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Some prominent studies have claimed that the medial temporal lobe is not involved in retention of information over brief

intervals of just a few seconds. However, in the last decade several investigations have reported that patients with medial

temporal lobe damage exhibit an abnormally large number of errors when required to remember visual information over brief

intervals. But the nature of the deficit and the type of error associated with medial temporal lobe lesions remains to be fully

established. Voltage-gated potassium channel complex antibody-associated limbic encephalitis has recently been recognized as

a form of treatable autoimmune encephalitis, frequently associated with imaging changes in the medial temporal lobe. Here, we

tested a group of these patients using two newly developed visual short-term memory tasks with a sensitive, continuous

measure of report. These tests enabled us to study the nature of reporting errors, rather than only their frequency. On both

paradigms, voltage-gated potassium channel complex antibody patients exhibited larger errors specifically when several items

had to be remembered, but not for a single item. Crucially, their errors were strongly associated with an increased tendency to

report the property of the wrong item stored in memory, rather than simple degradation of memory precision. Thus, memory for

isolated aspects of items was normal, but patients were impaired at binding together the different properties belonging to an

item, e.g. spatial location and object identity, or colour and orientation. This occurred regardless of whether objects were shown

simultaneously or sequentially. Binding errors support the view that the medial temporal lobe is involved in linking together

different types of information, potentially represented in different parts of the brain, regardless of memory duration. Our novel

behavioural measures also have the potential to assist in monitoring response to treatment in patients with memory disorders,

such as those with voltage-gated potassium channel complex antibody limbic encephalitis.
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Introduction
In their seminal study Scoville and Milner (1957) showed that

individuals, including the famous HM, with bilateral damage to

their medial temporal lobe (MTL) exhibit complete anterograde

amnesia. New incidents in their daily life were forgotten ‘as fast

as they occur’. Most interestingly, these patients were still able to

retain a three-figure number or a pair of words as long as atten-

tion was not diverted to a new topic. Thus, it was considered that

short-term memory, typically defined as the retention of informa-

tion over a few seconds, or working memory, active manipulations

on short-term memory representations, remain intact after MTL

damage. By contrast long-term memory is severely impaired.

However, more recent imaging studies have shown that the

MTL and particularly the hippocampus are active during retention

of information over brief retention intervals (Ranganath and

D’Esposito, 2001; Piekema et al., 2006; Axmacher et al., 2007;

Hannula and Ranganath, 2008). Furthermore, some recent neuro-

psychological studies have reported that patients with MTL lesions

are impaired when the retention interval is as short as a few

seconds (Hannula et al., 2006; Olson et al., 2006a, b; Ezzyat

and Olson, 2008; Finke et al., 2008) or even when there are no

explicit mnemonic requirements (Lee et al., 2005; Romero and

Moscovitch, 2012; Warren et al., 2012). Such MTL activations

and lesion-related effects were discovered mainly using tasks

that required retention of associations, such as object-to-location

links (for reviews see Ranganath and Blumenfeld, 2005; Cashdollar

et al., 2011). These findings support a view of MTL function,

based on ideas originally expressed by Marr (1971), which high-

lights the role of the MTL and particularly the hippocampus in

associating or binding information represented in different parts

of the neocortex—critically, regardless of memory duration.

The current study was designed to shed novel light on the nature

of memory deficits that result from MTL damage. Unlike previous

patient studies, we examined the precision of recall and types of

errors (Wilken and Ma, 2004; Bays and Husain, 2008; Bays et al.,

2009) rather than the number of errors, as studied in conventional

tasks, such as the change detection paradigm, which requires binary

decisions (e.g. change or no change). If an individual fails to report a

change when it occurs on such a task, it does not necessarily mean

that they did not have any memory of the item. Conversely, if they

do report change or no change correctly, this does not mean

they remembered the item perfectly. Such paradigms may not

give us complete insight into the quality or fidelity of memory.

For this purpose we used two tasks in which participants are

required to choose the remembered feature of an item from a

continuous, analogue space (Wilken and Ma, 2004; Zhang and

Luck, 2008; Bays et al., 2009; Gorgoraptis et al., 2011; Pertzov

et al., 2012a, b). Such paradigms have two main advantages over

the more conventional tasks with binary decisions. First, they pro-

vide much more information per trial (several bits versus one bit of

information) and therefore are potentially more sensitive and less

susceptible to ceiling and floor effects. Second, the continuous

space of responses opens a window to investigate the type of

errors made by participants, not just the frequency of errors

(Bays et al., 2009).

We studied an unusual group of patients with a recently recog-

nized condition typically associated with focal MTL signal change

on neuroimaging (Vincent et al., 2011). Vincent et al. (2004)

described a series of individuals with a potentially reversible

limbic encephalitis associated with antibodies to voltage-gated

potassium channels (VGKC-Ab). It has subsequently become

clear that most of these antibodies are directed not against the

voltage-gated potassium channel itself, but instead against specific

components of the channels including the LGI1 (leucine-rich,

glioma-inactivated 1) molecule, which seems to be important

for synaptic communication (Lai et al., 2010; Vincent et al.,

2011; Benarroch, 2012). Although previous studies have

investigated some cognitive aspects of patients with VGKC-Ab

(Maguire et al., 2006; Chan et al., 2007; Hartley et al., 2007),

the full spectrum of cognitive impairment—and specifically per-

formance in short-term memory tasks—in this population is still

unknown.

Many previous studies on MTL involvement in memory over

brief delays have studied patients suffering from Korsakoff’s syn-

drome, anoxia or herpes encephalitis, which potentially affect vari-

ous brain regions outside the MTL. On the other hand, several

lines of evidence suggest that VGKC-Ab encephalitis predomin-

antly targets the MTL, mainly the hippocampus. A recent study

in a mouse model found Lgi1 gene expression to be most prom-

inent within intrahippocampal circuitry (Herranz-Pérez et al.,

2010). Moreover, post-mortem study of a VGKC-Ab patient

revealed neural loss restricted to the hippocampus, and amygdala

to a lesser extent, but no damage has thus far been evident in

other MTL regions or neocortex (Khan et al., 2009). Additional

imaging studies have provided further support that the hyperin-

tensity signal (in MRI FLAIR sequences) as a result of VGKC-Ab/

acute amnesic encephalopathy, predominantly affects the MTL,

specifically the hippocampus (Ances et al., 2005; Harrower

et al., 2006; Reid et al., 2009).

The brain dysfunction associated with VGKC-Ab can clearly

contribute to our understanding of the role of the MTL in

memory and the study reported here also has the potential to

aid clinical practice. Among the differential diagnoses of subacute

amnesia not due to an infectious cause, VGKC-Ab mediated limbic

encephalitis has a poor prognosis, but typically responds well to

treatment if it is recognized (Vincent et al., 2011). Developing

sensitive tasks for early identification and monitoring of response

to treatment in such patients is therefore very important. The

computerized behavioural tasks used here are potentially promis-

ing; they provide analogue response measures that avoid ceiling or

floor effects and use simple visual stimuli that can be easily used in

individuals of all cultural and educational backgrounds.

Patients and methods
We report data from seven cases. All patients presented with clinical

features of a subacute amnesic encephalopathy compatible with a

diagnosis of limbic encephalitis, highly elevated VGKC-Abs levels, no

evidence of a tumour and negative results for paraneoplastic antibo-

dies. HSV (herpes simplex virus) encephalitis and other infectious

aetiologies were excluded with appropriate serum and CSF tests.
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Other tests included blood cell count and general chemistry, B12, folic

acid, thyroid function tests, thyroglobulin and thyroperoxidase antibo-

dies, syphilis and Lyme serology, antinuclear antibodies, and antibodies

to double-stranded DNA. All patients have had clinical follow-up since

symptom presentation as well as brain MRI scans. They all gave in-

formed written consent and the studies were approved by the local

ethics committee. The studies reported here conform to the

Declaration of Helsinki.

Details of the seven cases are provided in Table 1 and the online

Supplementary material. Figure 1 presents MRI scans from the acute

stage of six patients (Patient 3’s imaging was also reported to dem-

onstrate abnormal signal bilaterally in the MTL by radiologists at his

referring centre but unfortunately these data were not made available

to us). No clear imaging abnormality in the MTL was reported in

Patients 5 and 6, which has also been observed previously in some

patients (Vincent et al., 2011). All seven patients participated in

Experiment 1. Patients 1, 2 and 4 also participated in Experiment 2.

Experiment 1: What was where?
In our first experiment, participants’ ability to remember the identity of

objects and their locations was assessed using a recently established

paradigm that provides a measure of recall performance on a continu-

ous, analogue scale (Pertzov et al., 2012b). A schematic representation

of the task is shown in Fig 2.

In different trials, participants viewed one or three fractal objects,

each located randomly on the screen. They were asked to remember

both the objects and their locations. After a delay of 1 or 4 s, two

fractals were presented on the vertical meridian. One of these had

appeared in the memory array (target) whereas the other one was a

foil that had not. Participants were required to touch the remembered

object to indicate which fractal they thought had appeared in the

memory array, and then ‘drag’ it on the touch screen to its remem-

bered location. Thus we could measure memory for object identity

separately of object location. Localization performance was analysed

only on trials in which an object was correctly identified.

Participants sat �42 cm in front of an interactive touch-sensitive

screen (Inspiron all-in-one 2320, Dell) with a 1920 � 1080 pixel

matrix corresponding to �62 � 35� of the visual angle. Stimuli were

drawn from a library of 60 fractals (Supplementary material; taken

from Sprott’s Fractal Gallery; http://sprott.physics.wisc.edu/fractals.

htm), randomly selected without repetitions for every trial. Each fractal

had a maximum width and height of 120 pixels (�4� of visual angle).

Stimuli were presented on a black background.

The location of fractals was determined by a Matlab script

(MathWorks, Inc.) in a random manner, with several restrictions.

Objects were never located within 9� of each other. Moreover they

were positioned with a minimum of 3.9� from the edges of the screen

and 6.5� from the centre of screen. Participants performed two test

blocks of 50 trials each. A block consisted of 10 trials with one fractal

and 40 trials with three fractals. A different number of trials per

condition was determined in pilot studies to maximize the power of

the analysis while keeping it as short as possible. Fractals were

repeated between three to four times in different trials within a

block. The blank maintenance interval was 1 s in half of the trials

and 4 s in the other half, in random order. Following this, the object

identification part of the task was introduced: two objects were pre-

sented above and below central fixation, one of them was a foil and

the other one had appeared in the memory array. The foil was not an

unfamiliar object, but taken from the library of fractals used across the

experiment.

Localization memory was computed by taking the distance between

the centre of the target object after it had been dragged to its

remembered location from the actual centre of the object in the initial

memory array. For convenience, we converted this value to a visual

angle for a viewing distance of 42 cm. As discussed below, we also

computed the distance between the remembered location of the

target object to that of non-target (unprobed) items that had

appeared in the original memory array. Progress was self-paced and

termination of each trial was signalled by pressing the space bar.

Patients who performed worse than two standard deviations below

healthy controls on the identification task were excluded from further

analysis because the focus of this study was to examine the distribu-

tion of errors of correctly remembered items. In total, seven VGKC

patients were able to perform the identification task well enough for

us to analyse the distribution of their localization recall errors. Their

performance was compared to 12 aged and education-matched con-

trol subjects (mean age: 63 years, standard deviation 7.2; mean edu-

cation level: 12 years, standard deviation 1.9) using mixed repeated

measures ANOVA with number-of-items (fractals) as within subject

factor, and group (patients versus controls) as between subjects

factor (SPSS v. 18). Further analysis was performed using two-tailed

t-tests. Percentages and proportions were normalized before statistical

comparisons using natural log transformation.

Experiment 2: Memory for stimuli
presented sequentially at one location
Object location is often treated as a privileged property and might

behave unlike other visual properties such as colour (Treisman,

1988; Tsal and Lavie, 1993; Huang and Pashler, 2007). In our

second experiment, we therefore eliminated the requirement to

remember different locations, using a serial order task. Our second

experiment used a new paradigm that also provides a measure of

recall on a continuous, analogue scale (Gorgoraptis et al., 2011),

rather than a binary response. A schematic representation of the

task is shown in Fig. 4.

In this task, participants viewed a series of one to three coloured

bars, each of different orientation, at screen centre, presented one at a

time. At the end of the sequence, recall for one of the items was

probed by redisplaying a bar of the same colour, but with a random

orientation. Participants were asked to rotate the probe on the screen

using a response dial (PowerMate, Griffin Technology) to match the

remembered orientation of the bar of the same colour in the

sequence. Pushing the dial signalled the termination of the trial and

initiated the next sequence.

Each trial consisted of a sequence of one to three coloured bars

(2� � 0.2� of visual angle) consecutively presented on a grey back-

ground on a laptop screen (32� � 19�) at a viewing distance of

�52 cm. In each trial, participants did not know in advance how

many objects they would have to remember. Each bar had a different

colour and orientation and all were presented at fixation, at the centre

of the display. The orientation of stimuli within a sequence differed by

at least 10�, but was otherwise randomly selected. The sequence of

colours in each trial was produced by permutation of a random selec-

tion of five easily distinguishable colours. Each stimulus was shown for

500 ms, followed by a blank screen for 500 ms.

At the end of a sequence, the probe item appeared with a circle

surrounding it (radius of 3.9�) making it easily distinguishable from the

to-be-remembered items in the sequence. Participants used the

response dial to match the remembered orientation of the item of

the same colour in the sequence—henceforth termed the target.
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Note the term ‘target’ is used here simply to distinguish it from other

objects in the sequence, or non-targets, that were not probed. We

emphasize that, due to randomization, participants did not know

which item would be tested or how long each sequence would be.

Patients 1, 2 and 4 took part in at least one session of the experi-

ment. Patient 1 performed this experiment in four different time

points. Every session consisted of a total of 120 interleaved trials: 20

trials with one item, 40 with two items and 60 with three items in the

sequence. The performance of each patient was compared with eight

age- and education-matched control subjects (mean age: 69, standard

deviation 6.6; mean education level: 12 year, standard deviation 1.9)

using mixed ANOVA with number-of-items as a within subjects factor

and group (patients versus controls) as between subjects factor.

Further statistics were performed using one-tailed t-tests. The size of

effect at the individual level was also reported with respect to the

controls’ performance using normalized z-scores.

Results

Experiment 1: What was where?
In this experiment, one or three fractals were presented at random

locations. Following a brief delay, participants had to touch the

fractal they remembered from the display (but not the foil) and

drag it to its memorized location (Fig. 2). First, we analysed iden-

tification performance (Fig. 3A; for numerical values see

Supplementary Table 1), i.e. the frequency with which participants

touched the correct fractal in the two alternative forced choice.

We used repeated measures ANOVA on identification perform-

ance with number-of-items (one versus three fractals) and group

(controls versus patients) as within and between subjects factors,

respectively. Identification performance was worse when three

Figure 1 Coronal fluid-attenuation inversion-recovery scans of six VGKC patients during the acute stage of encephalitis. The collateral

sulcus, dividing the MTL from the inferior temporal lobe, is marked with a semi-transparent red line.

Figure 2 ‘What was where?’ task. One or three fractals were

simultaneously presented in pseudo-random locations.

Following a delay of 1 or 4 s, a two alternative forced choice

between one of the displayed fractals and a foil was presented.

Participants were required to ‘drag’ the previously presented

fractal on the touch screen to its remembered, original location

on the screen.
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fractals were presented compared to one [F(1,17) = 70,

P5 0.001, �2
p = 0.8]. However, performance was similar for con-

trol subjects and patients, as implied by insignificant effect of

group [F(1,17) = 1.7, P = 0.21, �2
p = 0.09] and interaction

[F(1,17) = 0.5, P = 0.45, �2
p = 0.03].

Next, we analysed the distance between the reported location

and the true, original location of a fractal (Fig. 3B; Supplementary

Table 1). Trials with incorrect identifications were excluded from

further analysis. Similarly to identification performance, we used

ANOVA with the factors of number-of-items and group to analyse

localization performance. The main effect of number-of-items was

significant [F(1,17) = 246, P50.001, �2
p = 0.93] reflecting larger

errors when three fractals were presented. Unlike identification

performance, patients had larger localization errors relative to con-

trol subjects, as reflected in the main effect of group

[F(1,17) = 4.5, P = 0.05, �2
p = 0.21]. But this difference seems to

arise mainly from impaired localization performance when three

fractals were presented, as suggested by the significant interaction

[F(1,17) = 11.6, P = 0.003, �2
p = 0.41] and by further t-test com-

parisons between groups [one item: t(17) = 0.6 , P = 0.54; three

items: t(17) = 2.7, P = 0.017]. This finding raises a critical question:

is the patients’ increased error for multiple items simply a result of

degraded memory of a fractal’s location, or could it be that

patients localized a fractal at the location of another object they

had seen in the original memory array?

To examine this issue we counted the frequency with which frac-

tals were localized within a circumference of 4.5� eccentricity from

the location of other fractals presented in the original memory array.

We term any errors within this perimeter as ‘swapped objects’ or

‘swap errors’ because they arise from swapping the location of an

object with that of another item in the array. We used a threshold of

4.5� because objects were never presented 59� from each other.

Using a 4.5� cut-off means that the reported location of an object

could never be attributed (‘swapped’) to more than one object since

the reported location could never be within 4.5� of two original

locations. Because of the jitter or variability in localization errors,

using a stricter threshold might lead to erroneous exclusion of

some trials in which participants reported the location of another

object but in a relatively imprecise manner. In any event, using a

threshold of 4� for determining ‘swap’ errors did not alter the quali-

tative nature of the results. A 4.5� threshold is also well above basic

localization precision as measured with a single object (Fig. 3B).

Figure 3 Results of ‘What was where?’ task. (A) Identification performance: the proportion of times subjects touched the correct object in

the two alternative forced choice. Performance in trials with one and three fractals for healthy controls (black) and patients (red).

(B) Localization errors for trials with one and three fractals for healthy controls (black) and patients (red). The ‘nearest neighbour’ control

error (right) was calculated as the minimal distance between a reported location and any one of the previously presented items for three-

item displays. Bottom images depict a specific example relevant to the above plots. Circles represent the original locations of the target

fractal (green) and two others (red); blue lines illustrate the localization errors used in the above plots. (C) Swap errors are the number of

times target objects were localized in proximity to the remembered locations of non-target (unprobed) items in the original display (here

illustrated as red circles). The image below shows how a target item might be misplaced at the location of a non-target item generating a

swap error. On the right is the number of swap errors after subtraction of errors that could be predicted by chance, assuming the same

amplitude—but different directions—of error from the correct target location. The image shows how the direction of a non-target relative

to a target (orange lines) is highly demarcated from all other possible locations at the same amplitude of error, but at different directions

(blue lines).
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Strikingly, patients exhibited almost twice as many swap errors

compared with control subjects [Fig. 3C; controls: 11%; patients:

21%; t(17) = 5.7 P5 0.001]. However, it might be argued that

the increased number of swap errors resulted simply from

increased distance of errors in patients’ responses; objects localized

further away from their original location might generate more

(apparent) swap errors simply by chance. To control for this, we

used the fact that if participants localized fractals particularly near

the original locations of other (non-target) items in the memory

array, their responses would have a specific vector of error (abso-

lute distance and angular deviation) with respect to the correct

location of the target. In contrast, if their memory for the original

target location was randomly corrupted, they would drag the

object to locations that are not systematically related to the rela-

tive direction of non-targets from the target. This principle is illu-

strated in Fig. 3C.

First we calculated the baseline probability of obtaining swap

errors by chance. For each trial, we took the absolute distance

of error from the target. Then we computed all potential locations

with that distance from the correct location, but crucially at all

possible angular deviations (using steps of 1�) from the true loca-

tion. There was one proviso: a simulated location had to be within

screen dimensions and the invisible margins used for generating

the display. The chance probability of obtaining a swap error is

therefore the number of simulated locations within our 4.5�

threshold perimeter around non-targets (orange lines in Fig. 3C),

divided by all possible valid, simulated locations (all lines in

Fig. 3C).

We performed this calculation for every trial using its specific

distance of error from the target item. Next, we subtracted the

number of swap errors predicted by chance from the measured

number of swap errors (Fig. 3C). Importantly, even in this ana-

lysis, in which the distance of error from target was controlled,

patients exhibited almost twice as many swap errors compared to

control subjects [Fig. 3C; patients 13% versus 7% for controls;

t(17) = 3.5 P = 0.003]. Both patients [t(6) = 13.2 P5 0.001] and

healthy controls [t(11) = 6.4 P50.001] exhibited significantly

more swap errors than could be predicted by chance. The latter

finding replicates the results of our previous study in healthy par-

ticipants (Pertzov et al., 2012b), but this time in an older group.

The results indicate that some mislocalizations in memory are

indeed clustered around locations of other objects in the array.

Thus, memory reports are biased by other items simultaneously

held in memory, but this effect is significantly worse for VGKC

patients.

How critical are these swap errors for the increased mislocaliza-

tion error measured in patients? To answer this question we cal-

culated localization error in a slightly different manner. In this

control analysis, whenever an object was localized far from its

original location but closer to the original location of another

object, the closest location was treated as if it was the object’s

original location. In other words, localization error was now mea-

sured as the distance between the reported location of the object

and the nearest original location of any object in the memory

array, not exclusively to the original location of the probed

object. This analysis controls for swap errors because whenever

a swap occurs, it is treated as if the swapped location is in fact

the object’s original location. This manipulation, which we term

‘nearest neighbour’ control (Fig. 3B), revealed that when swap

errors were controlled, the difference in localization error between

patients and controls was no longer evident [t(17) = 0.14;

P = 0.89]. Accordingly, using the controlled errors in the ANOVA

instead of the standard three items localization errors abolishes the

previously significant main effect of group [F(1,17) = 0.1, P = 0.71,

�2
p = 0.01] and interaction [F(1,17) = 0.4, P = 0.52, �2

p = 0.02].

Importantly, the nearest neighbour control also provides a

window for measuring ‘isolated’ localization performance as

object identity is now rendered irrelevant. The result implies that

patients’ localization performance, similarly to identification per-

formance, was in fact comparable with healthy control subjects

even when three items had to be memorized. Thus, the above

analysis strongly suggest that spatial memory per se, similarly to

identification performance, was not impaired in the patient group

but rather the impairment patients exhibit arises from increased

tendency to report the location of a non-target item from the

memory array.

It is important to bear in mind that locating objects to their

correct locations would be expected to be more difficult than re-

membering object identity or location alone (Postma and De

Haan, 1996; Dent and Smyth, 2005). Therefore ceiling effects

could theoretically lead to identification and localization perform-

ance being similar in patients and controls. However, identity and

location performance per se were clearly far from ceiling in our

participants. Precision of recall in the nearest neighbour control,

our proxy for ‘isolated’ localization errors (controlling for swap

errors and relevance of object identity), is much worse than local-

ization precision for one item, strongly suggesting it is not at ceil-

ing. Similar logic might be applied to identification performance;

this was worse when three items were memorized compared with

one, so it is unlikely that similar performance for patients and

control subjects could be attributed to ceiling effects.

As mentioned previously, spatial position is often treated as a

privileged property of an object and might behave unlike other

visual properties such as colour (Treisman, 1988; Tsal and Lavie,

1993; Huang and Pashler, 2007), especially with respect to MTL

function (O’Keefe and Speakman, 1987; Piekema et al., 2006;

Burgess, 2008). Therefore, we designed the next experiment to

investigate if the abnormal level of swap errors is specific to object

localization, or if this impairment could be generalized to non-spa-

tial object attributes.

Experiment 2: Memory for stimuli
presented sequentially at one location
In this experiment we measured how participants reproduced—

from memory—the orientation of an item. In this task a series

of one to three coloured bars, each of different orientation, was

presented sequentially at the centre of screen. Memory for one of

the items was then probed by redisplaying a bar of the same

colour with a random orientation. Participants rotated the probe

on the screen until it matched the remembered orientation of the

bar of the same colour in the sequence (Fig. 4). Thus, similar to
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the task in Experiment 1, this task provided analogue measure of

error, rather than binary measure.

First, we analysed the difference between the reported orienta-

tion and the orientation of the target item (Fig. 5A). Replicating

previous reports (Gorgoraptis et al., 2011), the precision of recall

deteriorated as more items were included in the sequence

[F(2,18) = 38, P50.001, �2
p = 0.81]. Overall, patients’

performance was not significantly different to control subjects

[F(1,9) = 2, P = 0.2, �2
p = 0.18] but crucially the group effect sig-

nificantly interacted with the number-of-items [F(2,18) = 4,

P = 0.03, �2
p = 0.33]. Further statistical tests (group level and indi-

vidual) show that the significant interaction reflects increased

errors in patients specifically when multiple items were presented.

When one item was presented, patients were actually slightly—

but not significantly—better than the averaged control, with all

patients exhibiting slightly smaller angular error compared with the

mean control result. However, their performance was worse than

control subjects when they had to retain two [t(9) = 1.8,

P = 0.056] and especially three items [t(9) = 2.1, P = 0.03]. These

findings were also typically reflected at the individual level [for two

items, Patient 1: Z = 2.5; Patient 2: Z = 1.9; Patient 4: Z = �0.35;

and for three items, Patient 1: Z = 1.9; Patient 2: Z = 0.6; Patient

4: Z = 1.5].

What is the origin of this increased error? Is it a result of

random guessing or, similar to the localization deficit, does it rep-

resents a systematic bias to report the values of other items in

memory? To investigate this question we analysed the angle of

error between the reported orientation and the orientation of the

non-target (non-probed) items in the memory array (Fig. 5B). If

indeed reports were biased towards other items in memory, we

would expect to see a higher number of reports close to the non-

target items and fewer reports farther away.

This analysis revealed that patients had significantly larger

number of reports within 30� of the non-target orientations com-

pared to healthy control subjects [t(9) = 3.0; P = 0.016], as also

observed at the individual level [Patient 1: Z = 4.1; Patients 2

and 4: Z = 1.4]. There were correspondingly similar frequency of

reports at 30–60� [t(9) = �0.7, P = 0.48], and fewer reports be-

tween 60 to 90� from the target orientation [t(9) = �2.2,

P = 0.055]. These results strongly suggest that patients, more

often than controls, misreported the orientation of other stimuli

Figure 5 Results of sequential task. (A) Mean angular error between the target item and the reported angle, for sequences of one to three

items for healthy controls (black) and patients (red). (B) Percentage of comparisons (between reported orientation to non-target item) in

which the angle of the reported orientation was within 0–30o, 30–60o and 60–90o of a non-target (an item that was in the original

sequence but not probed). Note how patients’ responses were biased by non-target items. (C) ‘Nearest neighbour’ control: minimal angle

between the reported orientation and any one of the displayed items. Error bars represent standard error of the mean across participants.

Figure 4 Sequential task. Participants were presented with a

sequence of one to three coloured bars, each with a different

orientation. A probe item of a randomly chosen colour

(in this case, blue) was then presented and participants adjusted

the orientation of the probe item to that of the orientation of the

target item of the same colour shown in the sequence

(in this case, the second item).

Binding failures in MTL patients Brain 2013: 136; 2474–2485 | 2481

 at U
niversity of W

isconsin-M
adison on D

ecem
ber 31, 2013

http://brain.oxfordjournals.org/
D

ow
nloaded from

 

http://brain.oxfordjournals.org/
http://brain.oxfordjournals.org/


in the sequence. Similarly to the localization experiment, we term

such errors as ‘swap errors’ because they presumably arise from

swapping the orientation of one item with that of another.

How critical are these additional swap errors to the increased

error measured in patients? To answer this question we recalcu-

lated the angle of error using the ‘nearest neighbour’ procedure—

the minimal angle between the reported orientation and any one

of the items in the memory array (Fig. 5C). In this control analysis,

whenever the reported orientation was distant from the target

orientation and closer to the orientation of another (non-target)

item from the display, the most similar item was treated as if it

was the target. Controlling for swap errors effectively diminished

the patients’ impairment when two items were presented

[t(9) = 1.3, P = 0.11 ; individual level: Patient 1 versus controls:

Z = 0.7; Patient 2: Z = 1.5; Patient 4: Z = 0.3]. It completely abol-

ished the deficit in the case of three items [t(9) = 0.5, P = 0.30;

individual level: Patient 1 Z = 0.28; Patient 2: Z = 0.0; Patient 4:

Z = 0.7].

We conclude that patients were normal when the orientation of

a single item had to be remembered, but were typically impaired

when two or three oriented bars had to be memorized (Fig. 5A).

Similar to the ‘What was where?’ task, much of the additional error

in patients’ performance arose from reporting the orientation of the

wrong item i.e. swap errors. Note that a slight impairment could be

observed in two-item sequences even in the nearest item control

(Fig. 5C). This raises the possibility that there might be other def-

icits—in addition to the abnormally high frequency of swap

errors—that might contribute to some patients’ performance.

Monitoring performance with treatment
interventions
It is possible that these kinds of tasks might provide sensitive

methods for monitoring response to treatment. Patient 1 per-

formed the sequential paradigm four different times after his initial

clinical assessment (Fig. 6). The first assessment was just before

plasma exchange, his initial treatment, commenced. This did not

appear to lead to any substantial improvement in the overall pre-

cision of recall. By contrast, the next treatment, intravenous immu-

noglubulin, was followed by a considerable improvement in

memory performance as well as clinical state, not immediately

but over the next few months.

Because of concerns over subsequent elevation of VGKC-Ab

titre, further treatment with daily doses of oral prednisolone (ster-

oids) was introduced. This led to improvement in antibody titre

but did not lead to any more improvement in memory perform-

ance. Further studies with more frequent testing would be needed

to validate this approach but this example provides proof-of-con-

cept that memory performance can be tracked and the effects of

treatment monitored using such continuous-report measures.

Discussion
We used two different continuous report memory tasks to inves-

tigate the nature of errors in short-term memory tasks associated

with VGKC-Ab limbic encephalitis, which affects mainly the MTL

and hippocampus (Khan et al., 2009; Vincent et al., 2011). Two

key findings were consistent across tasks and patients in our stu-

dies. First, memory impairment was evident when several objects

had to be remembered over short durations, but not when only

one item had to be retained. Secondly, the impairment was re-

flected by increased number of swap errors, whereby participants

reported in a fairly precise manner a feature of another item held

in memory that was not probed. Indeed, when the data were

analysed as if participant responses were related to unprobed

items in the memory array (i.e. agnostic to swap errors), patients’

performance was within the normal range (Figs 3B and 5C).

These findings suggest that there is a specific deficit of keeping

together—binding—different properties of an item (identity and

location, colour and orientation, respectively in our two studies)

when there is more than one object retained in memory. In the

next section, we discuss the nature of memory impairment implied

by these findings and how it relates to current theories on MTL

functions.

Medial temporal lobe is necessary for
binding different stimulus properties
in memory
It has been claimed previously, on the basis of behavioural evidence,

that the representation of a single object in ‘the focus of attention’

might be distinct from other representations in memory (Cowan,

1988; Oberauer, 2002). A single representation was suggested to

have a privileged status in terms of accessibility and manipulability

(Oberauer, 2009) and the ability to guide attention (Olivers et al.,

2011). Recent imaging studies have also suggested that a similar

distinction should be applied to the role MTL has in memory

(Axmacher et al., 2007; Öztekin et al., 2010; Lewis-Peacock et al.,

2011). For example, the MTL was found to be active in retention of

Figure 6 Averaged angular error of Patient 1 at several time

points. Angular error in the oriented-bars task as a function of

the time the test was performed. Normal range is illustrated by

black and grey horizontal lines that represent controls average

performance and SEM, respectively. IVIG = intravenous

immunoglobulin.
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multiple items over brief delays but not in the case of a single item

(Axmacher et al., 2007). A recent series of studies has also shown

that MTL patients exhibit impairment only when several items need

to be remembered over few seconds, but not when a single item is

memorized (Jeneson et al., 2010, 2012). However, both these brain

activation and lesion impairments could arise simply because main-

taining multiple items in memory is more difficult rather than due to a

true difference in neural mechanisms responsible for remembering

single versus multiple items in memory. In other words, the deficit

exhibited by patients might relate to general task difficulty and not

specifically to the process of maintaining several items in memory.

Here, we introduced two novel analogue response tasks and

showed that memory for isolated properties of the stimuli was in

fact intact, even when multiple items were in memory, ruling out

any general effect of task difficulty. Note that identification per-

formance for three items in Experiment 1 was not at ceiling,

excluding the explanation that a ceiling effect might lead to similar

identification performance in patients and controls. The key prob-

lem revealed by our analysis of the type of errors made by patients

is that they reported features of other, unprobed items retained in

memory. Such a result suggests that items were retained well in

memory. However, the properties belonging to each item—loca-

tion or identity, colour or orientation—were associated with the

wrong object. Note also that performance on standard neuropsy-

chological tests (e.g. Stroop task, trail making) demonstrate that

our patients’ executive functions were not consistently impaired

(Table 1), implying that their deficit is unlikely to originate from

executive dysfunction such as inhibiting responses.

Consequently, we would argue that our results are consistent

with a true distinction between the neural mechanisms involved in

remembering one versus many items. Because different features of

a visual stimulus are represented in separate neural structures (Zeki

et al., 1991), a problem arises when multiple items are maintained

simultaneously. How does the brain represent the fact that a set of

specific properties belongs to Object A, whereas others, although

active at the same time, belong to Object B? This ‘binding prob-

lem’ has been traditionally discussed with regard to visual percep-

tion (Treisman, 1996) but is very much relevant also to memory

(for an extensive review see Zimmer et al., 2006). Thus, whenever

more than one item has to be remembered, a putative binding

mechanism is required to distinguish between the various proper-

ties that comprise distinct items, and to allow later access to one

of them (Burgess and Hitch, 2005). Accordingly, a distinction

should be made between the neural processes required for main-

taining faithfully multiple features that belong to several items in

memory, and the processes needed for retaining a single item.

We have shown here that when a single item was tested, our

patients exhibited normal performance in both tasks. However,

when multiple items had to be memorized, accessing an attribute

of a specific item, even following a brief delay, requires associative

or binding mechanisms that are likely to involve the MTL. Thus

retaining several items led to clear impairments associated with an

increased number of swap errors, evident in both experiments.

These swap errors are reminiscent of the common transposition

or intrusion errors made during serial recall tasks (Burgess and

Hitch, 1992; Henson, 1996) in which participants recall stimuli

from the wrong lists or positions rather than making arbitrary

errors.

Intriguingly, an early study of MTL patients using serial recall

also ‘surprisingly’ found an elevated number of intrusion errors

from prior lists that could not be reconciled with a pure long-

term memory impairment (Baddeley and Warrington, 1970).

Such errors led computational models of memory to highlight

the contribution of binding each item to its context for successful

memory retrieval, regardless of retention duration (Burgess and

Hitch, 2005). Impairment of this binding process, which might

involve phase synchronization among different brain regions

(Fell and Axmacher, 2011), would be expected to generate exactly

the pattern of errors we report here: increased frequency of mis-

reporting the wrong item but preserved memory of the isolated

attributes of the items on their own.

Indeed, when our analysis controlled for swap errors—and

therefore correct binding was rendered irrelevant—patients’ per-

formance was effectively normal (Figs 3B and 5C). This strongly

suggests that memory for isolated aspects of each item (locations

and orientations, respectively in our experiments) were unim-

paired. Thus, we would conclude that these patients with MTL

damage are impaired at maintaining multiple items as a result

of a failure to bind the different aspects of a coherent item to

a distinguishable context signal. When this binding mechanism

is impaired, ‘competitive cueing’ mechanisms during recall

(Nairne, 2002; Bullock, 2004; Burgess and Hitch, 2005) are ex-

pected to lead to reporting the wrong item in memory—a swap

error.

This conceptualization of the nature of the memory deficit in

VGKC-Ab patients converges with several independent lines of

research regarding MTL dysfunction and normal function. A

recent study found that individuals at risk of developing familial

Alzheimer’s disease have intact performance when required to

maintain isolated features over a few seconds. However, they

were impaired when the task required retaining bound features

(Parra et al., 2010). And indeed, consistent with our findings, the

MTL seems to be one of the earliest neural structures to be

affected in this disease (Fox et al., 1996).

The refined view proposed here predicts that MTL activation

should only be observed when associative mechanisms are

required to retrieve a property of a specific item from memory,

even following brief delays. Thus, in a sequential presentation of

several items, the MTL should be involved in reporting any item in

the sequence except the last one, which is still under the focus of

attention. Indeed, some recent imaging studies that used a probe-

recognition task with sequential presentation of lists of items have

reported that the main difference in MTL activation during re-

trieval was between the last item of the sequence and all other

items, regardless of whether they were within the presumed span

of short-term memory or above it (Öztekin et al., 2009, 2010;

Lewis-Peacock et al., 2011).

The involvement of the MTL in binding together separate as-

pects of memory is generally congruent with the associative ‘bind-

ing’, or the ‘relational’ hypotheses (for recent reviews see Davachi,

2006; Eichenbaum, 2006; Konkel and Cohen, 2009). These pro-

posals consider the hippocampus as the neural structure respon-

sible for maintaining links relating separate aspects of memory and
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enabling flexible recombination of memory parts. Critically, the

role of the hippocampus in associative binding has been tradition-

ally viewed as relevant only for declarative long-term memory

(Eichenbaum et al., 1994; Fernández et al., 1999; Fernández

and Tendolkar, 2001; Davachi and Wagner, 2002; Davachi,

2006; Eichenbaum, 2006). However, as we pointed out earlier,

recent studies have shown that MTL patients exhibit an abnor-

mally large number of errors in tasks that require maintenance of

associations and feature conjunctions over even brief delays

(Hannula et al., 2006; Olson et al., 2006a, b; Ezzyat and Olson,

2008; Finke et al., 2008).

MTL patients were also impaired when associative processes

were required for discriminating visible complex stimuli (Lee

et al., 2005; Graham et al., 2010; Warren et al., 2012), and

generated abnormally low number of relations between sub-com-

ponents when required to imagine detailed events in the future

(Race et al., 2013; Romero and Moscovitch, 2012). These recent

studies, among others (for a review see Graham et al., 2010),

highlight MTL contribution to binding and associative processes

in general, and not exclusively to declarative long-term memory.

Our results support this view and extend it by showing that fol-

lowing brief delays, the nature of errors of MTL patients, not only

the frequency, reflects binding or relational impairment.

Our results also have potentially important clinical implications.

Patients presenting with subacute amnesia are not uncommonly

seen in neurological practice. Amongst the differential diagnoses,

infectious conditions (such as herpes simplex encephalitis),

Korsakoff’s syndrome and autoimmune limbic encephalitis are gen-

erally considered. Antibody-related limbic encephalitis is not always

easy to diagnose but often responds well to treatment. However,

tracking response to treatment, particularly in the cognitive domain,

is not always straightforward. Traditional neuropsychological tests

might not always be sensitive to minor changes in patients’ symp-

toms. The analogue report tasks used here provide a precise, ob-

jective behavioural marker, without ceiling and floor effects, that

can potentially help in monitoring response to treatment.

Conclusion
We found that memory performance of VGKC-Ab limbic encephal-

itis patients is comparable with control subjects when one item has to

be retained over brief intervals. However, a significant impairment

emerged when additional items had to be maintained in memory.

This deficit was strongly associated with an increased tendency to

report the wrong item in memory, strongly supporting the role MTL

has in binding distinct visual aspects of an item across brief retention

intervals. Our novel experimental design also provides a promising

technique for assessing the integrity of MTL function.
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Tur J. Regional distribution of the leucine-rich glioma inactivated

(LGI) gene family transcripts in the adult mouse brain. Brain Res

2010; 1307: 177–94.

Huang L, Pashler H. A Boolean map theory of visual attention. Psychol
Rev 2007; 114: 599–631.

Jeneson A, Mauldin KN, Squire LR. Intact working memory for relational

information after medial temporal lobe damage. J Neurosci 2010; 30:

13624.
Jeneson A, Wixted JT, Hopkins RO, Squire LR. Visual working

memory capacity and the medial temporal lobe. J Neurosci 2012;

32: 3584–9.
Khan NL, Jeffree MA, Good C, Macleod W, Al-Sarraj S. Histopathology

of VGKC antibody–associated limbic encephalitis. Neurology 2009; 72:

1703–5.

Konkel A, Cohen NJ. Relational memory and the hippocampus: repre-
sentations and methods. Front Neurosci 2009; 3: 166–74.

Lai M, Huijbers MG, Lancaster E, Graus F, Bataller L, Balice-Gordon R,

et al. Investigation of LGI1 as the antigen in limbic encephalitis previ-

ously attributed to potassium channels: a case series. Lancet Neurol
2010; 9: 776–85.

Lee AC, Bussey TJ, Murray EA, Saksida LM, Epstein RA, Kapur N, et al.

Perceptual deficits in amnesia: challenging the medial temporal lobe

‘mnemonic’view. Neuropsychologia 2005; 43: 1–11.
Lewis-Peacock JA, Drysdale AT, Oberauer K, Postle BR. Neural evidence

for a distinction between short-term memory and the focus of atten-

tion. J Cogn Neurosci 2011; 24: 61–79.
Maguire EA, Nannery R, Spiers HJ. Navigation around London by a taxi

driver with bilateral hippocampal lesions. Brain 2006; 129: 2894–2907.

Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc

Lond B Biol Sci 1971; 262: 23–81.
Nairne JS. Remembering over the short-term: The case against the

standard model. Annu Rev Psychol 2002; 53: 53–81.

O’Keefe J, Speakman A. Single unit activity in the rat hippocampus

during a spatial memory task. Exp Brain Res 1987; 68: 1–27.
Oberauer K. Access to information in working memory: exploring the

focus of attention. J Exp Psychol Learn Mem Cogn 2002; 28: 411–21.

Oberauer K. Design for a working memory. Psychol Learn Motiv 2009;
51: 45–100.

Olivers CN, Peters J, Houtkamp R, Roelfsema PR. Different states in

visual working memory: when it guides attention and when it does

not. Trends Cogn Sci 2011; 15: 327–34.

Olson IR, Moore KS, Stark M, Chatterjee A. Visual working memory is

impaired when the medial temporal lobe is damaged. J Cogn Neurosci

2006a; 18: 1087–97.
Olson IR, Page K, Moore KS, Chatterjee A, Verfaellie M. Working

memory for conjunctions relies on the medial temporal lobe.

J Neurosci 2006b; 26: 4596–601.
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