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Human cognition is characterized by severe capacity limits: we can accurately track, enumerate, or hold in mind only a small number of
items at a time. It remains debated whether capacity limitations across tasks are determined by a common system. Here we measure brain
activation of adult subjects performing either a visual short-term memory (vSTM) task consisting of holding in mind precise information
about the orientation and position of a variable number of items, or an enumeration task consisting of assessing the number of items in
those sets. We show that task-specific capacity limits (three to four items in enumeration and two to three in vSTM) are neurally reflected
in the activity of the posterior parietal cortex (PPC): an identical set of voxels in this region, commonly activated during the two tasks,
changed its overall response profile reflecting task-specific capacity limitations. These results, replicated in a second experiment, were
further supported by multivariate pattern analysis in which we could decode the number of items presented over a larger range during
enumeration than during vSTM. Finally, we simulated our results with a computational model of PPC using a saliency map architecture
in which the level of mutual inhibition between nodes gives rise to capacity limitations and reflects the task-dependent precision with
which objects need to be encoded (high precision for vSTM, lower precision for enumeration). Together, our work supports the existence
of a common, flexible system underlying capacity limits across tasks in PPC that may take the form of a saliency map.

Introduction
Visual cognition is characterized by high flexibility but also ca-
pacity limits. Although the visual system can adapt its represen-
tational accuracy, the number of items concurrently processed is
limited: in tasks as different as rapid object enumeration or visual
short-term memory (vSTM), subjects can only process three or
four items at a time. These capacity limits may reflect a general
mechanism of object individuation (Piazza et al., 2011; Wutz and
Melcher, 2013), commonly accessed in many different atten-
tional tasks and that we suggested may take the form of a saliency
(or priority) map (Bisley and Goldberg, 2003). Saliency maps
topographically represent the conspicuity (or “saliency”) of items
at every location. Map-like architectures for spatial attention
have been observed previously in the monkey lateral intraparietal
(LIP) area (Bisley and Goldberg, 2003) and the putative human
homolog posterior parietal cortex (PPC; Connolly et al., 2002).

Critically, PPC has been implicated in studies of capacity limits in
both enumeration (Piazza et al., 2002) and vSTM (Todd and
Marois, 2004), as well as in visuospatial attention tasks in general,
suggesting a shared neural substrate for capacity limits across
tasks (Colby and Goldberg, 1999). Proof for the hypothesis of
shared neural systems across tasks remains scarce because of a
lack of studies investigating more than one task at a time (but see
Silk et al., 2010). Here we directly test the hypothesis that a map
architecture in human PPC (Gottlieb, 2007; Bays et al., 2010;
Melcher and Piazza, 2011; Franconeri et al., 2013) represents
individual items with a flexible degree of precision (e.g., modu-
lable by context and task requirements) and reflects capacity lim-
its across different tasks. Recent empirical and computational
evidence link lateral inhibition strength between items to the
precision of represented items within a map (Roggeman et al.,
2010; Dempere-Marco et al., 2012; Sengupta and Melcher, 2014).
High inhibition reduces the noise within a map, allowing for
precise representations of items, but restricts capacity to few
items. Conversely, low inhibition allows for a larger number of
items to be represented yet less precisely. The representational
precision of a given item varies with the observer’s current goals.
Whereas in a vSTM task participants encode multiple features,
such as location and orientation of items, in enumeration tasks,
no precise encoding of object features is necessary. The mere
individuation of items is sufficient to encode them as units
(Melcher and Piazza, 2011; Wutz and Melcher, 2013).

Here, we manipulated the required representational precision
of objects by engaging participants in two tasks: (1) a vSTM task,
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requiring high encoding precision; and (2) an enumeration task,
requiring low encoding precision. This allowed us to test whether
there were common PPC maps for the two tasks with changing
neural response profile dependent on task demands. We predict
a nonlinear increase of PPC activation with increasing number
of to-be-encoded objects in a task-dependent manner: in a task
requiring low precision, activation should increase only when the
set exceeds three or four items, whereas in a task requiring high
precision, activation should increase already beyond one item.

Materials and Methods
The current study comprises two experiments, both described below: (1)
a main experiment; and (2) a control experiment.

Main experiment
Participants. A total of 19 healthy adults with normal or corrected-to-
normal vision and no history of neurological or psychiatric illness par-
ticipated in the study, which was approved by the Ethics Committee of
the University of Trento. Two participants were excluded from subse-
quent analysis because of extensive head motion during scanning. All
subsequent analyses are based on data from 17 participants (seven fe-
males; mean � SD age, 25.78 � 10.3 years).

Stimuli. Stimuli consisted of a variable number of Gaussian modulated
sinusoidal grating (Gabor) patches. A given Gabor in a set was individu-
ally tilted from vertical to the left or right with a random angle between
15° and 45°. In the main experiment, subjects performed two tasks in
different fMRI runs of a single session: (1) enumeration; and (2) vSTM
(see below). For the enumeration task, the number varied between one
and eight, whereas for the vSTM, it varied between one and six. Each
numerosity was presented equally often and at least twice in each of four
blocks. Numerosity was fully crossed with saliency that had two levels.
For low-saliency displays, all the Gabors had the same contrast of 35%. In
high-salient displays, one Gabor was flickering at 20 Hz between 100 and
33% contrast. Because this saliency manipulation did not have a signifi-
cant effect on behavioral or functional imaging data, we collapsed across
saliency levels for all analyses. Two sets of Gabors were created to control
for non-numerical factors of the stimuli (http://www.unicog.org/pm/
pmwiki.php/Main/Arithmetics). In one set, the overall surface of the
Gabor patches was kept constant across numerosities, thus individual
item size (varying between 2.65° and 0.93° visual angle for numerosities 1
and 8, respectively) and density (defined as total surface covered by the
Gabors divided by convex hull of Gabors) were inversely related to nu-
merosity. In the second set, the individual item size was kept constant
(1.26° visual angle), thus total area covered by the Gabors and density
increased with increasing numerosity. The average overall surface cov-
ered by the Gabor patches across different numerosities was identical for
the two sets.

Procedure of main tasks. Two seconds before each trial, a red fixation
dot appeared and remained on the screen for 1000 ms to indicate the
upcoming trial. Each trial began with the presentation of a gray fixation
dot. After a delay of 800 ms, the fixation dot disappeared for 200 ms,
signaling the subsequent onset of a stimulus. A number of Gabor patches
(sample) appeared on screen for 200 ms (500 ms for the vSTM task),
followed by a white fixation cross presented for 500 ms (600 ms for vSTM
trials). In the enumeration task, subjects were to name as quickly as
possible the number of Gabors. In the vSTM task, a second display (test)
was presented that included only one of the previously shown Gabor
patches from the sample set (Fig. 1). Subjects were instructed to judge
whether the orientation of the test stimulus was changed with respect to
the item in the sample set that had been presented in that location. The
orientation of the test Gabor was either identical to the sample item or
was a mirrored version along the vertical axis. Subjects were required to
give their response within a range of 1.7 s. The next trial started after a
variable delay (�0 –500 ms) with a mean duration of 7400 ms (7000 ms
for enumeration) within which the red fixation appeared. The average
trial length was 11.2 s for the vSTM task and 10.4 s for the enumeration
task. Each experiment was divided into four fMRI runs. Each run lasted
�7.1 min for the vSTM task and 6.9 min for the enumeration task. Figure
1 schematically depicts a trial in the main task.

Procedure of saccades localizer. In one additional fMRI run, subjects
performed 10 blocks of eye movements, each followed by a baseline
period in which identical visual stimulation was presented but partici-
pants did not move their eyes. The change between the eye movement
and the fixation task was signaled via a change in the color of a central
fixation cross. Each block of saccades was composed of 14 sequential
presentations of a target cross (width and height, 0.38° visual angle) that
appeared �5° (up to �0.42° jitter in x and y) to the left or the right of
fixation or near fixation (with the same jitter) for, on average, 1000 ms
(�200 ms jitter; five trials of 800 and 1200 ms, four of 1000 ms). Each
block used a different order, and block order was randomized across
participants. The total duration of the localizer was 4 min.

Imaging parameters. Functional data in the main experiment were
acquired at the Laboratory for Functional Neuroimaging at the Center
for Mind/Brain Sciences in Mattarello, Italy on a 4 T MR system (Bruker
MedSpec Biospin MR) as T2*-weighted echo-planar image (EPI) vol-
umes using an eight-channel birdcage head coil. Thirty-seven axial slices
covering the whole brain were obtained with a TR of 2.2 s (TE, 33 ms; flip
angle, 75°; 3 � 3 � 3 mm voxels; no gap). For the saccades localizer task,
the TR was 2.4 s. Before each block, we performed an additional scan to
measure the point-spread function (PSF) of the acquired sequence,
which served for distortion correction. The first three images (6.6 s) in
each series served to guarantee stable magnetization and were not re-
corded. For each participant, an anatomical scan was obtained using a
MPRAGE sequence with 176 slices covering the entire brain (TR, 2.7 s;
TE, 4.18 ms; flip angle, 7°; voxel size, 1 � 1 � 1 mm; no gap).

Behavioral data analysis. Vocal responses in the enumeration task were
recorded and manually labeled offline. Vocal onset times (VOTs) were
determined for each trial using an in-house MATLAB algorithm that
detected intensity changes above a participant-specific threshold. We
then determined the subitizing range (capacity) per participant by fitting
a bilinear function to the VOTs and accuracy rates over numerosities.
The function identified the best combination of ranges, one with a 0 slope for

Figure 1. Schematic depiction of a trial in the main experiment. After the initial presentation
of a gray fixation cross for 800 ms, followed by a brief blank period, a variable number of Gabors
appeared on screen (for 500 and 200 ms in the vSTM and enumeration tasks, respectively). In
the vSTM task (left part), a delay period of 600 ms was followed by the presentation of an
arbitrarily chosen Gabor that had to be evaluated via button press with respect to a change in
orientation (here: orientation changed). In the enumeration task (right part), participants were
asked to immediately utter an estimate of the number of Gabors on screen that was recorded
and transcoded offline.
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small numbers, followed by one with a variable positive slope for larger ones.
Subitizing range was operationalized as the intersection of the two lines. As
described by Cowan, 2001, vSTM capacity was determined by calculating
Cowan’s K using the formula K � (hit rate � correct rejection rate � 1)n,
with n describing the number of items in a given set.

Imaging data analysis. After correcting the data for field distortions
using the acquired PSF, the functional imaging data were prepro-
cessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8). Images were corrected for motion and slice-timing differences,
realigned to the first image in the series of the respective experiment, and
coregistered to the individual anatomies. For the reported random effects
and classifier analyses, the functional images were smoothed with a 6
mm 2 FWHM Gaussian kernel after normalization to the standard tem-
plate of the Montreal Neurological Institute. The fMRI data from the two
main tasks were modeled in a common design to allow for direct com-
parisons between tasks. The enumeration task was modeled with 16 pre-
dictors: 1 predictor for each numerosity (8 levels) � saliency (2 levels).
The vSTM was modeled using 12 predictors (6 numerosities � 2 salien-
cies). All predictors were convolved with a canonical hemodynamic re-
sponse function and its temporal derivative in SPM8. Session-specific
motion parameters were included as effects of no interest to account for
remaining artifacts attributable to head motion. We extracted and nor-
malized the � weights for each value of numerosity for each participant in
both tasks. Voxels were selected as follows. Based on previous fMRI data
(Piazza et al., 2003; Todd and Marois, 2004) and on a computational
saliency map model of individuation (Sengupta and Melcher, 2014), we
hypothesized that the brain activation profile over numerosities in the
enumeration task would differ from the profile in the vSTM task in the
PPC regions. In the enumeration task brain, it was expected that activity
would follow a “subitizing profile,” characterized by a constant level of
activation for small numerosities within the subitizing range (1–3) and a
linear increases for higher numbers (a “flat and then increase” profile).
Conversely, the “VSTM profile” would be characterized by an initial
linear increase of brain activity with increasing number of items in the
1–3 range display and a plateau for displays with a larger number of items
(“increase and then flat” profile). Any subsequent reference to brain
regions that were active in either of the two tasks refers to the activations
as defined by these two response profiles. To demonstrate that the same
voxels in the PPC flexibly adapt their activation profile to the required
representational precision of the task at hand, we analyzed voxels that
fulfilled three criteria. First, we isolated superior parietal cortex voxels by
an anatomically defined mask using the Wake Forest University (WFU)
PickAtlas toolbox in SPM (Maldjian et al., 2003). Second, we used the
saccades localizer random-effects contrast (saccade vs fixation) to further
restrict our initial PPC anatomical voxel selection. Finally, we chose vox-
els on the basis of the results from one task (e.g., enumeration) and
analyzed their response profile in the other task (e.g., vSTM task).

Additionally, we applied multivariate pattern analysis (MVPA) algo-
rithms to test how far individual numerosities elicit distinguishable pat-
terns of brain activation and how this may differ across tasks. Pattern
recognition analysis applied a linear multiclass classification based on
support vector machines in the implementation of LIBSVM (Library for
Supports Vector Machines; http://www.csie.ntu.edu.tw/�cjlin/libsvm/),
with the regularization parameter C fixed to 1. The data entering classi-
fication were 240 � images in total (20 images for each of the six numer-
osity conditions corresponding to individual trials in each of the two
tasks). For each of the regions of interest (ROIs) mentioned below, each
individual pattern was mean corrected across voxels, and, to reduce po-
tential session- or time-related confounds, voxelwise activations were
normalized by subtracting from each voxel the mean across the six nu-
merosity conditions. Because for each session there were 10 trials per
condition, this was done 10 times, starting with the first trial of each
condition and repeating the same procedure up to the 10th trial for
each condition in a given session. Separate classifiers were trained and
tested for the enumeration and the vSTM conditions (with the theoreti-
cal chance level corresponding to 1⁄6 for six conditions). The classification
cycle used a leave-one-out with 20-fold cross-validation, such that of the
20 patterns of each condition, the n-th pattern (1 � n � 20) from each
condition was held out at each given cycle of the cross-validation loop

while the classifier was trained on the remaining 19 patterns for each
condition. Classification analysis was first applied to an ROI in PPC. To
identify voxels in PPC for each participant, we contrasted all numbers
versus baseline and masked the resulting first-level SPM with the active vox-
els from the random-effects contrast saccades versus baseline, with the addi-
tional restriction that voxels were located in the parietal cortex as defined in
the WFU PickAtlas (Maldjian et al., 2003). To test whether classifier perfor-
mance was specific to PPC, we identified a second group of voxels in the
primary visual cortex (PVC) along the calcarine sulcus using the same func-
tional restrictions. The number of voxels was fixed to the 250 most activated
voxels for each participant, task (enumeration and vSTM), and ROI (PPC
and PVC).

Control experiment
Participants. Six healthy participants (all females; mean � SD age, 24.4 �
0.61 years) were tested in the control experiment that was approved by
the Ethics Committee of the Humboldt University of Berlin.

Stimuli. Stimuli consisted of two sets of tilted dark gray bars, displayed
against a light gray background. Bars were used instead of Gabor patches
to facilitate feature encoding (orientation) and increase performance in
the vSTM task (Alvarez and Cavanagh, 2008; Melcher and Piazza, 2011).
Two sets were created using a variant of the above described MATLAB
routines to control for non-numerical stimulus features in the same way
as described above. Individual bar size varied between 0.92° � 0.32° (set
size 8) and 2.3° � 0,86° (set size 1) visual angle in set 1 and was fixed to
0.92° � 0.32° in set 2. As in the main experiment, participants were
presented with a variable number of items in a vSTM task (one to six
items) and an enumeration task (one to eight items).

Procedure and behavioral data analysis. The control study was designed
to test whether minor procedural differences between the tasks in the
main experiment (e.g., slightly different duration of stimulus presenta-
tion) might explain the observed behavioral performance differences and
related changes in brain activation profiles (see below). Each trial started
with the presentation of a black fixation dot in the center of the screen
(500 ms), followed by the simultaneous presentation of a variable num-
ber of tilted bars on the screen for 150 ms (sample). In the vSTM task, the
offset of the sample stimulus was followed by the presentation of a white
fixation dot for 1000 ms (delay period), which was replaced by the pre-
sentation of the test stimulus, containing identical number of tilted bars
in identical positions. The participants’ task was to remember the orien-
tations of the sample bars and to decide whether or not one of the bars in
the test display had changed orientation by 90°, which was the case in half
of the trials. The test display was replaced by black fixation dots on button
press or after 1.7 s. The next trial started on average 3.8 s (minimum, 3.3 s;
maximum, 4.4 s) after the response period, yielding a mean trial length of
7.15 s. In enumeration trials, a 1.7 s response period started immediately
with the presentation of sample display. Subsequent trials started after an
average interval of 7.8 s (minimum, 7.4 s; maximum, 8.3 s). Intertrial
fixation was ensured by the presentation of a gray fixation dot in the
center of the screen in both tasks.

Vocal responses in the enumeration task were recorded and tran-
scribed offline. Because of technical limitations, no VOT determination
was possible and no manual responses were recorded during the vSTM
task. Six additional participants (three females; mean � SD age, 28.3 �
7.2 years) were tested with the identical paradigm outside the scanner.

Imaging parameters and analysis. Functional data were acquired at the
Berlin Center for Advanced Neuroimaging on a 3 T TIM Trio scanner
(Siemens) as T2*-weighted EPI volumes using a standard 12-channel
head coil. Forty-two axial slices covering the whole brain were obtained
with a TR of 2.5 s (TE, 25 ms; flip angle, 82°; 2.5 � 2.5 � 2.5 mm 2 voxels;
20% gap). The first two images (5 s) in each series served to guarantee
stable magnetization and were not recorded. For each participant, an
anatomical scan was obtained using an MPRAGE sequence with 192
slices covering the entire brain (TR, 1.9 s; TE, 2.52 ms; flip angle, 9°; voxel
size, 1 � 1 � 1 mm 2; no gap; generalized autocalibrating partially parallel
acquisitions factor, 2).

Functional imaging data were analyzed using the same software
(SPM8) and routines as the main experiment. To ensure sampling brain
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activation from identical voxels, we used the (resliced) second-level
masks from the main experiment.

Computational saliency map model
The saliency map model we used to make quantitative predictions on the
activation level of the PPC in the two tasks extended the work by Rogge-
man et al. (2010), who considered set sizes from 1 to 64 to the set sizes
(one to eight) used in this experiment. Following Roggeman et al. (2010)
and Sengupta and Melcher (2014), we constructed a recurrent on-center,
off-surround network with a single layer of 70 completely interconnected
nodes (Fig. 2A). Each node can be considered, theoretically, as a group of
neurons in the parietal cortex encoding an object or location of an object
in an attentional priority or saliency map. The three main parameters
that define the type of network are as follows: (1) strength of self-
excitation for each node (�); (2) strength of lateral inhibition between
nodes (�); and (3) decay constant for the passive decay term (�). The
differential equation governing the time evolution of the network of
nodes is given by the following:

dxi

dt
� ��xi � �F� xi	 � � �

j�1, j
i

N

F� xj	 � Ii � noise

where xi(t) is the activation of node at time t, and Ii represents the inten-
sity of external input (@i,0 � Ii � 1). In our simulation is a unit step
function, i.e., it has the value 1 for a certain number of time steps for the
particular node i and 0 for rest of the time steps. Input is only presented
for a finite amount of time, typically much less than total time of simu-
lation. F(x) is the activation function given by the following formula:

F� x	 � � 0, for x � 0
x

1 � x
, for x 	 0

The decay parameter was set to � � 1. We modeled the dynamics accord-
ing to the discrete form of the differential equation governing the time
evolution. The activation of the nodes are updated at each step according
to the following equation:

xi�t	 � �F � xi�t � 1		 � � �
j�1, j
i

N

F � xj�t � 1		 � Ii � noise

As reported previously by Roggeman et al. (2010), the inhibition param-
eter determines the degree to which the network behavior can track a
small or larger number of items. At high inhibition, the network activa-
tion increases with the number of items up to an upper limit that should
reflect encoding capacity in the vSTM task. At medium inhibition levels,
necessary to individuate but not to track fine local features of the indi-
viduated objects, the network activation should show no detectable in-
crease within the very small number range, followed by a steeper increase
for larger numerosities, which should reflect higher capacity in enumer-
ation tasks (also referred to as subitizing range). Very low inhibition
allows a larger number of nodes in the network to respond in the case of
a larger number of inputs, and this might reflect activation related to
numerosity estimation, a task that we did not use in our experiments. The
behavior of the network can be understood intuitively in terms of com-
petition: when there is strong competition between nodes, strong nodes
inhibit other nodes, leading to a winner-take-all system. When the inhi-
bition parameter is weak, the activity of one node does not inhibit its
neighbors, allowing many different nodes to be active at the same time.
Thus, there is a tradeoff between inhibition and precision. As in the
studies by Roggeman et al. (2010) and Sengupta and Melcher, (2014)),
the input was presented to the model for five time steps, and the simula-
tions ran for 50 time steps. Then we plotted the mean of 100 simulations
of the presentation of one to eight items under a high inhibition param-
eter (� � 0.28), simulating the high object feature coding precision re-
quirements of the vSTM task and medium inhibition parameters (� �
0.12) simulating the lower object feature coding precision requirements
of the enumeration task.

Results
Computational model
One important argument in favor of a common, flexible system
for both enumeration and vSTM would be the ability to model
such flexibility in the same computational model. To test this, we
applied a model of visuospatial saliency maps in parietal cortex
initially developed by Roggeman et al. (2010). The model is based
on a recurrent on-center/off-surround network of connected
nodes, with each node representing a spatial location. The nodes
are interconnected, with a self-excitation parameter � and a lat-
eral inhibition parameter � (Roggeman et al., 2010; Sengupta and
Melcher, 2014). As shown previously, the behavior of this sa-
liency map model depends critically on the inhibition between
nodes. In a high inhibition regimen, we found that activation
increased as set size went from one to three items and then
reached a plateau (Todd and Marois, 2004; Kawasaki et al., 2008;
Fig. 3I). However, for a medium level of inhibition, we found flat
activation up to approximately three items (Fig. 3G) as would be
expected for subitizing and in line with previous results (Piazza et
al., 2003). Thus, changing only the inhibition parameter leads to
changing response profiles as a function of the representational
precision required by the task at hand. Based on these results, we
predict that the activation profiles in the two tasks should reflect
the varying representational precision in brain areas organized in
a map-like architecture, thus resembling the activation profiles of
the computational model.

Behavioral results
Performance in the enumeration task matched the expected re-
sponse profiles. For numerosities 1–3, the verbal estimates were
highly accurate and did not vary in speed (Fig. 2B,D for VOTs
and accuracy, respectively). Beyond numerosity 3, latency in-
creased and accuracy decreased for larger numerosity values as
expected. To determine the subitizing range, we fitted the data
(VOTs and error rates) using a bilinear fit algorithm. Using pairwise
t tests, we found VOTs attaining a plateau at seven items (six vs seven
items, t(16) � �3.39, p � 0.004; seven vs eight items, t(16) � �0.054,
p � 0.958). To avoid artificially reduced estimates of subitizing
range, we included only numerosities 1–7 in the VOT analysis. This
analysis revealed a subitizing range of approximately three items for
VOTs (mean � SD, 2.71 � 0.75) and of approximately four items
for error rates (mean � SD, 4.0 � 0.98).

To confirm the presence of a subitizing range in the enumer-
ation task, we used a one-way repeated-measures ANOVA with
numerosity as the only factor to test for (1) the absence of an
impact of numerosity for small numerosities and (2) an impact of
numerosity for larger numerosities. We observed a marginal im-
pact of numerosity for enumeration performance in the one to
three range for VOTs (F(2,32) � 2.95, p � 0.07), which was absent
for error rates (F(2,32) � 0.93, p � 0.39). For numerosities 1– 4, we
observed an impact of numerosity on VOTs [F(3,48) � 18.943, p �
0.001, Greenhouse-Geisser 
 � 0.61 (Greenhouse and Geisser,
1959)] that was marginal only in accuracy (F(3,48) � 3.3, p �
0.053, 
 � 0.63). In contrast, a marked effect of numerosity was
present for larger numerosities between 4 and 8, for both VOTs
(F(3,48) � 16.340, p � 0.001, 
 � 0.6) and error rates (F(3,48) �
20.203, p � 0.001, 
 � 0.9). Together, these results suggest an
average subitizing range of three to four items.

Accuracy in the vSTM task significantly decreased with in-
creasing numerosity over the whole range (Fig. 2E), with an av-
erage � SD Cowan’s K of K � 1.2 � 0.53 (maximum K � 1.38;
Fig. 2C). The capacity estimate of �1.5 items for orientation
memory is consistent with previous studies using an orientation
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task on Gabors (Alvarez and Cavanagh, 2008; Melcher and Pi-
azza, 2011).

Behavioral performance in the control experiment was com-
parable with the main experiment. Enumeration accuracy was
characterized by a near-perfect performance for numerosities
one through three and monotonically decreasing accuracy with
additional increases of set size (Fig. 2D,E). To visualize vSTM
performance, we calculated Cowan’s K (Fig. 2C). K (mean K �
2.11; maximum K � 3.0) increased with increasing set sizes until
reaching a plateau.

Brain imaging results
GLM results
As a starting point, we traced brain regions that responded ac-
cording to the different expected response profiles across numer-
osities in the enumeration and vSTM tasks. For the enumeration
task, we were looking for voxels with a response profile that
would parallel the behavioral results, that is, voxels that did not
exhibit an increase of activation for low numerosities (n � 3) but
a parametric increase in activation for higher numerosities (n �
3), equivalent to an exponential function. For the vSTM task, we
traced voxels that showed a complementary response profile with
an increase of activation for lower numerosities (n � 3), reaching
a plateau for higher numerosities (n � 3), equivalent to the in-
verse of an exponential function. Figure 3 shows the resulting

activated networks projected onto an in-
flated brain template using the Human
PALS (population-average landmark-
and surface-based)-B12 Atlas (Van Essen,
2005; Van Essen and Dierker, 2007) im-
plemented in Caret software (Van Essen et
al., 2001). vSTM (Fig. 3A) activated bilat-
eral precentral regions (frontal eye fields),
superior parietal cortex and occipital
cortex. Figure 3B shows the activations
elicited by the saccades localizer task, con-
sisting mainly of superior parietal and oc-
cipital regions. Enumeration (Fig. 3C)
activated a large network of frontal, pre-
central, and parietal regions extending
into the occipital cortex (for a detailed
list of activated sites, see Table 1). Vir-
tually identical brain regions were ob-
tained when using regressor profiles
with lower inflection points of 3 and 2,
better matching the empirically ob-
served profiles for enumeration and
vSTM, respectively.

Given our interest in the activity of sa-
liency/priority maps, we sought to sample
from the human homolog of monkey area
LIP by adopting an inclusive masking ap-
proach that only included voxels that were
(1) anatomically located in the parietal
cortex and (2) were active in the saccades
localizer task. From these voxels, we se-
lected only those voxels that were active in
either the enumeration task or the vSTM
task with their differential response pro-
files as described above. Overlapping vox-
els between vSTM and saccades, and
enumeration and saccades are shown in
Figure 3, D and E, respectively. For voxels
that exhibited an STM profile in the vSTM

task, we then plotted the activation profile in the enumeration task
(Fig. 3F). Conversely, for voxels that showed a subitizing profile, we
plotted the activation profile in the vSTM task (Fig. 3H). The re-
sponse profile changed completely as a function of the specific task at
hand. Voxels that paralleled the behavioral profile in the enumera-
tion task changed their profile in the context of the vSTM task and
vice versa. In both cases, the � values varied significantly with nu-
merosity as indicated by one-way repeated-measures ANOVA
(vSTM, F(5,80) � 11.1, p � 0.001, 
 � 0.70; enumeration, F(7,112) �
31.73, p � 0.001, 
 � 0.72).

To statistically validate that voxels in PPC changed their re-
sponse profile with task requirements, we analyzed the data
points that were common to both tasks (i.e., numerosities 1– 6)
by fitting a log-linear function (Anobile et al., 2012) to the �
weights in the context of both tasks. The function of the form

Y � a ��1 � �	 N � �
Nmax

ln Nmax
ln N� comprises a linear and a

logarithmic component (�) that will be positive if the response
profile is (logarithmically) compressed (as should be the case in
the vSTM task) and negative if the response profile takes an ex-
ponential form (as should be the case in the enumeration task for
numerosities 1– 6). We fitted this function to the individual mean
� weights of the voxels that were identified with the above de-

Figure 2. A, Graphical illustration of the computational saliency/priority model. Self-excitation and inhibitory connection
between nodes are indicated by the different endpoints (arrows and filled circles, respectively). B–E, Behavioral results from the
main (black) and control (gray) experiments. Average voice onset times (B) and percentage correct (D) across numerosities in the
enumeration task and Cowan’s K (C) and percentage correct (E) in the vSTM task.
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scribed approach in both tasks (n � 35 voxels from the vSTM task
and n � 51 voxels from the enumeration task) and compared the
� parameters obtained for both tasks. Model fit was good for both
response profiles (R 2 � 0.73 and R 2 � 0.93 for the vSTM and
enumeration tasks, respectively). Analysis of the � parameter re-
vealed that parameters were significantly different from 0 (� �
1.05, t(16) � 3.50, p � 0.003; � � �0.88, t(16) � �3.24, p � 0.005
for vSTM and enumeration tasks, respectively) and were signifi-
cantly different from each other (t(16) � 5.29, p � 0.0001).

Very similar results, including a reversal of response profiles as
a function of task requirements, were obtained from the follow-

ing: (1) voxels in the parietal cortex without masking the task-
related activation maps with the saccades map; and (2) voxels
within the saccades map without applying the masks from the
respective activation maps. This suggests that the observed pat-
tern of results is not confined to the voxels from the mask con-
junction but that other regions in PPC also exhibit a similar
response behavior.

To test whether minor procedural differences between the
enumeration and vSTM tasks rather than the task itself could
account for the observed differences in the neural response
profiles, we conducted a control experiment. In particular, in

Figure 3. Brain activation results. A, Brain regions exhibiting a vSTM profile. B, Results of the saccades localizer. C, Brain regions with a subitizing profile. All random-effects contrasts projected
onto the top view of left and right hemispheres of an inflated brain template, thresholded at p � 0.05 (FDR-corrected) except saccades localizer ( p � 0.005, uncorrected). D, E, Enlarged view of the
overlapping activation in PPC. D, Overlap (purple) between saccades localizer (blue) and vSTM (red) activation. E, Overlap (turquoise) between saccades localizer (blue) and enumeration (green)
activation. F–I, Empirically observed and computational model activation profiles in the enumeration task (F, G, respectively) and the vSTM task (H, I, respectively) expressed as standardized �
weights (data) and arbitrary units (model). Empirical activation profile for enumeration is based on voxels that have been identified by the overlap between vSTM and saccades. The profile for vSTM
is based on voxels that have been identified by the overlap between enumeration and saccades. Results from the main and control experiments are shown in black and gray, respectively. Error bars
depict SEM.
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the main experiment, there were slightly longer stimulus pre-
sentation times during the vSTM task, which in theory might
have influenced the results such as by allowing for more sac-
cadic eye movements during the vSTM task compared with
enumeration.

As shown in Figure 3, F and H (depicted in gray), despite now
using identical stimulus displays and identical stimulus presen-
tation parameters in the two tasks, we again found that brain
activation profiles in PPC showed remarkable differences be-
tween tasks. In line with the results from the main experiment, we
found a stable activation level for numerosities 1– 4 in the enu-
meration task and an increase of activation with increasing set
size (more than three). In contrast, in the vSTM task, activation
increased from one to approximately four items before reaching a
plateau and decreasing again for six items. It is important to note
that the pattern of results from the main experiment was repli-
cated despite independent samples, different MR systems, imag-
ing parameters, and stimuli, and this underlines the idea of
flexible coding accuracy as the driving factor in the current find-
ings. Thus, it is unlikely that marginal procedural task differences
(e.g., stimulus duration) in the main experiment played an im-
portant role in the observed differences in response profiles be-
tween the two tasks.

Decoding results
From single-cell recordings in monkeys (Roitman et al., 2007),
we know that area LIP contains neurons that code for numbers.
Previous fMRI multivariate decoding experiments showed that
individual numbers can be discriminated in the human brain
using activation patterns in the PPC (Eger et al., 2009) and in the
functional equivalent of area LIP (Eger et al., 2013). In the present
context, we used decoding to obtain an additional neuronal index
of differential capacity limitation in the two tasks: we asked
whether the number of items that can be accurately discriminated
varied as a function of task demands. The confusion matrices in
Figure 4 depict classification results from multiclass classification
between the six numbers for both tasks and ROIs. A repeated-
measures ANOVA of Cohen’s � with the factors ROI (PPC vs
PVC) and task (enumeration vs vSTM) revealed higher classifi-
cation performance for enumeration (F(1,16) � 42.16, p �
0.0001) and in PPC (F(1,16) � 158.97, p � 0.0001). No interaction
was observed (F(1,16) � 0.19, p � 0.666). This result was corrob-
orated by significantly better classification accuracy (percentage
correct) for enumeration (F(1,16) � 74.14, p � 0.0001) and in PPC
(F(1,16) � 10.997, p � 0.0044). Individual classification accuracy
was higher than chance (16.7%) in each ROI and task (PPC enu-
meration, 34%, t(16) � 10.96, p � 0.0001; PPC vSTM, 30.3%, t(16)

� 9.24, p � 0.0001; PVC enumeration, 25.4%, t(16) � 9.1, p �
0.0001; PVC vSTM, 21.1%, t(16) � 2.9, p � 0.0104).

Paralleling the GLM results, classification performance for
different numerosities was modulated by task, resulting in differ-
ent classification profiles. For enumeration, classification was on
average much higher than for vSTM, being best for values 1–2
and 5– 6 and reaching lowest values for classification of three and
four items. However, in vSTM, classification peaked at low nu-
merosities and decreased with increasing numerosity, resulting in
a broader confusion range for larger numerosities compared with
enumeration. To further corroborate these impressions, we com-
puted classification “tuning curves” for each task and numerosity
in both ROIs. That is, for each predicted numerosity (e.g., one
item), we computed the difference between the correct classifica-
tion (i.e., the value on the diagonal in the confusion matrix) and
the mean of the false classifications (i.e., values off the diagonal in
the confusion matrix). We compared these classification profiles
in a repeated-measures ANOVA with the factors task (enumera-
tion and vSTM) and numerosity (one through six) for each ROI.
In PPC, we observed a main effect of numerosity (F(5,80) � 37.54,
p � 0.0001, 
 � 0.73). Task marginally influenced performance

Table 1. Brain areas from the enumeration task, the vSTM task, and saccades
localizer

Task

Peak coordinates (MNI)
Peak
Z-score

Cluster
size Labelx y z

Enumeration 0 20 46 6.85 289 Superior frontal lobe
3 29 40 6.41 R superior medial

frontal lobe
0 5 67 5.16 Supplementary motor

area
�30 23 4 5.92 153 R inferior frontal

cortex/insula
�24 �58 43 5.89 229 L superior parietal

lobe
�12 �64 55 5.47 L precuneus
�36 �49 40 5.44 L inferior parietal lobe

33 23 4 5.89 126 R insula
�45 8 34 5.85 99 L precentral gyrus
�48 �4 43 5.17 L precentral gyrus
�42 20 28 4.83 L inferior frontal lobe

36 �49 49 5.71 294 R inferior parietal lobe
27 �58 49 5.50 R superior parietal

lobe
15 �67 55 5.41 R superior parietal

lobe
45 8 31 5.54 51 R precentral gyrus

�30 2 55 5.48 68 L middle frontal lobe
�15 5 55 4.85 L superior frontal lobe
�27 2 43 4.78 L precentral gyrus

vSTM 12 �58 58 4.40 157 R precuneus
21 5 58 4.35 78 R superior parietal

lobe
�15 �64 55 4.18 95 L superior parietal

lobe
�3 23 40 4.05 161 L superior medial

frontal lobe
�12 8 58 3.89 L superior frontal lobe
�21 �1 52 3.77 L superior frontal lobe

45 �76 22 3.85 19 R middle occipital
lobe

�33 �73 22 3.56 26 L middle occipital lobe
Saccades

localizer
�15 �64 52 4.02 159 R Superior parietal

lobe
15 �91 �2 3.76 593 R calcarine sulcus

�12 �94 4 3.68 L superior occipital
sulcus

21 �79 10 3.13 R calcarine sulcus
24 �70 61 3.69 147 R superior parietal

lobe
15 �67 64 3.47 R superior parietal

lobe
�36 �58 �29 3.27 24 L cerebellum
�27 �10 49 3.26 99 L middle frontal lobe
�30 �1 64 2.82 L middle frontal lobe
�6 �76 �17 3.24 35 L cerebellum

9 �73 �20 2.75 R cerebellum
36 �55 �29 3.12 25 R cerebellum
48 2 55 2.88 12 R middle frontal lobe
42 �1 61 2.8 R middle frontal lobe

�24 5 7 2.71 12 L putamen

For a detailed contrast description, see Materials and Methods. Because activation clusters in the enumeration task
were linked to each other with one cluster containing 15,384 voxels, we report the clusters at p � 0.05 (FWE-
corrected) for the enumeration task. L, Left; R, right.
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(F(1,16) � 3.62, p � 0.08). Most impor-
tantly, an interaction between numerosity
and task (F(5,80) � 16.49, p � 0.00001, 
 �
0.8) indicated that the confusion profile
across numerosities was significantly
modulated by task. For the early visual
area, main effects of task and numerosity
were significant (F(1,16) � 7.49, p �
0.0146; F(5,80) � 2.57, p � 0.0443, 
 �
0.83) but did not significantly interact
with each other (F(5,80) � 2.23, p �
0.0838, 
 � 0.72). In summary, these
analyses based on decoding directly show
that the number of items that can be accu-
rately represented is lower in the vSTM
task than the working memory task, con-
firming the prediction related to differen-
tial capacity limitations.

Finally, the notion of shared neural
map architecture underlying enumera-
tion and vSTM may suggest that numer-
osity coding should at least partially
generalize across tasks. To test this idea,
we trained a classifier to discriminate nu-
merosity information in one task (e.g.,
enumeration) and tested it with numer-
osities from the other (e.g., vSTM). Over-
all classification rates were lower than in
within-task classification (t(16) � �8.79,
p � 0.0001; Fig. 4C), and they were higher
in PPC than in early visual area (F(1,16) �
19.35, p � 0.0005), whereas no task differ-
ence or interaction between task and ROI
was observed (F(1,16) � 0.009, p � 0.925;
F(1,16) � 0.124, p � 0.7292). Classification
rates were significantly better than chance
in PPC for both vSTM to enumeration
generalization (22.2%, t(16) � 4.928, p �
0.0002) and enumeration to vSTM gener-
alization (22.0%, t(16) � 3.76, p � 0.0017).
However, classification rates in early visual
areas were at chance level (enumeration to
vSTM, 17.8%, t(16) � 1.38, p � 0.187; vSTM
to enumeration, 17.5%, t(16) � 1.246, p �
0.2305).

These results may lead to the conclu-
sion that number is automatically ex-
tracted in this region independently of the
tasks that subjects are performing. How-
ever, a closer exploration of the general-
ization confusion matrices suggested that
this is not the case because we observe an
asymmetric pattern of confusions be-
tween numerosities across tasks. In Figure
4C, classification errors in the top right
part of the confusion matrix seemed to be
more prominent compared with the bot-
tom left part of the matrix. This would
imply that a classifier that was trained to
infer numerosities from PPC activation while subjects were per-
forming the vSTM task would tend to “underestimate” numer-
osities when fed with PPC activation while subjects perform the
enumeration task. This is compatible with the idea that numer-

osity might be encoded as the number of peaks in a saliency map
and that, for any given number of objects during enumeration,
there are systematically more active peaks than during vSTM. To
test this hypothesis, we directly compared classification errors in

Figure 4. Classification results. Confusion matrices displaying the percentages of trials in which patterns from each of the six
given numerosities were classified as the same or each one of the other numerosities. Values along the diagonal correspond to
correct classifications, and off-diagonal values correspond to misclassifications. A, Confusion matrices of the multiclass classifi-
cation algorithm in PPC in the vSTM task (left) and the enumeration task (right). B, Confusion matrices of the multiclass classifi-
cation algorithm in PVC in the vSTM task (left) and the enumeration task (right). C, Confusion matrices in PPC when the multiclass
classification algorithm generalized from one task to the other. For example, on the left, the classifier was trained using numer-
osities from the vSTM task and tested with numerosities from the enumeration task (vSTM3 Enum).
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the top right to errors in the bottom left, separately for each ROI.
Because generalization in early visual area was not above chance,
we restricted this analysis to PPC. False classification rates in the
vSTM to enumeration generalization were systematically biased
(F(1,16) � 42.96, p � 0.0001) and bias was modulated by direction
of generalization, as indicated by the interaction (F(1,16) � 20.51,
p � 0.0003). We observed significantly higher false classification
rates in the top right part of the confusion matrix compared with
the bottom left part when generalizing from vSTM to enumera-
tion (t(16) � 6.45, p � 0.0001) but not when generalizing from
enumeration to vSTM (t(16) � 0.81, p � 0.429).

Discussion
Going beyond previous, separate studies showing different pat-
terns of PPC activation for enumeration and vSTM tasks in dif-
ferent subjects, here we demonstrate that the same voxels in PPC
are involved in both tasks. However, their response profiles were
flexible and task dependent. For example, voxels defined by their
flat activity profile up to approximately three items during enu-
meration exhibit a different response profile during vSTM,
closely tracking vSTM capacity.

The current findings provide direct evidence that object enu-
meration and vSTM, previously studied separately, share a cru-
cial neural mechanism that reflects modulations of their capacity
limits. Starting from a map architecture in which representa-
tional precision could be varied according to task demands
(Roggeman et al., 2010; Sengupta and Melcher, 2014), we pre-
dicted task-specific activation profiles reflecting previously re-
ported performance patterns. In such a flexible saliency/priority
map, a small number of items can be presented with high preci-
sion with minimal noise to allow for rich encoding of stimulus
features, such as orientation and spatial position, that were re-
quired in our vSTM context. With lower precision, more items
would be represented at the cost of lower feature resolution, al-
beit sufficient for mere enumeration of items in a given set
(Melcher and Piazza, 2011). Such map architecture has a number
of advantages. First, it provides a way to account for both evi-
dence of discrete representations and also the fact that capacity
limits change across context and task (Melcher and Piazza, 2011;
Franconeri et al., 2013), providing a way forward from debates
about slots versus resources (Franconeri et al., 2013). Second,
these maps are biologically plausible models of the well studied
behavior of neurons in PPC areas, such as the lateral intraparietal
sulcus (Gottlieb, 2007).

Although a saliency/priority map in PPC that represents mul-
tiple objects with a variable degree of precision would parsimo-
niously account for the observed pattern of results, we cannot
exclude the contribution of other regions to the observed capac-
ity limits of visual perception. For example, in the case of vSTM,
there are additional processes involved beyond individuating
items (for review, see Melcher and Piazza, 2011; Wutz and
Melcher, 2013). However, at the very least, our results indicate
that PPC is part of a neural network that reflects capacity-limited
information coding. Moreover, we show how a saliency/priority
map model can account for previous results showing differential
variation in activation profiles as a function of number of items
for both enumeration and vSTM tasks by varying only a single
parameter: inhibition between nodes.

To further validate the predictions of the saliency/priority
map hypothesis, we used MVPA over the PPC regions to decode
cortical activity patterns associated with the different set sizes in
the two tasks. Distributed activity in PPC was differentially mod-
ulated by set size across the two tasks: numerosity was accurately

decoded from PPC activation in the two tasks, but the overall
decoding accuracy of numerosity was higher for the enumeration
task than the vSTM task. Indeed, the tuning precision of the
decoder was high across all numerosities in the enumeration reg-
imen, whereas it was high only for numerosities 1 and 2 in the
vSTM regimen. These data are in line with the idea that a com-
mon saliency/priority map in PPC codes for multiple objects with
a different degree of precision in tasks differing by the amount of
individual object resolution required. In particular, the low de-
coding accuracy for larger numerosities in the vSTM task sup-
ports the idea that activity of the saliency map is concentrated on
a limited number of items, and, because of a lack of free resources,
item information of additional items in a given set is lost when set
size exceeds the given task-specific capacity. Additionally, beyond
what was shown in the univariate analyses, we demonstrated that,
in the enumeration regime, PPC was sensitive to number
throughout the entire tested range of numerosities, including
numerosities 1–3, which were impossible to differentiate based
on the activation level in the univariate analysis. This finding
speaks to a previously open question of whether small numerosi-
ties are coded using the same parietal cortex mechanisms as the
ones involved in the coding of high numerosities or whether there
is a separate neural system underlying subitizing (Vetter et al.,
2011; He et al., 2013). Although overall activation was constant
across numerosities in the 1–3 range, the information distributed
over several PPC voxels was sufficient to discriminate number, in
line with the existence of number neurons in the PPC of the
macaque monkey specifically tuned to a broad range of numer-
osities (Roitman et al., 2007). The multivariate analysis also al-
lowed us to directly compare the representations of items in PPC
with those of PVC. Although some information related to nu-
merosity was also present in PVC, numerosity coding was more
reliable [enumeration, 34% vs 25% decoding accuracy in PPC
and PVC, respectively (chance � 16.7%) vs vSTM, 30% vs 21%]
and more precise (i.e., smaller width of the tuning profile in PPC
vs PVC in both enumeration and vSTM) in PPC. These results are
consistent with the idea that PPC is specifically sensitive to the
individuation of specific items rather than just the total amount
of visual stimulation. Consequently, the task-specific response
profiles dismiss the idea that PPC activation merely reflects
automatic extraction of numerical information regardless of
task requirements.

Finally, the multivariate analysis allowed us to more directly
compare the information in PPC and PVC during the two tasks.
We found that numerosity information in the PPC (but not in
PVC) generalized across tasks: here the decoder was trained on
the data from the vSTM task and tested on the data from the
enumeration task (and vice versa). Interestingly, however, train-
ing the decoder in a high inhibition, vSTM regime led to an
underestimation of numerosity as encoded in PPC during the low
inhibition, enumeration regime. For example, a PPC pattern evoked
by six elements in the low inhibition task was more similar to a
pattern evoked by four elements than to a pattern evoked by six
elements in the high inhibition task. This finding provides additional
support to the idea of a flexible representation system in which the
same voxels change their response profile as a function of task.

Because of the very nature of our vSTM task and our neural
measure (the BOLD signal extends over many seconds) in the
present study, we cannot distinguish whether PPC activation is
related to the perceptual encoding versus the memory mainte-
nance stage of vSTM. Previous studies on brain activity during
similar vSTM tasks have shown that the BOLD signal is similarly
modulated by set size both at encoding and during memory
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maintenance (Todd and Marois, 2004). Hence, it is reasonable to
assume that both encoding and maintenance rely on activity in
neural circuits in PPC that are organized in a map-based archi-
tecture. Maintaining the positions of the items, weighted for their
behavioral and sensory relevance may indeed be one of the key
functions of the map architecture in PPC.

The differential activation patterns reported for the enumer-
ation and the vSTM task conditions may be seen as reflecting
“task difficulty.” Indeed, both the pattern of error rates and re-
sponse times indicate that increasing set size differentially mod-
ulates the difficulty of the two tasks (it is equally easy to
enumerate sets of one to three items, whereas the difficulty for
encoding/maintaining the features of the objects increases with
increasing set sizes from one to three). According to our model,
this is attributable to the differential amount of lateral inhibition
of the saliency map that is set by the task demands and that occurs
right at the encoding stage in both tasks. Therefore, in this re-
spect, our model precisely explains why set size differently mod-
ulates difficulty in the two tasks. Although we cannot completely
exclude that response time may have affected the PPC BOLD
activation amplitude, especially for the enumeration task, our idea of
task-specific flexible representational precision in a map architecture
is confirmed by MVPA, for which the BOLD amplitude is discarded.
Nevertheless, it remains an interesting question for future research
to investigate whether or not PPC activity for different set sizes
would be similar to the currently observed ones after equating both
the maintenance component and the response time components
across tasks.

Conclusions
Overall, the current results suggest that previous reports of neural
activity in parietal cortex during enumeration and vSTM tasks reflect
a common, flexible system to represent multiple individual objects.
This flexibility can be accounted for by a map-like architecture. In-
deed, such a model is biologically plausible, given previous studies of
PPC and would help to reconcile findings showing both discrete
representations and variations in capacity and resolution of repre-
sentations in different tasks across multiple experiments.
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