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Abstract

Human neural dynamics are complex and high-dimensional. There seem to be limitless
possibilities for developing novel data-driven analyses to examine patterns of activity that
unfold over time, frequency, and space, and interactions within and among these
dimensions. A better understanding of the neurophysiological mechanisms that support
cognition, however, requires linking these complex neural dynamics to ongoing behavioral
performance. Performance on cognitive tasks (measured, e.g., via response accuracy and
reaction time) typically varies across trials, thus providing a means to determine which
neural dynamical processes are related to which cognitive processes. In this chapter we
will review and present several methods for linking nonlinear neural dynamics, based on
oscillatory phase, phase-based synchronization, and phase-amplitude cross-frequency
coupling. In general, the approach of linking nonlinear neural dynamics based on phase
values with trial variations in task performance have two significant advantages for
understanding neurocognitive processes: (1) They allow researchers to distinguish those
neural dynamics specifically related to cognitive task performance from other neural
dynamics that reflect more generic background neural dynamics, and (2) Oscillation phase
has been linked to a variety of synaptic, cellular, and systems-level phenomena implicated
in learning, information processing, and network formation, and therefore provide a

neurophysiologically grounded framework within which to interpret results.



Nonlinear neural dynamics and behavior 3

Neural dynamics are complex

Populations of neurons produce oscillations, which reflect rhythmic fluctuations in the
summed dendritic and synaptic activity (Wang, 2010), and have been linked to a wide
variety of biological and psychological phenomena over multiple spatial scales, ranging
from long-term-potentiation to spike-time-dependent-plasticity to conscious visual object
recognition. Further, oscillations occur over a wide range of frequencies, from ultra-slow (<
1 Hz) to ultra-fast (>600 Hz) (Steriade, 2006). Although slow oscillations are traditionally
associated with deep sleep and anesthesia, <1 Hz oscillations have also been shown to
modulate cognitive and perceptual processing (Lakatos et al., 2008; Monto et al., 2008; Van
Someren et al,, 2011). Different regions of the brain seem to have “preferred” or dominant
frequency ranges, which may be linked to different neuron types, configurations, or
functional characteristics (Rosanova et al., 2009; Kopell et al., 2010; Hipp et al., 2012; Siegel
et al.,, 2012). Within the cortex, different layers produce oscillations at different frequencies
(Roopun et al., 2006; Sun and Dan, 2009; Buffalo et al., 2011). Interactions among activities
in different frequency bands within the same or across spatially distributed neural
networks (i.e., cross-frequency coupling) have been linked to neurobiological and cognitive
processes (Young and Eggermont, 2009; Canolty and Knight, 2010). Neural oscillation
dynamics are modulated by a variety of neurochemicals, which have differing effects on

neural dynamics that depend on region, frequency band, and behavioral state.

Action potentials of individual neurons can become synchronized with the phase of local
oscillations (Wu et al., 2008; Buffalo et al., 2011; Lepage et al.,, 2011) in a task-dependent
manner (Siegel et al., 2009; Liebe et al., 2012). The relative timing of action potentials with
respect to oscillations has been implicated in information processing schemes such as
phase coding (Lisman, 2005), as well as long-range inter-regional communication and
coordination. Thus, synchronous oscillations across neural populations is thought to be a
mechanism for facilitating the functional unification of spatially disparate neurons into a

cohesive network.
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Synchronous oscillations among brain regions is thought to be a means of coordinating
information processing, leading to the formation of functionally coupled networks (Fries,
2005; Wang, 2010). This synchrony is often manifest as phase-locking, with the idea that
in-phase oscillators can more efficiently transfer information. For example, synchronous
neural inputs produce nonlinear increases in synaptic efficacy (Niebur et al., 2002), which
is a foundation of Hebbian learning. Oscillatory phase synchronization facilitates such input
timing. Further, field potential oscillations may play a causal role in modulating neural

activity (Anastassiou et al,, 2011).

In other words, neural dynamics are complex. Oscillations appear to be a ubiquitous and
fundamental neural mechanism that supports myriad aspects of synaptic, cellular, and
systems-level brain function. At present, oscillations are perhaps the most promising
bridge across multiple spatial and temporal scales of neural activity, from fast synaptic
dynamics that regulate gamma oscillations, to slower fluctuations that predict conscious
perception. For the same reasons, oscillations are also arguably the most promising bridge

across multiple disciplines within neuroscience, and across multiple species.

Data analysis techniques and possibilities are expanding rapidly

In the early nineteenth century Joseph Fourier proved that any time series can be
represented as the sum of time-varying sinusoids of different frequencies. This
demonstration is the basis for all modern time-frequency analyses. Researchers use
spectral analyses of neurophysiological data for decades. However, until digital computing
became ubiquitous, most frequency analyses were limited to examining band-specific
amplitude changes. Prior to the digital era, frequency spectral analysis was carried out
either by counting the number of zero-crossings—that is the number of times the EEG
signal crossed the zero-line (Legewie and Probst, 1969)—or by specialized “electronic
frequency analyzers” and comparing the results of the EEG pen-deflections with an input
signal of known amplitude. These methods were labor-intensive, however: “so little data
[could] be processed... that physiological correlation [was] impractical.” (Burch, 1959; see

also Figure 1).
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Figure 1. Taken from Bellville and Artusio (1956) showing frequency on the x-axis, depth of
anesthesia on the y-axis, and amplitude on the z-axis. This figure is actually a photograph of a

physical model built by the authors to display their power spectral results.

Of course, time-varying sinusoids carry information not just about frequency and
amplitude, but also instantaneous phase information. As EEG research moved away from
analog pen-and-paper recordings to digital storage, offline analysis of EEG became more
commonplace. This move allowed researchers to make use of digital filtering techniques
and move away from power spectral density analyses to time-frequency analyses. There
are now many techniques used to extract time-frequency information from
neurophysiological data, including: short-time or sliding-window Fourier transforms;
wavelet and other template convolution techniques, including matching pursuit
algorithms; and filtering and Hilbert transform. While formally different, these three
methods are essentially equivalent with the only differences between them due to

differences in implementation parameters (e.g., bandwidth, window length) (Bruns, 2004).
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Currently, it is easy to extract the analytic signal (containing information about amplitude
and phase over time, frequency, and electrode), and even small laptop computers can do
analyses that were out of reach only a few decades ago. Perhaps in the near future
scientists will analyze data on their phone. And with modern high-end computing (compute
clusters, cloud computing, and other distributed computing solutions), even the most

complex analyses on very large datasets can be done in hours or days.

The importance of linking neural dynamics to behavior dynamics

Here we argue that an important criterion for evaluating the functional significance of
neural oscillations is the link between neural dynamics and behavioral/perceptual
dynamics. We focus specifically on methods to link nonlinear neural dynamics to behavior,

because linear methods are better established and more widely used in neuroscience.

It is difficult to estimate the dimensionality of neural dynamics. Time, frequency, and space
(i.e., brain region, cortical column, neuron) are three important dimensions. Power (the
squared amplitude of the oscillation) and phase (the timing of the oscillation, measured in
phase angle of a sinusoid) are discrete dimensions that provide largely independent
information regarding, respectively, neural activity strength and timing (note that power
and phase are not entirely independent, because with decreasing power, phase becomes
increasingly difficult to estimate; at the extreme case of zero power, phase at that
frequency is undefined). There are interactions amongst various dimensions of
information. For example, activity can be coupled across different frequency bands and
spatially distributed neural populations (van der Meij et al., 2012). These kinds of complex
interactions can in some cases be modulated by sensory information processing (Lakatos et
al, 2008), suggesting a functional computational role for multidimensional nonlinear

neural dynamics.

This massive complexity provides nearly limitless possibilities for the brain to encode,
process, and transfer information. Given the enormous repertoire of

cognitive/emotional /social processes of which our brains are capable, ranging from
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occluded object identification to complex hypothesis generation, it is likely that the brain
uses multiple and multidimensional information processing schemes that operate flexibly

and in parallel.

On the one hand, this allows and inspires researchers to develop increasingly sophisticated
mathematical techniques to characterize and model brain activity. On the other hand, at a
practical level, the search space is so large that nearly any possible analysis approach is
likely to fit some pattern of data. This is compounded by the fact that there is often a
limited amount of data, and data (particularly when recorded as mesoscopic levels, as in
human neuroscience) contain noise. Thus, there is a danger that novel analysis approaches
will fit some pattern of data in a particular dataset but will not be reflective of or relevant

to fundamental and natural neural computations.

We argue that a useful approach to identifying patterns of neural dynamics that are most
relevant for function (that is, perceptual, behavioral, and cognitive processes) is to link
neural dynamics to ongoing behavior of the subject or changes in the environment. By
“behavior” we mean actions taken by the subject as part of the experimental design, such as
key presses, saccades, or decisions to run down one or another maze arm. In this sense,
behavior could also imply differences as a function of disease state or brain development.
Changes in the environment need not require a behavioral response, however.
Presentations of Gabor patches with different gradients or luminances, for example, can be

used to link neural activity to visual decoding with no behavioral responses necessary.

We do not suggest that the discovery, characterization, and modeling of neural dynamics
without specific links to behavior is misguided or not useful, nor do we suggest that such
results are uninterpretable. Rather, if the goal of the research is to identify the patterns of
activity that are most relevant for neural computations and brain function, fluctuations in
those patterns should be linked to fluctuations in behavior or perception. Neural dynamics
without any clear identifiable behavioral correlate may reflect emergent properties of
neural architecture, or may support computation in more complex ways than our current

approaches can uncover.



Nonlinear neural dynamics and behavior 8

This argument may seem to invalidate in vitro studies, but this is not the case. In vitro
studies provide valuable information regarding cellular and synaptic processes that can
then be used to better understand the neurobiological mechanisms underlying brain-
behavior links made in in vivo studies. Indeed, fundamental principles of synaptic and
cellular mechanisms in many cases cannot be learned through meso- or macro-scopic level

recordings.

Linear approaches of linking neural and behavior dynamics

Linear approaches to linking neural and behavioral dynamics rely mainly on correlations,
such as inter-trial correlations between the amplitude of a neural response and inter-trial
variation in behavior or stimulus features. Indeed, this is the idea of applying general linear
models to hemodynamic and electrophysiological activity, which is perhaps the most
commonly and widely accepted statistical approach used in cognitive neuroscience studies.
In many situations, linear or monotonic brain-behavior relationships are appropriate.

Indeed, experiments are often designed specifically to be tested using linear models.

The main limitation of linear approaches to brain-behavior links, obviously, is that they are
limited to linear relationships. Given the enormous wealth of neuroscience investigations
using linear statistical approaches, it is clear that much can be learned about the functions

and computations of the brain using linear models.

But neural dynamics can also be nonlinear, and thus linear approaches might be
inappropriate or lead to misleading conclusions in some situations. For example, if the rate
of action potentials is unrelated to stimulus intensity, but the timing of action potentials
with respect to simultaneous gamma phase is related to stimulus intensity, linear analyses
would lead one to the incorrect conclusion that that neuron was unrelated to visual

processing (Lepage etal., 2011).
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In the next sections, we describe several methods for linking nonlinear neural dynamics to
behavior. Most of these methods are centered on oscillation phase; as discussed earlier,

phase is an important index of population-level neural timing, and is inherently nonlinear.
Nonlinear dynamics and behavior: Phase modulations

One of the main utilizations of phase information in cognitive experiments in which there
are repeated trials of the same or similar stimuli is to compute inter-trial phase consistency
(ITPC; also sometimes called phase-locking, phase-reset, or cross-trial coherence). ITPC
measures the extent to which the distribution of phase angles at each time/frequency point
over many trials deviates from a uniform distribution; the larger the deviation from
uniform distribution, the more the phase angles (i.e., oscillation timing) are likely to take on
specific values at specific post-stimulus times. To compute ITPC, the phase angles at each
trial (at one time-frequency point) are considered to be vectors in a unit circle, with an
angle corresponding to the phase angles. After many trials, a distribution of phase angles is
obtained, and the average vector is computed. The magnitude (length) of that vector is
ITPC, and reflects the extent to which phase angles are non-uniformly distributed: If the
polar distribution is roughly uniform, the average vector will have a small magnitude
(approaching zero), and the interpretation is that the timing of activity at that time point at
that frequency is unrelated to the stimulus. On the other hand, if the distribution is
unipolar, the average vector will have a larger magnitude (with a maximum of 1), and the
interpretation is that the timing of band-specific activity is highly related to the stimulus. In

math:

0! E ot

t=I1

ITPC =

, (1)
where n is the number of trials, k is the phase angle at a time-frequency point, t is a trial

index, i is the imaginary operator, and e is the natural log.

There are two disadvantages of this “standard” measure of ITPC. The first is that it assumes

that oscillation phase is relevant when the oscillation has a similar phase value across trials
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at each time-frequency point. This approach therefore mixes a number of potential causes
of phase coherence, including stimulus-evoked responses, general orienting or attention
responses, and task-specific dynamics, thus precluding a precise interpretation with
respect to trial-varying cognitive/perceptual dynamics. The second disadvantage is that
this approach precludes discovery of phase dynamics that are related to the task but are
not consistent across trials, that is, the phase angle is not in the same narrow range across

trials.

We argue for an adjustment to ITPC that affords a better link to task dynamics and thus a
more cognitively precise interpretation. “Weighted ITPC” does not require phase values to
be similar across trials; rather, this analysis is sensitive to experiment-specified task
modulations of phase values even if those phases are randomly distributed across trials

(Cohen and Cavanagh, 2011).

With weighted ITPC, rather than the magnitude of all vectors being 1.0, the magnitude of
each vector is scaled according to the behavioral or experimental variable on that trial (e.g.,
reaction time or trial-specific stimulus property). (Note that some variables may need to be
scaled, e.g., if they contain negative numbers, because vectors cannot have negative length.)
From here, calculation of weighted ITPC proceeds as does ITPC: The length of the mean

vector of the distribution is calculated.

However, statistical treatment of weighted ITPC differs from standard ITPC. Procedures for

statistical analyses of ITPC have been established. If one assumes a von Mises distribution

under the null hypothesis, a statistical p-value can be computed as e™"'"" <, Weighted ITPC,
however, is not appropriate for this test because trial vector lengths are not 1.0 but rather
scale with whatever behavioral or experimental manipulation is being examined (e.g.,

reaction time or stimulus property); thus, the average vector length can exceed 1.0.

Non-parametric permutation testing is an appropriate statistical strategy in this case.

Permutation testing addresses the aforementioned issue and has the additional advantage
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that it does not rely on assumptions regarding phase angle distributions. The null
hypothesis in this test is that there is no consistent relationship between the behavior
variable and phase angles. Note that this null hypothesis does not require a non-uniform
distribution of phase angles; in other words, there can be simultaneously weak ITPC and
strong weighted ITPC (see Figure 2). At each iteration in the permutation testing, the
pairing of behavior/stimulus and phase angle is shuffled across trials, and weighted ITPC is
computed. This shuffling can be done hundreds or thousands of times, thus creating a
distribution of reaction time-phase modulations under the null hypothesis. Finally, the
observed weighted ITPC (with the true behavior-phase angle pairing) can be compared to
this null distribution by subtracting from the observed value the average of the shuffled
values, and divided by the standard deviation of the shuffled values. This creates a standard
Z score that can be interpreted in standard deviation units, and can be easily transformed

into a p-value for statistical significance.

PC=0.035 WPCz =3.947

Figure 2. Phase coherence (PC) and weighted phase coherence. Twenty random angles were
generated, which results in very low coherence (0.035, on a scale from 0 to 1). The same
vectors, when their length is modulated by an experiment variable such as reaction time or
stimulus intensity, can reveal a link between behavior and nonlinear oscillation dynamics. A Z

0f 3.947 corresponds to p<0.001.
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Unfortunately, weighted ITPC is, in most situations, uninterpretable without the
aforementioned permutation testing and Z-transformation. The reason is that the length of
the mean vector is entirely dependent on the scale of the weighting function. Multiplying
the same weighting data by a factor of say, 100, will increase the pre-Z-transformed vector

length without changing the relationship between behavior and phase.

Another common use of phase information in cognitive electrophysiology is to compute
inter-channel phase synchronization (ICPS). Here the goal is to assess the extent to which
band-specific timing dynamics recorded from two different sensors are synchronous. ICPS
is computed similarly as ITPC—the vector length of the average of unit vectors is taken as
the strength of synchronization—except that the phase angles defining those vectors are
differences between two phase angles (from two different sensors). Weighted ICPS can
thus also be computed to assess the extent to which connectivity between two sites is

modulated by behavior or stimulus properties.

These two analytic approaches—ITPC and weighted ITPC (or, ICPS and weighted ICPS) are
complementary and provide different kinds of information regarding neurocognitive
processing. ITPC provides insights into the overall stimulus- or response-related phase
consistencies, and could be driven by a number of cognitive factors, some of which may
have little relevance to the purpose of the experiment (e.g., general task orienting, working
memory access, attention), whereas weighted ITPC is specific to the behavior or stimulus
under investigation. For example, the simulated results presented in Figure 2 do not
indicate that phase is irrelevant; rather, they show that phase is modulated by reaction
time but is not “phase-reset” by the stimulus (see Cohen and Cavanagh, 2011, for examples

with real data).

Cross-frequency coupling

Cross-frequency coupling (CFC) refers to a statistical relationship between two non-

overlapping frequency bands. Given that two forms of information can be extracted from

any frequency band—phase angle and amplitude—CFC can therefore take three forms:
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amplitude/amplitude correlations (not further discussed here); n:m phase

synchronization; and phase/amplitude coupling (PAC).

The mammalian neo- and archicortices generate oscillatory rhythms (Engel et al., 2001; Buzsaki
and Draguhn, 2004) that interact to facilitate communication (Fries, 2005; Frohlich and
McCormick, 2010). There is emerging evidence that single-frequency rhythms are often nested
within other frequency bands (Schanze and Eckhorn, 1997; Roopun et al., 2008; Tort et al.,
2008; Canolty and Knight, 2010), and that the “carrier” frequency to which faster oscillations are
coupled depends to some extent on brain region and task (Voytek et al., 2010; Foster and Parvizi,
2012). It has been proposed that PAC reflects interactions between local microscale (Colgin et
al., 2009; Quilichini et al., 2010) and systems-level macroscale neuronal ensembles (Lisman and
Idiart, 1995; Fries, 2005; Canolty and Knight, 2010) that index cortical excitability and network
interactions (Vanhatalo et al., 2004; Lakatos et al., 2008). From a behavioral viewpoint PAC has
been shown to track learning and memory (Tort et al., 2009; Axmacher et al., 2010; Kendrick et
al., 2011). PAC magnitude also fluctuates at an extremely low (<0.1 Hz) rate comparable to that
seen in functional connectivity derived from BOLD fMRI data (Foster and Parvizi, 2012).
Recent evidence (Voytek et al.-b, under review) has proposed a “PAC communication model”

(Figure 3).
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Figure 3. Frontal PAC communication model from Voytek et al. (under review-b). (A) Two
interacting brain regions, RFCx (blue) and CFCx (orange) are phase coherent—uvisible in the
blue and orange time series—quantified by the degree of phase coherence between them
(inset; in this case, near zero radians). (B) Phase coherence between regions is also associated
with coupling of theta (4-8 Hz) phase (blue) to high gamma (80-150 Hz) amplitude (red)
within a region. Such intraregional phase/amplitude coupling (PAC) can be seen in the co-
modulation of theta phase and local neuronal activity. (C) This phase/amplitude coupling is
statistically assessed as non-uniformity in the distribution of high gamma amplitude by theta

phase.

The statistical relationship between the phases of two distinct frequency bands ¢x and ¢y

can be assessed as n:m phase synchronization when the ratio between the frequencies is
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given by the integers n and m such that npx = m¢,. The mean vector between ngx and me,

is then computed (Penny et al., 2008):
1 N
Foy, = N ; exp(i(ng,[1]- me,[t]))|, 2)

where a Py, of unity represents perfect phase-locking between the two frequency bands
and Py, = 0 represents random relationship. This technique can be used to quantify the
phase relationship between same or different frequencies within or across channels.
Because Pyy is constrained to values between 0 and 1, for distribution-dependent (i.e., non-
resampling) statistical assessments of significance it is best to apply a Fisher’s z-transform
to normalize the data, although resampling methods are preferable:

11 (1+P
Zp=—lo
P58 Tp

), (3)

There are several implementations for computing PAC, including the phase-locking
algorithm in eq. 4, with a slight alteration. After extracting the phase information from a
relatively lower frequency pass-band ¢x and the analytic amplitude from a higher
frequency pass-band ay, the analytic amplitude time series is then filtered again using the
same pass-band used for ¢ and a second Hilbert transform is applied to obtain an
estimate of the phase modulation in the analytic amplitude (e.g., Mormann et al., 2005). The

statistical relationship between these two phase time series is then calculate after eq. 2.
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Figure 4. Taken from Voytek et al. (2010) demonstrating the processing schematic for one
technique for estimating phase-amplitude coupling. To estimate alpha phase (8-12 Hz) to
broadband gamma (80-150 Hz) PAC, the raw signal was simultaneously bandpass filtered
into both a low frequency alpha component as well as a high frequency broadband gamma
component. The analytic amplitude of the band-passed high gamma is filtered a second time
at the same frequency as alpha, giving the alpha modulation in high gamma amplitude. The
phase of both the alpha-filtered signal and the alpha-filtered high gamma analytic amplitude
is extracted and the phase locking between these two signals is computer. This phase locking
represents the degree to which the high gamma amplitude is comodulated with the alpha

phase.

There are several other methods of computing PAC (Young and Eggermont, 2009; Canolty
and Knight, 2010), for example based on a general linear model approach (Penny et al,,
2008) or more exploratory techniques (Cohen, 2008). Nonetheless, the principles outlined

here are the basis for most existing cross-frequency coupling techniques.

Linking cross-frequency coupling to behavior
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The easiest and most straight-forward way to link CFC to behavior is to test for condition
differences, or changes as a function of learning, either in the modulation strength or peak
phase of CFC (Lakatos et al., 2008; Cohen et al., 2009b; Tort et al.,, 2009; Axmacher et al,,
2010; Voytek et al., 2010; Kendrick et al., 2011), or differences between specific patient
groups and matched controls (Lopez-Azcarate et al., 2010; Allen et al, 2011). It is
particularly important to link CFC to behavior not only to distinguish cognition-relevant
from “background” dynamics, as discussed earlier, but also because CFC can, in some cases,
be spuriously detected in the presence of some artifacts (e.g., edge artifacts; Kramer et al,,
2008). With proper experiment design and sufficient trials, even if such artifacts are
present in the data, they would not be expected to differ as a function of task condition or

performance.

PAC has been shown to track learning and memory in humans (Axmacher et al., 2010), rats
(Tort et al.,, 2009), and sheep (Kendrick et al., 2011), as well as in theoretical simulations
(Lisman and Idiart, 1995). For example, Tort et al. found that theta/gamma PAC in the rat
hippocampus increased during learning and correlated strongly with behavioral
performance, and PAC correlated with learning more strongly than amplitude changes
alone. This result suggests that PAC may be a better neural correlate of some behavioral
outcomes than band-specific amplitude alone. Similarly, Voytek et al. observed that frontal
lobe theta/gamma PAC in humans increased as a function of task abstraction, and that PAC
was stronger in the task-relevant theta phase-coherent frontal network compared to

outside of that network.

PAC has also been linked to reward processing in human ventral striatum (Cohen et al,,
2009a, 2009b). With scalp EEG, PAC has been linked to error monitoring and adaptation
(Cohen and van Gaal, 2012). Specifically, frontal theta-alpha coupling reflected just-made
errors, whereas parietal/occipital alpha-gamma coupling predicted accuracy of the
upcoming trial. These and other (Voytek et al.,, 2010) findings demonstrate that different
brain regions use PAC in different frequency bands to process different kinds of goal-

relevant information.
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Currently, the majority of PAC calculation algorithms compute a value averaged across a
semi-arbitrary time window (Canolty et al., 2006; Cohen et al., 2009a; Tort et al., 2010;
Voytek et al,, 2010). The minimum length of this time window is bounded by the frequency
of the coupling phase, as at least one full cycle is needed to calculate the distribution of
values of the coupling amplitude. This means, for example, if one is investigating PAC
between theta phase (4-8 Hz) and high gamma amplitude (80-150 Hz), the best temporal
resolution one could achieve at 4 Hz would be 250 ms. However, the PAC metric is sensitive
to noise, and recent simulations made use of >200 cycles to get a reliable PAC estimate
(Tort et al., 2010). Thus, 50,000 ms or more may be required for reliable estimates of PAC
(one full cycle of a 4 Hz oscillation—the minimum bound of the phase coupling bandpass—
for at least 200 cycles). This requires researchers to use block designs (Voytek et al., 2010),
use long trial windows at the cost of temporal resolution (Tort et al, 2009), or to
concatenate time series across trials, which could introduce spurious PAC due to edge

artifacts (Kramer et al., 2008).

These limitations present a problem for analyzing subcomponents of a task such as
encoding, delay, and retrieval periods during working memory. However, recent work
(Voytek et al. B, under review) has shown that the above methods can be used to calculate
PAC relationships at an instantaneous time point across many behavioral trials in an event-
related manner (ERPAC). As shown in the figure below, traditional PAC measures may miss
PAC effects that are observed when analyzed using our ERPAC technique. This is likely due
to the underlying differences between what the two methods address: traditional PAC asks,
“what is the statistical relationship between phase and amplitude across time?” at the
expense of temporal resolution. In contrast, ERPAC asks, “what is the statistical

relationship between phase and amplitude across trials, at each time point?”
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Figure 5. Taken from Voytek et al. (under review-a). Trial-by-trial variance in low frequency
phase explains a significant amount of the trial-by-trial variance in y amplitude in visual
cortex in response to (a) attended non-target standard and (b) attended target stimuli (data
are from intracranial EEG form the human visual cortex). (c) Traditional PAC for a priori
alpha/gamma coupling across the first 250 ms post-stimulus onset shows no significant
difference between non-targets (blue) and targets (red). Note the lack of temporal resolution
because PAC is calculated across time and averaged across trials. In contrast, ERPAC (d) is
calculated across trials on a time point-by-time point basis. This shows that PAC in response
to targets (red) is significantly higher compared to non-targets (blue) during the same 250
ms post-stimulus time window where traditional PAC showed no differences (black dots above
ERPAC traces denote time points with a significant PAC difference between stimuli at p <
0.01).

These results suggest that PAC in early visual cortex is modulated by behavioral state.
Taken in conjunction with the PAC communication model outlined in Figure 3, one can

interpret these results in the context of top-down communication between the prefrontal
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cortex and visual cortex. In this framework, the prefrontal cortex is representing the task
rules (attend to target, ignore non-targets) through phase-specific modulations of visual
cortical activity. When an attended target is seen, visual cortical neuronal activity to targets
is increased relative to non-target stimuli due to phase-specific modulations. This
framework is intriguing because it provides a testable, neurophysiological model for top-

down cognitive control.

Testing for causal involvement of nonlinear dynamics in cognition and behavior

Needless to say, assessing whether nonlinear dynamics are causally involved in the
mechanisms of neural information processing is important for understanding fundamental
brain processes. A lack of compelling evidence for causal involvement would suggest that
nonlinear dynamics are merely useful indices of neural mechanisms, rather than reflecting

core mechanisms.

There are several methods for testing the causal involvement of nonlinear dynamics in
humans or behaving animals. One approach is transcranial magnetic stimulation (TMS),
which refers to applying brief (<1 ms) and spatially focused magnetic pulses that
transiently disrupt neural activity. TMS is known to reset ongoing brain oscillations at the
dominant frequency of each brain region (Van Der Werf and Paus, 2006; Thut et al., 2011;
Romei et al., 2012). In combination with EEG, TMS can be used to stimulate task-relevant
brain regions at specific neural configurations, such as specific oscillation phase values or

specific patterns of cross-frequency interactions (Dugue et al., 2011).

Another method for testing the causal involvement of nonlinear dynamics is transcranial
alternating current stimulation (TACS). TACS is similar to TMS but uses electrical
stimulation instead of magnetic stimulation, and has poorer spatial precision. One
advantage of TACS is that specific temporal patterns of electrical activity can be introduced
into the brain. For example, TACS can stimulate at specific frequencies (typically between
1-100 Hz), or it can stimulate at broad-band (a useful control condition). For example,

stimulating at subject-specific alpha band (~8-12 Hz, but the peak frequency varies across
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individuals) enhances subsequent resting-state alpha power at the stimulated frequency
(Zaehle et al., 2010). TACS in combination with behavioral testing can be used to test
whether processing of a stimulus is modulated according to the phase of the stimulated

oscillation.

Conclusions

The overall goal of cognitive electrophysiology is to understand how neural electrical
dynamics support or give rise to cognition and behavior. Here we argue that linking neural
dynamics—in particular, nonlinear neural dynamics—to changes in ongoing behavior or
environment properties is an important criteria for determining whether those neural
dynamics are specifically involved in information processing, or whether they reflect a
background state of the brain. There are several methods for linking neural dynamics to
behavior dynamics using linear functions, but there are fewer methods for establishing and
statistically analyzing nonlinear brain-behavior relationships. Here we reviewed several
different methods for forming such nonlinear links. We hope this field will progress further

in the coming years.
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