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SUMMARY

To interpret our surroundings, the brain uses a visual categorization process. Current theories and models
suggest that this process comprises a hierarchy of different computations that transforms complex, high-
dimensional inputs into lower-dimensional representations (i.e., manifolds) in support of multiple categoriza-
tion behaviors. Here, we tested this hypothesis by analyzing these transformations reflected in dynamicMEG
source activity while individual participants actively categorized the same stimuli according to different
tasks: face expression, face gender, pedestrian gender, and vehicle type. Results reveal three transformation
stages guided by the pre-frontal cortex. At stage 1 (high-dimensional, 50–120 ms), occipital sources repre-
sent both task-relevant and task-irrelevant stimulus features; task-relevant features advance into higher
ventral/dorsal regions, whereas task-irrelevant features halt at the occipital-temporal junction. At stage 2
(121–150ms), stimulus feature representations reduce to lower-dimensional manifolds, which then transform
into the task-relevant features underlying categorization behavior over stage 3 (161–350 ms). Our findings
shed light on how the brain’s network mechanisms transform high-dimensional inputs into specific feature
manifolds that support multiple categorization behaviors.

INTRODUCTION

Despite the intricate and detailed nature of visual input, our abil-

ity to categorize relies on extracting and processing the essential

elements of this information—i.e., the features that are crucial for

the task at hand. For example, whereas categorizing the scene in

Figure 1A as a ‘‘happy face’’ requires processing the mouth of

the central face, categorizing this same picture as an ‘‘SUV’’ re-

quires processing the shape of the right-flanked vehicle or the

left ‘‘female pedestrian’’ with the bodily features that disclose

its gender. The key point is that a single input image, and even

a single object within this image, typically affords multiple

different categorization behaviors (e.g., ‘‘happy’’ or ‘‘female’’

for the same central face), each relying on varying sets of fea-

tures. Consequently, the internal representation of a single visual

input can encompass multiple manifolds that vary depending on

the task. Thus, when our brain categorizes the visual inputs, it

does not passively represent the entire space of these inputs.

Instead, current theories and models suggest that brain net-

works actively transform the representations of the same com-

plex input images into specific low-dimensional manifolds (geo-

metric subspaces of the images) that comprise diagnostic

features for the task.1–9 Here, we test this fundamental hypothe-

sis by reverse engineering, at a system level, the dynamic brain

networks that actively represent and transform identical input

scene images for distinct categorization behaviors.

Significant progress in understanding visual categorization re-

sulted from accurately mapping the brain regions that respond to

various categories of images12–15 (e.g., those of faces, bodies,

objects, and scenes). These regions comprise primarily the occi-

pito-ventral/dorsal pathways that respond to different image cat-

egories, from their early split projection in left and right occipital

cortex to their later categorical/semantic representations in the

right fusiform gyrus (rFG), including how feedback reverses this

flow to predict the input stimulus.16–19 Additionally, the pre-fron-

tal cortex (PFC) can represent categories separately, which min-

imizes their interference.20 This separation allows for task focus

and attention to modulate object selectivity,21,22 enhance visual

processing,23 and improve semantic representation, all of which

optimize behavior.24 Though this approach proved invaluable to

investigate where and when different brain regions are involved

with processing full images, it overlooked how the task itself

changes the feature manifolds that the brain processes from

input images for categorization behavior.

Research into eyemovements,25,26 attention,27,28 reverse cor-

relation,10,4,5 and neural network modeling2 suggests that cate-

gorization mechanisms in capacity-limited systems actively and

flexibly transform high-dimensional input images into the low-

dimensional feature manifolds representing the visual informa-

tion that support task-specific behavior (e.g., the smiling mouth

feature for categorizing a facial expression as ‘‘happy’’ or the

sedan shape feature for categorizing vehicle type as ‘‘sedan’’
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from the same image in Figure 1A), guided by frontal-parietal

network mechanisms.29 Critically, what emerges is an active

process whereby brain networks process features that are not

inherently given but instead dynamically extracted from the im-

age depending on the participant’s categorization task and their

individual strategy.30

To track such image transformations into dynamic neural re-

sponses requires a broad, systems-level approach with fine-

granularity control of the stimuli. Stimulating with categories of

uncontrolled full images of faces, vehicles, and pedestrians, as

is typical,31–33 makes it practically unfeasible to precisely track

what specific features the participant’s brain processes for

behavior. Instead, these features are latent in the image pixels.2,6

To reveal the categorization features, we applied the Bubbles

procedure.7,10 Bubbles randomly samples the pixels of a stim-

ulus image with Gaussian apertures, which each participant

then categorized in four different ways—i.e., as face expression,

face gender, pedestrian gender, and vehicle type (Figure 1A).

Bubbles ensures that the participant can only correctly catego-

rize when the randomly sampled image pixels show the features

needed for categorization.7,10 With such control, we could

reverse engineer (1) the feature manifolds that each participant

processes for behavior in each task34 and, critically, (2) where

(networks of brain regions), when (which time windows), and

how (with what transformations) the activity of 5,107 cortical

MEG sources (every 1.67 ms between 0 and 450 ms post-stim-

ulus) transformed their representation of the same images into

task-specific feature manifolds that support behavior.

To preview our findings, we provide a detailed descriptive

model of how the categorization task modulates internal trans-

formations of the visual input over three systems-level stages.

At stage 1 (high-dimensional, 50–120 ms), occipital sources

represent more stimulus features than the task requires—i.e.,

including occipital source-level opponent representations35–38

of a feature when it is task relevant versus irrelevant. Although

task-relevant features advance into ventral/dorsal path-

ways,39–43 irrelevant ones are halted at the occipital-temporal

junction. At stage 2 (high-to-low dimensional, 121–150 ms), oc-

cipital sources reduce most irrelevant features, while ventral-

dorsal pathways represent manifolds that keep transforming

over stage 3 (low-dimensional, 161–350 ms) into the task-rele-

vant features29,44–47 underlying categorization behavior (e.g.,

smiling mouth features underlying happy versus sedan features

underlying sedan). Furthermore, the PFC interacts with occipital-

ventral/dorsal pathways early on (during stages 1–2, 71–150 ms

post-stimulus), suggesting network mechanisms involving these

Figure 1. Categorization design and task-relevant features

(A) Scene images. 64 base images of a street scene comprise a central face flanked by a pedestrian and a parked vehicle.

(B) Randomly sampled features. On each trial, Bubbles randomly sampled pixels from one base image to synthesize a sampled stimulus. We used the same

sampled stimuli10 (presented in a random order) in each categorization task so that each participant (n = 10) saw each sampled image 8 times (twice per task).

(C) Categorization behavior; task-relevant features. The stimuli afforded four different two-alternative forced-choice categorizations: face expression, happy

versus neutral responses; face gender, male versus female; pedestrian gender, male versus female; and vehicle type, sedan versus SUV. Task-relevant features:

for each participant and image pixel, we computed MI(pixel visibility; correct versus incorrect categorization)11 to reveal pixels that significantly (FWER p < 0.05)

modulate categorization accuracy-color-coded for participants 1 and 10 to illustrate that participants often use different features to produce the same cate-

gorization responses (Figure S1 for all participants).
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regions that transform stimulus image representations into task-

relevant feature manifolds based on the task.

RESULTS

Our experiment comprised four 2-alternative-forced-choice

(AFC) categorization tasks applied to the same 64 base images

of a realistic, complex city street scene (Figure 1A). These images

comprised varying embedded targets—i.e., 8 different face

identities48 (2 genders), each representing 2 expressions 3 2

vehicles3 2 pedestrians. Each participant (n = 10, within-partic-

ipant statistics49) performed each 2-AFC task in different blocks

of 1,536 trials (i.e., precision neuroscience with dense sam-

pling50). Figure 1A illustrates, with two examples of the base im-

ages, the combinatorics of stimulus and 2-AFC task-response

differences (i.e., in face expression, face gender, pedestrian

gender, and vehicle type).

Each trial started with a fixation cross presented for a random

time interval between 500 and 1,000 ms, followed by one base

image for 150 ms, whose pixels were randomly sampled with

Bubbles10,7 (Figure 1; STAR Methods section ‘‘stimuli’’).

Random Bubbles sampling ensures the participant can only

correctly categorize the stimulus when the samples reveal by

chance the pixels of the features the participant requires to

resolve the task. For example, the randomly sampled pixels of

trial n in Figure 1 would categorize happy in the face expression

block but not SUV in the vehicle type block, and vice versa with

the samples of trial m (STAR Methods section task procedure).

Critically, the set of randomly sampled stimuli was identical in

each participant and blocked task (with stimuli presented in a

random order in each block), eliminating all low-level artifacts

when different stimuli are associated with different categoriza-

tions. On each trial, we concurrently recorded the participant’s

dynamic MEG activity (localized with a beamformer to 5,107

cortical sources; STAR Methods section ‘‘MEG data acquisi-

tion’’) and categorization responses.

Behavior: Task-relevant feature manifolds
To reconstruct the categorization feature manifolds supporting

task performance (Tables S1 and S2), in each participant we

quantified the cross-trial relationship between pixel presence

versus absence due to random sampling (Figure 1C) and corre-

sponding behavioral responses in each task, computed with

mutual information (MI11,51) as MI(pixel visibility; correct versus

incorrect categorization), controlling the family-wise error rate

(FWER) (p < 0.05 over pixels; STARMethods section ‘‘participant

features’’).

Figure 1C shows that participants use task-specific features

from an identical set of sampled images—e.g., mouth features

to categorize face expression, left/right eye features for face

gender, body parts for pedestrian gender, and different features

for vehicle type. Importantly, different participants often use

different features to categorize the same object with the same

category label—e.g., Figure 1C illustrates that participant 1

uses the windshield and a large portion of the front fender and

bonnet to classify vehicle type as sedan or SUV, whereas partic-

ipant 10 uses the shape of the alloy wheel and the vehicle badge

on the hood to produce the same category labels (Figure S1 for

per-participant results). This demonstrates the key, but often

neglected, point that a similar stimulus-response relationship

across participants (or participant and models) does not warrant

internal processing of the same stimulus features.2

Having identified these categorization features in each partic-

ipant, we can now uniquely examine how their brain transforms

identical high-dimensional stimulus images into participant-

and task-specific low-dimensional feature manifolds to enact

task behavior.

Brain: Systems-level time courses of task-dependent
stimulus transformations
To identify the stages that transform the high-dimensional input

images into the low-dimensional feature manifolds underlying

categorization behavior, we used a data-driven analysis. This

analysis computed the representation of each varying scene

pixel across trials (due to randomBubbles sampling) into the cor-

responding variations of MEG source amplitude responses post-

stimulus—i.e., computing MI(pixel visibility, MEGt) for each pair-

ing of 613 47 pixels and 5,107 cortical sources (Table 1), across

271 time points. We segmented the results into brief consecutive

periods covering key neural events involved with visual catego-

rizations—i.e., C1,52 occipital hemifield responses; P100, early

attention/stimulus representation and ensuing N170,53–57

faces/familiar object representations; and N25058 and P300,46

attention/decision mechanisms.

Figure 2A summarizes the results, showing different dynamic

transformations of the same stimulus images in each task

(rows), where orange-to-yellow colors indicate number of partic-

ipants whose sources represent this image pixel in each period;

maximum = 9/10 participant, maximum a posteriori probability

(MAP) estimate of the population prevalence49 of the effect of

9/10 participant replications = 0.9 (95%highest posterior density

interval [HPDI],49 [0.61–0.99]; Table 2; STAR Methods sections

‘‘global representation of image pixels in brain networks’’ and

‘‘Bayesian population prevalence’’).

Considering each pixel as a stimulus dimension, each task

shows MEG sources transitioning from an initially high-dimen-

sional stimulus representation of large parts of the scene (stage

1, 50–120ms, periods 1 to 4) to amore focused representation of

only the task-relevant pixels—i.e., the lower-dimensional feature

manifolds that develop between stage 3, periods 7 to 9, 161–

350 ms (compare with Figure S1). Stage 2 (periods 5 to 6) there-

fore marks the critical transition from higher-dimensional stage 1

to task-relevant feature manifolds stage 3.

To formalize these transitions, we grouped image pixels as

either task relevant or irrelevant based on participant behavior

(cf. Figures 1C and S1 and STAR Methods section ‘‘feature

mask and visibility’’). In Figure 2B, the red curve shows across

different periods the number of task-relevant pixels; the blue

curve shows task-irrelevant ones. The cross-over of these

curves between stages 1–2 and stage 3 identifies the transition

from high-dimensional representations to task-specific feature

manifolds.

Brain: Systems-level localizations of task-dependent
stimulus transformations
To examine how localizedMEG sources represent and transform

the images depending on tasks, we compared how they repre-

sent an identical feature when it is task relevant or not—e.g.,
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participant 1’s blue mouth in Figure 1C in face expression versus

in all other tasks. For each categorization feature (Figure S1), we

therefore determined its per-trial visibility score F, by intersecting

this feature’s pixels with the pixels randomly sampled by Bub-

bles on each trial (cf. Figure 1 and STAR Methods section

‘‘feature mask and visibility’’). For each participant, we then

quantified the representation of F variations across trials11,51

into corresponding MEG variations of source amplitude re-

sponses—i.e., as MI(F; MEGt)
11 (FWER p < 0.01 over sources

and time points; STAR Methods section ‘‘feature representation

on MEG sources’’). Critically, the resulting MI curves (further

developed in Figure 3) are not curves of brain activity. Rather,

they are a proper measure of the representational strength of

feature F into source activity (MEGt).

First, Figure 2C shows summary results revealing where (which

sources) and when (which stage/time period) features are trans-

formed when they are task relevant and used for behavior

versus task irrelevant. Each glass brain displays the number of

Figure 2. Systems-level transformations of input images into categorization feature manifolds

(A) Dynamic image representation by categorization task. In each participant and MEG source, we computed the cross-trial relationship between each pixel’s

visibility and the source amplitudes at time t post-stimulus—i.e., MI(pixel visibility, MEGt). To visualize how representations transform, we segmented the post-

stimulus time course into 9 consecutive periods. In each, and for each categorization task, we pooled pixels significantly represented on at least oneMEG source;

false discovery rate (FDR) test with q = 0.001. Across participants, we summarize results per period, revealing image pixels that participants’ MEG sources

represent in each task—orange-to-yellow colors indicate participant numbers whoseMEG sources represent this pixel, maximum = 9/10 participant, MAP [95%

HPDI] prevalence49 = 0.90 [0.61–0.99]. Figure S2 develops the dynamic transformations across the posterior-anterior axis of the ventral pathway.

(B) Transition from high- to low-dimensional pixel representations. In each period, we computed across participants and tasks the average number of task-

relevant (versus task-irrelevant) pixels—i.e., normalized per participant and task to the maximum task-relevant (versus irrelevant) pixel numbers, standard error

bars provided. The resulting curves cross over between stages 1–2 and stage 3, showing transition from higher-dimension (comprising task-relevant and

irrelevant pixels) to lower-dimensional feature manifolds (comprising task-relevant pixels).

(C) Spatiotemporal dynamics of task-relevant versus irrelevant feature representations. For each participant, task, and categorization feature (Figures 1C and S1),

we quantified how each source represents this feature (F) in its amplitude at each time point t—i.e., MI(F; MEGt),
11 FWER p < 0.01. Grayscale sources show

participant count that represented at least one feature in each period, when task relevant versus irrelevant, maximum = 8/10 participant, MAP [95% HPDI]

prevalence49 = 0.80 [0.49–0.96]. Figure S5 provides the glassbrain visualization with 4 projections. Category information provides a ground-truth reference of the

MEG source representation of category information across participants—computed, e.g., in vehicle type as MI(sedan versus SUV stimulus; MEGt), FWER

p < 0.05, maximum = 8/10 participant, MAP [95% HPDI] prevalence49 = 0.80 [0.49–0.96].
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participants (gray levels) whose MEG sources represent at least

one such feature as task relevant or irrelevant—i.e., maximum =

8/10 participant; MAP [95% HPDI] prevalence49 = 0.80 [0.49–

0.96]. For reference, we also showhow theseMEG sources repre-

sent category information for at least one task, computed, for

instance, for vehicle type as MI (sedan versus SUV stimulus;

MEGt) (FWER p < 0.05) over sources and time points, plotted

again as number of participants, maximum = 8/10 participant,

MAP [95% HPDI] prevalence49 = 0.80 [0.49–0.96].

Figure 2C reveals that occipital cortex sources represent both

task-relevant and task-irrelevant features during stage 1, ac-

counting for its higher dimensionality. However, the task effect

Figure 3. Dynamic representations of stimulus features (rows) across categorization tasks (columns)

(A) Curves in each cell show the participant average (n = 10) time course of significant representation of each participant’s feature (Figures 1C and S1) on MEG

sources, computed as MI(F; MEGt),
11 FWER p < 0.01, each color-coded by its location on a posterior-to-anterior axis (cyan-yellow). Dashed lines (120 and

150 ms) delineate stages S1 to S3 reported from Figure 2. Small brains flanking the dashed lines53,55,57,59 show the participant count whose MEG sources

represent this feature 50–150 (left brain) and 150–450 ms (right brain) post-stimulus. Each row reveals qualitatively different representation dynamics of the same

stimulus feature when task relevant (matrix diagonal, box highlight) versus task irrelevant (off diagonal). Figure S3 further shows that occipital representations of a

given feature peak slightly sooner when it is task irrelevant than task relevant (Wilcoxon rank-sum test, p < 0.001).

(B) Stimulus-evoked variance and gradient of MEG occipital source signal (cyan colored) in stages S1 to S3, averaged per source across participants.
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is already present with early representations distributing around

the image locations of task-relevant features (though MI effect

sizes are weaker for surrounding pixels; Figure 2A). Task-rele-

vant features move along the ventral/dorsal pathways, but

when irrelevant, they halt at the occipital-temporal junction. Oc-

cipital sources reduce most task-irrelevant features while ventral

sources form a lower-dimensional feature manifold during stage

2. (Figure S2 develops the analysis shown in Figure 2A to demon-

strate that the dynamic transformations of broader image repre-

sentations into lower-dimensional manifolds across the poste-

rior-anterior axis of the ventral pathway coincide over stage 2

with the reduction of task-irrelevant features in occipital lobe.)

During stage 3, the occipito-ventral/dorsal pathways keep trans-

forming the low-dimensional feature manifolds into task-relevant

features (stage 3, period 9). Category information is increasingly

represented from 161 to 280ms (stage 3, periods 7 and 8), peak-

ing at parietal-frontal juncture post �291 ms (stage 3, period 9).

Brain: Systems-level expansion of task 3 feature
transformations
Figure 3 expands Figure 2C, displaying representational dy-

namics in a feature 3 task grid. Each panel shows the cross-

participant average curves of significant feature representa-

tion—i.e., MI(F; MEGt)—every 1.67 ms, for each color-coded

MEG source, progressing from cyan (occipital) to yellow (frontal).

The diagonal of Figure 3A (box highlights) shows task-relevant

features (Fs) transformations through stage 1 to 3 (dashed lines),

with representations progressing from occipital to higher-level

regions (cyan-to-yellow occipital-to-frontal time courses). Off-

diagonal plots display short-lived representations of task-irrele-

vant features confined to occipital sources (cyan curves). Small

glass brains above the representation curves localize the sour-

ces generating task-relevant versus irrelevant feature represen-

tations—gray scale indicates number of participants with signif-

icant representation (MI) of the specified feature in each source,

during stages 1–2 (left) and stage 3 (right). An exception is the

central face’s eyes, which remain represented in the two face

tasks, consistent with previous studies.56,60,61 This observation

will be revisited in the discussion.

In Figure 3A, comparison between features when they are task

relevant (diagonal) versus irrelevant (each row, off diagonal) is

noteworthy, showing similar initial occipital (cyan) representa-

tions of the same feature. However, by stage 2, these represen-

tations diverge, with the same feature reduced in occipital lobe

versus passed into ventral/dorsal pathways. Next, we develop

the mechanisms behind this divergence at the level of individual

occipital sources.

Brain: Source-level representation of task-relevant
versus irrelevant F
First, we draw attention to the higher-dimensional feature repre-

sentations on cyan occipital sources (Figure 3A), which align at

stage 1 with the peak cross-trial variance of their evoked MEG

responses (Figure 3B). During 120–150 ms stage 2, this variance

drops (negative gradient in Figure 3B), marking the time when

occipital sources reduce task-irrelevant features while relevant

features progress into ventral/dorsal pathways. Figure S3 further

shows that occipital representations of a given feature peak

slightly sooner when it is task irrelevant than task relevant

(Wilcoxon rank-sum test, p < 0.001, MI averaged at each time

point across participants, tasks, and sources). Now, we investi-

gate how the variance of an occipital source marks the identical

feature variations F as task relevant (passed for further process-

ing) or task irrelevant (reduced).

Figure 4A illustrates the variations F of the vehicle feature vis-

ibility from participant 8 as disks with varying radii. Figure 4B

shows the representation curve of F on a cyan occipital source

at stage 1, when the feature is relevant (vehicle type task; Fig-

ure 4B, solid cyanMI representation curve for this source) versus

irrelevant (all other tasks; Figure 4B, dashed cyan MI curve). Fig-

ure 4C shows corresponding event-related field (ERF) and vari-

ance underpinning these representations of F.

Figure 4D shows how the occipital source differently represent

vehicle feature F based on its task relevance. At stage 1 (111 ms

post-stimulus), identical variations of F (disk radii) exhibit an

opposite representational relationship with MEG amplitude re-

sponses on the source. Critically, this depends on whether F is

task relevant (solid arrow in Figure 4D) and subsequently passed

into the ventral/dorsal pathways, or task irrelevant (dashed ar-

row), and subsequently reduced in occipital cortex (i.e., vehicle

type versus all other tasks). Figure 4E quantifies such opponent

representations with information theoretic synergy (F; MEGt;

task relevance versus task irrelevance) that Figure 4D illustrates

at its 111 ms peak (indicated with opponent cyan arrows in Fig-

ure 4E, cyan curve). Task synergy quantifies how the same

feature is differently represented on the same source depending

on task (although the sign ofMEG responses is arbitrary,62 oppo-

nent signs reliably indicate the task-relevance versus irrelevance

of the same feature). We consistently found such opponent

sources (Figure 4G, opposite cyan arrows) in occipital cortex

during stage 1 (FWER p < 0.01 over MI-significant sources *

271 time points; STAR Methods section ‘‘opponent feature

representations’’).

By contrast, task synergy can also indicate a feature that is

unidirectionally represented either when it is task relevant or irrel-

evant. Figure 4E displays the synergy curve of an example rFG

source, marked in purple, with a 135 ms peak (single arrow on

the curve) during transition stage 2. In Figure 4F, this rFG source

unidirectionally represents the same vehicle feature F, but here

only when it is task relevant. Figure 4G extends this observation,

illustrating across sources and time the count of participants

who have at least one such exclusive task-relevant (or task-irrel-

evant) feature representation (FWER p < 0.01 over MI-significant

sources * 271 time points; STARMethods section ‘‘task-relevant

feature representation’’).

Brain: Network interactions modulate early source
representations by task
Figure 4 shows that amplitude variations in occipital sources can

represent the same feature differently by task relevance: either in

opposite directions (opponent sources) or unidirectionally (unidi-

rectional sources). And the direction of amplitude responses at

stage 1 could determine whether the feature will be reduced at

stage 2 or prominently represented for behavior in stage 3.

Here, we test whether network interactions between PFC re-

gions and the occipital-ventral/dorsal pathways during stages

1 and 2 top-down modulate these early feature representations

when they are task relevant versus task irrelevant.
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Figure 4. Task modulations of feature representations
(A) Feature visibility, F. Random pixel sampling across trials varies visibility of vehicle feature F, represented as 5 varying radii for reference in (D) and (F)

(participant 8, Figure S1).

(B) MI(F; MEG) quantifies dynamic representation of F in the occipital source located in small brains when F is task relevant (plain cyan curve) versus task irrelevant

(dashed cyan curve).

(C) Normalized event-related field (ERF) underlying the MI curves (B) for this source whose MEG amplitudes variations (shaded area, variance) represent F.

(D) Opponent occipital source representations of F. At 111ms, MEG amplitude variations of this same source (y axis) differently represent identical of feature F

variations (circle radii, A) when task relevant versus irrelevant. Cyan arrows indicate these opposite directions when F is task relevant (plain arrow, in vehicle

type) and passed later into rFG versus irrelevant (dashed arrow, other tasks) and reduced in occipital cortex. Figure S4 further illustrates the opponent

representations.

(E) The cyan synergy curve quantifies the time course of these opponent representational interactions11,51 (that D illustrates at peak 111 ms, indicated with

opponent arrows). The dark blue synergy curve illustrates another representational interaction in the rFG source shown in (F) (located in adjacent small brain).

(F) Unidirectional representations. Dark blue rFG source represents F at 135 ms peak synergy, but here only when the feature is relevant in vehicle type.

(G) Synergistic representations. Synergy(F; MEGt; task relevance) quantifies how brain sources differently represents identical F over stages 1 to 3, covering three

types of source-level representations. Opponent synergy indicates number of participants whose sources show significant opponent representations of the same

F when task relevant versus irrelevant (cf. D); task-relevant (or irrelevant) synergy indicates unidirectional representations of F when either task relevant (cf. F) or

irrelevant.
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To investigate this, in each participant and task, we pinpointed

two sources in the occipito-ventral/dorsal pathway during

stages 1 and 2: that with strongest opponent representation of

a given feature F (the synergistic ‘‘opponent seed’’ shown in Fig-

ure 5, color-coded by participant) and that with strongest unidi-

rectional representation of F (the synergistic ‘‘unidirectional

seed’’ also shown in Figure 5). We then computed separately

how opponent and unidirectional seeds interact with all PFC

sources—i.e., as synergy(F; seed sourcet; PFC sourcet), sepa-

rately for trials when F is task relevant versus F is task irrelevant

(FWER p < 0.05). Synergy emerges when two sources together

predict more information about the feature than the sum of pre-

diction by each source. Though PFC brain activity does not

directly represent the feature, it does influence representation

of the feature in the occipital-ventral/dorsal pathways. That is,

when PFC activity changes, the relationship between feature vis-

ibility and activity in occipital-ventral/dorsal pathways changes.

In this case, PFC sources and occipital-ventral/dorsal sources

will generate synergy (the extra information about the feature

that cannot be obtained from only occipital-ventral/dorsal sour-

ces without considering the PFC). Therefore, we need to explic-

itly consider PFC and occipital-ventral/dorsal activity together

(synergistically) to understand the role of PFC on the occipital-

ventral/dorsal representation of the feature.

This synergy analysis revealed the four spatiotemporal maps

in the PFC shown in Figure 5—i.e., opponent and unidirectional

seeds 3 task-relevant and irrelevant feature conditions. Each

map indicates where, when, and how strongly each pair of

PFC and occipito-ventral/dorsal sources worked together as a

network in representing feature F, separately for when F was

task relevant and irrelevant.

When F is task relevant, Figure 5A shows that the orbitofrontal

and ventromedial PFC (vmPFC) interact with both unidirectional

and opponent seed sources during stages 1 and 2 (96–150 ms)

(unidirectional seeds, maximum = 8/10 participant, MAP [95%

HPDI] prevalence49 = 0.80 [0.49–0.96]; opponent seeds,

Figure 5. Early network interactions between PFC sources and occipito-ventral/dorsal sources

(A) Synergistic interactions when feature is task relevant. Unidirectional and opponent occipito-ventral/dorsal seed sources are color-coded by participant. Gray

levels indicate participant prevalence (R5) of synergistic interactions, computed as synergy(F; seed sourcet; PFC sourcet), revealing involvement of orbitofrontal

and ventromedial PFC regions, from 96 to 120 ms, FWER p < 0.05. Unidirectional seeds, maximum = 8/10 participant, MAP [95% HPDI] prevalence49 = 0.80

[0.49–0.96]; opponent seeds, maximum = 7/10 participant, MAP [95% HPDI] prevalence49 = 0.70 [0.38–0.90].

(B) Synergistic interactionswhen feature is task irrelevant. Unidirectional and opponent seeds synergistically interact mainly with orbitofrontal regions of PFC from

71 to 95 ms, ending before the beginning of stage 2 (121 ms). Unidirectional seeds, maximum = 9/10 participant, MAP [95% HPDI] prevalence49 = 0.90 [0.61–

0.99]; opponent seeds, maximum = 6/10 participant, MAP [95% HPDI] prevalence49 = 0.60 [0.28–0.83].
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maximum = 7/10 participant, MAP [95% HPDI] prevalence49 =

0.70 [0.38–0.90]). Critically, the vmPFC interacts with occipital

opponent sources primarily during stage 2, when occipital cortex

passes task-relevant features into the ventral pathway but re-

duces task-irrelevant features. This suggests that the vmPFC

is involved with maintaining representations of stimulus features

when they are task relevant across stages 1 and 2, enabling their

subsequent processing in the ventral pathway.

By contrast, when the same F is task irrelevant, Figure 5B

shows that the unidirectional occipital sources interact primarily

with PFC orbitofrontal region, in stage 1 (71–95 ms) (maximum =

9/10 participant, MAP [95% HPDI] prevalence49 = 0.90 [0.61–

0.99]). There is no clear PFC network interaction pattern for

opponent seeds. These network interactions suggest that the

PFC plays a role in guiding early attention and feature reduction.

The orbitofrontal region of the PFC interacts with the occipital-

ventral/dorsal pathway to represent task-irrelevant features

before these features are halted at the junction between the oc-

cipital and temporal regions, followed by their subsequent

reduction during stage 2.

In sum, our network analyses show that different regions of PFC

get involved with the early occipito-ventral/dorsal representations

of the same stimulus feature, depending on its task relevance.

Specifically, when a feature is task relevant, the orbitofrontal

PFC and vmPFC modulate its unidirectional and opponent repre-

sentations during stages 1 and 2 (�96–150 ms), when the feature

progresses from occipital into ventral/dorsal pathways for pro-

cessing for behavior. By contrast, when the same physical feature

is task irrelevant, the orbitofrontal PFCmodulates its unidirectional

occipital representation at stage 1 (�71–120 ms), and that occip-

ital cortex then reduces from�120 ms. These distinct network in-

teractions therefore suggest that the PFC regulates how occipito-

ventral/dorsal pathways transform image representations into the

lower-dimensional feature manifolds based on the task at hand.

DISCUSSION

At a systems level, we aimed to provide a detailed descriptive

model of where, when, and how the brain networks of individual

participants transform an identical set of high-dimensional input

images into different low-dimensional manifolds of categoriza-

tion features that support behavior in four different tasks—i.e.,

face expression, face gender, pedestrian gender, and vehicle

type. We revealed three stages that transform stimulus features

into task-specific manifolds under PFC influence. Using preci-

sion neuroimaging and a dense-sampled design, we replicated

these three stages in at least 8/10 participants, conferring high

Bayesian population replication probability.49

Feature processing63,64 is foundational to recognition,65,66

working,67–69 and semantic memory,70,71 extending to conscious

perception72,73 and now crucial to understand interactive hierar-

chical models that disambiguate representations across cortical

layers.16,17,39,74 For instance, categorizing vehicle type should

elicit predictions of the participant’s vehicle features, whose top-

downflow tooccipital cortex should interactwithbottom-up input.

Weshowed that distinct tasks (e.g., vehicle typeversuspedestrian

gender) elicited top-down PFC influences from stage 1, suggest-

ing that network mechanisms determine relevance (and progres-

sion) versus irrelevance (and reduction) of the same physical

feature from occipital cortex. Categorization models, including

deepneuralnetworks (DNNs), should replicate thesemechanisms,

yielding similarly understandable feature manifolds in each task.2

Otherwise, though DNNs might predict category membership as

humans do, features and transformations might diverge.75

The critical first 150 ms
Stimulus transformations observed at stages 1 and 2 largely

align with early selection models of attention.76,77 Task-relevant

features are selected (filtered in) and transformed for behavior

whereas task-irrelevant features are quickly reduced (filtered

out). Synergistic interactions during stage 1 (orbito-frontal and

ventral-medial PFC) orchestrate feature processing based on

task relevance versus irrelevance. The synergistic interactions

mean that stage 1 PFC activity modulates representation of fea-

tures in occipito-ventral/dorsal pathways rather than directly re-

sponding to their visibility. This aligns with an early top-down

modulation of PFC on the bottom-up feature representations

leading to behavior,19,78 underscoring the role of task constrains

on feature filtering mechanisms in capacity-limited systems.79

Further research delving into finer granularities of neural re-

sponses18,80–82 could inform these mechanisms.

Sustained feature manifold representations occur in each task

between stimulus and behavior. How do gain functions and recur-

rent/interactive activations in the pathways’ cortical layers uphold

these task-relevant feature representations? Conversely, when

these same features are task irrelevant, they are only briefly repre-

sented inoccipital cortex. Fusing individualMEGsourceamplitude

Table 1. Cortical sources categorized into four regions of the

Talairach-Daemon atlas

Occipital region lingual gyrus (LG)

cuneus (CUN)

inferior occipital gyrus (IOG)

middle occipital gyrus (MOG)

superior occipital gyrus (SOG)

Temporal region fusiform gyrus (FG)

inferior temporal gyrus (ITG)

middle temporal gyrus (MTG)

superior temporal gyrus (STG)

Parietal region superior parietal lobule (SPL)

inferior parietal lobule (IPL)

angular gyrus (ANG)

supramarginal gyrus (SMRG)

precuneus (PRECUN)

postcentral gyrus (POSTCEN)

Frontal region anterior cingulate (AC)

inferior frontal gyrus (IFG)

medial frontal gyrus (MeFG)

middle frontal gyrus (MiFG)

orbital gyrus (OG)

paracentral lobule (PL)

precentral gyrus (PRECEN)

superior frontal gyrus (SFG)

Talairach-Daemon atlas.94
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data with 7T fMRI cortical layer bold responses could provide in-

sights intohow theoccipito-ventral cortical layers42,81,83differently

represent identical stimulus featuresbasedon task relevance.This

could elucidate howopponent representationsof the same feature

result from variations in layered cortical activity.

The 100–170 ms occipito-ventral/dorsal junction and
subsequent visual categorizations
Task-dependent reduction versus passing of stimulus features

happen at the occipito-ventral and dorsal junction, around the

timing of occipito-ventral N/M170 ERP.53,55–57,59,84,85 The

N/M170 reflects a network communicating to rFG stimulus fea-

tures contra-laterally represented in occipital cortices.57 Our re-

sults suggest an N/M170 reinterpretation. We showed that brain

signal variance over �50 ms preceding the N/M170 peak (Fig-

ure 3B) reflects when brain networks transition from high-dimen-

sional (stage 1) to lower-dimensional task-relevant feature mani-

folds (stage 2). This transition could explain why the N170 has

been associated with multiple face, object, and scene categori-

zations.53,55,57,59 Stage 2 transition also coincideswith task-rele-

vant features represented in occipital cortex converge/buffer

into rFG.4,57 Stage 3 could integrate4,47 these lateralized features

into bi-lateral representations (as suggested43). Here again,

fusion of MEG and 7T fMRI,18,81,83,86 could reveal how cortical

layers integrate lateralized features into bi-lateral ‘‘stitched up’’

representations, pre- and post-170 ms, as we showed with

simpler stimuli and tasks.47,87

When brain networks effectively categorize the stimulus, it re-

lates to the feature contents that are consciously accessed. Pre-

vailingmodels72,73 suggest features are ‘‘dispatched’’ to working

memory for conscious access. Our data suggest feature mani-

folds are maintained from occipital to higher regions57,88 jointly

acting as functional memory.73 Conscious access89,90 could

align with the manifolds at stage 3, contrasting with features

reduced in occipital cortex at stage 2. This presents a tangible

methodology to explore the complex landscape of conscious

perception, including the influence of memory and prediction,

as the feature manifolds likely represent predicted contents.19,91

Remember we flagged that the eyes were processed in both

face tasks, even when irrelevant in face expression. We docu-

mented a similar result over the N170 ERP time course56,60

where the systematically represented eyes were not always

necessary categorize facial expression. Others suggested the

eyes are the first contact with a face.92 We show that the brain

represent the eyes and other face features in different tasks,

which could explain why a more negative voltage N170 ERP is

often reported for faces.53,59,84 Such systematic rFG representa-

tions of spatially distributed features across the face could also

explain its apparent ‘‘holistic representation.’’93

The image is more broadly represented in the face tasks than

in the other two tasks. This likely results from a combination of

inter-subject variability, cortical magnification, and attention.

Specifically, the face is spatially broader in our stimuli than the

pedestrian and vehicle. In the face tasks, participants likely at-

tended to a larger region than in the pedestrian and vehicle tasks,

which could also increase inter-subject variability. Together,

these factors could have contributed to the broader image rep-

resentation in the face tasks.

We studied pervasive mechanisms that dynamically transform

the same complex, high-dimensional input images for multiple

visual categorizations.Within 150ms post-stimulus, the occipital

cortex, under frontal guidance, either passes or reduces a

feature based on its relevance in a categorization task, revealing

opponent representational signatures at the MEG source-level.

Following this, occipito-ventral and dorsal networks focus on

the feature manifolds relevant to each categorization task. These

feature transformations offer mechanistic insights into attention

theories, face and object categorizations, and our understanding

of conscious perception.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Philippe G. Schyns

(philippe.schyns@glasgow.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data reported in this study and the custom code for analyses are deposited at Mendeley Data: https://doi.org/10.17632/fd2zjrfgbc.2.

Custom code for experiment and visualization are available by request to the lead contact.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Ten participants (3 males and 7 females, age: M = 25.3, SD = 1.64, range = 23-28 years old) with normal or corrected to normal vision

participated in all four tasks and gave informed content. All participants were right-handed. Participant gender was not considered in

the study design. The experiment was conducted in University of Münster, Germany. The study was approved by the ethics com-

mittee of the University of Münster (2019-198-f-S) and conducted in accordance with the Declaration of Helsinki.

METHOD DETAILS

Stimuli
We used 64 base greyscale images (8 face identities with 4 male and 4 female 3 2 expressions 3 2 pedestrians 3 2 vehicles) of a

realistic city street scene comprising the combinations of varying embedded targets: a central face (which was male vs. female and

happy vs. neutral), left flanked by a pedestrian (male vs. female), right flanked by a parked vehicle (sedan vs. SUV). The images were

presented at 5.72� 3 4.4� of visual angle, with 364 3 280 pixel size. We sampled information from each image, using the Bubbles

procedure. Specifically, wemultiplied the image with randomly positioned Gaussian apertures (sigma = 15 pixels) to vary the visibility

of image features on each trial. We used 35 Gaussian apertures in all tasks, which was determined by a behavioral experiment pilot

with 4 participants to achieve strong categorization performance across the four tasks. Using 0.2 as the threshold for visible pixels,

there were �33% pixels preserved on average. However, the pixel visibility is a continuous scale instead of a simple binary state.

Figure 1B provides two intuitive examples of the images showing how much of each image is preserved in each trial.

We pre-generated 768 randombubblemaskswhichwere the same in all categorization tasks. On each session of trials, we applied

the 768 masks to 12 repetitions of the original 64 images, for a total of 768 trials presented in a random order.

Task procedure
Each trial began with a fixation cross presented for a random time interval 500-1000 ms, followed by one of the original stimuli

for 150 ms, whose features were randomly sampled with the Bubbles procedure. Participants were instructed to maintain fixation

on each trial and respond as quickly and accurately as possible, by pressing one of two keys ascribed to each response

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Stimuli This paper Mendeley Data: https://doi.org/10.17632/fd2zjrfgbc.2

Raw and analyzed data This paper Mendeley Data: https://doi.org/10.17632/fd2zjrfgbc.2

Raw MEG data This paper Available upon request

Software and algorithms

MATLAB R2015b Mathworks RRID: SCR_001622

Psychtoolbox-3 http://psychtoolbox.org RRID: SCR_002881

FieldTrip http://www.fieldtriptoolbox.org/ RRID: SCR_004849

Custom code This paper Mendeley Data: https://doi.org/10.17632/fd2zjrfgbc.2
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choice—i.e. ‘‘happy’’ vs. ‘‘neutral’’ in face expression; ‘‘male’’ vs. ‘‘female’’ in face gender task; ‘‘male’’ vs. ‘‘female’’ in pedestrian

gender; ‘‘sedan’’ vs. ‘‘SUV ‘‘in vehicle type. Each task comprised two sessions of trials, each comprising 768 trials (of 6 runs followed

by a short break, each run comprising 128 trials = 8 identities3 2 expressions3 2 pedestrians3 2 vehicles3 2 repetitions). Tables S1

and S2 report the categorization accuracy and reaction time.

MEG data acquisition
Participants were seated upright in a magnetically shielded room while we simultaneously recorded MEG and behavior data. Brain

activity was recorded using a 275 channel whole-headMEG system (OMEGA 275, VSMMedtech Ltd., Vancouver, Canada) at a sam-

pling rate of 600 Hz. During MEG recordings, head position was continuously tracked online by the CTF acquisition system. For MEG

source localization, we obtained high-resolution structural magnetic resonance imaging (MRI) scans in a 3TMagnetom Prisma scan-

ner (Siemens, Erlangen, Germany).

Pre-processing
Weperformed analyses with Fieldtrip95 and in-houseMATLAB code, following recommended guidelines.62We first visually identified

noisy channels and trials with epoched data (-400 to 1500ms around stimulus onset on each trial) high-pass filtered at 1 Hz (4th order

two-pass Butterworth IIR filter). Next, we epoched the raw data into trial windows (-400 to 1500 ms around stimulus onset, 1-25 Hz

band-pass, 4th order two-pass Butterworth IIR filter), filtered for line noise (notch filter in frequency space), applied fieldtrip built-in

denoise function specific to the MEG system, and rejected noisy channels and trials identified in the first step. We then decomposed

the data with ICA, and visually identified and removed the independent component corresponding to artifacts (eye blinks or move-

ments, heartbeat).

Source reconstruction
We applied a Linearly Constrained Minimum Variance (LCMV) beamformer96 to reconstruct the time series of 12,773 sources on a

6mm uniform grid warped to standardized MNI coordinate space. Using a Talairach-Daemon atlas,94 we excluded all cerebellar and

non-cortical sources, and performed statistical analyses on the remaining 5,107 cortical grid sources. We categorized cortical sour-

ces into four regions based on ROIs defined in the Talaraich-Daemon atlas.94 Figure S6 visualizes the localization of these regions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Feature representation
What is it?

Feature representation refers to a systematic relationship between a feature of the external world and neural activity.97 Our method-

ology quantifies the representation of a visual feature so that we can trace where, when and how the brain processes it.

How is a feature representation quantified?

In our data, the visibility of a feature in a stimulus varies in a continuousmanner across trials–i.e. it is not a binary feature present vs.

absent. To measure the representation of the feature into MEG activity, we use Mutual Information (specifically, the Gaussian

Copula MI, GCMI).11 GCMI quantifies across trials how strongly the variations of MEG amplitude represent the variations of feature

visibility in the stimuli–i.e. as the information that MEG amplitude variations and feature visibility variations share, measured on the

scale of bits.

For example, Figure S4A now plots the mean MEG amplitude response curves, where all trials are split into 5 equally occupied

feature visibility bins–quintiles of the empirical CDF of feature visibility. Statistical difference between thesemean curves is consid-

ered to reflect important processing differences across feature visibility conditions. Figure S4 clarifies that the highest MI measure

of feature representation corresponds to largest differences amongst mean MEG responses to the different bins of feature

visibility.

The MEG amplitude curves evolve with peaks and troughs. These peaks and troughs can reflect representations of other features

and/or cognitive variables. However, the feature representation curve underneath in Figure S4B does not mirror the MEG peaks

because our information theoretic analysis specifically isolates, from rawMEGamplitude variations, the information that only pertains

to the tested stimulus feature.

Feature manifolds
We used ‘manifold’ in its mathematical understanding, as a topological space that locally resembles Euclidean space. In neuroscience,

‘neural manifold’ is often used to refer to geometric structures in neural population activity–i.e. a subspace of neural state space.98,99

We deliberately used ‘feature manifold’ to refer to the geometric structure of visual inputs (e.g. images) that are represented in neu-

ral activity. Object categorization relies on diagnostic features, which we show underline categorization behavior. However, a given

object can be categorized in multiple different ways, each relying on distinct sets of diagnostic features. This implies that the brain

must represent different stimulus feature manifolds for this object. This is often neglected in neuroimaging studies of visual catego-

rization. We show that only a subspace of the 2D projection of the real-world (i.e. the image) is selected for categorization, in a task

and participant-specific way.
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Participant features (supports Figures 1, 2, and S1)
To reveal what image features each participant used to in each categorization task (i.e. the task-relevant features), we quantified the

cross-trial statistical dependence between the visibility of each pixel (due to bubbles sampling10 on each trial) and the corresponding

correct vs. incorrect response of the participant in this task, computed asMutual Information,11,51 MI(pixel visibility; correct vs. incor-

rect categorization). We represented pixel visibility on each trial as a real number from 0 to 1 (low to high visibility), which we then

binarized using a 0.2 threshold into 2 categories: 0 for low visibility and 1 for high visibility. To establish statistical significance, we

ran a non-parametric permutation test with 1,000 shuffled repetitions, corrected over 364 x 280 pixels using maximum statistics

(FWER p < 0.05). Significant pixels represent the participant’s task-relevant features whose visibility influences their categorization

behavior in each task (see Figures 1, 2A, and S1).

Generally, participants used similar strategies in two sessions, though some used different strategies. Because features obtained

from reverse correlation cover different aspects of the image they are constrained to the same psychophysical scale between tasks.

We highlight that this is not problematic for our rank-based information theoretic analysis.

Global representation of image pixels in brain networks (supports Figure 2)
To visualize the global representational dynamics of the visual stimuli in each categorization task, we computed MI(pixel-visibility,

MEGt) for each one of the 364 x 280 stimulus pixels (downsampled to 61 x 47 for computational efficiency), 5,107 cortical MEG

sources and 271 time points, producing a 3D matrix of MI values of dimensions 2867 (61 x 47) pixels x 271 time points x 5,107

sources. MI quantifies the statistical dependence between two variables. We calculate MI between the continuous valued pixel

visibility (bubble mask value) and the continuous valued MEG amplitude at a given source and timepoint with Gaussian Copula

Mutual Information (GCMI).11 The empirical Cumulative Distribution Function (CDF) of the marginal distribution of each variable

(pixel visibility and MEG) is estimated, and the data are transformed via the inverse CDF of a standard normal distribution. This

results in a data set with perfect standard normal marginal distributions, but the same empirical copula as the original data.

Then standard analytic expressions for bias-corrected Gaussian MI are used. As MI is invariant to marginal distributions, and

Gaussian distribution has maximum entropy given constrained second moments, this GCMI procedure provides a lower bound

estimate of the true MI.11

We then segmented the time dimension into nine periods ([50–70], [71–80], [81–90], [91–120], [121–140], [141–150], [161–200],

[221–280], [291–350] ms). To visualize the pixels that the MEG sources of each participant represent, we pooled all the pixels with

statistically significantMI on at least one source on the considered period. To compute this statistical significance in each participant,

for each pixel, we took the maximum MI(pixel visibility, MEGt) at each time point, resulting in a pixels x time matrix. We performed a

FDR test on this matrix with a false discovery rate set at q = 0.001. For each image pixel, we color-coded in Figure 2A the number of

participants with such significant MI (maximum number = 9, Maximum A Posteriori (MAP) [95% Highest Posterior Density Interval

(HPDI) prevalence49 = 0.90 [0.61 – 0.99]). Figures deposited at Mendeley Data: https://doi.org/10.17632/fd2zjrfgbc.2 show image

representational transformations over the entire time course.

Feature mask and visibility (supports Figures 3 and 4)
As different participants can use different features in each task, to generalize analyses across participants, we transformed the

data from levels of pixel visibility into levels of feature visibility F (i.e. comprising the pixels making up the features of each

participant). To this end, for each feature we selected the top 5% pixels with highest MI(pixel visibility; correct vs. incorrect

categorization) to form feature masks. On each trial, we computed feature visibility F as the feature mask pixels shown by

the bubbles sampling, weighted by the MI values of each pixel of the feature mask. To better trace the early contralateral pro-

jection in visual cortex, we divided mouth (for face expression) and eyes (for face gender) features into their left and right com-

ponents and considered them as a 2-dimensional feature variable in our analyses. Figure S1 shows the feature masks of each

participant and task.

F =
X

i

MIðPixeli visibility;BehaviorÞ$Pixeli visibility (Equation 1)

It is worth noting that the maximum statistic that we use is stringent. A participant without any significant pixel in the behavioral

analysis does not necessarily imply that these pixels have no influence on their behavior or are not represented in their brain activity.

Therefore, when calculating feature representations in the brain in following analysis, we used as the task-relevant feature the top

5% of pixels with highest MI. To eliminate the effects of noise pixels included in the top 5% pixels, we used MI(pixel visibility; MEG

amplitude) as the weight for each pixel when calculating the feature visibility. Thus, the contribution of those pixels with lowMIwill be

small.

Feature representation on MEG sources (supports Figures 2, 3, and 4)
To reconstruct where, when and how MEG sources represent each participant’s features, we computed MI between F of each feature

and5107MEGsourcesignals over0 to450ms, ineach task—i.e.when the feature is task-relevant, andalso in the threeother taskswhen

it is task-irrelevant, computed asMI(F; MEGt ) with GCMI as described above.11 To establish statistical significance, we ran a non-para-

metric permutation test with 1,000 shuffled repetitions, corrected (FWER p < 0.01) over 5107 sources x 271 timepoints with maximum

statistics. This computation produces a 4 (tasks) x 4 (features) x 5,107 sources x 271 time points feature representation matrix for each
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participant. See Figures deposited at Mendeley Data: https://doi.org/10.17632/fd2zjrfgbc.2 for the spatiotemporal dynamics of feature

representations in individual participants.

Variance of MEG amplitude
We measured the cross-trial variability of the MEG amplitude at each time point. It was calculated by var(MEG amplitude)./ mean(-

var(MEG amplitude)), where mean(var(MEG amplitude)) is the average variance of MEG amplitude over time for normalization. So,

Figure 3B shows how the cross-trial variability of MEG amplitude changes over time. Gradient is rate of change or slope.

Task modulation of feature representation on MEG sources (supports Figures 3 and 4)
When considering the influence of the task factor on the representation of F, synergy comes into play. We use information theoretic

synergy to quantify how the variables MEG response and task together provide more information than the sum of the information

provided by each variable individually:

SynergyðF; MEGt; TaskÞ = MIðF; MEGt j TaskÞ -- MIðF; MEGt Þ (Equation 2)

If the task doesn’t influence the representation of F in MEG then the two mutual information (MI) terms in (2) won’t show any dif-

ference, leading to a synergy value of zero. That is, the difference in the representation strength of F in MEG amplitude when we con-

dition out the effect of task (first MI term) vs. when the effect of task is present (second MI term) will be 0.

If the task factor does not influence F representation, then the MI quantities in (2) will not differ resulting in zero synergy. Thus, sig-

nificant synergy occurs when the average representational strength of F is higher when the task is controlled, implying that we would

better predict the F from brain activity if we also knew what task was performed. Synergy quantifies how much the different tasks

modulate the feature representation in MEG.

To quantify the modulation effect of the four categorization tasks on the representation of the participant’s features into MEG

source activity, we computed information theoretic synergy, as just defined, between 0 and 450ms post-stimulus, for each partic-

ipant feature, where the categorization tasks variable has values of 1 to 4 to represent each task. To establish statistical signifi-

cance, we use a nonparametric permutation test, with 1,000 repetitions, shuffling the task label of each trial, corrected over

5107 sources * 271 timepoints (FWER p < 0.01). This provides permutation samples from the null distribution where task does

not affect feature representation.

Task-relevant vs. task-irrelevant
To quantify the specific modulation of task-relevance vs. irrelevance on the MEG source representation of each participant feature,

we computed again synergy, this time as synergy(F; MEGt; task-relevance), where task-relevance could be 1 (for task-relevant) or

0 (for task-irrelevant). We observed synergy arising from two different representational mechanisms: Opponent feature representa-

tion and unidirectional feature representation. We define each below.

Opponent feature representations

Opponent feature representation on a given source means this: the same physical variations of feature visibility incur MEG ampli-

tudes in opposite directions depending onwhether this feature is task-relevant vs. task-irrelevant. Figure S4 illustrates this opposition

in the shaded time window. We can see that the same changes in feature visibility give rise to MEG amplitude changes in opposite

directions in the task-relevant and task-irrelevant binned MEG amplitude curves. Specifically, when the feature is task-relevant, the

MEG amplitude response is more negative to higher feature visibility; in contrast, when the feature is task-irrelevant, the MEG ampli-

tude response ismore negative to lower feature visibility. It is important to note that this reversal refers to a difference in the sign of the

correlation between feature and MEG–although we use MI, which is an unsigned measure. This reversal is not a statement about the

sign of the evokedmagnetic field. As shown in the example, there is a change in the sign of the correlation relationship, but the evoked

MEG signal has negative sign in both cases. This implies that significant MI for F in multiple tasks, but their synergy reveals that this

representational relationship depends on task.

We formalize this effect as the following logical conjunction (see Figure 4C).:

Opponent feature representation:-

<significant task-relevant MI>

& <task-irrelevant MI>

& <significant synergy>

& <opponent signs for relevant vs irrelevant>

Unidirectional task-relevant feature representation

Occurs when a given source represents a participant feature only when it is task-relevant. We define this synergy as (see Figure 4D):

Unidirectional task-relevant feature representation:-

<significant task-relevant MI>

& <no significant task-irrelevant MI>

& <significant synergy>

Given that eyes are represented in brain activity in the face expression task when they are task-irrelevant, we excluded the eyes in

face expression task from the task-irrelevant condition.
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Bayesian population prevalence
Table 2 below provides a reference to transform the proportion of participants from the sample who have a significant effect into the

Bayesian population prevalence.49 Population prevalence is a Bayesian estimate of the within-participant replication probability.

Replicating a result in multiple participants offers a much higher standard of evidence than to declare statistical significance of a pop-

ulation mean effect. For example, p = 0.05 typically defines population mean statistical significance; p < 0.001 would be considered

stronger evidence. In Figure 3A (diagonal of the matrix), we show 8/10 participants have significant MI task-relevant feature represen-

tations in occipital and ventral cortex (FWER p < 0.01). The p-value corresponding to this result (i.e. for the observation 8/10 significant

at p=0.05) under the global null that no one in the population shows this effect is 1.6x10-9. Under the global null our results are therefore

7 orders of magnitude more surprising than a typical mean demonstrating the experimental effect at the population level. Here, we

report Bayesian estimates of the population parameter with their associated uncertainty. Given 8/10 participants significant at

p = 0.01, we can be confident that the population replication probability is greater than 49%. We would expect the majority of the

population to show this result if they were tested in the same experiment.
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