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Neural representational geometries reflect
behavioral differences in monkeys and
recurrent neural networks

Valeria Fascianelli 1,2 , Aldo Battista 3, Fabio Stefanini1,2, Satoshi Tsujimoto4,
Aldo Genovesio 5 & Stefano Fusi 1,2,6,7

Animals likely use a variety of strategies to solve laboratory tasks. Traditionally,
combined analysis of behavioral and neural recording data across subjects
employing different strategies may obscure important signals and give con-
fusing results. Hence, it is essential to develop techniques that can infer
strategy at the single-subject level. We analyzed an experiment in which two
male monkeys performed a visually cued rule-based task. The analysis of their
performance shows no indication that they used a different strategy. However,
whenweexamined thegeometry of stimulus representations in the state space
of the neural activities recorded in dorsolateral prefrontal cortex, we found
striking differences between the two monkeys. Our purely neural results
induced us to reanalyze the behavior. The new analysis showed that the dif-
ferences in representational geometry are associated with differences in the
reaction times, revealing behavioral differences we were unaware of. All these
analyses suggest that themonkeys are using different strategies. Finally, using
recurrent neural network models trained to perform the same task, we show
that these strategies correlate with the amount of training, suggesting a pos-
sible explanation for the observed neural and behavioral differences.

Although the tasks designed in a laboratory are relatively simple and
are performed in highly controlled situations, different animals can
still adopt different strategies to solve the same task. It is surprisingly
difficult to reproduce the exact same behavior in other laboratories,
evenwhen the training protocol, the experimental hardware, software,
andprocedures are standardized1. Inmany situations, it is alsopossible
that the behavioral performance is the same, but the strategy used to
perform the task is different. Consider, for example, a task in which
multiple stimulus properties must be mapped onto appropriate
behavioral responses. Such a task can be accomplished by rote learn-
ing of this map, but if the task involves structure across stimulus
attributes, including irrelevant stimulus features, learning can be

simplified by adopting more “intelligent” strategies that exploit this
structure. All these strategies may produce the same level of task
performance, so how can we reveal them?

Here, we showthat this canbedonebyexamining the geometryof
stimulus representations in the state space of recorded neural activ-
ities in the dorsolateral prefrontal cortex. The recorded neural
responses are typically very diverse and seemingly disorganized2–5.
However,when the neural activity is analyzed at the population level, it
is often possible to identify interesting and informative “structures”.
The analysis of the geometryof the neural representations has recently
revealed that some variables are represented in a special format that
enables generalization to novel situations6. The representational
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geometry is defined by the distances between points representing
different experimental conditions in the neural activity space. The set
of points of all the experiment conditions defines an object with spe-
cific computational properties7, which can be preserved across
subjects8. For example, if the points define a high-dimensional object
(in this article, we always consider the embedding dimensionality9

when we speak about dimensionality), then a linear decoder can
separate the points in a large number of ways, permitting a down-
streamneuron toperformmanydifferent tasks2,3. If, instead, thepoints
define a low-dimensional object, the representations allow a simple
linear decoder of one variable to generalize across the values of other
variables6. These representations have been called abstract because of
their generalization properties, and they are known as disentangled
representations in the machine learning community10,11. Abstract
representations have beenobserved in several brain areas6,12–20, but it is
still unclear whether they are linked to behavior. As pointed out by
Krakauer et al.21, a new conceptual framework that meaningfully maps
the neural data to behavior is necessary to understand the brain-
behavior relationship better, and to accomplish that, the analysis of
thebehavior shouldbe asfine-grained as the analysis performedon the
neural data.

Here, we show that differences between neural representational
geometries across subjects reflect significant differences in their
behavior, providing evidence that the aspects of the representational
geometry we studied here could affect behavior. Our results indicate
that the analysis of the representational geometry can be an important
tool for reliably interpreting individual differences in behavior.

More specifically, we analyzed the activity of neurons recorded in
the dorsolateral prefrontal cortex (PFdl) of twomonkeys performing a
visually cued rule-based task22. The task required choosing between
two spatial targets based on the rule cued by a visual stimulus, either
stayingwith the same response as in the previous trial (after a stay cue)
or shifting to the alternative response (after a shift cue). Crucially, the
average task performance was the same for the two monkeys.

We systematically studied the aspects of the geometry of neural
representations that have interesting computational implications6.
Our analysis revealed that the representational geometry is strikingly
different for the two monkeys: the first monkey is more “visual”,
representing the shape of the visual cues in an abstract format. The
second monkey is more “cognitive,” representing the rule in an
abstract format. Thisfinding brought us to reanalyze the behavior, and
we discovered that the reaction time patterns actually reflect the dif-
ferent representational geometries.

We then used Recurrent Neural Network (RNN) models to explain
mechanistically these differences. We trainedmultiple RNNs to perform
the same cued rule-based task used in the experiment. Each RNN was
randomly initialized and trained on a different sequence of stimuli. The
training was interrupted when the RNN reached a certain level of per-
formance. Although all the different RNNs performed equally well, dif-
ferent networks exhibited different representational geometries. Given
the same learning stage, the geometries of the networks that reached
high performance earlier were similar to those observed in the more
“visual” monkey, while the RNNs that learned more slowly exhibited a
geometry that resembled the one more “cognitive” monkey. The reac-
tion times of the RNNs and the monkeys exhibited the same patterns.

Our study demonstrates that the analysis of representational
geometry enables us to discern individual differences in task-
performing strategies. Furthermore, the compelling connection we
established between the representational geometry and observed
behavior underscores the critical role these geometric aspects might
play in the execution of the task.

Results
We analyzed single-unit recordings in the dorsolateral prefrontal cor-
tex (PFdl) of two male rhesus monkeys. As the main message of this

work is that the representational geometry can explain the differences
in the behavior of the two monkeys, we will present the neural and
behavioral results for each monkey separately. We refer to them as
Monkey 1 and Monkey 2.

Both monkeys were trained to perform a visually cued rule-based
task (Fig. 1A). The task was to choose one of two spatial targets with a
saccadic movement, according to the rule instructed in each trial by
one of four possible visual cues (Fig. 1B). Two cues instructed the
monkey to “stay”with the target chosen in the previous trial, while the
other two cues instructed to “shift” to the alternative target. In each
trial, the visual cuewas randomly chosen. At the timeof the recordings,
both monkeys had already been trained, and they performed the task
with the same high accuracy.

We found significant differences between the twomonkeys when
we analyzed the geometry of the neural representations recorded
during the task. The representational geometry is defined by the set of
distances between the points in the firing rate space that represent
different conditions (see ref.23). This is a relatively large set of variables,
which are not defined in a unique way as there are several reasonable
measures of distances in the presence of noise. We focused on three
particular aspects of the geometry that have the advantage of being
cross-validated and interpretable: the first is the set of linear decoding
accuracies for the task-relevant variables and all the other variables
that correspond to balanced dichotomies of the conditions (i.e., all the
possible ways of dividing the conditions into two equal groups). The
task-relevant variables are the previous response, the rule, the current
response, and the shape of the visual cue (Fig. 1D). What we defined as
shape identifies whether the visual cue is a rectangle or a square,
although the cues also differ because the rectangles are gray with
different orientations and the squares are colored (yellow and purple).
The decoding accuracy is directly related to the distance between two
groups of points, and in this respect, it is a geometrical measure. It is
better than the average distance because it is cross-validated and it
takes into account the structure of the noise, similar to the Mahala-
nobis distance24. Moreover, it is interpretable because it tells us
something about the variables that are represented.

The second aspect of the geometry is related to the ability of a
linear classifier to generalize across conditionswhen trained to decode
the balanced dichotomies (cross-condition generalization perfor-
mance or CCGP6). For example, consider a representation of a visual
stimulus that is characterized by a shape and a color. Shape can be
either a triangle or a circle, and color is either red or blue, for a total of
4 different stimuli. In Fig. 2A we show two possible geometries. Each
point represents the response of a population of three neurons to one
of the four stimuli. The activity of each neuron is represented along a
different coordinate axis. The geometry depicted in Fig. 2A-left shows
the 4 points arranged on a square (factorized or disentangled repre-
sentation), where shape and color are encoded along two orthogonal
directions. The CCGP for shape is defined as the performance of a
linear decoder to report the shape of the stimulus (circle or triangle)
when its color is blue (testing set), after it was trained only on red
stimuli (training set). For this kind of geometry, the linear decoder
trained to classify the red stimuli can readily generalize to blue objects,
resulting in high CCGP for variable shape. For this geometry, color also
has an elevated CCGP (a decoder trained to report color for triangles
would generalize right away to circles). TheCCGPof shapedepends on
the angles between codingdirections and inorder togeneralize to blue
objects, it is necessary that the coding direction of shape for red sti-
muli (i.e., the direction from the points corresponding to neural
activities from circle to triangle) is approximately the same for stimuli.
If we consider a second kindof geometrywhere the 4 points areplaced
at randompositions in the activity space (Fig. 2A-right), CCGP is low as
a decoder trained to classify the shape only on red objects does not
generalize to the blue ones. In general, a variable with high CCGP is
encoded in a special format that we define as “abstract”6. The variable,
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i.e. shape, is encoded in an abstract format (or simply, it is abstract)
because the codingdirectiondoes not dependon the specific instance,
i.e., color. CCGP also takes into account the noise structure, and it is
cross-validated.

The third aspect of the geometry is the dimensionality of the
representation, which we assessed by using the shattering dimen-
sionality. The shattering dimensionality is defined as the average linear
decoding performance for all possible balanced dichotomies. A high
shattering dimensionality means that the linear decoder can separate
(shatter) the points in any possible way, enabling a linear readout to
perform a large number of input-output functions, like the Exclusive
OR (XOR) configuration, that wouldn’t be possible in case of low
shattering dimensionality (see Fig. 2B)2,6.

Differences between the neural representational geometries of
the two monkeys
We recorded 289 neurons from Monkey 1 and 262 neurons from
Monkey 2 in PFdl (Fig. 1C). To investigate which task variables can be
decoded, we built pseudo-simultaneous trials (pseudo trials) for each
monkey separately (see Methods). We defined the pseudo trial as the

combination of spike counts randomly sampled fromdifferent trials of
the same task condition2. For each neuron, the spike count was esti-
mated in a 200ms time bin. We considered only neurons recorded for
at least 5 complete and correct trials (not correction trials) in each task
condition for a total of 205/289 (71%) neurons for Monkey 1 and 188/
262 (72%) neurons for Monkey 2.

We found that in Monkey 1, almost all the dichotomies can be
linearly decoded during the cue presentation (Fig. 3A). This is not
surprising, as it has already been observed in cognitive areas of
monkeys2,6. It is typically the expression of the high dimensionality of
the neural representations (for the maximal dimensionality, all
dichotomies are linearly decodable) and a consequence of the
diverse mixed selectivity responses of the neurons. However, this
does not necessarily mean that the representations are completely
unstructured. Indeed, in ref.6, high decodability coexisted with ele-
vated CCGP for a few variables, which instead indicates low dimen-
sionality. This is the case also in our dataset, in which we observed a
much smaller number of dichotomies to be in an abstract format, i.e.,
with a high CCGP (Fig. 3B). In Monkey 1, shape is the variable with the
highest CCGP, in the time interval right after the presentation of the

Fig. 1 | Behavioral task, visual cues, recording site, and task conditions.
A Example of two consecutive trials of the visually cued rule-based task with
temporal ordering of task events from left to right. The dark gray rectangle
represents the video screen as viewed by the monkey. The target of the
monkey’s gaze is indicated by dashed lines. In this example, trial N is a stay
trial instructed by the yellow square, requiring the monkey to choose the
same target (right) chosen in the previous trial N-1. Fb, Feedback. Figure
adapted from Fascianelli, V., Tsujimoto, S., Marcos, E. & Genovesio, A.
Autocorrelation Structure in the Macaque Dorsolateral, But not Orbital or
Polar, Prefrontal Cortex Predicts Response-Coding Strength in a Visually
Cued Strategy Task. Cerebral Cortex 29, 230–241 (2017). https://doi.org/10.
1093/cercor/bhx32147. B Visual cues presented to the monkey. Each visual cue

instructed the rule to be applied: the vertical gray rectangle and yellow
square instructed the stay rule; the horizontal gray rectangle and purple
square instructed the shift rule. C Recording area in dorsolateral prefrontal
cortex. AS, Arcuate Sulcus; PS, Principal Sulcus. Figure adapted from Fas-
cianelli, V., Tsujimoto, S., Marcos, E. & Genovesio, A. Autocorrelation Struc-
ture in the Macaque Dorsolateral, But not Orbital or Polar, Prefrontal Cortex
Predicts Response-Coding Strength in a Visually Cued Strategy Task. Cerebral
Cortex 29, 230–241 (2017). https://doi.org/10.1093/cercor/bhx32147. D List of
the eight task conditions defined as the combination of the four main
uncorrelated dichotomies: previous response (green), rule (blue), current
response (red), and shape of the visual cue (orange). The color code of the
four dichotomies is conserved across all the figures.
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stimulus. Later, during the trial, the current response is the most
strongly encoded variable with the largest CCGP. The previous
response and the rule can be decoded but their CCGP is at chance,
and hence these variables are not in an abstract format. It is worth
noting that the rule is represented in an abstract format in a later
period, after the cue offset (Fig. 3B). In Monkey 2, almost all the
dichotomies can be linearly decoded during the cue presentation,
except for the shape and the previous response (Fig. 3C). The CCGP
analysis reveals that, in Monkey 2, the rule is in an abstract format
with the highest CCGP during the cue presentation, differently from
Monkey 1 (Fig. 3D). In both monkeys, instead, during the cue pre-
sentation, the current response is in an abstract format, while the
previous response is not.

We performed an additional analysis to control whether the main
differences indecoding accuracies betweenmonkeys coulddependon
differences in the recording sites. Supplementary Fig. 1A shows the
location of the penetrations of the recordings in PFdl for both mon-
keys. It reveals an overlap between the recording sites in the two
monkeys, particularly in the dorsal region to the principal sulcus,
where all neurons in Monkey 2 were recorded. Thus, we examined the
dorsal (106 neurons) and ventral (99 neurons) recordings separately
for Monkey 1. When comparing the decoding accuracy of the task
variables between neurons in the dorsal sites only (which match
exactly with the sites in Monkey 2) with the combined dorsal and
ventral recordings (see Fig. 3A and Supplementary Fig. 1B), we found
comparable results. For this reason, we combined the recording sites
in Monkey 1 in all the following analyzes. Themain difference between
the dorsal and ventral recordings regards the representation of the
previous response, which is encoded mainly in neurons in the ventral
sites. This matches the previous response signal in Monkey 2, which is
weakly decoded during the fixation period. It might be possible that
even Monkey 2 could have a stronger previous response representa-
tion ventrally to the principal sulcus, but we lack the ventral
recordings.

To better highlight the differences in the representational geo-
metry, we focusedon the 300ms timewindow inwhich thedifferences
are large (from 200ms after the cue onset until the cue offset, gray
vertical shade in Fig. 3). The beeswarm plots in Fig. 4A show the
decoding accuracy and CCGP for all the possible dichotomies in the
300ms time window for Monkey 1 and Monkey 2. It is evident that
Monkey 1 represents the shape of the visual cue in an abstract format
(highest CCGP), while the rule is not abstract (CCGP at chance), even
though it can be decoded (Fig. 4A). The rule becomes abstract only
later in the delay period after the cue offset (Fig. 3B). Instead, for
Monkey 2, the rule is the variable with the highest CCGP, while the
shape of the visual cue is not abstract (CCGP at chance) (Fig. 4A).
Moreover, bothmonkeys represent the current response in an abstract
format but not the previous response. Interestingly, in both monkeys,
the current response is not abstract from the time when it can be
decoded, but only slightly later (see Fig. 3). These results suggest that
Monkey 1 is grouping together the cues with the same shape, and
hence, it might be using a strategy based on the identity of individual
visual stimuli. Instead, Monkey 2 might be using a more “cognitive”
strategy because the rule is the variable with the highest decoding
accuracy and CCGP, and hence Monkey 2 is grouping together the
visual cues that correspond to the same rule, even though they are
visually very different.

We also assessed the dimensionality of the representations by
measuring their shattering dimensionality (SD). We observed a higher
SD in Monkey 1 than in Monkey 2 during the 300 ms time window in
which the differences in representational geometries are large
(Fig. 4A). A higher SD in Monkey 1 might be compatible with imple-
menting a more “visual” strategy based on a lookup table, for which
each visual cue is uniquely associated with a mapping from the pre-
vious response to the current response.

Since the shape cannot be decoded in Monkey 2 using a linear
classifier, we were wondering whether it is not encoded at all or if it
could be decoded using other decoders. We decided to consider pairs
of conditions separately, which is equivalent to considering non-linear
decoders for all the points. Indeed, if two conditions are sufficiently
separated, i.e., the distance between the corresponding points is large
enough compared to the noise, then a linear decoder should work.
This is true even when the dichotomy is not linearly separable. For
example, in the case of XOR for four points that define a low-
dimensional object like a square, a linear decoder would not be able to
separate the two points on the diagonal from the other two, but it
would separate all pairs of points if taken one pair at the time. In
addition to considering pairs of points, we denoised the data by pro-
jecting the neural activity of a single pseudo trial into a lower-
dimensional space (3D) using the Multi-Dimensional Scaling (MDS)
technique described in the Methods. Using this procedure, we found
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Fig. 2 | Schematic of different representational geometries for 4 conditions in
the neural activity space and their properties. A Left: factorized or disentangled
representations where the 4 points are arranged on a square. The shape (circle vs
triangle) and color (red vs blue) are encoded along two orthogonal directions. This
geometry supports the representation of shape (and color) in abstract format, i.e.,
high CCGP. Right: Random representation where the 4 points are placed at random
locations in the activity space. This geometry does not support the representation
of the shape in abstract format, i.e., low CCGP. B Left: Low shattering dimension-
ality, where the 4 points are placed at the vertices of a square. The shattering
dimensionality is low because not all the dichotomies can be decoded by a linear
decoder due to the XOR configuration (purple and green circles). Right: High
shattering dimensionality supports the decoding of a higher number of dichoto-
mies, including the one not linearly decodable, i.e., XOR.
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that the shape can be decoded in both monkeys. In particular, in
Monkey 1, the shape canbe decoded for both rule conditionswith high
accuracy (Fig. 4B). This was expected as the shape was already linearly
decodable for all the points without denoising (decoding accuracy in
Fig. 4A, left). Shape could also be decoded in Monkey 2, in both rule
conditions (Fig. 4B). These results show that both monkeys’ PFdl
neurons encode the shape of the visual stimulus but with different
geometries, making the shape linearly separable and in an abstract
format only in one of the monkeys.

To visualize the different geometries of the twomonkeys,weused
the MDS transformation to reduce the dimensionality of the original
representations. The MDS preserves the pairwise distances between
data points. This is crucial to study the representational geometry in
terms of the relative distances between points (task conditions) in the
firing rate space. Indeed, MDS ensures that similar neural activity
patterns in high-dimensional space remain close to each other in the
lower-dimensional representation6. More specifically, we usedMDS on
the dissimilarity matrix containing the Euclidean distances between

the average activity of two task conditions normalized by the variance
along the direction that goes from one condition to the other (see
Methods). Each point in theMDSplots is the average firing rate of each
task condition in a 300ms time window during the cue presentation
(Fig. 5). For each monkey, we highlighted the different dichotomies
(groups of conditions) by drawing lines between the conditions that
are in the same group. In particular, the shape of the visual cue and
current response are in an abstract format in Monkey 1, while the rule
and current response are abstract in Monkey 2. For bothmonkeys, the
current response is in an abstract format, while none have the previous
response in an abstract format.

Behavioral differences between monkeys reflect differences in
the neural representational geometry
The differences in the representational geometry are so striking that
they induced us to reanalyze the behavior to look for more subtle
individual differences. We analyzed 65 and 77 sessions for Monkey 1
and Monkey 2, respectively. As mentioned, we did not find any

Fig. 3 | Decoding accuracy and CCGP as a function of time.Time is aligned to the
cue onset lasting for 500 ms (until the time of the cue offset indicated by the
vertical black arrow). The horizontal dashed lines are ± 2 standard deviations of 100
cross-validations distribution obtained from null models. The gray vertical shade
indicates the timebin starting at200ms after cueonset until cueoffset, inwhichwe
found the maximal difference between the neural representations of the two
monkeys. A Decoding accuracy of all the possible 35 dichotomies (i.e., all variables
that correspond to grouping the conditions into two equal-size groups) inMonkey
1. During the cue presentation, most of the dichotomies can be decoded, in parti-
cular all the main task variables indicated with different colors. The shape of the
visual cue (orange) is decoded with the highest accuracy, followed in time by the
previous response (green), the current response (red), and the rule (blue). B CCGP

of the 35 dichotomies inMonkey 1. During the cue presentation, the shape (orange)
is in an abstract format with the highest CCGP, followed in time by the current
response (red). The rule (blue) is not abstract during the cue presentation, but it
becomes abstract after the cue offset. The previous response (green) is not in an
abstract format. C Decoding accuracy of all dichotomies in Monkey 2. During the
cue presentation, the rule (blue) and the current response (red) can be significantly
decoded. D CCGP of all dichotomies in Monkey 2. Differently from Monkey 1, the
rule (blue) is in an abstract format with the highest CCGP during cue presentation,
followed in time by the current response (red). The shape (orange) and previous
response (green) are not in an abstract format. Source data are provided as a
Source Data file.
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activity of eachpseudo trial in a lower-dimensional space using aMulti-Dimensional
Scaling (MDS) transformation. The shape is decodable in both rule conditions in
both monkeys, though the accuracy is lower in Monkey 2. Black error bars are
the ± 2 standarddeviations around the chance level obtained from 100nullmodels.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-50503-w

Nature Communications |         (2024) 15:6479 6



significant difference in the overall behavioral performance between
the two monkeys (chi-square test, p-value = 0.93; Fig. 6A left). How-
ever, a significant difference emerged in the average reaction times
(Mann–Whitney U test, p-value = 10−15; Fig. 6A right). We then decided
to analyze the behavior with finer-grained analyzes. Indeed, since the
neural analysis revealed a difference in the representational geometry
of the shape and rule between themonkeys, we computed the average
behavioral performance for each condition separately by grouping the
correct trials according to shape (rectangle and square) and rule (stay
and shift). There is not a significant difference in the behavioral per-
formance between different shapes (chi-square test: p-value = 0.78 in
Monkey 1, Fig. 6B left; p-value=0.06 in Monkey 2, Fig. 6D left), and
between different rules (chi-square test: p-value = 0.11 in Monkey 1,
Fig. 6B right; p-value = 0.22 in Monkey 2, Fig. 6D right) in both mon-
keys. Nevertheless, a significant difference in reaction times emerged
across conditions in each monkey. In particular, Monkey 1, with high
decoding accuracy and CCGP for the shape, has an average reaction
time that significantly changes with the shape of the visual cue
(Mann–Whitney U test: p-value = 0.002; Fig. 6C, left) regardless of the
rule (Mann–Whitney U test: p-value = 0.05; Fig. 6C, right). On the
opposite, Monkey 2, with high decoding accuracy and CCGP for the
rule, showsanaverage reaction time that significantly changeswith the
rule (Mann–Whitney U test: p-value = 10−10; Fig. 6E right) regardless of
the shape (Mann–Whitney U test: p-value = 0.28; Fig. 6E left).

The differences in reaction times are significant, and they nicely
reflect the representational geometry, but they are relatively small. So
we decided to investigate further the behavior to see whether these
differences could be predicted by looking at the recent series of events
andmonkey responses. Inparticular, wefitted amulti-linear regression
model to predict the reaction time on a trial-by-trial basis using three
factors: the previous response, the shape of the visual cue, and the
rule. We also considered all the interaction terms (see Supplementary
Fig. 2). We found that the rule factor has a stronger weight in pre-
dicting reaction times inMonkey 2 than inMonkey 1 (Mann–WhitneyU
test: p-value = 10−34; Fig. 6F). Vice versa, the shape is a stronger factor in
predicting the reaction time of Monkey 1 (Mann–Whitney U test: p-
value = 10−34; Fig. 6F). Supplementary Fig. 2 shows that the strongest
factor in predicting the reaction time is the interaction of the previous
response and the rule in both monkeys because the combination of
these two factors is essential for choosing the correct response.
Indeed, both monkeys have been trained to combine the previous
response and rule to provide the current correct response.

Correlation between representational geometries and reaction
times in recurrent neural networks
To better investigate the differences in representational geometries
between the two monkeys and the relation with reaction times, we
trained Recurrent Neural Networks (RNNs) to perform the visually
cued rule-based task through deep reinforcement learning
algorithms25. Artificial neural networks have been shown to be a
powerful tool for understanding the normative aspects of neural
representations26, especially when trained with reinforcement learn-
ing, which resembles the protocols used to train animals27,28. As these
networks are often over-parametrized, the same task performance is
often obtained with numerous different choices of network para-
meters. When these networks are trainedmultiple times, the solutions
found by the same training algorithm can substantially differ, leading
to networks that might implement qualitatively different strategies to
solve the same problem. This is usually considered an inconvenience,
as much as the individual differences observed across animals. In our
case, we took advantage of this variability across simulations to
understand the relation betweendifferent geometries and the reaction
times that were observed in the experiments.

The inputs we provided to the network were: (1) the visual
cue, encoded by two one-hot vectors of three units each, with the

first vector encoding the shape and the second vector the color;
(2) the previous response, encoded by a one-hot vector of two
units; (3) the fixation input, a scalar that instructs the network
either to maintain fixation or not (Fig. 7A). The inputs were pas-
sed through fixed, non-trained, random weights to an expansion
layer of 100 Rectified Linear units. The output of the expansion
layer was then processed by 100 recurrent units in a time-
discretized vanilla RNN architecture, where the network provided
outputs at each time step. The readouts included a scalar repre-
senting the temporal discounted expected return, defined as the
output of the value function (critic), and a real vector with a
length equal to the possible actions (actor policy). The action at
each time step was determined by sampling from the categorical
distribution obtained from the softmax of this vector (for exam-
ples of two trials, see Supplementary Fig. 3A, B).

We trained 80 RNNs using the proximal-policy-optimization
(PPO) as a deep reinforcement learning algorithm25, and each net-
work was trained on a different random sequence of trials. The archi-
tecture of the network, the learning algorithm, and the input statistics
were the same for all the RNNs. However, the networks’ weights and
biases were initialized randomly, using a different realization for every
network. The temporal structure of the task is the same as shown in
Fig. 1A, except for the pre- and post-feedback periods, which were not
implemented in the model since they are not of interest in the current
study; the trial type was drawn randomly at the beginning of each trial
during training. Each RNN was exposed to a different random
sequence of trials. We stopped the training when two conditions were
satisfied: (1) the network achieved at least 99% of complete trials, i.e.,
trials in which the decision was made within an interval of 1500 ms
from the presentation of the visual stimulus (see Materials and Meth-
ods); (2) at least 90% of correct trials out of the complete ones on a
validation batch of 10000 trials (Supplementary Fig. 4A, B). So, all the
RNNs that we studied performed the same. However, the number of
learning epochs to reach that performance was different for different
networks.

After terminating the training, we analyzed the activations/firing
rates of the recurrent units on a separate testing set comprised of
10000 trials for each network. Our model aimed to explore the
potential relation between the representational geometries of shape
and rule and the corresponding reaction times. To quantify this rela-
tion,wefirst had to characterize the differences in the geometry across
different RNNs. We defined a variable, Δ-decoding, which is the dif-
ference in the decoding accuracy of rule and shape during the cue
presentation period. We also defined the variable Δ-CCGP, which is
defined in the same way as Δ-decoding but for CCGP. These two vari-
ables provide a simple description of relevant differences in the
representational geometry. Indeed, positive values of Δ-decoding
indicate that shape ismore strongly encoded than rule, resembling the
representation observed inMonkey 1 (Fig. 3A, B). Conversely, negative
values indicated a stronger signal of rule compared to shape, resem-
bling the representation observed in Monkey 2 (Fig. 3C, D).

We evaluated the Δ-decoding (and CCGP) for each trained RNN
and examined its correlation with the number of training trials needed
by each network to reach the stop-learning criterion. We studied the
RNNs along a continuum spectrumof training trials, ranging from tens
of thousands to hundreds of thousands. Importantly, all these net-
works had the same performance. Our analysis revealed a significant
negative correlation between Δ-decoding and the training duration, as
depicted in Fig. 7B (Pearson coefficient, ρ = −0.52, p-value = 10−6).
Similarly, the Δ-CCGP exhibited the same trend, as shown in Fig. 7C
(Pearson coefficient, ρ = −0.48, p-value = 10−5).

These findings suggest that the networks that reached the per-
formance threshold with fewer training trials developed a stronger
shape representation, as indicated by higher decoding accuracy (see
Supplementary Fig. 5). Interestingly, these networks also exhibited a
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larger CCGP for shape. The CCGP was generally high, indicating that
these representations were abstract, as in the experimental observa-
tions. Previous studies demonstrated that artificial simple feed-
forward neural networks can easily generate this type of abstract
representations using backpropagation and reinforcement learning
algorithms6,29.

The networks with higher CCGP for shape quickly found a policy
to solve the task up to criterion while maintaining residual shape

coding that comes from network initialization (the expanded inputs
retain the low dimensional structure of the disentangled representa-
tions of shape and color). Conversely, the RNNs requiring more
extensive training exhibited higher decoding accuracy and CCGP for
the rule compared to the shape (Supplementary Fig. 5). This result is
not surprising because if the networks do not converge right away, the
training is more extensive, and the representations tend to inherit the
low dimensional structure of the output (see29 for feed-forward
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Fig. 6 | Behavioral performance, reaction times of the monkeys, and multi-
linear regression behavioral model reflecting differences in the neural repre-
sentational geometries. A Left: average behavioral performance across sessions
for Monkey 1 (n = 65 sessions) and Monkey 2 (n = 77 sessions). Both monkeys per-
formed the task with high accuracy. The error bars indicate the confidence interval
at 95% of confidence level. Right: average reaction time across sessions forMonkey
1 (n = 65 sessions) andMonkey 2 (n = 77 sessions). A significant difference emerged
in the average reaction time between the two monkeys. The error bars are the
standard error of the mean. n.s. not significant: chi-square test, p-value = 0.93. *:
Mann–Whitney U test, two-sided, p-value = 10−15. B Mean behavioral performance
across sessions for Monkey 1 (n = 65 sessions) computed separately for each rule
and shape. The x-axis indicates the rule, and the y-axis is the mean performance
averaged across sessions. The visual cue of each condition is indicated at the
bottom of the plot. On the left(right), the visual cue order reflects shape(rule). n.s.
not significant (left, chi-square test, p-value = 0.78; right, chi-square test, p-value =
0.11). C Mean reaction time across sessions for Monkey 1 (n = 65 sessions). As in

B, the x-axis indicates the rule, and the y-axis is the reaction time averaged across
sessions. The error bar is the standard error of the mean. n.s. not significant:
Mann–Whitney U test, two-sided, p-value = 0.05; **: Mann–Whitney U test, two-
sided, p-value = 0.02.D The same as inB but forMonkey 2 (n = 77 sessions): n.s. not
significant (left, chi-square test, p-value = 0.06; right, chi-square test, p-value =
0.22). E The same as in C but for Monkey 2 (n = 77 sessions): n.s. not significant:
Mann–Whitney U test, two-sided, p-value = 0.28; **: Mann–Whitney U test, two-
sided, p-value = 10−10. F Weights, averaged across 100 models, of the three inde-
pendent factors predicting the reaction time of single trial in a multi-linear
regression model. Each weight is normalized to the total sum of the weights (see
Supplementary Fig. 2).The error bars are the 2 standard deviations of weights
across 100models. The varianceexplained (r-squared) by themodels is 12% and 18%
for Monkey 1 and Monkey 2, respectively. *: Mann–Whitney U test, two-sided,
previous response (p = 10−32); rule (p = 10−34); shape (p = 10−34). Source data are
provided as a Source Data file.
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networks), combining it with the structure in the inputs. These
representations encode less strongly the shape, which is irrelevant for
performing the task, and more strongly the rule, which is a combina-
tion of input features and their semantics. Thus, our results show that
different RNNs, trained to solve the same task with high accuracy
above 90%, exhibit distinct representational geometries for specific
task variables, influenced by the number of training trials required to
attain the same performance threshold.

We then investigated the relation between the representational
geometries of shape and rule with the reaction time: would the RNNs
exhibiting higher decoding accuracy and CCGP for shape display a
reaction time dependent on shape only? Analogously: would RNNs,
with higher decoding accuracy and CCGP for the rule, exhibit a reac-
tion time most strongly dependent on the rule? We compared the
average difference in reaction time (RT) between trials with different
shapes of visual cues to the average difference in reaction time

between trials with different rules. Briefly, this comparison yielded a
variable termed ΔRT, which was assigned to each RNN (see Methods).
Positive values of ΔRT indicated that, on average, reaction times were
influenced by the identity of the shape, regardless of the rule. Con-
versely, negative values suggested that reaction times were influenced
by the rule, regardless of the shape. It is worth noticing that we are
interested in studying the patterns of reaction times, regardless of
their value in each condition. What we observed to be preserved in the
simulations is the grouping of the conditions. So, for example, for
those networks with positive values of ΔRT, the two conditions with
rectangles have approximately the same average RT, and the two
conditions with squares exhibit a different average RT. The RTs for the
rectangles are larger than the RTs for the squares in some RNNs. In
others, it is theopposite: theRTs for the rectangles are smaller than the
RTs for the squares. Our analysis focuses on the patterns of RTs, and
ignores which of the two groups of similar RTs is larger than the other.

Fig. 7 | Individual differences across 80 RNNs trained to perform the visually
cued rule-based task. A Architecture of the RNN with a schematic of the reinfor-
cement learning setting (agent-environment interaction loop66). The inputs consist
of one unit for fixation, six units encoding visual cues (vertical rectangle, horizontal
rectangle, or square combined with color, gray, yellow, or purple, denoted by
triangles), and two units encoding the previous response (right or left). The input is
passed through 100 Rectified Linear units. The output of the expansion layer is
processed by 100 recurrent units. At each time step, the network gives an output
corresponding to fixate or select either right or left, represented by three units
(network policy/actor), and the expected discounted return at that time step up to
the end of the trial (value function/critic). B Decoding results for each RNN illus-
trating the difference in decoding accuracy of the shape and rule as a function of
the number of training trials to reach the performance criterion. The color bar
indicates the difference in reaction time between shape and rule (ΔRT): positive
values indicate a reaction time influencedby shape irrespective of the rule; negative

values suggest a dependence on the rule regardless of the shape. Significant
negative correlation is observed between the difference in decoding the two task
variables and the amount of training (Pearson coefficient, ρ = −0.52, p-value = 10−6).
Conversely, networks with a lower training requirement exhibit a stronger shape
signal. The difference in decoding also shows a significant positive correlation with
the difference in reaction time (Pearson coefficient, ρ =0.35, p-value =0.001). The
vertical black arrows indicate two example RNNs with high decoding accuracy for
the shape (NET 1) and for the rule (NET 2). C This is similar to panel B, where the
y-axis shows the difference between the CCGP for shape and rule. Significant
negative correlation was observed between the difference in CCGP of the two task
variables and the amount of training (Pearson coefficient,ρ = −0.48, p-value = 10−5),
while a significant positive correlation was observed with the difference in reaction
time (Pearson coefficient, ρ =0.39, p-value = 10−4). Source data are provided as a
Source Data file.
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We discovered a significant positive correlation between Δ-decoding
and ΔRT across all the RNNs (Fig. 7B, Pearson coefficient, ρ =0.35, p-
value = 0.001). Similarly, a significant positive correlation was
observed between Δ-CCGP and ΔRT (Fig. 7C, Pearson coefficient,
ρ = 0.39, p-value = 10−4). These results indicate that RNNs with a
stronger shape signal during cue presentation typically require a
shorter training period and exhibit average reaction times that change
based on the identity of the shape, regardless of the rule. To gain
further insights, we selected, among all the networks, the two ones
with the highest shape and rule signals, respectively, and we analyzed

them in detail. Specifically, we computed the decoding accuracy and
CCGP over time from stimulus onset for the four uncorrelated task
variables, as well as the behavioral performance and average
reaction time.

Figure 8 A illustrates the results for one of the examples RNNs,
referred to asNET 1, which shows the highest shape decoding accuracy
and CCGP, and it reaches the performance criterion with a small
number of training trials among all the RNNs depicted in Fig. 7B, C (see
Supplementary Fig. 6 for the decoding accuracy and CCGP along time
for all the RNNs). During the presentation of the stimulus, the shape

Fig. 8 | Representational geometries of task variables, behavioralperformance,
and reaction times of two example recurrent neural networks (RNNs). A Left:
decoding accuracy of the four main uncorrelated variables for the first example
RNN (NET 1 in Fig. 7B). The activity is readout from the recurrent units. The shaded
area indicates the period where the stimulus is on.. After cue onset, the shape
(orange line) is highly decoded, followed by the current response, previous
response, and rule. Right: CCGP over time for the four variables. Shape and current
response are represented in an abstract format after the cue presentation. B Left:
average behavioral performance for each condition displayed on the x-axis. Per-
formance exceeds 90% for all conditions. Right: average reaction time for each
condition. The representational geometry and reaction time patterns are similar to
those of Monkey 1. C Left: decoding accuracy of the four main uncorrelated task
variables for the second example RNN (NET 2 in Fig. 7B). After cue onset, rule,
current, and previous responses are highly decoded. Shape is decoded with lower

accuracy compared to the other variables. Right: CCGP along time for the four
variables. The rule, current, and previous responses are represented in an abstract
format after cue presentation, while the shape is not. D Left: average behavioral
performance for each condition displayed on the x-axis. Performance exceeds 90%
for all conditions. Right: average reaction time for each condition. This RNN exhi-
bits representational geometry and reaction time patterns similar to those of
Monkey 2. EMean of the distribution of the weights of 100 multi-linear regression
models. Each weight is normalized to the total sum of the weights (Supplementary
Fig. 7A). The error bars are the 2 standard deviations of weights across 100models.
The variance explained (r-squared) by themodels is 14% and 30% for NET 1 andNET
2, respectively. *: Mann–Whitney U test, two-sided, previous response (p = 10−30);
rule (p = 10−34); shape (p = 10−34). F Distribution of RTs for NET 1 (orange) and NET 2
(blue). Themeanof the distributionofRTs forNET 2 is smaller than themeanRTs in
NET 1. Source data are provided as a Source Data file.
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variable exhibits a high decoding accuracy, followed in time by the
current response, previous response, and rule. The shape and current
response are also represented in an abstract format, with high CCGP,
while the rule and previous response are not. Notably, although the
rule and previous response can be decoded, they are not represented
in an abstract format. Moreover, this network displays high behavioral
performance for each task condition ( > 90%, Fig. 8B, left). Interest-
ingly, the average reaction time varies depending on the shape of the
cue, regardless of the rule. Specifically, the network responds faster to
square cues compared to rectangle cues, irrespective of the rule
(Fig. 8B, right). Other networks that operate in the same regime also
exhibit reaction times that depend only on the shape of the stimulus
(not shown), but the RT for the squares is longer than for the rec-
tangles. This is not surprising, given that the different visual input
features (shape and color) are represented in the same way. It is pos-
sible that in the monkey brain, the colored stimuli elicit a more pro-
minent response, and hence, the reaction time would always be
shorter for squares than for rectangles. This is somethingwe can easily
incorporate in the model, but we did not because we wanted to keep
themodel as simple aspossible, andwe found it interesting thatweget
the RT difference anyway, even when we do not introduce asymme-
tries in the input representations. Indeed, the statistics of the inputs do
not dictate in anyway whether the average RT of one group is larger
than the other. We studied the different behavioral patterns that
spontaneously emergedwith different training lengths, andwedid not
attempt to tune the parameters of the network dynamics to reproduce
the actual values of reaction times observed in the experiment but only
the observed patterns of reaction times.

We performed the same set of analyzes on the second
example RNN, referred to as NET 2, which exhibits a high rule
decoding accuracy and reaches the performance criterion with
the highest amount of training trials among all the RNNs as shown
in Fig. 7B. During cue presentation, this network shows high
decoding accuracy for the rule, previous and current response,
which are also represented in an abstract format with high CCGP
values. However, the shape variable is decoded with much lower
accuracy and is not represented in an abstract format (Fig. 8C).
Similar to the previous example of NET 1, this network achieves
high task performance across different task conditions (Fig. 8D,
left). Differently from the previous network example, the reaction
time varies based on the rule, irrespective of the shape of the
visual cue (Fig. 8D, right). Specifically, it shows a shorter average
reaction time for the stay rule compared to the shift rule,
regardless of the shape. We applied the same multi-linear
regression analyzes to the two example neural networks
(Fig. 8E) as the actual data (Fig. 6F). Indeed, we fitted a multi-
linear regression model to predict the reaction time on a trial-by-
trial basis using three factors: the previous response, the shape of
the visual cue, and the rule, and we observed that the rule factor
has a stronger weight in predicting reaction times in NET 2 than in
NET 1 (Mann–Whitney U test: p-value = 10−34; Fig. 8E). Vice versa,
the shape is a stronger factor in predicting the reaction time of
NET 1 (Mann–Whitney U test: p-value = 10−34; Fig. 8E). As pre-
viously observed in both monkeys, the strongest factor in pre-
dicting the reaction time is the interaction of the previous
response and the rule in both models because the combination of
these two factors is essential for choosing the correct response
(see Supplementary Fig. 7A).

To better understand the relation between the representa-
tional geometry and reaction time, we analyzed some kinematic
properties of the recurrent population activity, from the onset of
the visual cue to the response time (Supplementary Fig. 9A). We
quantified the trajectory length of population activity in the high
dimensional activity space for each visual cue and the mean
velocity of the trajectory, whose product is proportional to the

average reaction time. In the kinematic space—defined by velocity
and trajectory—we introduced two distinct measures: δ(shape)
and δ(rule). These measures represent the Euclidean distance
between the centroids of conditions based on shape and rule,
respectively (Supplementary Fig. 9B). For the two example RNNs,
Panel B illustrates the kinematic measures corresponding to each
visual cue. We opted to display the logarithm of both the inverse
trajectory and velocity because their summation is approximately
equal to the logarithm of the average reaction time, as shown by
the relationship: log(1/trajectory) + log(velocity) ∼ log(reaction
time). Further, we calculated δ(shape) and δ(rule) for each RNN
and examined their correlation with the difference in decoding
accuracy between shape and rule as measured in the original
activity space. The analysis revealed a significant correlation: a
higher decoding accuracy for shape in the activity space is asso-
ciated with a larger δ(shape) in the kinematic space (Supple-
mentary Fig. 9C, left). Conversely, the same is true for the rule
condition (Supplementary Fig. 9C, right).

One notable distinction between the model simulations and the
actual data is in the representation of the previous response: in both
models, it is strongly decoded, whereas in bothmonkeys, it is not. This
discrepancy can be attributed to our simplifying assumption that the
previous response variable is entirely disentangled from the visual cue.
Moreover, we provided the previous response as an additional input at
the cue onset, while in the experiment, animals had to remember it
from the previous trial. Another distinction between the models and
actual data is the average RTs of the two example networks, which
show different values (Fig. 8F). Indeed, again, we did not fit the RTs in
themodels to reproduce the actual RTs of the animals. Our aimwas to
reproduce the patterns of RTs for different shapes and rules that
emerged naturally from learning. We observed that the reaction time
distribution of NET 2 tends to be lower than that of NET 1, and it might
be interpretable as a direct consequence of developing a better
strategy versus a lessmemory-efficient (lookup table) strategy.Overall,
we observed a huge variability in the average RTs of all the networks
(Supplementary Fig. 7B), and it could eventually be rescaled in the
model tomatch the data. In summary, the representational geometries
and reaction time patterns observed in the first example RNN (NET 1)
resembled the neural and behavioral results observed in Monkey 1
(Figs. 3A, B and 6B, C). This network is probably operating in a lazy
regime30–33, in which the neural representations inherited from the
inputs are only slightly modified to perform the task correctly. Notice
that shape is disentangled from the other task-relevant variables in the
original inputs, and the random projections, despite being non-linear,
only partially distort the geometry of the representations (see Sup-
plementary Fig. 8). This explanation is compatiblewith theobservation
that this network reaches high performance with more rapid training.
Conversely, the results obtained from the second example network
(NET 2) mirrored the neural and behavioral outcomes observed in
Monkey 2 (Figs. 3C, D and 6D, E). High performance requires longer
training (probably a rich regime), which enables the network to learn a
representation that better reflects the task structure.

Discussion
Traditionally, studies on the primate brain focused on the features of
the recordings that are conserved across monkeys. It is uncommon to
report and discuss differences between monkeys and other animals
often because it is difficult to study and interpret them. Here, we
showed that it is possible to find clear differences between the
representational geometry of two monkeys and that they are asso-
ciated with subtle but significant behavioral differences. One of the
advantages of our approach, based on the analysis of the neural
representational geometry, is that it allowed us to study systematically
many different interpretable aspects of the geometry of the repre-
sentation that potentially cause different behaviors. To characterize
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the representational geometry, we considered the decoding accuracy
and the cross-condition generalization performance (CCGP) for every
possible dichotomy of the experimental conditions. The number of
dichotomies grows rapidly with the number of conditions, almost
exponentially for balanced dichotomies (using Stirling approximation
∼ 2C=

ffiffiffiffiffiffiffiffiffiffi
2πC

p
where C is the number of conditions). Even though some

of the dichotomies are correlated (the full characterization of the
geometry requires only ~C2 numbers), we can still systematically
examine a large number of potentially different behaviors. Moreover,
thedichotomies are interpretable andoften correspond to someof the
task key variables. This is the case in our analysis, in which the
dichotomies with the highest decoding accuracy and CCGP during the
cue presentation correspond to the shape of the visual stimulus for
onemonkey and the rule for the other. These dichotomies suggested a
way to compute the reaction time for different groups of conditions
and revealedmodest but significant differences in the behavior, which
were not detectable from the initial analysis of the bare performance.
Although our study is restricted to two monkeys, which is clearly a
limit, our methodology can be applied to the systematic analysis of
individual differences in an arbitrary number of subjects. Our main
result is that it is possible to relate differences in the representational
geometry to non-trivial behavioral differences: the way that the con-
ditions are grouped together by the geometry, which is different in the
two monkeys, exactly matches the way the conditions are grouped
together by the reaction times.

The analysis of the geometry revealed that there is an interesting
“structure” in the arrangement of the points that represent different
conditions in the firing rate space: for one monkey, the shape of the
visual cue is an important variable (a more “visual” monkey), and for
the other, it is the rule (a more “cognitive” monkey). This essentially
means that for the first monkey, the points corresponding to different
conditions in the firing rate space are grouped according to shape if
oneprojects the activity on the codingdirectionof shape (notice that it
is only in this subspace that the points cluster, as in the original space
the points are still distinct and allow for the encoding of other vari-
ables). Analogously, thepoints are grouped according to the rule in the
other more “cognitive”monkey. Both geometries and even the one in
which the points are at random locations in the firing rate space (e.g.,
when the monkey is basically using a lookup table strategy, for which
each visual cue is uniquely associated with a mapping from the pre-
vious response to the current response) allow for high performance.
This is probably why we cannot see significant differences in the
overall performance of the two monkeys. Moreover, the higher value
of the shattering dimensionality in Monkey 1 than in Monkey 2 might
support the hypothesis of the implementation of a more “visual”
strategy to solve the task. However, these geometries have different
computational properties that can only be revealed in novel tasks
involving generalization or learning of new rules. For example, the
more “cognitive” monkey, for which the rule is in an abstract format,
would probably learn rapidly a novel task in which the rules are the
same but the visual cues change. The new visual cues could be “linked”
to the pre-existent groups that represent in an abstract format the two
possible rules. The other more “visual”monkey, although at the same
learning stage as the “cognitive” monkey, shows stronger representa-
tions of the sensory inputs, which, in principle, are useless for per-
forming the task or generalizing to similar new tasks.

The simulation of Recurrent Neural Networks (RNNs) trained to
perform the task used in the experiment with high accuracy revealed a
significant correlation between the representational geometry of task
variables and reaction times and that the two monkeys could have
gone through a different amount of training. Indeed, the models
showed that those networks that reached the performance criterion
with the smallest amount of training also have a higher signal for the
shape over the rule, which resembles the representational geometry of
Monkey 1. On the other hand, those networks that reached the

threshold with more training developed a stronger signal for the rule
than the shape, which resembles the representation in Monkey 2.
Unfortunately, we do not have data collected during monkey training,
but we know that, due to individual differences in the level of perse-
veration for which Monkey 2 tended to stay with the same response
between consecutive trials, the training process was slightly different.
In particular,Monkey 2 required longer training thanMonkey 1 to learn
to switch between the stay and shift rule and establish the contingency
between visual cues and the rule. This empirical note on the behavioral
training of the twomonkeys is in line with the correlation we observed
between the representational geometry of the task variables and the
amount of training across all the trained RNNs.

Moreover,with ourmodels, we could reproduce the reaction time
patterns, and we studied the relation between the representational
geometry of the task variables and reaction time. The models with the
highest signal for the shape of the visual cue showed a reaction time
that, on average, significantly changes with the shape regardless of the
rule, and it resembles the results we observed in Monkey 1. On the
contrary, themodelswith the highest signal for the rule have a reaction
time that, on average, significantly changes with the rule regardless of
the shape, and it resembles the results we observed in Monkey 2.

It is possible that those networks that reached the performance
threshold with a small number of training trials found an optimal
policy to solve the task, probably due to the network initialization.
Conversely, the RNNs requiring more extensive training developed a
reduced representation of the shape, which in principle is useless to
solve the task, in favor of amore robust rule representation. The use of
different policies as a function of training amount, which is worth
investigating in more detail for further studies, might reflect the
development of different policies or strategies, also in the two mon-
keys to solve the same task, mirrored by different representational
geometries of task variables correlating with different reaction times.
For example, Tsuda et al.34 recently showed that the different strate-
gies of monkeys and humans in solving a working memory task
(monkeys seem to apply a recency-based strategy while humans a
target selective strategy35,36) could correspond to two different learn-
ing stages of a simple recurrent neural network.

Although the model suggests that the differences are due to the
training duration, it is also possible that the monkeys would have
adopted different policies even at the same learning stage. We know
from machine learning studies on curriculum learning that artificial
neural networks can solve the same task in different ways depending
on the order of presentation of the samples and, more generally, on
the details of the learning process37,38. Preliminary results on the RNNs
indicate that an unbalanced distribution of trial types during the
training phase can introduce biases in the resulting policies (data not
included). Differences in strategies have been described in experi-
mental studies, in particular in the information representations of the
reward39, in the strategies adopted by two monkeys to solve the same
task40, and in some abstraction tests41. A recent study, using a more
complex task as the well known pac-man game, has even shown that
different strategies can be flexibly switched based on different task
demands42.

In our study, we did not test whether abstract representations
could lead to generalization to new stimuli. Introducing a general-
ization test would have allowed, for example, to test whether the
abstract format of the rule in the second monkey generated a faster
generalization to a new set of rule cues than in the firstmonkey. Future
studies on abstraction should be planned to test whether the task
variables encoded in an abstract form, as opposed to those that are
not, would facilitate the generalization of the rules to new items or
conditions. The ability of generalization has been reported by several
studies on macaques41,43–45. For example, Falcone et al.45 have shown
that monkeys can transfer the nonmatch-to-goal rule from the object
domain to the spatial domain in a single session, and Sampson et al.41
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have shown that abstraction can allow generalizing to new conditions,
such as new foods, of the rule to choose the worst between two
options.

Moving to chronic recordings surely offers the opportunity to
follow in time the formation of neural representational geometries by
recording before and during the training phases, and after a task is
fully learned. Planned behavioral generalization tests to new task
conditions are critical to test the relation between the geometry of the
representation of a given variable and the animal performance in
generalization tasks. These future studies will probably highlight even
more individual differences and will allow us to define more precisely
what a strategy is and how it is represented in the brain and to predict
and test behavioral consequences in a number of novel situations.

Methods
Subjects
All the details about the experiment are reported in the original
article22. Here, we give only a brief description of these details.

Two male rhesus monkeys (Macaca mulatta, 10–11 kg in weight)
were trained to perform a visually cued rule-based task. All experi-
mental procedures were in agreement with the Guide for the Care and
Use of LaboratoryAnimals andwere approvedby theNational Institute
of Mental Health Animal Care and Use Committee.

Each monkey, while performing the task, sat in a primate chair,
with the head fixed in front of a videomonitor 32 cmaway. An infrared
oculometer (ArringtonResearch, Inc., Scottsdale, AZ) recorded the eye
positions.

Data collection and histology
Up to 16 platinum iridium electrodes (0.5–1.5MΩ at 1 kHz) were
inserted into the cortex with a multielectrode drive (Thomas Record-
ing) to record single-cell activity from dorsolateral prefrontal cortex
(Fig. 1C). The recording chambers (18mm inner diameter) were posi-
tioned and angled according tomagnetic resonance images (MRI). The
single-cell potentials were isolated off-line (Off Line Sorter, Plexon),
based onmultiple criteria, including principal component analysis, the
minimal interspike intervals, and close visual inspection of the entire
waveforms for each cell. Eye position was recorded with an infrared
oculometer (Arrington Research). The recording sites were localized
by histological analysis and MRI (see Tsujimoto et al.22 for more
information).

The behavioral task
A sequence of the task events of the visually cued rule-based task is
shown in Fig. 1A22,46–48. For clarity, previous works’ authors referred to
this task as the visually cued strategy task. The stay and the shift rules
were designed as strategies because they represented a simplification
of the repeat-stay and change-shift strategies used in previous neuro-
physiological studies49,50. These two strategies were identified by
Bussey et al.51 studying the behavior of monkeys during the learning of
visuomotor associations. The monkeys in their study spontaneously
adopted the strategies to facilitate learning. As opposed to the pre-
vious studies of this task, here we refer to “strategy” as a possible way
adopted by the monkey to solve the task, and to “rule” what is
instructed to themonkey to perform the task. In each trial, themonkey
was required tomake a saccade towards one of the two spatial targets,
according to a shift or stay rule cued by a visual instruction (Fig. 1B).
The appearance of a fixation point (a 0.6° white circle) located at the
center of the video screen, with 2 peripheral targets (2.0° white square
frames) placed 11.6° to the left and right of the fixation point, repre-
sented the beginning of a trial. Themonkey had tomaintain fixation on
the central spot for 1.5 s; after that, a cue period of 0.5 s followed.
During the cue period, a visual cue appeared at the fixation point. In
each trial, one visual cue was chosen pseudorandomly from a set of
four visual cues: a vertical (light gray) or horizontal (light gray)

rectangle with the same dimensions (1.0° × 4.9°) and brightness, or a
yellow or purple square with the same size (2.0° × 2.0°) (Fig. 1B). Each
visual cue instructed either the stay or shift rule. The stay rule,
instructed by the vertical rectangle or the yellow square, cued the
monkey to choose the same target chosen in the previous trial (as
shown in the two consecutive trials’ example in Fig. 1A). Conversely,
the horizontal rectangle or the purple square instructed the shift rule,
which required the monkey to choose the target not chosen in the
previous trial. The end of one trial and the beginning of the next one
were separated by an intertrial interval of 1 s. The first trial required a
random choice of the target since no previous response could be
integrated with the information on the current rule. Moreover, in the
first trial, the monkey was always rewarded. The monkey had to
maintain the fixation on the central point during the whole fixation
period (1.5 s) and the cue period (0.5 s) as well as during a subsequent
delay period of 1.0, 1.25, or 1.5 s, pseudorandomly selected. The fixa-
tionwindowwas a ± 3° square area centeredon the fixation point. Both
monkeys maintained fixation accurately and rarely made a saccade
within the fixation window22,46. Any fixation break during the fixation,
cue, or delay periods led to abortion of the trial. The fixation point and
the two peripheral targets were kept on the screen for the whole
duration of the delay period. The disappearance of the fixation spot
represented a go signal, instructing the monkey to choose one target
bymaking a saccade to one of them. When themonkey fixated on one
of the targets, both squares became filled. The entry of the gaze into
the response window was labeled as target acquisition. The monkey
had to maintain the fixation on the target for 0.5 s (pre-feedback per-
iod). Any fixation breakduring the pre-feedback period led to abortion
of the trial. After the pre-feedback period, in the case of correct
response, feedback was provided as a liquid reward (0.2ml drop of
fluid) or, in case of an incorrect response, as red squares over both
targets. In the case of an error, the same cuewas presented again in the
following trial, called the correction trial. Correction trials were pre-
sented until the monkey responded correctly. Usually, after an error,
there was not more than a correction trial22,46.

Neurons and trials sample selection, pseudo-simultaneous
population trials, and task conditions definition
We analyzed the neural activity of each monkey separately, only in
complete and correct trials, from 400 ms before the cue onset until
500ms after the cue offset. Linear decoders were trained and tested
onpseudo-simultaneouspopulation trials (pseudo trials).Wedefined a
pseudo trial as the combination of spike counts randomly sampled
from every neuron in a specific time bin and task condition2. The task
condition is one of the eight possible combinations of task variables
listed in Fig. 1D.Weanalyzed the activity of neurons recorded in at least
five trials per task condition.

Pseudo trials weregenerated as follows: given a timebin t and task
condition p, for every neuron, we randomly picked a trial of task
condition p, and we computed the spike count in the time bin t. The
single pseudo trial γ, for condition p at time bin t, is then
γpðtÞ= ðγp1 ðtÞ,γp2ðtÞ, . . . ,γpNðtÞÞ, where N is the number of recorded neu-
rons, and γpi (i is the neuron identity, i = 1,…,N) is the spike count. We
repeated this procedure 100 times, ending up with 100 pseudo trials
per task condition and time bin.

Since we did not know a priori which task variables are repre-
sented by the neural ensemble, and in order not to introduce any bias
in the selection of the task variables to decode, we defined a dichot-
omy as each pairing of the task conditions in a group of four, for a total
of 35 dichotomies6. Each dichotomy is a variable that could be deco-
ded. Four of the 35 dichotomies overlap with the task variables. All the
other dichotomies cannot be explicitly interpreted in terms of any of
the task variables, but rather as a combination of task variables which
we referred to as other dichotomies. In particular, the four dichoto-
mies that overlap with the task variables are the previous response,
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rule, current response, and the shape of the visual cue (Fig. 1D). The
latter identifies whether the visual cue was a rectangle or a square,
which could also be interpreted as a gray-colored and non-gray-
colored cue.

Decoding of the neural population activity
For each dichotomy, which is a binary variable, we trained a Support
Vector Machine (SVM) classifier with a linear kernel52 to classify the
spike count into either of the two values of the dichotomy. We set a
regularization term equal to 10-3 in all the SVM classifiers. We decoded
the neural activity in a 200ms time bin stepped by 20ms along time
from 400ms before the cue onset until 500ms after the cue offset.
The linear classifier was trained on pseudo trials built from randomly
selected trials. Inmore detail, for every neuron, we selected 80% of the
trials as a training set and the remaining 20% as a testing set to build
the pseudo trials. We generated 100 pseudo trials for training and 100
pseudo trials for testing per condition, and this procedure was repe-
ated for 100 iterations. Subsequently, in each iteration, we randomly
chose 80% of the training pseudo trials and 20% of the testing pseudo
trials to train and test the linear decoder for a total of 100 cross-
validations. We showed the final accuracy of the linear decoder as the
ratio between the number of correct predictions and the total number
of predictions on the testing set averaged across the interactions and
cross-validations. To evaluate the statistical significance of the neural
signal, we built a null model by randomly shuffling the task condition
labels among the pseudo trials. We trained a linear decoder on the
shuffled training set for each shuffle, and we assessed its accuracy on
the shuffled testing set. We repeated the shuffle procedure 100 times,
obtaining a null model distribution. We defined the chance interval as
the interval between 2 standard deviations of the null model dis-
tribution around the chance level at 50%.

The data were extracted by custom MatLab functions (The
MathWorks, Inc., Natick, MA, USA). All decoding analyzes were per-
formed by using scripts of the scikit-learn SVC package along with
custom Python scripts52.

Neural representation of variables in an abstract format and the
Cross Condition Generalization Performance
After assessing which task variables are decoded, we asked in what
format they are represented. In particular, we asked whether they are
represented in an abstract format. A variable could be defined to be in
an abstract format when a linear decoder trained to classify the value
of the variable can generalize to new task conditions never used for
training. To assess to what extent a variable is in an abstract format, we
computed the Cross Condition Generalization Performance (CCGP),
that is, the performance of a linear decoder in generalizing to new task
conditions not previously used for training6. The difference between
the traditional cross-validated linear decoder and the cross-condition
generalization is in the data used for training and testing the classifier.
In the traditional-fashioned decoding analyzes, a decoder is trained on
a sub-sample of trials randomly picked from each (experimental)
condition, and tested on the held-out trials retained from each con-
dition. In the end, the decoder is trained and tested on all the condi-
tions, and the generalization is only across trials. The CCGP, instead, is
computed by training a linear decoder only on a fraction of trials from
a subset of conditions and tested on trials belonging to new conditions
not used for training. The generalization is now not only across trials
but also across conditions.

We assessed the CCGP for each of the 35 dichotomies as follows.
Given a dichotomy, defined as a pairing of task conditions in a group
of four, we trained the decoder to classify the value of the dichotomy
using trials from three task conditions from each side of the
dichotomy and tested it on the one held-out condition from each
side. Since each side of the dichotomy has four task conditions, there

are 16 possible ways of choosing the training and testing condition
set. For each choice of training and testing set, we applied 10 cross-
validations, randomly choosing 80% of training trials and 20% of
testing trials. We reported the average performance across all 16
possible choices of training and testing conditions and the 10 cross-
validations for each dichotomy. To assess the statistical significance
of the CCGP, we built a null model where the geometrical structure in
the data was destroyed while keeping the variables still decodable6.
To do that, we applied a discrete rotation to the noise clouds (the
trials firing rate of each condition) by permuting the axes of the firing
rate space and randomly assigning neural activity to neurons. We
repeated this procedure for each cluster separately. We generated
100 null models, and for each of them, we computed the CCGP for all
dichotomies, as done on real data. We defined the chance interval for
the CCGP measure as the interval between 2 standard deviations of
the null model distribution around the chance level at 50%.

Multi-dimensional scaling analysis
Weused theMulti-Dimensional Scaling (MDS) transformation to seek a
low-dimensional data representation. We computed the metric MDS,
where the dissimilarity matrix was built as follows. We averaged the
neural activity in a fixed time bin across pseudo trials within each task
condition, and we constructed a pc × pc matrix (with pc indicating the
number of conditions) which stored the Euclidean distance between
the average firing rate between each paired condition. To keep infor-
mation regarding the noise cloud of each task condition, we normal-
ized the Euclidean distance matrix by the squared root of the sum of
the variance of each condition along the distance direction between
the two clouds. For the analysis based on a single pseudo trial (Fig. 4B),
the dissimilarity matrix was defined as a pt × pt matrix, with pt indi-
cating the total number of pseudo trials across all conditions. This
dissimilarity matrix stored the Euclidean distance between the firing
rate of each pair of pseudo trials, and it was normalized as
described above.

Behavioral analyzes
We computed the behavioral performance and reaction times of each
monkey separately, combining all the sessions we considered for the
neural analyzes. We computed the reaction time (RT) only in complete
and correct trials. The RT is defined as the time difference between the
go signal and target acquisition in each trial. In order not to bias the
results due to outliers, we removed those trials with RT larger than
3 standard deviations from the mean. Since the neural analyzes
revealed that the difference between the two monkeys comes from
different representational geometry of the rule and the shape of the
visual cue, we grouped trials per rule (stay-shift) and shape (rectangle-
square), for a total of four conditions.We compared the distribution of
RTs of trials with different rules and shapes, separately. To test whe-
ther the RTs distributions were significantly different, we ran the
Mann–Whitney U test (p-value < 0.05).

Moreover, we computed the average performance across the
sessions for each of the previous four task conditions. The error bar of
the estimated average performance was assessed by applying the fol-
lowing formula53:

σ + =� =
Pn+ k2

2 ± k Pð1� PÞn+ k2

4

h i1
2

n+ k2 , ð1Þ

where n is the number of trials used to compute the performance
across sessions, P is the average performance, and k is the confidence
level in termsof standarddeviation thatwefixedequal to 2.Weapplied
the chi-squared test to assess whether the performance was
statistically different between different conditions (p-value < 0.05).
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Multi-linear regression model for behavior
We fitted a multi-linear regression model on a single-trial basis to
better investigate the behavioral differences between the two mon-
keys. We included only complete and correct trials in the model, and
we discarded those trials with reaction times larger than 3 standard
deviations from the mean as done in the behavioral analysis. For each
trial, we took three independent binary input factors to themodel: rule
(+1/−1), previous response (+1/−1), and shape (+1/−1). We also included
all the interaction terms. The output of the model is the reaction
time (RT), and the multi-linear model is defined as follows:

RT=ω1 × ½rule�+ω2 × ½previous�+ω3 × ½shape�
+ ω4 × ½rule*previous�+ω5 × ½previous*shape�
+ ω6 × ½rule*shape�+η,

ð2Þ

where ω1,…,6 are the weights of each factor, and η is a constant term.
We fitted 100 models, each time randomly subsampling trials from
each task condition, in each monkey separately. The number of trials
per task condition was set to the minimum number of trials across
conditions. We fitted each model by using the ordinary least squares
method54. We compared the weights’ distributions across models
between the twomonkeys, for each factor, using theMann–Whitney U
test (p-value < 0.05).

Architecture of the Recurrent Neural Network Model
We trained 80 vanilla Recurrent Neural Networks (RNNs) to perform
the visually cued rule-based task (see Fig. 7A). Through random fixed
weights Wrand, Nu = 9 input units are fully connected to an expansion
layer of M = 100 rectified linear units (ReLU). The output from the
expansion layer is passed through the input weights Win to N = 100
recurrent units. Wrec defines the recurrent weight matrix (N ×N). The
readouts of the RNN are a single scalar representing the temporal
discounted expected return (value function/critic), and a real vector
with a length equal to the total number of possible actions (Na = 3),
which arefixation, right or left response (policy/actor). The final action
was determined by sampling from the softmax distribution of this
vector at each time step.

The input to the network, u(t)task, which is the input vector to the
expansion layer, is defined as follows:

uðtÞtask = uðtÞf ix ,uðtÞshape,uðtÞcolor ,uðtÞprev:resp:
� �

, ð3Þ

where u(t)fix is a scalar that is equal to 1 when the network has to fixate,
and it is set to 0 when the network is required to provide a response
after the delay period; u(t)shape is a one-hot vector of three units
encoding the shape of the visual cue (horizontal, vertical rectangle, or
square); u(t)color is a one-hot vector of three units encoding the color of
the visual cue (gray, yellow, or purple); u(t)prev.resp. is a one-hot vector of
two units encoding the previous response (right or left). This is a
simplified version of the input with respect to themonkeys’ behavioral
task where the animals had to retrieve the previous response from the
earlier trial (here, we randomly sampled the previous response at the
beginning of each trial becausewe reset the network at the end of each
trial for simplicity, and we provided it to the network at the cue onset).
For the current model, the input vector u(t)task was randomly selected
at the beginning of each trial so that the possible trial types were
uniformly randomly sampled.

We defined a positive activity input u(t) to the recurrent units as55:

uðtÞ= uð0Þ +WrandutaskðtÞ+
ffiffiffiffiffiffiffiffiffiffiffiffi
2τσ2

in

q
ξ ðtÞ

� �
+
, ð4Þ

whereu(0) = 0.2 is a constant baseline term (equal for all the units),Wrand

are randomweights from the nine input unitsNu to the expansion layer
unitsM, τ = 100ms is the neuronal constant56, σin= 0.01 is the strength

of the input noise, and ξ(t) is Gaussian white noise with zeromean and
unit variance, sampled i.i.d. across units and time. Real neurons typi-
cally have shorter time constants τ, around 20 ms. In this work, the
100ms time constant mimics the slower synaptic dynamics based on
NMDA receptors56. The ReLU non-linearity function [x]+ =max(0, x)
maps the input currents to positive firing rates. The random weights
Wrand were sampled from a Gaussian with zero mean and standard
deviation 1=

ffiffiffiffiffiffi
Nu

p
, and they were kept fixed during the whole training

phase. We can rewrite the Eq.(4) in the discrete-time description with
time step Δt = 20ms, using the first-order Euler approximation, in the
following way:

ut = uð0Þ +Wrandutask
t +

ffiffiffiffiffiffiffiffiffiffi
2
α
σ2
in

r
Nð0,IMÞ

" #
+

, ð5Þ

where α =Δt/τ, and N(0, IM) is the multivariate Gaussian centered in
zero with the identity as covariance matrix (of size M ×M).

Wedescribed theN-dimensional recurrent units activity r(t) by the
following dynamical equation57:

τ drðtÞ
dt = � rðtÞ+ WrecrðtÞ+WinuðtÞ+

h
+b +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2τσ2

rec

p
ξ ðtÞ

i
+
,

ð6Þ

which, in a discrete-time formulation using first-order Euler approx-
imation, becomes:

rt = ð1� αÞrt�1 +α Wrecrt�1 +W
inut +

h

+b+

ffiffiffiffiffiffiffiffiffiffiffiffi
2
α
σ2
rec

r
Nð0,INÞ

#
+

,
ð7Þ

where Wrec are the recurrent weights, Win are the initial weights from
the expansion layer to the recurrent units, b is the bias term, and
σrec =0.05 is the strength of the recurrent noise. We initialized the
recurrent connection weights Wrec as a scaled identity matrix 0.5 × IN,
where IN is the identity matrix of dimension N ×N, N = 100 recurrent
units. The input weights Win connecting the M = 100 expansion layer
units to the N = 100 recurrent units were initialized by sampling them
from a Gaussian distribution of mean zero and standard deviation
equal to 1=

ffiffiffiffiffi
M

p
. The bias b term was initialized to zero.

One of the output readouts of the RNN is the scalar representing
the temporal discounted expected return Vt (value function/critic) at
time t, defined as follows:

Vt =W
out
criticrt +bcritic: ð8Þ

The second readout that implements the policy (actor) is a real vector
of 3 units, each representing a possible action. The final action was
determinedby sampling from the softmaxdistributionof this vector as
follows:

probactions
t = Softmax Wout

actorrt +bactor

� �
: ð9Þ

The output weight matricesWout
critic andWout

actor were both initialized by
sampling from a Gaussian distribution of zero mean and standard
deviation equal to 0:4=

ffiffiffiffi
N

p
. The bias terms bcritic and bactor were initi-

alized to zero.
For each network, we trained the following parameters: Win, Wrec,

Wout
critic, W

out
actor , b, bcritic and bactor.

Training of the RNN through the proximal-policy-optimization
We trained theRNNs toperform the visually cued rule-based taskusing
Proximal-Policy-Optimization (PPO), a state-of-the-art deep reinforce-
ment learning algorithm25,58. It belongs to the family of policy gradient
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algorithms, which optimize the policy directly through gradient
ascent, with a focus on maximizing the expected cumulative reward.
Other algorithms in this family include REINFORCE and Advantage
Actor-Critic (A2C), which have been successfully applied to study
neuroscience problems before27,28. We defined the Loss Function L to
be maximized on every training batch of trials, as a weighted sum of
the PPO policy loss LPPO, the state value function loss LVF , and the
entropy regularization term S as follows:

LðθÞ=E LPPO
t ðθÞ � c1LVF

t ðθÞ+ c2S½πθ�ðstÞ
h i

, ð10Þ

where c1 = 0.5 and c2 = 0.01 are hyperparameters determining the
weights of the value function loss and the entropy regularization term,
respectively. E represents themeanover a batchof training trials that is
composedby unrolling 20 environments, simulated in parallel with the
same agent, for T = 128 steps. This batch was then split into 4 mini-
batches used for the optimization. θ refers to the collections of all the
trained parameters, and πθ is the policy used to sample the actions of
the network given an input.

The policy loss LPPO is defined as follows:

LðθÞPPO =minðρtðθÞAt ,clipðρtðθÞ,1� ϵ,1 + ϵÞAtÞ, ð11Þ

where ρtðθÞ= πθðat jst Þ
πold
θ

ðat jst Þ
is the probability ratio of the current and old

(before the update) policies, ϵ is a hyperparameter set to 0.1, and At is
the advantage function (similar to reward-prediction-error) defined as:

At = � V ðstÞ+ rt + γrt + 1 + . . . + γT�t + 1rT�1 + γ
T�tV ðsT Þ, ð12Þ

where the state st =ut is the input to the network over time as defined
in Eq. (5), rt is the actual reward at time step t, γ is a standard temporal
discount factor set to 0.99, and V(st) is the value function computed at
the state st. The goal is to get a policy thatmaximizes future rewards in
the interaction agent/environment loop.

The value function V(st) is optimized in a supervised way by
minimizing the following mean square error loss:

LVF ðθÞ= 1
2 Rt � V ðstÞ
	 
2,

Rt =
Pk�1

i=0 γirt + 1 + γ
kV ðst + kÞ

	 

,

ð13Þ

whereRt is the n-step bootstrapped discounted return at time t, V(st) is
the value function whose output is the expected return from state st, γ
is the discounted factor, k is the number of steps until the next state
and it is upper bounded by the maximum unroll length T, and
Rt � V ðstÞ
	 


is the temporal-difference error that provides an estimate
of the advantage function for actor-critic.

Finally, the entropy regularization term that helps with explora-
tion over exploitation is defined as follows:

S=Hðπðat jstÞÞ, ð14Þ

where at, and st, are the action, and the state, respectively, and H(π) is
the entropy of the policy.

All the parameters were updated via gradient ascent and back-
propagation through time using the Adam optimizer with default
parameters59. In order todealwith the issueof the explodinggradients,
we clip the gradient norm always to be ≤1.

Visually cued rule-based task structure for the network model
We trained the networks to perform the visually cued ruled-based task,
which is equivalent to the task that the monkeys were trained on, but
without the feedback period (Fig. 1A). The network is reset at the

beginning of each trial with initial firing rate r0 = 0. Each trial startswith
a fixation period of tfix= 1500ms. The time increment after each step is
set toΔt = 20ms.During thefixationperiod, the only non-zero input to
the network is the fixation input, and the network has to choose the
fixation action to take a reward of 0; otherwise, if it takes a right or left
action, the trial is aborted, and a reward of −1 is issued.

After the fixation period, there is the appearance of one of the
visual cues (see Fig. 1B), which is randomly sampled at each trial, and it
remains on for tcue = 500ms. The fixation input is still active during the
cue onset, and the network must continue to maintain fixation. The
previous response is provided along with the visual cue. It is randomly
sampled in each trial, and it is presented only during the cue period to
reproduce the results we showed in Fig. 3, where the previous
response is mainly decoded around the visual cue presentation.

After the cue period, a delay period of tdelay of 1000, 1200, or
1500ms is randomly chosen in each trial, as in themonkeys’ task22,46,60,
where the only input to the network is the fixation. Again, the network
can only choose to maintain fixation, and any other action results in
punishment and abortion of the trial.

Subsequently, after the delay period, the fixation input is turned
off, representing the go cue, where the network has a maximum of
tdec = 1500ms to make a decision, left or right. In this phase, if the
network continues to hold fixation for more than tdec, the trial is
aborted, and a rewardof − 1 is issued. If, on theother hand, thenetwork
provides the correct action (right or left), a reward of +1 is given, and
the trial is terminated. However, if the network makes the wrong
choice, it is punished with a reward of−1, and the trial is terminated.

The reaction time (RT) is calculated as the difference between the
first time step the network makes a choice, right or left, tfin, and the
time step of the go cue, tgo: RT = tfin − tgo, where tgo = tfix + tcue + tdelay.
See Supplementary Fig. 3 for 2 examples of correct trials after suc-
cessfully training a model.

Analysis of the correlation between the representational geo-
metry of shape and rule with reaction times in RNNs
Since one main difference in the two monkeys, performing the same
task with high accuracy, concerns the representational geometries of
the shapeof the visual cue and the ruleduring the cuepresentation,we
defined two variables, Δ-decoding and Δ-CCGP defined as follows:

Δ�decoding= accuracy(shape)� accuracy(rule) ,

Δ�CCGP= CCGP(shape)� CCGP(rule) ,
ð15Þ

where accuracy(shape) and accuracy(rule) are the accuracies of the
linear decoder in classifying the shape and rule, respectively, during the
visual cue presentation, and analogously for the CCGP. We computed
these variables for each of the RNNs. They are good indices that briefly
summarize the difference in representational geometries of the shape
and rule across all the RNNs. Indeed, positive values of Δ-decoding, or
Δ-CCGP, suggest a stronger signal of the shape compared to the rule,
resembling the representation observed in Monkey 1. Conversely,
negative values indicate a stronger signal of the rule compared to the
shape, resembling the representation observed in Monkey 2.

The second main result we obtained from neural data is the
relation of the representational geometries with reaction times (RTs).
To assess the difference in reaction times, we defined a new variable
ΔRT as follows:

ΔRT= jhΔRT(shape) ij � jhΔRT(rule) ij,
hΔRT(shape) i= hRT(rectangle) i � hRT(square) i,
hΔRT(rule) i= hRT(stay) i � hRT(shift) i,

ð16Þ

where 〈RT(rectangle)〉, 〈RT(square)〉, and 〈RT(stay)〉, 〈RT(shift)〉, are the
average reaction time across trials with rectangle-shaped or square-
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shaped cues, and with stay or shift rules, respectively. We then took the
absolute value and computed the difference between the two averages.

We assessed theΔRT for eachRNN: positive values ofΔRT indicate
that, on average, reaction times are influencedmore by the identity of
the shape than the rule. Conversely, negative values suggest that
reaction times depend more on the rule than on shape.

We subsequently correlated the Δ-decoding, or CCGP, with the
number of training trials required to reach the performance threshold
of at least 99% of complete trials and 90% of correct trials to stop the
training, and with ΔRT, separately.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The neural data for each subject and the artificial dataset generated in
this study are available at the following link: https://github.com/
ValeriaFascianelli/geometry-individual-differences.git. The data are
also provided in the Supplementary/Source Data file Source data are
provided with this paper.

Code availability
All of our code for this project is written in python, making use of
pytorch61, gym62, and the broader python scientific computing envir-
onment (including numpy63, scipy64, matplotlib65, and scikit-learn52).
The codes to analyze the neural and artificial datasets are available in
the following repository: https://github.com/ValeriaFascianelli/
geometry-individual-differences.git.
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