are taken into account in

statistical testing. Two-fold cross-validation was used to get the decoding accuracy. We repeated this process 1000 times to obtain

a null distribution. The 99.9 (or 99) percentile of this distribution was used to threshold the decoding accuracies in testing conditions

that correspond to p<0.001 (p<0.01).

Latency difference for sensory-memory subspace pairs
To assess whether item information sequentially enters into the sensory and rank-WM subspace in the forward task, we performed

latency difference significance analysis for each sensory-memory subspace pair. To generate a distribution of sensory-memory la-

tency difference, we used the bootstrap procedure with replacement 1,000 times. For each time, we employed the aforementioned

subspace decompositionmethod to identify both sensory and rank-WMsubspaces. Then, for each subspace, we chose the first time

point during which the decoding accuracy exceeds 1/3 and then used this time point to calculate the latency difference between

sensory and rank-WM subspaces. Wilcoxon signed-rank tests were used to test whether latency differences were significant.

Correlation of decoding probabilities for sensory-memory subspace pairs
To further quantify the correlation of information contents for each sensory-memory subspace pair in the forward task, we computed

the single trial correlation of decoding probabilities for each sensory-memory subspace pair. For each subspace, the decoding prob-

ability of a rank (r) in a single trial (n) was acquired by averaging the decoding probabilities during the period (T) in which the corre-

sponding rank information was significantly encoded:

pðr;nÞ =
1

T

XT
t

pðr; tÞ
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where pðr; tÞ is the decoding probability of rank r at time t. We used Spearman correlation to calculate the correlation coefficients

between the decoding probability in the sensory subspace and the memory subspaces for each session:

r =
Siðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Siðxi � xÞ2Siðyi � yÞ2

q

where x is the rank of sensory subspace decoding probability and y is the rank of rank-WM subspace decoding probability. For

example, x is the rank of the decoding probability of S1 in sensory, and y is the decoding probability of S1 in memory-1 (paired); x

is the rank of the decoding probability of S1 in sensory, and y is the rank of the decoding probability of S2 in memory-2 (unpaired).

The correlation coefficients from all days were then put together, and the Wilcoxon signed-rank test was used to determine (1)

whether the paired coefficients were significantly larger than 0 and (2) whether they were different from each other (Bonferroni

corrected).

Statistical test of principal angles and VAF ratios
To make the statistical tests for principal angles and VAF ratios, we first computed the PA and VAF ratio between two different es-

timations (from the two-fold cross-validation) for the same subspace as a control. Then we made the statistical tests between the

control subspace pairs (e.g., Sensory-Sensory, M1-M1) and all the subspace pairs involved the control subspace pairs (e.g., M1-

Sensory, M2-Sensory, M3-Sensory for Sensory-Sensory). We defined the difference as significant when the 0.05th percentile of

the distributions across sessions was not overlapped. Bonferroni corrections were applied for the multiple comparisons.
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