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Visual cortical responses are usually attenuated by repetition, a
phenomenon known as repetition suppression (RS). Here, we use
multivoxel pattern analyses of functional magnetic resonance
imaging (fMRI) data to show that RS co-occurs with the converse
phenomenon (repetition enhancement, RE) in a single cortical
region. We presented human volunteers with short sequences of
repeated faces and measured brain activity using fMRI. In an inde-
pendently defined face-responsive extrastriate region, the response
of each voxel to repetition (RS vs. RE) was consistent across
scanner runs, and multivoxel patterns for both RS and RE voxels
were stable. Moreover, RS and RE voxels responded to repetition
with dissociable latencies and exhibited different patterns of con-
nectivity with lower and higher visual regions. Computational simu-
lations demonstrated that these effects must be due to differences
in repetition sensitivity, and not feature selectivity. These findings
establish that 2 classes of repetition responses coexist within
1 visual region and support models acknowledging this distinction,
such as predictive coding models where perception requires the
computation of both predictions (which are enhanced by repetition)
and prediction errors (which are suppressed by repetition).

Keywords: face perception, fMRI, predictive coding, repetition
enhancement, repetition suppression

Introduction

When a stimulus is repeated, the neural response elicited is
reduced, a phenomenon termed “repetition suppression” (RS).
RS is thought to be a fundamental property of brain responses
(Grill-Spector et al. 2006). Brain imaging studies have used this
phenomenon as a methodological tool in many domains, as for
instance it allows to dissect the distinct neural levels of stimulus
processing (Vuilleumier et al. 2002; Rotshtein et al. 2005) or to
assess stimulus processing under implicit or subliminal condition
(Henson et al. 2000, 2002; Dehaene et al. 2001; Naccache and
Dehaene 2001;Turk-Browne et al. 2006; Kouider et al. 2010).
Surprisingly, although RS is typically observed in extrastri-
ate regions when a visual stimulus repeats, the converse
phenomenon, “repetition enhancement” (RE) has neverthe-
less been reported under some circumstances. For example,
RE may occur under conditions of low visibility (Turk-Browne
et al. 2007) or when unfamiliar stimuli are repeated (Henson
et al. 2000), and a recent study has shown that within the
same cortical region, repetition effects for unfamiliar stimuli
can turn from enhancement to suppression when the number
of stimulus repetition increases (Muller et al. 2012). These
findings prompt the question of whether RS and RE may
reflect the response properties of 2 functionally distinct
neural populations that co-exist within the same cortical
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region, with some neural elements’ responses enhanced and
some suppressed by repetition. This architecture would be
consistent with the proposal that perception relies both on
prediction signals (that would be enhanced by repetitions)
and on prediction error signals (that would be reduced with
repetitions; e.g. Mumford 1992; Friston 2005).

Demonstrating the co-existence of “positive-going” and
“negative-going” responses to repetitions seems challenging at
first sight. First of all, previous studies involving single-neuron
electrophysiology or whole-brain imaging have reported mostly
RS in stimulus-selective sensory regions, and reports of RE seem
to depend on the use of unfamiliar stimuli or degraded percep-
tual conditions. Secondly, standard brain imaging techniques of
fMRI data are not suited to establish the existence of intermingled
populations of suppression and enhancement voxels. Indeed,
face repetition might elicit consistent enhancement in a minority
of face-responsive voxels, but spatial smoothing will erase this
response if these are surrounded by a majority of voxels showing
RS. Consistent with this possibility, when we re-analyzed the un-
smoothed data of a previously collected fMRI data set, we found
that only around 65% of voxels in an independently defined ex-
trastriate face-responsive region were suppressed by face rep-
etition. This prompts the question of whether measurements
taken from the remaining 35% of voxels are simply noise, or
whether they index a functionally significant RE signal.

To arbitrate among these possibilities, we conducted a new
study using fMRI in conjunction with multivoxel pattern analy-
sis to assess whether concurrent RE and RS signals could be
found simultaneously in the ventral visual stream. We found
that approximately one-third of all fusiform-face area (FFA)
voxels displayed RE responses while two-thirds exhibited RS
responses. Crucially, the separation between RS and RE voxels
was consistent across scanner runs, and multivoxel patterns
associated with both RS and RE were independently stable
over time: In other words, “repetition sensitivity” was a signifi-
cant characteristic of visual responses in our experiment.
Moreover, when we compared the timing of the blood oxy-
genation level dependent (BOLD) response for RS and RE
voxels, and their pattern of connectivity with other regions,
we found that they differed reliably. Together, these findings
suggest that voxels exhibiting predominantly suppressed and
enhanced responses to repetition make distinct contributions
to the computations underlying visual perception.

Materials and Methods

Participants
Eighteen right-handed volunteers (6 women, age range
18-35), reporting normal- or corrected-to-normal vision and
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Figure 1. (4) The trial sequence. Each unique face exemplar occurred on 14
consecutive trials. All trials were separated by a blank screen (2-6's, jittered).
(B) Sequence position effect. Univariate BOLD responses to faces occurring in
sequence positions 1-4, in the left FFA (dark bars) and right FFA (light bars). Error
bars represent standard error of the mean (SEM) across subjects. (C) Face localizer
results. Group-level comparison (faces > houses) rendered on coronal (y = —52) and
axial z=—22) slices of a standard brain. Results are thresholded at P < 0.001
(uncorrected) and k > 20. The red-white scale indicates t-values.

no history of psychiatric or neurologic illness, were recruited
from Oxford University. They provided informed consent and
received &25 compensation for their time. The experiment
was approved by the local ethics committee.

Stimuli

Face stimuli were created using FaceGen (Singular Inversions,
Ontario, Canada): 200 images (400 x 400 pixels) represented
faces (half males) of variable age, with hair, with a frontal
view. Pictures were in color and not degraded. All stimuli
were presented centrally on a gray background. The faces
were surrounded by a blue or pink square frame (Fig. 14),
which appeared 500 ms before the face onset. Stimulus pres-
entation was done using the PsychToolBox for Matlab.

Procedure

Participants viewed a sequence of faces surrounded by
colored frames and were asked to make a gender judgment
(using a magnetic resonance imaging [MRI]-compatible
response device) only when the frame had a target color (9%
of all trials), while passively viewing the other faces. The
target color and the response mapping were indicated at the
beginning of each block, and counterbalanced across sub-
jects. On target trials, participants received auditory feedback
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following their response: A high-pitched tone (800 Hz) for
correct responses within 1s and a low-pitched tone (400 Hz)
for incorrect or slow (>1s) responses. Inter-trial intervals
were uniformly jittered between 2 and 6s. The experiment
involved 6 blocks of 9 min each, for a total of 546 trials per
participant. Each face was used only once, in a sequence of
1-4 successive presentations (denoted as sequence positions
1-4 in what follows). In the whole experiment, there were 15,
24, 35, and 96 sequences of length 1-4, respectively. Target
trials were balanced across positions in the mini-sequences
and were equally likely to involve a gender change or not
when occurring at the beginning of the mini-sequence.

Localizer Task

After the main task, participants performed a localizer task
consisting of 12 alternating “face” and “house” blocks, in
which 15 (either houses or faces) images were presented in a
sequence, and participants had to press a button at immediate
stimulus repetitions (“1-back task”), of which, there were 0, 1,
or 2 per block. Stimuli were presented for 750 ms followed by
250 ms of fixation, and 10-s periods were inserted between
blocks. Images were 300 x 300 pixels, black-and-white photo-
graphs on a black background.

JMRI Data Acquisition and Preprocessing

MRIs were acquired with a 3T Siemens VERIO scanner with a
32-channel head coil using a standard echo-planar imaging
sequence. Whole-head 7,*weighted echo-planar images were
continuously acquired with a repetition time of 2 s, echo time
of 30 ms. We acquired 270 volumes per block, plus 3 dummy
scans discarded before the analyses. Each volume inclu-
ded 64x64x36 voxels of 3x3x3mm. A high-resolution
Ti-weighted structural image was also obtained (voxel size =
1x1x 1 mm). For standard preprocessing and univariate stat-
istical analyses, we used SPM8 (Wellcome Department of Cog-
nitive Neurology, London, United Kingdom). All other
analyses were done with custom scripts for Matlab (Math-
works, Natick, MA, United States of America). We also used
xjview (http://www.alivelearn.net/xjview) to visualize the
data, construct mask and conjunction images. For each par-
ticipant, we first realigned all functional images, then we
co-registered (rigid body transformation) the subject’s ana-
tomical scan to the mean functional image, and then
co-registered the participant’s data to the Montreal Neurologi-
cal Institute (MND) template brain. We then normalized each
subject’s data to the template brain space, using segmented
probabilistic maps for gray matter, white matter, and
cerebro-spinal fluid. Functional images were resampled (4 x
4 x4 mm voxels) and spatially smoothed (8-mm full-width
half-maximum (FWHM) Gaussian kernel). Note, however,
that in our univariate processing stream, these normalization
and smoothing stages preceded both first- and second-level
statistical analyses, as in standard approaches. However, for
multivariate analyses, normalization and smoothing followed
the first-level statistical analysis, in order to maintain the
details of the local patterns in individual subjects.

Univariate Analysis

Our univariate analyses used a generalized linear model
(GLM) approach. A 128-s temporal high-pass filter was
applied to remove low-frequency scanner artifacts. Temporal
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autocorrelation in the time series data was estimated using
restricted maximum-likelihood estimates of variance com-
ponents using a first-order autoregressive model (AR-1), and
the resulting non-sphericity was used to form maximum-
likelihood estimates of the activations. Our GLM included
regressors coding for onsets and durations of stimuli or
events, which were then convolved with the canonical hemo-
dynamic response function (HRF) and regressed against the
observed fMRI data. Experimental blocks were modeled using
separate regressors, and constant terms for each block were
included. Additionally, motion parameters were included as
nuisance variables. In our localizer task, we used regressors
to code for face and house blocks. Face>house contrast
images were computed in each subject and subjected to a
second-level f-test across subjects, to determine a set of face-
sensitive regions of interest (ROIs) to provide a priori con-
straints to our subsequent analyses of the repetition effects in
the main task. In our main task, we used 4 regressors coding
for the occurrence of faces in position 14, and a fifth regressor
indicating the target trials (if there were any) in the block.
After estimation of the model, for each subject the beta par-
ameter for the 1-4 positions was aggregated as a linear “rep-
etition effect” using a [-3, —1, +1, +3] contrast over sequence
positions 1-4. A simple #-test across subjects was then used at
the second level. A negative effect would indicate RS, and a
positive effect would indicate RE.

ROI Definitions

We used the localizer data to define our (left and right) FFA
and amygdala ROIs as 10-mm-radius spheres centered on
local maxima (around the anatomically defined fusiform
gyrus and amygdala) of the z-statistic map for the face > house
comparison across subjects; Fig. 1). The MNI coordinates for
these ROIs were [—42, —56, —18] (left FFA), [42, —44, —22]
(right FFA), [-18, -8, —18] (left amygdala), and [22, —4, —14]
(right amygdala). For the connectivity analyses (see below),
we defined 2 other ROIs, in the left posterior middle occipital
gyrus (MOG, centre of mass [—27.3, —93.8, 1.5]) and right
anterior middle temporal gyrus (MTG, [64, —9.4, —15.3]). We
selected them as clusters showing RS (MOG) or RE (MTG) in
the main univariate analyses.

Multivariate Analyses

To preserve the details of the multivoxels patterns, we
applied subject-to-template normalization and spatial smooth-
ing to our functional images only after the first-level statistic
stage for our multivariate analyses. Within each block, the
raw data timeseries for each voxel were temporally high-pass
filtered (128 s), and normalized to a mean of zero and stan-
dard deviation of one. Beta parameters for each voxel were
assessed by multiplying these timeseries with the
pseudo-inverse of a temporally filtered design matrix, which
was formed by our 5 regressors (indicating sequence pos-
itions 1-4 and target trials) convolved with the canonical HRF
and by the nuisance parameters. No prewhitening or correc-
tion for serial auto-correlation was used. We computed the
repetition effect as a [-3, —1, +1, +3] contrast over the beta
parameters sequence positions 1-4 and defined RS (respect-
ively RE) voxels as showing negative (respectively positive)
responses to this contrast.

We now describe 2 analyses that we have carried out on
these data. Importantly, in these analyses, the selection
process and the statistical tests applied are independent. At
the group level, we used ftests across participants on the
resulting Z-scores.

In the “sign-consistency” analysis (Fig. 2), we assessed
whether voxels showing RS in N—1 blocks would be rela-
tively more likely to also show RS in the remaining block. To
do so, we computed the quantity (P(RS|RS) — P(RS))/P(RS),
where P(RS) is the probability that voxels in 1 block show RS,
and
P(RS|RS) the probability that they show RS given that they
already do so in the remaining N —1 blocks. We obtained a
Z-score by comparing this quantity to the distribution of this
statistic for 1000 datasets obtained by permuting the voxels in
the N—1 blocks. Note that this corrected statistic was then
identical for RS and RE voxels: If RS tended to remain the
same, the RE voxels necessarily had to remain the same as
well.

In the “pattern-consistency” analyses (Fig. 3), we assessed
whether the response pattern of RS voxels was stable across
runs. We selected RS voxels from N — 1 blocks and computed
for these voxels the Pearson’s correlation between their
responses in the N—1 blocks and their responses in the
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Figure 2. (A) Segregation of RS and enhancement voxels. Mean Fisher's Z-score in
the FFA and amygdala (AMYG), for the measure of sign consistency (see Materials
and Methods). Error bars represent SEM across subjects; stars indicate significance
against a null effect (***P < 0.001). (B) Searchlight analysis. Regions showing
significant sign consistency (P < 0.001, k > 20) rendered on 6 transverse slices (z
= —32 to z=—12) of a template brain. The color bar indicates the value of the
T-statistic at the group level.
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Figure 3. (A) Multivariate pattern consistency for RS and enhancement voxels.
Mean Fisher's Z-score for the voxel-wise correlation (see Materials and Methods)
assessing pattern consistency in the FFA and amygdala (AMYG), separately for RS
voxels (in red) and RE voxels (in blue). Error bars represent SEM across subjects;
stars indicate significance against a null correlation (*P < 0.05, **P < 0.01, ***P <
0.001). (B) Conjunctive searchlight analysis. Regions showing significant pattern
consistency of both RS voxels (P < 0.005, k > 20) and RE voxels (P < 0.005, k >
20), rendered on 6 transverse slices (z = —36 to z = —16) of a template brain.

remaining block. Repeating this leave-one-out procedure on
the N different blocks gave us NNV estimates of the correlation,
which were converted to Fisher’s Z-scores and averaged for
each subject. The procedure was also applied (separately) to
RE voxels.

Searchlight

Although initially these analyses were applied to the FFA
only, we could apply it to other face-sensitive regions ident-
ified in the localizer (e.g. the amygdala), and eventually to the
whole brain. To do so, we used a “searchlight” approach in
which a 10-mm-radius sphere is moved across the whole
brain defining an ROI within which the same statistics are
assessed and saved at the central voxel of the sphere. We gen-
erated full statistic maps for each participant, which were then
normalized to the template MNI brain, re-sampled at 4 x 4 x 4
mm, spatially smoothed (8-mm FWHM Gaussian kernel) and
finally subjected to #-tests across participants at the group
level.
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FIR Analyses

To assess the response latency (Fig. 4) or the connectivity
(Fig. 5) of the RS and RE voxels in the FFA, we had to
examine in further details their hemodynamic responses. To
this end, we ran a separate analysis in which we used a finite
impulse response (FIR) model applied to the mean BOLD
activity, separately for the RS and RE voxels. In each subject
and each block, we first identified RS voxels (respectively RE
voxels) as showing negative (respectively positive) responses
to the repetition effect (from the main univariate analysis ran
on unsmoothed data). We then extracted the raw timeseries
for each of these voxels and applied high-pass temporal filter-
ing and normalization (mean of 0, standard deviation of 1).
We then fit a GLM (using Matlab glmfit routine) in which the
timeseries of the average activity of these voxels was pre-
dicted by 100 regressors, corresponding to 20 FIRs for each of
the 5 conditions (4 stimulus position + target trials). The FIRs’
onsets were at —2, 0, 2, ... 36 s poststimulus onset, and their
associated parameter estimates thus indicate the timecourse of
the hemodynamic response, with respect to each condition.
No prewhitening or correction for serial auto-correlation was
used in this analysis. For the control analyses presented in
Figure 6 (see simulation data and analyses), we multiplied
these FIR timecourses with the canonical HRF to assess the
parameter estimate for each sequence position.

Peak Latency Analyses in the FFA

For each subject and condition, the FIR timecourses were
extracted from the right FFA and the linear contrast was then
computed over stimulus positions. For each subject, the peak
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Figure 4. (A) Temporal response of RS and RE voxels. Average BOLD response of RS
and RE voxels in the right FFA to the different stimulus position (positions 1-4),
assessed at different time points (scans of 2's) after stimulus onset using a FIR
model. The timecourses were baselined and smoothed in time (see methods). (B)
Timing of the repetition effect. Time course of the t-statistic of the linear effect
across stimulus position.
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Figure 5. Connectivity analyses between FFA voxels and MTG and MOG. (A-C)
Rendering of the MTG (4, in blue) and MOG (C, in red) ROl on a template brain, with
their respective univariate BOLD responses to faces occurring in sequence positions
1-4. (B) Mean correlation Z-scores between the residual activities (from a FIR
model) in the MTG (blue bars) and MOG (red bars) and the residual activities in the
RS and RE populations of the FFA.

latency was defined as the point at which the statistic reached
a maximum in the [2 20] seconds period poststimulus onset
(we checked that no latencies fell at the limit of this interval).
A t-test was used to compare the peak latency for RS and RE
voxels, across subjects. The same analysis was run in the
amygdale as a control ROI. In Figure 4, the presented

timecourses are zero-baselined (using the average of the first
3 datapoints) for plotting purposes only.

Connectivity Analyses

The connectivity between 2 regions can be seen as the extent
to which the unexplained activities (e.g. the residuals in the
FIR model described above) co-vary between these 2 regions.
Here, we assessed connectivity between the FFA RS and RE
voxels and a “lower” ROI (MOG) and a “higher” ROI (MTG)
within the visual ventral stream. We extracted the timeseries
of the residuals for each ROI in each subject and assessed 4
correlations between these timeseries (RS/MOG, RE/MOG,
RS/MTG, and RE/MTG). We then applied Fisher’s r-to-Z trans-
formation and used the resulting Z-scores in statistical tests
(t-tests, analysis of variance) across subjects (Fig. 5). The
same analysis was run in the amygdale as a control ROI (Sup-
plementary Fig. S1).

Simulated Data and Analyses

We simulated 2 datasets, each constituted by 18 virtual sub-
jects, with 100 voxels for each subject, in 2 fMRI runs. The
first dataset (repetition sensitivity) was generated under
the hypothesis that all voxels had the same preference for the
stimulus, but some were responding positively to repetitions
(RE) and some negatively (RS). In the second dataset (“face
selectivity”), all voxels contributed with reduced responses to
repeated stimuli but had different preferences for the stimu-
lus. At each voxel k& (1-100), the response to face i (1-4) in
run r (1 or 2) was noted ), , and generated as the sum of 3
components, the main face response (noted c¢), the additional
repetition effect (noted a;,), and some independent and iden-
tically distributed random noise (noted #,;,). If we note N
(1,0) a random number drawn from a normal distribution of
mean u and standard deviation o, our datasets can be sum-
marized in the following equation for all &, 7, and 7: yy ;= Cp
—i-ap+ny; ,, where the parameters are:

1. For the repetition sensitivity model: a,=M0.5,1), ¢,=C=2,
1y ;=N(0,0).

2. For the face selectivity model: a,=A4=0.5, ¢,=N2,1),
nk,i =N(0,6)

We ran univariate analyses by computing the linear contrast
across the repetition sequence at each voxel in both runs, and
we sorted voxels as RS versus RE in a post hoc manner,
depending on whether their response was negative versus
positive. We computed our multivariate analyses by using the
same procedure as for our real data. We report (Fig. 6) the
average correlation coefficient for each “virtual subject” for
the pattern-consistency analysis, for both RS and RE voxels,
and I-tests across subjects.

Results

Participants viewed a continuous stream of faces in which
each trial-unique exemplar was repeated 1-4 times consecu-
tively (Fig. 14), while performing an incidental gender-
judgment task on a subset of target faces indicated by a
colored frame (these target trials were modeled separately
and excluded from our analyses). As expected, most partici-
pants exhibited a high level of accuracy in the simple gender-
judgment task but some (N=4) did seem to have forgotten
the stimulus-button contingencies over the time of the
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experiment, possibly because of the rare occurrence of target
trials. Overall, mean accuracy on target trials was 76%. Accu-
racy on target trials did not depend on stimulus position (F<
1), which suggest that even if there might have been
occasional lapses of attention during the experiment, they
would have been equally distributed between the different
conditions of interest.

Univariate Analyses

We focused our analyses on an extrastriate face-sensitive
region defined in an independent localizer task (hereafter,
FFA). Standard univariate analyses revealed an anticipated
effect of RS: FFA activity on average decreased over consecu-
tive repetitions of each exemplar (Fig. 1). In all the following
analyses, we quantify this repetition effect as the linear con-
trast across sequence positions 1-4. Strong RS was observed
(i.e. a negative-going response to the linear contrast) in the
standard univariate analysis on spatially smoothed data, in
both the left (#47,=4.08, P<0.001) and right FFA (¢7,=5.25,
P<0.001). However, when we omitted the spatial smoothing
step from the standard univariate processing stream, approxi-
mately one-third (on average 37%) of FFA voxels exhibited a
numerically positive-going response to the linear contrast,
that is, a gradual enhancement across repetitions.

Sign-Consistency Analysis

We reasoned that if the 37% of observed RE responses simply
reflect measurement noise, we would not expect the RS
versus RE status of each voxel to be consistent across runs. By
contrast, if RS and RE voxel populations reflect distinct func-
tional contributions to visual perception, the sign of each
voxel’s response should be consistent across scanner runs. We
found strong evidence supporting the latter hypothesis. The
sign-consistency analyses (see Materials and Methods and
Fig. 24) revealed that the segregation between RS and RE
voxels was reliable: Voxels classified as RS (or as RE) from
their response in N— 1 blocks were more likely to be of the
same type in the remaining block, both in the left FFA (¢47,=
3.42, P<0.005) and right FFA (¢47,=3.50, P<0.005). Thus,
voxels showing RS and enhancement were segregated in the
FFA in a consistent manner. This was not the case in the
amygdala for instance, where no consistent segregation was
found between RS and RE voxels. Note however that from the
results of this analysis alone, one cannot distinguish the con-
tribution of RS and RE voxels.

Pattern-Consistency Analysis

Thus, we then asked whether or not each of these sub-
populations makes stable functional contribution to visual
perception, by assessing whether or not it responds with con-
sistent response patterns over scanner runs. Our pattern-
consistency analyses (see Materials and Methods and Fig. 34)
revealed significant run—run correlations in the spatial pattern
of FFA BOLD activity, independently for RS and RE voxels.
Indeed, RS voxels considered in isolation were significantly
correlated across runs, in both the left FFA (¢7,=4.56, P<
0.001) and right FFA (¢;7,=4.01, P<0.001). Critically, RE
voxels also exhibited a consistent pattern in the right FFA
(ta7)=3.08, P<0.01). Again, we used the amygdala as a
control ROI and here we found no consistent pattern for the
RE voxels. Thus, in the right FFA, both RS and RE voxels

showed independently a multivariate profile that was stable
across time. These findings are in agreement with the view
that these effects reflect true functional differences in the
computations performed by the underlying neural popu-
lations and argue against the possibility that RE voxels are
simply reflecting measurement noise from a general RS popu-
lation. Note that all these analyses do not give rise to circular-
ity, as the ROI is defined in a separate localizer session (and
from an orthogonal, face>house contrast), and as the
leave-one-out procedure we used here ensured independence
between the selection criterion and the statistical test
employed.

Searchlight

We then used a whole-brain searchlight approach (methods)
to ascertain how specific these effects were with respect to
regions involved in face individuation. Sign consistency was
found bilaterally at the posterior occipital sites (BA 18 and 19)
and extended along the visual stream and fusiform gyri
(Fig. 2B), but also along the dorsal stream with peaks in the
precuneus (left [-26, —68, 34], right [22, —68, 30]), and finally
at a bilateral cluster in the middle frontal gyrus left peak [—42,
20, 42], and right peak [42 16 50]). When we looked for
regions in which both RS and RE voxels exhibited significant
pattern consistency across runs (P<0.001 uncorrected, &> 20
for both maps), we identified 2 clusters (k>20) which were
the right fusiform region and the precuneus ([-26, —72, 34]).
The left fusiform region also emerged at a more liberal
threshold in this conjunction analysis (< 0.005 uncorrected,
k> 20 for both maps, Fig. 3B). No other brain region, includ-
ing those identified by the localizer (such as the amygdala,
Fig. 34 and Supplementary Fig. S1), showed consistency for
both RS and RE. For completeness, we also report as Sup-
plementary Material the whole-brain results for both the uni-
variate effects and the multivariate pattern-consistency effects
(Supplementary Fig. S2).

Peak Latency Analyses

Two further observations support the claim that RS and RE
voxels make dissociable functional contributions to infor-
mation processing in the FFA. First, we used a FIR model to
assess the HRFs associated with RS and RE voxels (see
Materials and Methods and Fig. 4) to look for potential differ-
ences in the shape of the HRF between these 2 voxel popu-
lations. Crucially, examination of the peak latency for the
linear contrast across position revealed that RS voxels
responded faster than RE voxels (mean peak latency: 7.1 vs.
10 s after stimulus onset, #7,=3.01, P<0.01). This was not
the case for other face-responsive regions, like the amygdala,
where the latency of the HRF responses of the RS and RE
populations was indistinguishable (P>0.1, Supplementary
Fig. S1). Further examination of the temporal profiles suggests
that the latency effect observed could reflect a delayed peak
for the negative response of RE voxels in the sequence pos-
ition 1. We therefore compared directly the peak latency for
the response of RS (positive peak) and RE (negative peak)
voxels to the first face (sequence position 1). A #-test across par-
ticipants indeed confirmed that the peak response to the first
face was delayed for RE compared with RS voxels (¢;,7,=2.95,
P<0.01), which constitutes a significant difference in time
between the 2 populations of voxels.
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Connectivity Analyses

Secondly, we tested whether RS and RE voxels in the FFA dif-
fered in their pattern of functional connectivity, in particular
with other regions showing suppression and enhancement
responses. Indeed, according to predictive theories of percep-
tion, neural units sensitive to predictions (i.e. RE voxels) and
prediction error (RS voxels) differ in their connectivity, with
error signals flowing forward in a bottom-up fashion, and pre-
dictions fed back from higher cortical stages in a top-down
manner. We defined a lower visual ROI (MOG) and a higher
visual ROI (MTG), which exhibited main univariate effects of
RS and enhancement, respectively, and measured their connec-
tivity with the RS and RE voxels in the FFA (Fig. 5). Connec-
tivity between 2 regions was assessed by correlating the
timeseries of their residuals after removing the main response
to the 4 stimulus positions using a FIR model (see Materials
and Methods) as described previously (Summerfield et al.
2006; Norman-Haignere et al. 2012). Critically, the expected
interaction between the FFA populations (RS vs. RE voxels)
and the other visual ROIs (MOG vs. MTG) was significant in
the ANOVA (F, 17=7.79, P=0.02). More specifically, the lower
MOG region was connected more with RS than with RE voxels
(ta7y=3.50, P<0.005), while no difference was found for the
connectivity with the higher MTG region (#¢;7,=1.67, P>0.10).
This interaction occurred on top of 2 main effects, indicating
that residuals of both FFA sub-populations were correlated
more with the residual of the lower visual region (MOG vs.
MTIG: F,,7,=43.22, P<0.001), and that the RS voxels were
more connected to other regions than the RE voxels (RS vs. RE:
F, 17=11.82, P<0.005). Further post hoc #tests indicated that
all correlations were significantly different from zero (all P<
0.005). For completeness, we carried out similar connectivity
analyses substituting the amygdala for the FFA, but found
no differences in connectivity (all P>0.1, Supplementary
Fig. S1).

Simulation Analyses

Could our results be an artifact of differing degrees of face se-
lectivity among FFA voxels? In other words, could our stability
results be observed if all voxels in the FFA were equally sup-
pressed by repetitions (RE being a consequence of the noise)
but differed in their main responses to faces? To formally
compare these face selectivity and repetition sensitivity ac-
counts of our multivariate findings, we generated simulated da-
tasets under both hypotheses and analyzed them in the same
way as our human fMRI data (see Materials and Methods and
Fig. 0). In the repetition sensitivity dataset (Fig. 64), all voxels
had the same face selectivity but variable repetition sensitivity.
In the face selectivity dataset (Fig. 6B), all simulated voxels
were suppressed to an identical degree by repetitions, but they
exhibited different sensitivity to the main effect of face stimu-
lation. Random noise was added to all voxels’ responses in 2
runs, and voxels were classified post hoc as RS or RE from
their response to the linear contrast across the sequence, akin
to the treatment of the empirical data. Each dataset comprised
18 virtual subjects, each contributing with 100 voxels, for com-
parison with our real fMRI data (Fig. 6C).

Both datasets recreated the effects shown in our univariate
analyses, including a positive response to faces across all
responses, and an increasing attenuation of this response
with repetition. Both simulations also predicted the
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negative response to the initial face in voxels classified as RE,
which is a natural consequence of those voxels with a negative
response to the first face being more likely to have an overall
positive-going slope (i.e. a selection bias). Crucially, however, is
that only in the repetition sensitivity dataset did multivariate ana-
lyses reveal significant sign consistency (P <0.001) and pattern
consistency for both RS voxels (£<0.001) and RE voxels (P=
0.001), while in the face selectivity dataset these statistics were
all centered on zero. Additionally, as for the observed data, the
multivariate pattern consistency of RE voxels was weaker, prob-
ably because RE voxels were less numerous overall.

Discussion

We isolated 2 sub-populations of voxels in face-sensitive
extrastriate visual cortex, one whose responses were sup-
pressed by repetition of face stimuli (RS voxels), and one
whose responses were enhanced by repetition (RE voxels). We
observed that RS and RE voxels can be dissociated in different
ways: Their segregation in sign were consistent and their
response profiles were separately correlated across measure-
ments (stability), they responded with a different temporal
profile (latency) and showed different patterns of correlations
with other brain regions in the ventral pathway (connectivity).
These findings are consistent with any theory of perception in
which information processing in the sensory neocortices relies
upon 2 distinct types of signals, some increasing by repetitions
and some decreasing with repetitions. After discussing our
different results, we will describe one such framework called
predictive coding (Mumford 1992; Friston 2005) which does
rely upon 2 types of signals carrying predictions or represen-
tations (that would be enhanced by repetition) and prediction
errors (suppressed by repetition), and which we would argue
can account for all of the present findings.

In the FFA, sign-consistency analyses revealed that RS and
RE voxels tended to remain the same across measurements.
Over and above this consistent segregation in sign, the
pattern-consistency analyses showed that the response pro-
files within each of these RS and RE populations were both
consistent across measurements. Simulation analyses ruled
out the possibility that these stability results depended on
variability in face selectivity, rather than variability in rep-
etition sensitivity. All face stimuli were trial unique in our
experiment, so this result cannot be driven by bottom-up
responses to specific stimulus exemplars. Moreover, we
avoided using any normalization or proportional scaling
across runs in our imaging analyses, to ensure run—run corre-
lations in RS and RE voxels were assessed in a completely in-
dependent fashion. This finding is consistent with a growing
body of reports of RE responses in the recent literature—for
example, that unfamiliar faces prompt primarily RE (Henson
et al. 2000; Muller et al. 2012), or that RE is observed for low
visibility stimuli (Turk-Browne et al. 2006). Moreover, they
show that in the FFA 2 types of response are elicited at the
same time by the same face stimulus.

As a control region, we focused on the responses in the
amygdala, which also exhibited a preference for face stimuli
(in the localizer data) and an overall RS response (in the uni-
variate analysis on smoothed data). However, no evidence for
a functional segregation between RS and RE voxels in the
amygdala was observed in any of the analyses conducted
(stability, connectivity, and latency). This demonstrates that

de Gardelle et al.

$T0Z ‘0T Afenuer UO UOSIPe \-UISUOISIAA JO A1SIBAIUN Te /BI0'S [euIno [pIo X0 100489//:d11y WOoi ) papeoumod


http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs211/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs211/-/DC1
http://cercor.oxfordjournals.org/
http://cercor.oxfordjournals.org/

the segregation of RS and RE voxels was not a trivial conse-
quence of the global properties of regions showing face pre-
ference and repetition effects. Rather, within these regions, it
was specific to the fusiform gyrus.

Outside of these face-sensitive regions, our sign-consistency
analysis revealed that the RS and RE voxels could be segregated
also at more posterior occipital sites (e.g. BA 18 and 19),
suggesting that early visual regions may also implement this dis-
sociation between 2 types of computational units. In the
primary visual cortex (BA 17), however, we found no evidence
for this dissociation, but neither did we find RS for faces. Whilst
adaptation effects for low-level stimuli n V1 are well described
(e.g. Weigelt et al. 2012), it is possible that the face stimuli used
in our study may not have been the most efficient for eliciting
adaptation in the primary visual cortex.

In the FFA, voxels showing RS and enhancement responses
were also dissociated in terms of their relative connectivity
with lower and higher visual regions, with RS voxels but not
RE voxels correlating preferentially with lower visual regions.
This result suggests that RS voxels receive more bottom-up
information from early occipital regions extracting low-level
visual properties from the stimulus than top-down infor-
mation from higher visual regions that encode face-related
information (Kriegeskorte et al. 2007). The RE voxels, by con-
trast, may be receiving as much information from higher
visual regions as from lower ones, which, might help to
achieve a better individuation of the current face as rep-
etitions allow this information to accumulate. Our connec-
tivity analyses used a FIR model to remove evoked activity, a
rigorous approach that guards against misfitting of canonical
basis functions to our data, or generally a systematic influence
of the main response of the ROIs tested (Summerfield et al.
2006; Norman-Haignere et al. 2012). Besides, our control analy-
sis in the amygdale rules out the possibility that 2 regions
showing the same response profile (e.g. RS voxels and the
lower visual region) shall automatically remain correlated even
after removal of their response profile.

Our final result is that RS and RE voxels also differ in terms of
their response latency, which offers further evidence that they
make distinct contributions to visual computation. In particular,
RS voxels respond with reduced latency and show an earlier
effect of repetition in comparison with RE voxels. However, we
interpret this result with some caution, for 2 reasons. First, the
temporal resolution of fMRI is poor and the link to the under-
lying latency of neuronal processes is questionable. Secondly, it
is unclear whether the latency effect is about the linear contrast
per se or simply about the response to the first face only.
Further work is needed to clarify this issue.

Within a face-sensitive fusiform region, we could dissociate
2 sub-populations of voxels that showed different response
profiles to face repetitions. Here, we show that, when looking
closely at the responses of individual voxels without spatial
smoothing, one could detect sparse but consistent RE
responses that could have been previously “masked” by the
dominant RS response in their local neighborhood. How are
these sub-populations organized? In further analyses of the
current dataset (Supplementary Analyses and Fig. S3), we
found that the 2 sub-populations of RS and RE voxels seemed
to show some consistent spatial organization rather than
being homogenously intermingled. However, the spatial res-
olution of fMRI is limited in the current study that used 3 x
3 x3 mm voxels, and a better characterization of these local

spatial relations might be best achieved using high-field fMRI
that allows for a better spatial resolution, or using neurophy-
siological tools.

Ongoing debate surrounds the nature of the neural compu-
tations underlying visual perception. The classic bottom-up
theories whereby neurons act as sensors tuned to features,
shapes, and objects (Hubel and Wiesel 1959; Tanaka 19906)
have been challenged by evidence that visual neurons are sen-
sitive to contextual influences lying beyond their receptive
field (Allman et al. 1985; Angelucci and Bullier 2003; Smith
and Muckli 2010), and their activity is strongly modulated by
past stimulation history, even over long lags (van Turennout
et al. 2000; Vuilleumier et al. 2002; Kouider et al. 2009).
These findings have prompted the theory that visual compu-
tations depends both on bottom-up sensory input and on con-
textual signals that bias perception toward a particular
interpretation of the visual world (Mumford 1992; Rao and
Ballard 1999; Bar 2004; Friston 2005; Gilbert and Sigman
2007). For example, “predictive coding” proposes that visual
processing depends on the interplay between top-down
expectation (or representation) signals and bottom-up sur-
prise signals, which would be processed by distinct units at
each stage of the cortical hierarchy (Friston 2005). How does
this framework account for our findings?

The predictive coding framework naturally accounts for the
dissociation between 2 types of visual units, prediction units
and surprise units, which can be mapped respectively on the
RE and RS voxels that we have dissociated here. Because
stimuli that occur repeatedly come to be expected, in the pre-
dictive coding framework repetition should elicit greater
expectations, and enhanced activity in expectation units, that
is, a RE response. On the other hand, a stimulus that con-
forms to expectations elicits less surprise, so repetitions
should also elicit a reduced response (i.e. RS) in units encod-
ing the surprise signals. Recent computational modeling esti-
mated that prediction error responses outweigh prediction
signals by a factor of 2:1 (Egner et al. 2010). Although the
reasons for the weaker contribution of RE signals to visual
responses are still unclear, it is interesting to note that this
proportion is remarkably similar to our present observation
that only one-third of voxels showed RE. Interestingly, predic-
tive coding can also account for our connectivity and latency
results. Indeed, we found RS voxels to be preferentially con-
nected with lower visual regions and to respond faster, while
RE voxels responded later and were relatively more connected
with higher visual regions, consistent with the idea that
neural computations in the FFA gradually reconcile surprise
(RS) signals flowing forward with prediction (RE) signals
coming from higher regions. However, predictive coding also
argues that the reconciliation of prediction and prediction
error signals is an iterative process that occurs on a finer time-
scale than is measurable with fMRI, so this interpretation
remains speculative.

To sum up, we have shown that distinct populations of
voxels in the FFA exhibit consistent suppressed and enhanced
responses to repeated faces. While incommensurate with
bottom-up accounts of neural repetition effects (e.g. pre-
sented in Grill-Spector et al. (2006)), our 3 results (stability,
connectivity, and latency) are all consistent with the predictive
coding view of visual perception (Mumford 1992; Friston 2005).
Our findings thus contribute to a growing literature that sup-
ports predictive coding as a model of perception (Murray
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et al. 2002; Summerfield et al. 2008, 2011; den Ouden et al.
2009; Alink et al. 2010; Egner et al. 2010; Meyer and Olson
2011;Kovacs et al. 2012) and supports the view that visual
processing, like its counterpart in the dopaminergic reward
system (Schultz et al. 1997; Schultz and Dickinson 2000),
depends on the interplay between of prediction and predic-
tion error signals (Ullman 1995; Deco and Rolls 2005; Friston
2005; Spratling 2008). This suggests that predictions and pre-
diction errors may form part of a general computational
mechanism that is employed across neocortical and subcorti-
cal regions alike (Rushworth et al. 2009).

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxford-
journals.org/.
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