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Oscillatory Brain State Predicts Variability in Working
Memory
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Our capacity to remember and manipulate objects in working memory (WM) is severely limited. However, this capacity limitation is
unlikely to be fixed because behavioral models indicate variability from trial to trial. We investigated whether fluctuations in neural
excitability at stimulus encoding, as indexed by low-frequency oscillations (in the alpha band, 8 –14 Hz), contribute to this variability.
Specifically, we hypothesized that the spontaneous state of alpha band activity would correlate with trial-by-trial fluctuations in visual
WM. Electroencephalography recorded from human observers during a visual WM task revealed that the prestimulus desynchronization
of alpha oscillations predicts the accuracy of memory recall on a trial-by-trial basis. A model-based analysis indicated that this effect
arises from a modulation in the precision of memorized items, but not the likelihood of remembering them (the recall rate). The phase of
posterior alpha oscillations preceding the memorized item also predicted memory accuracy. Based on correlations between prestimulus
alpha levels and stimulus-related visual evoked responses, we speculate that the prestimulus state of the visual system prefigures a
cascade of state-dependent processes, ultimately affecting WM-guided behavior. Overall, our results indicate that spontaneous changes
in cortical excitability can have profound consequences for higher visual cognition.
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Introduction
Visual working memory (WM) allows us to maintain and manipu-
late visual information over brief periods of time and is critical for
guiding ongoing behavior. However, the storage capacity of WM is
extremely limited (Cowan, 2000), either in the quality (Bays et al.,
2009; Keshvari et al., 2013) or quantity (i.e., 3–4 items: Zhang and
Luck, 2008; Luck and Vogel, 2013) of information that can be main-
tained. Such capacity limits have profound implications. Individual
differences in WM performance strongly predict higher cognitive
functions such as IQ (Engle et al., 1999; Fukuda et al., 2010) and
real-world performance (Gathercole et al., 2003).

Interestingly, WM capacity may not be a static trait even within
an individual. Recent studies measuring the fidelity of representa-
tions stored in WM reveal significant trial-by-trial variability within
observers, both in the number of encoded items (Sims et al., 2012)

and in how precisely they are represented (Fougnie et al., 2012; van
den Berg et al., 2012; Orhan and Jacobs, 2013). Previous modeling
studies have been limited to the behavioral phenomenon of variabil-
ity in visual WM and only speculated on its neural causes.

We hypothesized that variation in the state of excitability of sen-
sory neural systems could contribute to the variability of encoding
into WM. Slow neural oscillations have been proposed to reflect
dynamic changes in the state of cortical excitation (Klimesch et al.,
2007; Wyart and Sergent, 2009; Jensen and Mazaheri, 2010). In par-
ticular, alpha-band oscillations (between 8 and 14 Hz) correlate with
visual excitability, such that firing rates in response to visual stimu-
lation are reduced by neural synchronization in the alpha band
(Haegens et al., 2011; Spaak et al., 2012) and at specific phases of the
alpha cycle (Bollimunta et al., 2011; Saalmann et al., 2012). Corre-
spondingly, the top-down reduction of alpha band power using
attention-guiding cues has been shown to improve the detection of
liminally presented stimuli (van Dijk et al., 2008; Mathewson et al.,
2011) and to speed reaction times in spatial cueing tasks (Gould et
al., 2011). Studies of visual perception have also shown that, in the
absence of task-relevant cues, the detectability of stimuli covaries
with spontaneous fluctuations in the prestimulus power
(Hanslmayr et al., 2007; Romei et al., 2008; VanRullen and
Macdonald, 2012) and phase (Busch and VanRullen, 2010;
Chakravarthi and VanRullen, 2012) of alpha oscillations. Whether such
spontaneous changes in the state of visual excitability can have
longer-lasting consequences for WM has not been established.

Here, we tested this idea by investigating whether prestimulus
alpha oscillations measured with electroencephalography (EEG)
influence the encoding of items into WM. Our task (Fig. 1A) was
optimized for detecting oscillatory states that relate to individual
items by presenting stimuli in sequence (Gorgoraptis et al., 2011).
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Further, we used a free-recall paradigm
that allowed us to measure subtle trial-by-
trial fluctuations in the precision of
memory (Zhang and Luck, 2008). This ex-
perimental approach allowed us to test
whether any influences of alpha might in-
dependently modulate the precision of a
WM representation or its likelihood of be-
ing remembered.

Materials and Methods
Task design. We tested 17 healthy right-handed
volunteers (9 females, mean age 22.9 years,
range 20 –30 years) during a sequential visual
WM task (Fig. 1A). Each participant finished
two sessions, conducted on separate days, con-
sisting of 500 trials each. On each trial, partici-
pants saw a stream of 3– 4 oriented bars (each
displayed for 150 ms) appearing at random lo-
cations on an imaginary circle (6° of visual an-
gle from a fixation dot, which subtended
0.30°), with a stimulus-onset asynchrony uni-
formly jittered between 950 and 1200 ms. After
a memory delay following the last shape (950 –
1200 ms for 4-item trials, 1900 –2400 ms for
3-item trials), a probe appeared at a previous
stimulus location. The probe consisted of a black
circle with a diameter of the same length as the
bars. After participants started moving the
mouse, two small tracking balls appeared 180°
apart at a random location on the circle. Partici-
pants rotated the tracking balls to the remem-
bered orientation at the probed location.

Stimuli. Stimuli were oriented bars with a
length of 1.40° and a width of 0.32°. To empha-
size the point of rotation of the stimuli, the
center of the bar contained a circular disc with
a diameter of 0.68°. Some trials (30%) con-
tained a distractor stimulus at the end of the
sequence. Distractors were never probed and
participants were encouraged to ignore them.
Target shapes were distinguished from distrac-
tors by their color (isoluminant blue and green,
counterbalanced across sessions).

Behavioral analysis. For each trial, we calcu-
lated the deviation (in degrees) of the response
from the actual orientation of the probed stim-
ulus, generating a response distribution across
trials. Initially, we calculated memory preci-
sion as the inverse of the circular SD of the
response distribution (corrected for the preci-
sion expected from randomly distributed re-
sponses; Bays et al., 2009), separately for each
condition (i.e., the 10 combinations of mem-
ory load (3 or 4 items), distractor presence, and
position of the probed item in the sequence
(first, second, third, or fourth). To get a more
revealing measure of memory, we also treated
observers’ responses as drawn from a mixture
of two distributions as follows:

p� x�� � �
PMEM

2�I0���
e�cos � x�� � �

1 � PMEM

2�
, (1)

where x is the response angle, � is the presented angle, and I0 is the
modified Bessel function (of order 0). The two variable parameters,
PMEM and �, define the two distributions, respectively: the probability of
recalling an item (PMEM) and the concentration parameter, or precision,

of remembered items (�). We fit this model using an expectation-
maximization algorithm (Bays et al., 2009) separately for each condition.
In an alternative analysis, we also estimated the probability of misreport-
ing an item, but found that it had no effect on the results reported here.
Model parameters for different conditions were compared using
repeated-measures ANOVA. To test for the effect of item position across
load conditions, we used a 2-way 3 � 3 ANOVA with the factors item
position (first, second, or third item, ignoring the fourth item on load 4
trials) and load (3 items, 3 items with distractor, or 4 items).
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Figure 1. Design and behavioral results of the sequential WM task. A, Observers saw a temporally jittered sequence of at least
three oriented bars presented at different locations on the screen. On 70% of trials, a fourth bar appeared and could be either task
relevant (blue, bottom row, probed in 25% of four-target trials) or task-irrelevant (green, middle row, never probed). Colors were
counterbalanced across sessions. After a variable delay, a probe circle appeared at the location of one memory item. Observers
indicated that item’s orientation by moving indicator dots. After the response, the stimulus reappeared over the indicator dots as
feedback (data not shown here). B, The precision of the response distribution (i.e., the inverse of the circular SD) showed a robust
recency effect for each condition. In addition, participants performed better on load 3 trials than on trials with a distractor or with a
fourth relevant item. C, Schematic of response distribution consisting of a mixture of two underlying components: a uniform distribution
driven by random guesses with height 1 � PMEM (gray shading) and a von Mises distribution driven by noisy recall with concentration �
(blueshading). D, E,Resultsofmixture-modelfitting.Wedecomposedresponsedistributionsseparatelyforeachparticipantandcondition,
estimating the concentration (�) of the von Mises distribution and the recall rate (PMEM) for each. D, Recall rates increased for items
presented later in the trial and were higher on Load 3 and Load 3�D trials relative to Load 4. E, Kappa also increased as a function of item
position in the trial sequence and decreased as a function of load, with Load 3�D and Load 4 showing lower precision than Load 3.
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EEG acquisition. The EEG was recorded continuously using NuAmp
amplifiers (Neuroscan) from 40 Ag/AgCl electrodes positioned accord-
ing to the 10 –20 international system (Sharbrough et al., 1991). Record-
ings were taken from electrodes as follows: Fz, FCz, Cz, CPz, Pz, POz, Oz,
FP1/2, F3/4, F7/8, FT7/8, T7/8, TP7/8, FC3/4, C3/4, CP3/4,P3/4, P7/8,
PO3/4, PO7/8, and O1/2. Blinks and eye movements were monitored by
deriving bipolar recordings from an electrode placed below the right eye
and FP2 (VEOG) and from electrodes placed to the left and right of the
right eye (HEOG).

The electrode placed at AFz served as the ground and the right mastoid
served as the active reference. Electrical impedances were kept at �5 k�
and activity was filtered with a low-pass filter of 300 Hz. The analog-to-
digital sampling rate of brain activity was set at 1000 Hz and data were
recorded continuously for the entire experiment.

EEG processing. All further processing and analyses were done offline.
First, the EEG was rereferenced to the average of the left and right mas-
toids. The two bipolar electrooculogram (EOG) signals were derived by
calculating the difference between the upper and lower VEOG electrodes
and between the left and right HEOG electrodes. Data were down-
sampled to 250 Hz and band-pass filtered between 0.10 and 80 Hz. The
filtered data were cut into trial-length epochs encompassing the stimulus
presentation, memory delay, and probe presentation periods (�1000 to
5500 ms relative to trial onset). Slow linear, quadratic, and cubic drifts in
the epochs were removed using a third-order polynomial fit performed
separately for each channel and epoch. Control analyses on data that were
neither filtered nor detrended yielded essentially the same results.

After rejecting epochs and channels with nonstereotyped artifacts
(such as saturated channels), data were decomposed by independent-
component analysis (ICA), as implemented in the EEGLAB toolbox (De-
lorme and Makeig, 2004), to identify components related to eye blinks
and muscular artifacts, which were not included in the remixing of the
data. After the ICA stage, trials with eye blinks (as identified in the EOG
channels, which were not included in the ICA) and artifacts in a 	100 ms
window around any stimulus presentation were also discarded after vi-
sual inspection. The manual artifact removal step was added to remove
trials in which eyeblinks may have precluded observers from seeing the
stimulus (which is not addressed in the ICA step).

ERP analyses. To test for differences in the evoked responses to items as
a function of task relevance (targets vs distractors), we calculated average
evoked response potentials (ERPs) to each stimulus category. To this
end, we temporally smoothed data with a Gaussian kernel (24 ms SD)
and subtracted the average potential in the prestimulus baseline period
(the 200 ms before a stimulus onset) before calculating subject-specific
averages. We then used paired-samples t tests (for the comparison be-
tween targets and distractors in the fourth position) to calculate group-
level statistics. These results were corrected for multiple comparisons
across time and sensors using 2D cluster-based permutation testing, with
a cluster-forming threshold (and a cluster mass significance threshold) of
p 
 0.05.

Correlation between alpha power and accuracy. To estimate trial-by-
trial prestimulus power, we calculated power from 5 to 20 Hz (in 0.5 Hz
steps) at each electrode using Morlet wavelets (with a length of 5 cycles)
using MATLAB and the FieldTrip Analysis Toolbox (Oostenveld et al.,
2011). We then calculated 10*log10-transformed contralateral power
(relative to the side of the stimulus, averaged across electrodes O1/2,
PO3/4/7/8, and P3/4/7/8) at each time point around the onset time of the
stimulus that would be probed on that trial (�500 to �100 ms).

For each frequency and each time point around the stimulus, we fit a
general linear model (GLM) to the z-transformed contralateral alpha
power using the z-transformed response accuracy as a regressor. Specif-
ically, our measure of response accuracy was the negative absolute dis-
tance, in degrees, between the response angle and the tested stimulus
angle, ��x-��, where x is the response angle and � is the stimulus angle.
Larger values (those closer to 0) therefore indicated more accurate per-
formance. We accounted for the potentially confounding effects of se-
quence length (3 or 4 items), distractor presence, and sequence position
of the tested item by fitting models for each of the 10 possible conditions
separately and then averaging regression weights across conditions. To
account for potential session effects on power (i.e., linear increases or

decreases in power over the course of the experiment), we used trial
number and session number as nuisance regressors in the GLM. Al-
though trial number correlated positively with alpha power throughout
the peristimulus interval, this had no effect on the correlation between
contralateral alpha power and accuracy. Moreover, we saw no significant
decrease in memory accuracy over the course of an experimental session,
indicating that it had no functional impact.

At the group level, we used t tests across the weights estimated in the
GLM to test for a significant relationship between alpha lateralization
and response accuracy at each frequency and each time point in the trial.
We used cluster-based permutation testing to correct for multiple com-
parisons (across frequencies and time points, with 5000 permutations, a
cluster-forming threshold of 0.05, and a significance threshold of 0.05;
Maris and Oostenveld, 2007).

To derive the topography of the correlation in the prestimulus period
(500 –100 ms before stimulus onset), we calculated trial-by-trial alpha
power separately for each sensor. After averaging across frequencies
(8 –14 Hz in 0.5 Hz bins) and flipping topographies along the midline on
trials where the stimulus was presented in the right hemifield (to visualize
contralateral vs ipsilateral correlations), we performed the regression
analysis separately at each sensor. We then used t tests at each sensor and
time point to arrive at group-level statistics.

Correlation between alpha phase and accuracy. We used the same time-
frequency decomposition (Morlet wavelets from 5 to 20 Hz in 0.5 Hz
steps) to estimate instantaneous phase at contralateral parietooccipital
sensors (PO3/4/7/8, P3/4). We entered the circular average phase (across
sensors) into a circular-linear correlation with memory accuracy (i.e.,
��x � ��), resulting in a time course of correlation values for each fre-
quency. We then calculated the circular-linear correlation between alpha
phase and 100 random permutations of memory accuracy (permuting
across trials) and calculated the z-transformed rank (via the inverse nor-
mal cumulative distribution function) of the unpermuted correlation
coefficient in the permutation distribution. We used one-sample t tests to
compare this z-score time course at the group level. Again, we used
cluster-based permutation tests to calculate a corrected p-value. In addi-
tion, we applied the same approach at each sensor to calculate the topog-
raphy of the peak of the phase-accuracy correlation in the prestimulus
time window (�350 to �150 ms). To compare the resulting topography
with the topography of the alpha power effect, we used a standard topo-
graphical difference analysis (TANOVA; Murray et al., 2008). In brief,
the difference between two topographies is the square root of the sum of
squared differences at each sensor (after scaling each sensor by the vari-
ance across all sensors). This difference is compared with a permutation
distribution to assess significance.

Modeling the effect of alpha power on precision and guess rate. Mathe-
matical models of fluctuations in WM accuracy predict that fluctuations
in alpha power should primarily affect the precision of memory, rather
than the probability of recall (van den Berg et al., 2012). To test this
hypothesis, we sought to correlate alpha power separately with trial-by-
trial fluctuations in precision or in guess rate. To this end, we estimated
(using maximum-likelihood estimation, MLE) the probability of recall-
ing an item (PMEM) and the precision of remembered items (�) using the
mixture model described in Equation 1.

After estimating these two parameters, we tested extended models that
take trial-to-trial variations in alpha power into account. In the first
model, we fit alpha power fluctuations to changes in precision as follows:

p� x��,�POWER� �
PMEM

2�I0���1 � 	*�POWER��
e��1�	*�POWER�cos � x�� �

�
1 � PMEM

2�
. (2)

where �POWER is trial-by-trial and time point-by-time point posterior
alpha power (averaged over O1/2, PO3/4/7/8, and P3/4/7/8) and 	 is the
influence of alpha power on precision (estimated using MLE).

In an alternative model, we fit alpha power to changes in recall rate as
follows:
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p� x��,�POWER� �
PMEM �1 � 	*�POWER�

2�I0���
e�cos � x�� �

�
1 � PMEM �1 � 	*�POWER�

2�
. (3)

The resulting parameter-estimate time courses were then tested at the
group level using one-sample t tests (under the null hypothesis that the
average 	 is 0 if alpha power has no effect). In addition, we fit this model
to prestimulus alpha power at each sensor to obtain topographies of the
effect.

We sought to validate this novel method using a more conservative
approach. Here, we sorted prestimulus alpha power into two bins (sep-
arately for each behavioral condition) and fit the mixture model (see Eq.
1) separately to high-alpha-power and low-alpha-power trials. We then
compared precision and recall rates between high and low alpha power
using paired t tests.

Link between visual evoked responses, prestimulus alpha power, and
memory. If, as we argue, prestimulus alpha power is an index of cortical
excitability, then it should predict the magnitude of visual responses to
the memory stimulus. To test this hypothesis, we used the broadband
EEG signal (band-pass filtered between 1 and 40 Hz and baseline cor-
rected relative to 500 to 100 ms before stimulus onset, the time range of
the prestimulus alpha power) as the dependent variable and correlated it
with the trial-by-trial average of prestimulus contralateral posterior al-
pha power (using the same sensors and time window as above, i.e., 500 –
100 ms before stimulus onset). In addition, we used memory accuracy
(��x � ��) as a second regressor (and trial number as a nuisance regres-
sor). Our rationale for this analysis was the following: if alpha power
modulates stimulus processing to improve performance, then both alpha
power and accuracy should correlate with comparable epochs and sen-
sors in the evoked signal.

To eliminate any possibly confounding effects of alpha power on pre-
stimulus baseline potential, we conducted a control analysis in which we
added each sensor’s average prestimulus voltage as a nuisance regressor
to the model. This did not noticeably affect the regression weights of
alpha power and accuracy. To test the similarity of the correlation topog-
raphies with the ERP topography itself, we calculated the difference
(TANOVA) between the mean ERP and the ERP-to-behavior and ERP-
to-alpha power correlations.

Results
Behavioral results
Observers completed a sequential working-memory precision
task. After encoding three or four uniquely positioned peripheral
items (see Materials and Methods for details) and maintaining
them for a variable delay, a peripheral probe matching the loca-
tion of one of the items prompted them to recall that item’s
orientation with a manual response. As expected, observers re-
called more recently presented items with higher accuracy (main
effect of item position in the trial sequence, F(2,32) 
 37.4, p �
0.001; see also Gorgoraptis et al., 2011). We also used a mixture
model analysis to quantify separately the concentration of the
Gaussian component (�) and recall rate (PMEM, the average like-
lihood of recalling any information about a probed stimulus; see
Materials and Methods and Fig. 1D,E). More recently presented
items were remembered with higher precision (F(2,32) 
 7.08, p 

0.003) and with a higher recall rate (F(2,32) 
 7.89, p 
 0.002).
Therefore, in the subsequent regression analyses, we calculated
correlations between alpha oscillations and memory accuracy
separately for each item position and then averaged regression
weights across conditions. There was also a main effect of load on
accuracy (F(2,32) 
 19.8, p � 0.001), indicating that performance
decreased when a distractor or a fourth target was presented. This
effect was strongest when probing the third item in the sequence
(F(2,32) 
 20.16, p � 0.001), leading to a significant interaction

between load and item position (F(2,32) 
 3.75, p � 0.008). The
mixture-model analysis showed that whereas the presentation of
a fourth target decreased both the precision (t16 
 4.45, p �
0.001) and the recall rate for the third item (t16 
 3.76, p 

0.002), presentation of a distractor only had a significant effect on
precision (t16 
 3.01, p 
 0.008), not on recall rate (t16 
 1.37,
p 
 0.19).

Prestimulus alpha power predicts precision of WM
Spontaneous 8 –14 Hz power before stimulus onset (at contralat-
eral occipital-parietal sensors) predicted memory accuracy for
the upcoming stimulus (two-tailed t test, cluster-corrected p 

0.008; Fig. 2A). The negative correlation indicates that memory
was better when alpha power was lower; that is, when alpha was
more desynchronized contralateral to the target. The correlation
with accuracy was restricted to the alpha band and to the 500 ms
preceding stimulus onset (Fig. 2A).

To evaluate the precise consequence of spontaneous alpha
fluctuations on encoding, we used a model-based approach to
test whether decreased alpha power predicted increases in the
precision (�) or the recall rate (PMEM) of WM. We found that
alpha power fluctuations affected only the precision (cluster p �
0.05, again restricted to parietal and occipital sensors in the pre-
stimulus epoch; Fig. 3A,B), but not the recall rate. A median split
on prestimulus alpha power (8 –14 Hz, 500 –100 ms before stim-
ulus onset) confirmed significant differences in precision (t16 

2.15, p 
 0.024), but not in recall rate (t16
-0.34, p � 0.7, Fig.
3C,D).

Further, we reasoned that, if higher excitability improves en-
coding, spontaneous decreases in excitability (as indexed by an
increase in alpha power) might facilitate the inhibition of irrele-
vant distractors, thereby improving memory for previously en-
coded items. To this end, on a minority of trials (30%), we
presented a differently colored task-irrelevant distractor in the
fourth position. On distractor trials, we correlated predistractor
alpha power with accuracy for one of the preceding items. Ini-
tially, we used the same analysis approach as before targets; that
is, correlating accuracy with contralateral power, and did not find
a significant effect (cluster p � 0.25). Given the relatively small
number of trials for this analysis, we used the similar (but possi-
bly more sensitive) approach of correlating the prestimulus lat-
eralization (contralateral minus ipsilateral power). The alpha
power lateralization before onset of the distractor predicted ac-
curacy for the preceding items (cluster-corrected p 
 0.023; Fig.
4, left). Here, we saw a positive correlation, indicating that alpha
lateralization (higher power in contralateral relative to ipsilateral
sensors) before a to-be-ignored distractor improves memory for
the items already encoded into WM. We found no such effect for
task-relevant unprobed items in the fourth position (Fig. 4,
right). On average, the correlation before distractors (500 –100
ms before stimulus onset) was higher than that before unprobed
relevant items (t16 
 2.567, p 
 0.021). This result tentatively
confirms that active inhibition at the point of encoding is re-
quired for this effect to occur.

Prestimulus alpha phase correlates with behavior
In addition, occipital-parietal alpha phase preceding the probed
stimulus onset correlated significantly with memory perfor-
mance (two-tailed t test, cluster-corrected p 
 0.035; Fig. 2B).
Again, the effect peaked �200 ms before stimulus onset. Similar
to the alpha-power effects, the topography of alpha-phase effects
was limited to posterior sensors (Fig. 2B), but was more broadly
distributed. That said, we found no significant difference be-
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tween the average topographies (500 –100 ms prestimulus: D 

0.519, p 
 0.965; 250 to 150 ms prestimulus: D 
 0.569, p 

0.935). Nevertheless, the apparently broader distribution com-
pared with alpha power may result from alpha phase having a
stronger spatial consistency across posterior sensors, leading to a
spurious extension of the effect across the topography. To ensure
that alpha phase was spontaneous and not entrained by the pre-
ceding stimulation, we calculated phase-locking values in the
prestimulus period and found no significant phase locking in the

alpha-band in the tested epochs (cluster
p � 0.84), confirming that the prestimu-
lus alpha phase was randomly distributed.
In contrast to the alpha power effect be-
fore the onset of a task-irrelevant distrac-
tor, we found no relationship between
alpha phase and accuracy before distrac-
tor onset (p � 0.40 on parietal-occipital
electrodes).

It is possible that targets presented in
the fourth position were processed dif-
ferently from items presented earlier
(because observers may have actively sup-
pressed processing of the fourth item in
anticipation of a possible distractor).
When the trials probing the fourth item in
the sequence were omitted from the anal-
yses, we found essentially the same pattern
of correlations between memory accuracy
and contralateral alpha power (cluster p 

0.018) and alpha phase (cluster p 

0.061).

Prestimulus alpha power and memory
accuracy correlate with parietal evoked
potential amplitude
In a final analysis, we examined how vi-
sual evoked responses might form a
mechanistic link between changes in cor-
tical state (i.e., alpha power) and memory.
We used multiple regression to correlate
the trial-by-trial stimulus-evoked EEG
with prestimulus alpha power and mem-
ory accuracy. Both alpha power and accu-
racy showed a peak in correlation over
posterior sensors �200 ms after stimulus
onset (Fig. 5, middle). This peak corre-
sponds in time with the lateral posterior
N1 potential (Fig. 5, top), but is strongest
over central parietal sensors (for the cor-
relation with accuracy). Consistent with
this topographical discrepancy, we found
that the ERP topography (200 –250 ms af-
ter stimulus) differed from the topogra-
phies of the ERP-accuracy correlation
(D 
 0.725, p 
 0.053) and the ERP-alpha
power correlation (D 
 0.910, p 
 0.004).
Effects of alpha power and accuracy,
therefore, may have involved only a subset
of the sources active in this time window.
The correlation with alpha power was
positive, indicating that decreases in alpha
power increased the amplitude of the
(negative-going) ERP. Conversely, the

correlation with accuracy was negative, indicating that, for high-
accuracy trials, the ERP was more negative. Both correlations
peaked over parietooccipital sensors (Fig. 5, bottom), although
the peak of the accuracy correlation was more central, whereas
alpha power also correlated with posterolateral sensors.

Broadband effects of distractor processing
Because prestimulus alpha power preceding a distractor pre-
dicted memory accuracy for previous items whereas alpha pre-
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ceding a relevant but unprobed fourth
target item did not, we wanted to ensure
that these two types of stimuli were indeed
processed differently by the visual system
(see Materials and Methods). We found
early frontal differences between targets
and distractors (cluster-corrected p �
0.05 for two clusters) that were followed
closely by a relatively early dissociation in
the posterior visual evoked response (Fig.
6), with significant differences in the to-
pographies after 200 ms. These differences
may account for the different behavioral
effects of targets and distractors (Fig. 1B).

Discussion
Our results indicate that spontaneous
changes in visual excitability, measured by
oscillations in the alpha band, contribute
to the representational precision of WM
encoding. We found this effect even
though stimuli were presented in isolation
and well above the contrast threshold,
suggesting that alpha-band synchroniza-
tion can bias encoding even when stimuli
are easily detectable and are not compet-
ing directly for attention.

Using a model-based analysis ap-
proach, we found evidence that posterior
alpha power predominantly influences
the precision of memory for an item,
rather than the likelihood that it will be
robustly encoded in WM. This finding fits
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predictions of recent mathematical models of WM, which have
argued that stochastic variability in neural gain influences the
neural precision of encoded information (Ma et al., 2006; van den
Berg et al., 2012). One alternative model (Sims et al., 2012) pro-
posed that the variability in WM can be explained by variability in
how many items are encoded from a multiitem display (while
encoding precision is constant). Research into the separate neural
contributions to limits in quality and quantity of WM is only
beginning to emerge (Anderson et al., 2011; Machizawa et al.,
2012; Emrich et al., 2013). Although our study favors the inter-
pretation that spontaneous alpha fluctuations influence preci-
sion, it does not contradict models emphasizing variability in the
quantity of encoded items. Other state variables, such as excit-
ability in prefrontal cortex or connectivity between prefrontal
and visual areas (Curtis and D’Esposito, 2003; Gazzaley et al.,
2004; Zanto et al., 2011), could influence how many items are
encoded into WM on a trial-to-trial basis. Similarly, an influence

on quantity might depend on perceptual competition between
items. Here, we explicitly avoided low-level interitem competi-
tion by presenting stimuli in sequence. This design allowed us to
show that the prestimulus state has long-lasting consequences for
memory even when perceptual constraints are minimized. It is
possible that prestimulus alpha power could also influence the
probability of encoding specific items in a design using simulta-
neous presentation of multiple items.

Before a distractor, we found evidence that lateralization of
alpha power in the opposite direction (i.e., a relative increase in
contralateral, compared with ipsilateral, alpha power) improves
memory for a previously presented item. We found no such effect
before an unprobed task-relevant item, possibly indicating that
the correlation is specific to items that are actively inhibited dur-
ing visual processing (as may be borne out in processing differ-
ences between targets and distractors; Fig. 6). However, because
the difference between distractors and target items was modest,
future studies could use a more powerful design to test for differ-
ential effects preceding task-relevant or irrelevant items. This re-
sult complements a recent finding that alpha power before an
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expected, centrally presented distractor predicts the speed of re-
call from WM (Bonnefond and Jensen, 2012). In that study, dis-
tractors appeared on every trial with predictable timings and
distractor strength was manipulated between blocks. The pre-
dictability of the distractor item presumably allowed for precise
top-down control over alpha synchronization by temporal ex-
pectations (Rohenkohl and Nobre, 2011). Moreover, because
distractors were centrally presented, the effects on alpha were
distributed across central posterior sensors. In contrast, in the
present study, overall alpha power did not significantly predict
memory performance, whereas the more spatially specific later-
alization did significantly covary with accuracy of the task-
relevant items. Although our results are broadly consistent with
Bonnefond and Jensen (2012), differences in the predictability of
the distractor item presumably account for differences in the
precise pattern of prestimulus effects.

For task-relevant items that were probed, we also found a
relationship between prestimulus alpha phase and WM perfor-
mance. This finding may seem counterintuitive at first glance:
because the presentation time of each stimulus (150 ms) was
longer than one alpha cycle (�100 ms), our design should have
allowed sufficient opportunity for stimulus processing to occur at
the optimal alpha phase. However, the alpha phase preceding
stimulus onset may affect the number of alpha duty cycles occur-
ring during stimulus presentation. More phases of high excitabil-
ity should therefore affect the quality of encoding (for a similar
argument, see Hanslmayr et al., 2013). Alternatively (or addition-
ally), in a dynamical system such as the brain, small shifts in initial
conditions (caused by variability in alpha phase) may have long-
lasting effects on the neural trajectory of stimulus processing.
Because stimulus onsets were temporally jittered, observers were
unable to predict the exact onset time of the next target. It is
therefore unlikely that they were able to use anticipatory top-
down control to entrain alpha oscillations to a behaviorally opti-
mal phase. This strengthens our conclusion that stochastic
fluctuations in alpha (phase and power) were directly responsible
for WM improvements. The lack of strategic control over alpha
phase may also explain why phase before a distractor had no
relationship with accuracy, which is in contrast to Bonnefond
and Jensen, (2012), in which the temporal predictability of the
distractor onset was thought to have played an important role.

We suggest that amplification of visual evoked potentials may
be a mechanism by which prestimulus alpha influences memory.
In accordance with previous studies (Brandt and Jansen, 1991;
Brandt et al., 1991), we found correlations between prestimulus
alpha power and the amplitude of evoked responses �200 ms
after stimulus onset (for effects on earlier components, see Raja-
govindan and Ding, 2011). Around the same time, ERP ampli-
tude also correlated with memory accuracy, indicating that the
modulation of visual ERPs could mediate between prestimulus
state and ultimate memory performance. It should be noted that
the topography of the correlation with accuracy had a more
central-parietal peak than the posterolateral correlations with al-
pha power. Although the coarse spatial resolution of EEG pre-
cludes any strong conclusions from this shift, it does point to the
possibility that the link between alpha fluctuations and behavior
may depend on facilitating a cascade of multiple processing stages
occurring in different areas and at different time points during
encoding. An intriguing possibility is that this initial state influ-
ences the latency of certain processing steps during encoding,
leading to a more efficient trajectory through neural state space
(Harvey et al., 2012) to reach a stable memory state (Stokes et al.,
2013). The correlation between memory accuracy and the visual

ERP spanned both the peak of the N1 and the onset of the P2, so
that we are not able to disambiguate the exact point of influence.
Subsequent studies are needed to identify the specific influence of
the prestimulus state on the processing cascade of WM encoding.

The present study differs from many related experiments in
that it examined the effect of spontaneous electrophysiological
dynamics on behavior, rather than the effect of top-down atten-
tional cues on behavior and electrophysiology. Such cues can
have enduring consequences for WM (Gazzaley and Nobre, 2012;
Nobre and Stokes, 2011). Attention during encoding improves
memory (Rutman et al., 2010; Gazzaley, 2011) and has been
linked to electrophysiological markers of endogenous attention
shifts (Murray et al., 2011). Possibly, top-down attention con-
strains the variability in firing rate (Churchland et al., 2010; Co-
hen and Maunsell, 2010; Churchland et al., 2011), leading to
increased encoding precision. Future studies could test this pro-
posal through a direct comparison of spontaneous and cue-
evoked variability in the alpha state and how this relates to
stimulus-evoked response variability. The ability to control spon-
taneous fluctuations in neural excitability could be linked to in-
terindividual variability in WM capacity (Vogel and Machizawa,
2004; Vogel et al., 2005; Sauseng et al., 2009). Finally, single-unit
electrophysiology or magnetoencephalography studies will need
to test whether alpha oscillations indeed act on WM by increasing
firing rates or high-frequency (gamma-band) evoked power in
visual cortex, allowing us to formulate a stronger mechanistic
link between spontaneous state changes and task performance.
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