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Induced Alpha Rhythms Track the Content and Quality of
Visual Working Memory Representations with High
Temporal Precision
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Past work has suggested that neuronal oscillations coordinate the cellular assemblies that represent items in working memory (WM). In
line with this hypothesis, we show that the spatial distribution of power in the alpha frequency band (8 –12 Hz) can be used to decode the
content and quality of the representations stored in visual WM. We acquired EEG data during an orientation WM task, and used a forward
encoding model of orientation selectivity to reconstruct orientation-specific response profiles (termed channel tuning functions, or
CTFs) that tracked the orientation of the memorandum during both encoding and delay periods of the trial. Critically, these EEG-based
CTFs were robust predictors of both between- and within-subject differences in mnemonic precision, showing that EEG-based CTFs
provide a sensitive measure of the quality of sensory population codes. Experiments 2 and 3 established that these EEG-based CTFs are
contingent on the voluntary storage goals of the observer. When observers were given a postsample cue to store or drop the memoran-
dum, the resulting CTF was sustained in the “store” condition and rapidly eliminated following the “drop” cue. When observers were
instructed to store one of two simultaneously presented stimuli, only the stored item was represented in a sustained fashion throughout
the delay period. These findings suggest that the oscillatory activity in the alpha frequency band plays a central role in the active storage
of information in visual WM, and demonstrate a powerful approach for tracking the precision of on-line memories with high temporal
resolution.
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Introduction
An emerging hypothesis is that the cellular assemblies that
represent items in working memory (WM) may be coordi-
nated via the synchronization of neural activity in the alpha
frequency band (8 –12 Hz; Jensen et al., 2002; Sauseng et al.,
2009; Palva et al., 2010). For example, using EEG and MEG
data, Palva et al. (2010) demonstrated that interareal synchro-
nization in a network anchored in the intraparietal sulcus–a
cortical region commonly associated with the maintenance of
on-line representations (Todd and Marois, 2004; Vogel and
Machizawa, 2004; Xu and Chun, 2005)–predicted WM capacity.
This study suggests a direct links between alpha band activity and
the number of items stored in WM. Nonetheless, the hypothesis
that WM storage is mediated by oscillatory activity in the alpha
band makes another clear, and thus far untested, prediction. If
the cellular assemblies representing specific items are synchro-

nized in the alpha frequency band, then alpha oscillations should
also track the content and quality of the stored information.

A growing body of evidence supports the hypothesis that
stimulus-specific representations are held in WM via the recruit-
ment of the same sensory regions that encoded the memoranda
(Awh and Jonides, 2001; Jonides et al., 2005; Postle, 2006). For
example, multiple studies have used fMRI to show that the spatial
pattern of activity in visual cortex enables decoding of the specific
feature values stored in WM (Harrison and Tong, 2009; Serences
et al., 2009a), and predicts individual differences in WM preci-
sion (Emrich et al., 2013; Ester et al., 2013). However, while fMRI
studies show that the content and quality of WM representations
are tracked by activity in sensory cortex, the sluggish temporal
resolution of this method is a significant limitation. Thus, we
turned to EEG as an approach for tracking WM contents with
high temporal precision, and for assessing the role of alpha oscil-
lations in WM.

Recently, Garcia et al. (2013) used the spatial distribution of
evoked EEG power and a forward encoding model (FEM) to
reconstruct orientation-selective channel tuning functions
(CTFs) that predicted target discrimination performance. Here,
we show that a similar analytic approach can be used to track the
content of on-line memory by focusing on the spatial distribu-
tion of oscillatory power in frequency bands previously impli-
cated in WM storage. We measured the spatial distribution of
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oscillatory power across a range of frequency bands while sub-
jects were engaged in an orientation WM task. Although both
evoked and induced activity across a range of low-frequency
bands tracked the sample orientation during the initial encoding
period, only induced activity in the alpha band enabled sustained
tracking of the stored orientation during the memory delay pe-
riod. Moreover, CTFs measured during the delay period were
robust predictors of both within- and between-subject differ-
ences in memory quality. Thus, these findings provide new evi-
dence linking alpha oscillations with the content and quality of
on-line memory representations.

Materials and Methods
Participants. A total of 65 (26, 10, and 29 in Experiments 1, 2, and 3,
respectively) undergraduates at the University of Oregon completed the
experiment for monetary compensation ($10 per hour). All participants
(47% female) self-reported normal or corrected-to-normal visual acuity
and gave informed consent according to procedures approved by the
University of Oregon Institutional Review Board.

Stimuli displays. Stimuli were generated in MATLAB (MathWorks)
using the Psychophysics Toolbox extension (Brainard, 1997; Pelli, 1997)
and presented on a 17 inch flat cathode ray tube computer screen (refresh
rate of 120 Hz). Viewing distances were �100 cm. Stimuli were rendered
against a gray screen (RGB � [125 125 125]), and participants fixated on
a central black dot that subtended 0.3° � 0.3° of visual angle.

Participants were instructed to remember the orientation of a solid bar
spanning the diameter of a centrally presented ring (see Fig. 1A). The
length (diameter of ring) and width (thickness of ring) of the bar were 7.1
and 0.6° of visual angle. In Experiments 1 and 2, the ring and oriented bar
were rendered in black; in Experiment 3, two bars (one target, one dis-
tractor) were rendered in isoluminant blue (RGB � [0 150 200]) and
green (RGB � [0 162 0]), color assignment was counterbalanced across
subjects, and the ring was rendered in dark gray (RGB � [100 100 100]).

For each trial, stimulus orientation was randomly sampled from one of
eight orientation bins spanning 0 –157.5° in steps of 22.5°, with jitter
added (�11.25°) to cover all 180° of unique orientation space and pre-
clude categorical coding of the orientations. Orientation bins were bal-
anced within each block. In Experiment 3, orientation differences
between the target and distractor stimulus were fully counterbalanced
within each block.

At the end of each trial, participants were cued by a change in fixation
color to recall the orientation of the target item by using a mouse to click
on a point along the perimeter of the ring corresponding to the target
orientation.

Procedures. All experiments took �2 h to complete, and were com-
posed of 15 blocks of 64 trials each. The events in a single trial of Exper-
iment 1 went as follows (Fig. 1A). First, subjects were prompted to press
the spacebar to initiate the trial. Once the trial was initiated, a 1500 ms
blank interval was followed by the presentation of the sample stimulus
for 250 ms. A1250 ms delay period followed the offset of the sample
stimulus. After the delay, fixation color changed to white, cueing subjects
to make an unspeeded response by using a mouse to click the perimeter
of the ring to indicate the orientation of the sample stimulus. The trial
events in Experiments 2 and 3 were identical with those in Experiment 1,
with the following exceptions. In Experiment 2, subjects were given a
postcue (change in fixation color to blue or green, counterbalanced
across subjects) to either store or drop the sample stimulus; no probe
display appeared after drop trials. In Experiment 3, half of the subjects
were instructed to always remember the blue target stimulus and ignore
the green stimulus, while the other half of subjects stored the green stim-
uli; orientation differences between the target and distractor stimulus
were fully counterbalanced within each block, and target color mapping
was counterbalanced across subjects.

Modeling response error distributions. Response error values were de-
fined by the difference between the subjects’ response and the orientation
of the sample stimulus (ranging from �90 to 90°). Maximum-likelihood
estimation was used to fit a von Mises distribution (the circular analog of
a Gaussian distribution) to the distribution of response error values. Two

parameters were estimated: �, the mean of the von Mises distribution,
and s.d., the dispersion of the von Mises distribution (smaller values
correspond to higher mnemonic precision).

EEG acquisition and analysis. EEGs were recorded using our standard
recording and analysis procedures, including rejection of trials contam-
inated by blocking, blinks, or large (�1°) eye movements (Vogel et al.,
1998; McCollough et al., 2007). We recorded from 22 tin electrodes
mounted in an elastic cap (Electro-Cap International) using the Interna-
tional 10/20 System. 10/20 sites F3, FZ, F4, T3, C3, CZ, C4, T4, P3, PZ, P4,
T5, T6, O1, and O2 were used along with five nonstandard sites: OL
midway between T5 and O1; OR midway between T6 and O2; PO3
midway between P3 and OL; PO4 midway between P4 and OR; and POz
midway between PO3 and PO4. All sites were recoded with a left-mastoid
reference, and the data were re-referenced off-line to the algebraic aver-
age of the left and right mastoids. Horizontal electro-oculogram (EOG)
was recorded from electrodes placed �1 cm to the left and right of the
external canthi of each eye to measure horizontal eye movements. The
EEG and EOG were amplified with an SA Instrumentation amplifier with
a bandpass of 0.01– 80 Hz and were digitized at 250 Hz in LabVIEW 6.1
running on a PC. To detect blinks, vertical EOG was recorded from an
electrode mounted beneath the left eye and referenced to the left
mastoid. Any trials containing either a blink or eye movement were
excluded from further analysis. Subjects with trial rejection rates
�20% were excluded from the sample (2, 0, and 4 subjects in Exper-
iments 1, 2, and 3, respectively).

All analyses were performed using MATLAB in conjunction with the
Signal Processing and EEGLAB Toolboxes. The raw EEG signal was
bandpass filtered into a range of frequency bands using a two-way least-
squares finite impulse response filter (eegfilt.m from EEGLAB toolbox;
Delorme and Makeig, 2004). This filtering method uses a zero-phase
forward and reverse operation, which ensures that phase values are not
distorted, as can occur with forward-only filtering methods. A Hilbert
Transform (MATLAB Signal Processing Toolbox) was then applied to
the frequency-specific filtered waveforms to extract instantaneous power
values. The Hilbert Transform produces the complex analytic signal, z

(t), of the filtered EEG, f (t), where z�t	 � f�t	 � i f̃�t	 � A�t	ei��t	, from

which instantaneous amplitude, A(t), was extracted; f̃�t	 is the Hilbert
Transform of f (t) and i � ��1. Power was estimated at each time
point using the following MATLAB syntax:
abs(hilbert(eegfilt(data,Fs,f1,f2))).2̂,
where data is a 2D matrix of raw EEG (# of

trials � # of samples), Fs is the sampling
frequency (250 Hz), f1 is the lower bound of the
filtered frequency band, and f2 is the upper bound
of the filtered frequency band.

We examined feature-specific neural activity in the spatial distribution
of both evoked and induced power across electrodes. Induced power was
estimated by squaring the absolute value of the complex analytic signal
obtained from the Hilbert transform for each trial, then averaging across
all trials in each orientation bin within each block of trials. Evoked power
was estimated by averaging the complex analytic signal obtained from the
Hilbert transform across all trials in each orientation bin within each
block, then squaring the absolute value of the averaged complex analytic
signal associated with each orientation bin; this isolated oscillatory activ-
ity was phase locked to the onset of the sample stimulus. Thus, the output
of the EEG analysis was comprised of an n*b � m � s matrix of both
evoked and induced power values, where n is the number of orientation
bins, b is the number of blocks, m is the number of electrodes, and s is the
number of samples.

Multivariate pattern analysis. To determine whether patterns of oscil-
latory activity across the human scalp contained information about the
remembered orientation, we used a linear classifier to determine if an
unconstrained linear model could decode the content of working memory.
Our reasoning was as follows: if a simple linear classifier fails to categorize the
stored orientation with above-chance classification accuracy, then the FEM
of orientation selectivity, which uses a constrained basis set–rather than a set
of linear functions with unconstrained parameters–during model training,
should similarly fail to decode content-specific information. Conversely, if
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the linear classifier provides above-chance classification accuracy while
the FEM fails to decode the content of subjective awareness, then we
would conclude that the spatial distribution of oscillatory activity con-
tains content-specific information, but the nature of this content-related
neural signature is not well defined by our a priori model of feature
selectivity.

To this end, we first filtered the raw EEG data into one of 27 frequency
bands (4 –30 Hz, in increments of 1 Hz), computed evoked and induced
power, sorted power estimates from all trials into one of eight orientation
bins, and computed mean power estimates for each orientation bin in
each block (see above, EEG acquisition and analysis). Data from all but
one block were then used to construct a “training” dataset that was used
to train a linear discriminant function to discriminate between different
stimulus conditions. The trained classifier was then used to decode the
orientation label of each orientation bin within the remaining block
(the “test” set). Data could be assigned to one of eight orientation
labels, so chance discrimination accuracy was 12.5%. This analysis
was iterated using a hold-one-out cross-validation procedure until
data from every block had served as the test set. This analysis was
completed for each frequency band and time point. Classification
accuracies were then averaged across each test set, yielding a single
classification accuracy value.

To evaluate the robustness of the magnitude of classification values
obtained from this routine, we used a randomization routine that gener-
ates a null distribution of classification values for each frequency and
time point by shuffling the labels of the orientation bin during training.
This procedure allows us to approximate the significance of our empiri-
cally observed decoding accuracy against a hypothetical null distribution
(see Randomization analyses, below).

Forward encoding model. To examine whether patterns of frequency-
specific neural activity across electrodes contained information about the
content and quality of the working memory representations, we used an
FEM of orientation selectivity. Our approach is similar to one described
by previous methods (Brouwer and Heeger, 2009, 2011; Serences and
Saproo, 2012). Briefly, this model assumes that the pattern of responses
across each electrode samples from a large number of orientation-
selective neurons and that the response of any given electrode is propor-
tional to the summed responses of all neurons contributing to the
response of that electrode. Thus, one can characterize the orientation
selectivity of a given electrode as a weighted sum of N orientation chan-
nels, each with an idealized tuning curve. We modeled the responses of
each electrode using a basis set of eight half-sinusoids (one per sample
angle) raised to the seventh power.

To estimate orientation selectivity with high temporal precision, we
first bandpass filtered and independently estimated instantaneous
evoked and induced power for frequency f (see above, EEG acquisition
and analysis) for each orientation bin in each block across all 20 elec-
trodes, then sorted the data into training and test sets. Each training set
had 112 observations (14 blocks in training set � 8 orientation bins).
Critically, every block sampled from each orientation bin equally.
Similarly, the test set had eight observations (1 block in test set � 8
orientation bins). This analysis was completed for each frequency
(e.g., �) and each time sample (e.g., 400 ms) time locked to the onset
of the sample stimulus.

In the first phase of the analysis, data from the training set were used to
estimate weights on the hypothetical orientation channels separately for
each electrode. Briefly, let m be the number of electrodes, k be the num-
ber of hypothetical orientation channels (C1, k � n1) composed of half-
sinusoidal functions as the basis set discussed above, and n1 and n2 be the
number of observations in the training and test sets, respectively. Let B1

(m � n1) be the training set and B2 (m � n2) be the test set (note that the
structure of the training and test sets are identical across multivariate
pattern analysis (MVPA) and FEM procedures). The training data in B1

were then mapped onto the matrix of channel outputs in C1 by the
channel weight matrix (W, m � k), which was estimated with GLM of the
form:

B1 � WC1.

The channel weight matrix can be derived via least-squares estimation as
follows:

W � B1C1
T�C1C1

T	�1.

In the second phase of the analysis, channel responses (C2, k � n2) were
estimated based on the test data in B2 with the weight matrix:

C2 � �WTW	�1WTB2.

This process was then repeated by holding each block out in turn until
each block had served as the test set. Following the procedure above, each
estimated channel response function was circularly shifted so that the
channel aligned with the stimulus that evoked the response was posi-
tioned in the center of orientation space, thereby aligning the estimated
channel responses to a common center (i.e., 0° on the x-axis of the
figures).

The channel weight matrix of the FEM computes the linear transfor-
mation of observed neural responses into the hypothetical space of the
basis function (C1). Therefore, because the parameters of the idealized
tuning curve determine the shape of the basis set, the measurement unit
of channel responses obtained in C2 is arbitrary.

In Experiment 2, the training steps of the forward encoding procedure
outlined above were collapsed across store and drop trials, because any
idiosyncratic differences (other than orientation selectivity) in the spatial
distribution of alpha power between storage conditions would have con-
tributed independently to the estimation of channel weights; therefore,
parsing each condition and performing the forward encoding procedure
in isolation for each stimulus condition would have biased estimates of
channel weights, thus obscuring the conclusion that differences in CTFs
were attributable to systematic differences in feature selectivity. Follow-
ing the training procedure, each estimated channel response function in
C2 was sorted based on condition, producing separate channel response
profiles for store and drop conditions. In Experiment 3, the steps of the
forward encoding procedure were identical to that outlined above, and
the estimation of the channel response functions for the distractor item
were estimated separately. This procedure would not introduce any bias
in the channel weight matrix because orientation differences between
target and distractor values were fully counterbalanced within each
block.

Finally, to characterize the amplitude and dispersion of these func-
tions, each participant’s response profile was fitted with a Gaussian func-
tion of the form:

f� x	 � ae
� x��	2

2�2 � b,

where � is the mean, � is the dispersion (i.e., SD) of the distribution, and
a and b are scaling factors that correspond to the amplitude and baseline,
respectively. Our Gaussian fitting routine was completed in two steps.
First, we created a set of coarsely defined seed Gaussian functions, each
created from the parametric variation of all four fitting parameters, and
calculated the sum of squared error (SSE) between the reconstructed
CTFs and each seed Gaussian function. The seed parameters of the
Gaussian providing the lowest SSE after the coarse analytic routine were
fed into a least-squares nonlinear curve-fitting routine in MATLAB to
further optimize the fit, with the following [lower, upper] boundary
limits on each parameter: � [�22.5°, 22.5°], � [0 	], a [0 Inf]; no con-
straints were placed on b. a was taken as an estimate of response ampli-
tude, and � was taken as an estimate of dispersion.

Modeling of CTFs allowed us to decompose observed channel re-
sponse profiles into discrete metrics of tuning amplitude and dispersion,
each corresponding to multiplicative increases in channel responses rel-
ative to baseline activity and proportional differences in channel re-
sponses between neighboring orientation channels relative to baseline
activity, respectively. Here, we will broadly refer to observed increases in
on-channel activity coupled with decreases in off-channel activity (i.e.,
graded tuning profiles) as orientation-selectivity. We will then indepen-
dently examine the contribution of tuning amplitude and dispersion to
observed changes in orientation selectivity of CTFs.
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Randomization analyses. We assessed the prediction that the spatial
distribution of oscillatory power (across electrodes) contains content-
specific information across a range of frequencies and time points. Given
that the null distribution of our measures of classification accuracy and
channel response functions may not be normal, we implemented a
Monte Carlo randomization procedure to compute the deviation of ob-
served ANOVA statistics from surrogate null distributions in the follow-
ing manner. Note that the derived null distribution emerged from the
analysis of surrogate time series data that share statistical properties with
the original data. The initial processing steps of the randomization anal-
yses were identical to those described in the EEG acquisition and analysis
section, and data were partitioned into training and test sets (see above,
FEM). Next, we used a shuffling procedure that allowed us to infer the
chance distribution for observing above-chance decoding accuracy
(MVPA) or robust orientation-selectivity (FEM). We shuffled the orien-
tation labels (training labels in Multivariate pattern analysis; C1, see
above, FEM)–meaning that orientation labels were random with respect
to the observed response in each electrode– during the estimation of
channel weights (FEM) and training of the linear classifier (MVPA), and
estimated classification accuracies and channel response functions nor-
mally from the surrogate channel weights. Finally, the surrogate data
were submitted to an ANOVA, yielding a surrogate F statistic. Thus, this
procedure effectively randomly samples test statistics associated with
decoding accuracy and orientation selectivity from a hypothetical null
distribution. To generate hypothetical null distributions, the randomiza-
tion procedure outlined above was repeated 1000 times.

To determine the significance of the observed data against the surro-
gate null distribution, we calculated the probability of a surrogate data
series producing an F statistic greater than or equal to the empirically
observed F statistic (i.e., Fnull 
 Fobs). Thus, for each effect, we report
both the F statistic from the ANOVA on the observed data and the
probability of observing type I error. For within- and between-subject
analyses based on mnemonic precision, we report only results from the
omnibus test, with degrees of freedom Greenhouse–Geisser corrected for
violations of sphericity; these effects directly follow reported effects of
channel modulations and storage requirements obtained from the ran-
domization analyses.

Mutual information analysis. To examine which electrodes provided
the most information about the stored feature values, we estimated
electrode-based mutual information (MI) between the observed set of
neural responses in each electrode and the presented set of orientation
stimuli. Electrodes demonstrating sufficient heterogeneity (or selectiv-
ity) of neural responses– coupled with highly predictable mappings be-
tween stimulus values and induced oscillatory power– contribute more
robustly to the selectivity of CTFs, leading to a higher estimate of MI.
Thus, we were able to estimate MI as a function of electrode position for
both evoked and induced oscillatory activity. Separate analyses were per-
formed for the encoding (0 –250 ms) and delay (250 –1500) epochs of the
trial.

MI is an information theoretic measure of general interdependence
between random variables (Shannon, 1948). Here, we measured MI be-
tween the observed set of neural responses ( X) and the set of stimulus
orientations ( Y). Broadly, the mutual information I(X;Y ) is defined as
follows:

I�X; Y	 � H�X	 � H�X�Y	,

where H(X ) is the entropy, or uncertainty, of a random variable, and
H(X�Y ) is the conditional entropy between variables X and Y. If X (or Y )
is a discrete variable, then H(X ) is defined as follows:

H�X	 � � �
X

p�X	log2 p�X	,

and H(X�Y ) is defined as follows:

H�X�Y	 � � �
X,Y

p�X,Y	log2 p�X�Y	

where p(X ) represents the marginal probability distribution of X,
p( X, Y ) represents the joint marginal probability distribution of X and
Y, and p(X�Y ) represents the conditional marginal probability distri-
bution of X and Y. The distribution of continuous oscillatory power
( X) with kurtosis � was discretized into a histogram of j bins as
follows: log2N � 1 � log2�1 � ��N/6	.

MI quantifies the reduction of uncertainty about the stimulus that can
be gained from observation of a single trial of the neural response in units
of bits. Thus, MI is zero when the stimulus and response are statistically
independent quantities, indicating that no knowledge about the stimulus
can be gained by observing the response.

Results
Experiment 1: decoding the content and quality of working
memory representations
Time-frequency representation of evoked and induced power
We examined time-frequency representations (TFRs) of evoked
and induced oscillatory power across a broad range of frequen-
cies (4 –50 Hz) by estimating proportional power modulations
(percentage change) relative to prestimulus baseline activity
(�500 to �100 ms) for each time point in the trial. Here, an
increase in oscillatory power corresponds to the phase synchro-
nization (or temporal alignment) of recorded neural ensembles;
conversely, a decrease in oscillatory power corresponds to the
phase desynchronization (or temporal disalignment) or recorded
neural ensembles. Oscillatory activity was examined in posterior
electrodes (O1, O2, OL, OR, PO3, PO4, POz, P3, P4, and Pz).

TFRs of evoked power (Fig. 1B) revealed strong synchroniza-
tion of oscillatory activity between 8 and 40 Hz during stimulus
encoding (0 –250 ms). The magnitude of these stimulus-evoked
power modulations were most pronounced in the alpha (8 –2 Hz)
and low beta (13–20 Hz) bands (Fig. 1B, black box; C). Con-
versely, we failed to observe sustained modulations of evoked
oscillatory activity during stimulus maintenance (250 –1500 ms).

TFRs of induced power (Fig. 1D) revealed strong synchroni-
zation theta (4 –7 Hz) oscillatory activity during stimulus encod-
ing. In contrast to the pattern of evoked activity, we observed
sustained, delay-specific desynchronization of induced oscilla-
tory activity in the theta, alpha (8 –12 Hz), and low beta (13–20
Hz) frequency bands (Fig. 1D, black box; E).

Thus, we have demonstrated: (1) synchronized cortical activity in
induced theta, evoked alpha, and evoked low beta oscillatory bands
during stimulus encoding and (2) sustained desynchronized cortical
activity in induced theta, induced alpha, and induced low beta oscil-
latory bands during stimulus maintenance.

Determining the frequency bands that contain stimulus-
specific information
Our first goal was to identify the range of neural oscillatory fre-
quencies that contained information about the memorandum in
the spatial distribution of evoked (stimulus-driven) and induced
(endogenous) power. Using frequency-tagged stimuli, Garcia et
al. (2013) showed that the spatial distribution of EEG responses
in the tagged frequency band could be used to decode the orien-
tation of attended items. Motivated by the hypothesis that active
storage in WM is mediated by synchronized neural activity in
specific frequency bands, we sought to determine whether the
spatial distribution of oscillatory power would also enable the
decoding of stored feature values in the absence of external visual
stimulation. Thus, we used a linear classifier across a broad range
of frequencies (4 –30 Hz) to determine which frequency bands
contained information about the orientation of the memoran-
dum. After identifying the informative frequency bands, we im-
plemented an FEM of orientation selectivity to reconstruct
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orientation-specific response profiles, or CTFs. As the results will
show, induced– but not evoked–activity from the same frequency
bands that were found to contain stimulus-specific information
via the linear classifier also revealed sustained orientation-
selective CTFs during the delay period.

The results of the classification routine are shown in Figure 1F.
During the initial encoding period (0 –250 ms), the spatial distri-
bution of evoked (left) and induced (right) power in the theta
(4 –7 Hz) and alpha (8 –12 Hz) bands enabled reliable above-
chance classification of the stored orientation (evoked theta:

t(23) � 7.77, p 
 0.001; evoked alpha: t(23) � 4.64, p 
 0.001;
induced theta: t(23) � 5.17, p 
 0.001; induced alpha: t(23) � 2.64,
p 
 0.05). In contrast, during the delay period (250 –1500 ms),
only induced activity in the alpha band enabled above-chance
classification (t(23) � 7.97, p 
 0.001); classification accuracy was
statistically equivalent to chance in the theta (4 –7 Hz; t(23) � 0.26,
p � 0.80), low beta (13–20 Hz, t(23) � 0.76, p � 0.46), and high
beta (21–30 Hz; t(23) � 0.06, p � 0.95) frequency range. Evoked
activity did not enable sustained above-chance classification in
any frequency band (theta: t(23) � 0.07, p � 0.95; alpha: t(23) �
1.3, p � 0.20; low beta: t(23) � 0.18, p � 0.86; high beta: t(23) �
0.31, p � 0.76).

Modeling orientation-selective CTFs
Above-chance decoding accuracy in the alpha frequency band mo-
tivated the use of an FEM of orientation selectivity to reconstruct
population-level, feature-selective tuning functions. Given that the
classification routine demonstrated that stimulus information could
be decoded from the spatial distribution of alpha activity, we
sought to further quantify the nature of the orientation-specific
information carried by low-frequency oscillatory activity. Specif-
ically, a linear classifier is quite flexible in estimating categorical
boundaries between stimulus conditions, providing a weaker un-
derstanding of how or why the contents of subjective awareness
can be decoded from the spatial pattern of oscillatory activity. In
contrast, the FEM uses a basis set of hypothetical, orientation-
selective tuning functions to reduce the dimensionality of the
data, and provides a quantifiable pattern of channel response
estimates that can be used to estimate characteristics of the un-
derlying population code, such as response amplitude and selec-
tivity (dispersion). Thus, we used the FEM to more precisely
characterize and quantify the feature-selective activity in the fre-
quency bands of interest.

The results of the forward encoding analysis are shown in
Figure 1G. Here, we used the slope of the channel response by
orientation channel functions– collapsed across like channels
(e.g., �22.5 degrees) at each time point and frequency to quantify
CTF channel modulation. Increases in CTF slope from zero (no
change in channel response across orientation channels) to larger
values indicate increases in the degree of channel modulation in
feature-selective CTFs. CTFs based on evoked power (Fig. 1G,
left) showed a strong increase in channel modulation during the
initial encoding period (0 –250 ms poststimulus) in the alpha
(F � 32.19, p � 0) and theta (F � 57.81, p � 0) frequency bands,
but not in the low beta (F � 2.13, p � 0.09) or high beta (F � 0.84,
p � 0.56) frequency bands (Fig. 2B). Thus, evoked activity gen-
erated orderly CTFs only in the theta and alpha bands, and only
early in the trial. We observed virtually no evidence of delay-
specific (250 –1500 ms) evoked CTFs in any frequency band (the-
ta: F � 0.99, p � 0.33; alpha: F � 1.57, p � 0.21; low beta: F �
1.20, p � 0.35; high beta: F � 1.27, p � 0.27). To summarize, the
same frequency bands and time points that enabled above-
chance classification based on evoked power also enabled the
reconstruction of orientation-specific CTFs.

Next, we examined which frequency bands would support the
reconstruction of CTFs from the spatial distribution of induced
power. Increased CTF channel modulation was evident through-
out both the encoding and delay period of the trial in the alpha
frequency band (Fig. 1G, right). The shapes of these delay-
specific induced CTFs are depicted in Figure 2D. While we ob-
served significant channel modulation during the delay period in
the alpha frequency band (F � 46.21, p � 0), we failed to observe
significant channel modulation in the theta (F � 0.94, p � 0.36),

Figure 1. A, Subjects maintained fixation and were instructed to remember the orientation
of a sample stimulus; after a short delay, subjects were instructed to indicate the orientation of
the sample stimulus by clicking on the perimeter of the rim. In Experiment 2, a change in fixation
color (blue or green) immediately after sample offset indicated that the sample stimulus should
be stored or dropped. In Experiment 3, subjects were instructed to remember the blue sample
stimulus and ignore the green sample stimulus. B–E, Oscillatory activity was normalized rela-
tive to a prestimulus baseline by calculating proportional changes in task-related oscillatory
power. TFRs were collapsed across posterior electrodes (see Results). B, TFRs revealed signifi-
cant increases in evoked oscillatory power during stimulus encoding in low-frequency ranges.
D, TFRs revealed significant decreases in induced oscillatory power during stimulus mainte-
nance. C, E, Average oscillatory power observed in evoked and induced activity, respectively,
across frequency bands and task epochs. F, Linear classifier performance based on orientation-
selective patterns in the spatial distribution of evoked or induced oscillatory power across a
broad range of individual frequencies (4 –30 Hz in increments of 1 Hz) and time points. During
encoding (0 –250 ms), the spatial pattern of evoked and induced activity reliably decoded the
content of WM in the theta (4 –7 Hz) and alpha (8 –12 Hz). During maintenance (250 –1500
ms), only induced activity in the alpha band reliably decoded WM representations. G, An FEM
was used to generate orientation-selective CTFs based on the same information used for linear
classification. CTF selectivity revealed a similar decoding profile as that observed in the classifi-
cation routine.
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low beta (F � 1.29, p � 0.27), and high beta (F � 0.76, p � 0.46)
frequency bands. Thus, as we observed with the analysis of
evoked activity, the same frequency band and time points that
enable above-chance classification based on induced power also
enabled the reconstruction of orientation-specific CTFs.

Visualizing CTF time course
Our initial analyses indicated that only the alpha frequency band
enabled the reconstruction of orderly CTFs during the delay pe-
riod of the trial. To visualize the time course of the CTFs derived
from alpha band activity, we bandpass filtered in the alpha band
(8 –12 Hz) and constructed CTFs for each time point in the trial
(Fig. 2A,C). The CTF based on evoked power emerged during the
initial encoding period, and dissipated 250 ms after sample offset
(Fig. 2A); accordingly, randomization analyses of the evoked CTF
revealed significant channel modulation during the 0 –250 ms
encoding epoch (F � 4.47, p � 0.018), but not during the ensuing
delay period (250 –1500 ms; F � 0.36, p � 0.25). Thus, evoked

alpha power carries content-related information only during
stimulus encoding, suggesting that evoked CTFs reflect the early
bottom-up, stimulus-driven response to the memorandum.

Next, we examined feature-selective population response pro-
files constructed from the spatial pattern of induced alpha activ-
ity (Fig. 2C). Consistent with our initial analysis of induced
power, we observed sustained feature-selective tuning functions
that spanned both the initial encoding period (0 –250 ms) as well
as the delay period (250 –1500 ms). We estimated the average
delay-specific CTF during the delay period (indicated by the
boundaries of the gray shaded region in Fig. 2C), and observed
significant channel modulation during this maintenance epoch
(F � 10.42, p � 0.001). Thus, while both evoked and induced
alpha activity track the sample orientation during the initial en-
coding period, only induced alpha activity tracks the content of
WM throughout the delay.

Topography of orientation-selectivity during encoding
and maintenance
The FEM estimates the channel-weighted linear sum of neural re-
sponses to each orientation stimulus across all electrodes, thus ob-
scuring any topographic information regarding orientation
selectivity. To examine which electrodes provided the most informa-
tion about the stored feature values, we estimated electrode-based
MI–measured in bits–between observed set of neural responses in
each electrode and the presented set of orientation stimuli (see Ma-
terials and Methods, Mutual information analysis).

MI analyses of induced oscillatory alpha power revealed non-
zero interdependence between the presented orientation stimu-
lus and the observed neural response in each electrode during
both stimulus encoding and maintenance (Fig. 2E), in line with
the above-chance decoding that was possible in this frequency
band. Interestingly, we observed nonuniformity in the magni-
tude of MI in orientation selectivity across broadly defined top-
ographic sites (Fig. 2F). During stimulus encoding (light circles),
MI was larger in occipital (red) electrodes than posterior (blue)
and more anterior (yellow) electrodes (t(23) � 3.01, p � 0.006),
whereas MI was statistically indistinguishable between parietal
and anterior electrodes (t(23) � 1.40, p � 0.17). Conversely,
delay-specific MI (dark circles) was fairly uniform across elec-
trode sites (p � 0.22).

Induced alpha activity tracks the quality of working
memory representations
Thus far, we have demonstrated that induced oscillatory activity
specific to the alpha frequency band enables sustained tracking of
the contents of working memory. Next we examined whether
these CTFs also tracked variations in memory quality. Indeed, a
median split based on WM precision–the dispersion of response
errors for each observer–revealed systematic changes in the selec-
tivity of CTFs based on induced activity from the delay period.
This led to an interaction between channel activity and group
(Fig. 3D; F(1,22) � 6.40, p 
 0.05) and a significant correlation
between CTF dispersion and WM precision (Fig. 3E; R 2 � 0.51,
p 
 0.001). CTF amplitude did not predict WM precision (Fig.
3F; R 2 � 0.04, p � 0.35; cf., Ester et al., 2013). A similar analysis
of the evoked alpha band activity shows no significant interaction
between channel activity and group (Fig. 3A; F(1,22) � 1.43, p �
0.25), and no correlation between CTF dispersion and WM pre-
cision (Fig. 3B; R 2 � 0.01, p � 0.64). Thus, CTF dispersion based
on induced, but not evoked, EEG activity is a strong predictor of
individual differences in WM precision. Moreover, CTF disper-
sion tracked within-subject variations in WM precision. A me-
dian split of trials based on response error magnitude showed

Figure 2. Orientation selectivity in oscillatory alpha activity. A, Evoked alpha CTFs revealed a
clear CTF during encoding (0 –250 ms; boundaries of gray shaded window) that quickly dissi-
pated after stimulus offset. B, Average evoked CTFs during stimulus encoding for alpha activity
(black), as well as theta (red), low beta (green), and high beta (blue) activity for comparison. C,
Induced alpha CTFs revealed a clear CTF during stimulus encoding and maintenance (250 –1500
ms; boundaries gray shaded window). D, Average induced CTFs during stimulus maintenance
for alpha activity (black), as well as theta (red), low beta (green), and high beta (blue) activity
for comparison. E, Scalp topography of MI between presented stimulus orientations and in-
duced alpha power across 100 ms bins. F, For comparison between putative cortical regions,
electrodes were sorted into occipital (red), parietal (blue), and anterior (yellow) topographic
regions, and average MI was calculated for each region during encoding and delay epochs. Error
bars represent 95% confidence interval.
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greater CTF selectivity in low error trials compared with high
error trials (Fig. 3G). This led to a significant interaction between
error bin and response channel (F(2.11,48.65) � 6.33, p 
 0.01).
Next, we fitted low and high error CTFs with a Gaussian function
to examine whether the observed error-related difference in se-
lectivity was due to changes in response amplitude or dispersion.
Consistent with the pattern observed in the between-subject analy-
sis, we observed larger dispersion estimates in low–relative to high–
error trials (Fig. 3H; t(23) � 2.35, p 
 0.05), whereas we observed no
difference in amplitude (Fig. 3I; t(23) � 1.4, p � 0.18). Thus, the
spatial distribution of induced alpha power predicts both within-
and between-subject variations in WM precision.

Testing alternative explanations of the link between EEG activity
and the contents of WM
Our working hypothesis is that these EEG-based CTFs reflect endog-
enous activity generated by the synchronization of feature-selective
population codes. We considered two alternative explanations: (1)
there is some inherent circularity in the forward encoding modeling
analysis that forces any pattern of data to exhibit feature selectivity
and (2) the spatial distribution of alpha activity is correlated with the
magnitude of the EOG signal, reflecting minor changes in gaze di-
rection yoked to the sample orientation.

To address the first concern, we first compared delay-specific
CTFs obtained from Experiment 1 to a time window in the ob-
served data that should demonstrate zero feature selectivity. Spe-
cifically, we measured CTFs observed during the baseline period,
in which the observed baseline oscillatory activity should vary
randomly with respect to the trial-specific orientation channel
(i.e., observers have not been presented with the sample stimu-
lus). If the analytic routine of the FEM forces a pattern of data to
exhibit feature selectivity, then we should observe significant
channel modulation during both baseline and delay periods.
Conversely, if the FEM successfully recovers feature-selective
tuning functions only when the pattern of data exhibits robust
feature selectivity, then we should only observe significant chan-
nel modulation in the delay period of the CTFs reported in Ex-
periment 1. Consistent with the latter prediction, we failed to
observe significant channel modulation in the baseline (Fig. 4A;
F(1.22,30.41) � 0.37, p � 0.59) data, and baseline channel activity
was significantly reduced compared with delay-specific channel
activity (F(1,23) � 4.03, p 
 0.05). Also, we note that our random-
ization procedure, comparing observed F values against a null F
distribution derived from surrogate data, also disconfirmed this
alternative explanation by showing statistically significant differ-
ences between observed orientation selectivity and surrogate ori-
entation selectivity (Fig. 4B). Importantly, the shape of each
surrogate F distribution (estimated from baseline, encoding, and
maintenance periods) is nearly identical, highlighting the robust-
ness of this metric. Thus, these findings cannot be explained by
inherent biases in the analytic routine.

Examining the possible role of eye movements
Eye movements generate electrical signals that influence EEG
recordings. Our subjects were instructed to hold fixation and
horizontal EOG was used to reject trials with detectable eye
movements. Nevertheless, if subtle differences in eye position
covaried with the stored angle, this could provide an alternative
explanation of the links we observed between EEG activity and
WM storage. Thus, to determine whether there were orientation-
specific eye movements, we examined the amplitude of baselined
horizontal EOG across different orientation channels (Fig. 4C) to
examine whether EOG amplitude covaries with orientation
channel. Under the predictions of this alternative explanation, we

Figure 3. Between- and within-subject links with mnemonic precision. A, D, A median-
split analysis based on between-subject differences in mnemonic precision (s.d.) was
performed on evoked and induced CTFs. No group difference was observed in evoked CTFs
(A), and no apparent link was observed between mnemonic precision and CTF dispersion
(B; R 2 � 0.01, p � 0.64) or amplitude (C; R 2 � 0.07, p � 0.22). D, A clear loss of
selectivity was observed for low precision (dark blue) relative to high precision (light blue)
subjects in induced CTFs ( p 
 0.05). A strong link was observed between mnemonic
precision and induced CTF dispersion (E; R 2 � 0.51, p 
 0.001), but not amplitude (F; R 2

� 0.04, p � 0.35). G, A median-split analysis based on within-subject differences in
response error. CTFs were generated from trials grouped into high error (low precision;
pink line) or low error (high precision; red line) bins. A clear loss of selectivity was ob-
served in high error trials. The observed loss of selectivity was attributable to a significant
difference in CTF dispersion (H; p 
 0.05), but not amplitude (I; p � 0.18).
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would expect maximal EOG for orienta-
tions presented at 90 degrees (horizontal),
whereas we would expect minimal EOG
for orientations presented at 0 degrees
(vertical). In contrast to the predictions
of this alternative explanation, we ob-
served no significant modulation of EOG
amplitude across orientation channels
(F(1.67,41.75) � 0.99, p � 0.48). To further
test this alternative account, we applied a
linear classifier to horizontal EOG and
vertical EOG amplitudes; this analysis was
done separately for the horizontal and verti-
cal channels as well as with both channels
combined. If observers were moving their
eyes in a stereotyped fashion across orien-
tations, then the linear classifier would ac-
curately predict the correct stimulus label
(orientation) more frequently than
chance (.125; 1 of 8 orientations). In con-
trast to the predictions of this alternative
explanation, we failed, across all three
EOG data matrices, to reliably observe
classification accuracy above chance dur-
ing any part of the trial (Fig. 4D). Criti-
cally, during the delay period, we failed to
observe above-chance classification accura-
cies when classifying vertical EOG (t(23) �
0.88, p�0.39), horizontal EOG (t(23) �0.28
p � 0.78), and both EOGs (t(23) � 0.59, p �
0.56). Therefore, eye movements cannot ex-
plain the link between EEG activity and the
stored orientation.

Experiment 2: examining the role of
volitional storage demands on evoked
and induced population tuning
functions
So far, we have demonstrated that in-
duced oscillatory activity specific to the
alpha frequency band tracks the content
and quality of representations in WM. Ex-
periment 2 examines whether the sus-
tained CTFs that track the stored feature
value are contingent on the volitional
storage goals of the observer. We used the
same WM task as in Experiment 1, except
that immediately after the offset of the
sample display, a retrocue (i.e., a change
in fixation color to either blue or green)
instructed observers to store or drop the
memorandum (color assignment was counterbalanced across
subjects). If the sustained CTFs observed in Experiment 1 are
contingent on the observer’s intent to store the memorandum,
then CTFs should be maintained in the “store” condition and
abolished in the “drop” condition. In addition, we examined
whether the store and drop cues would have distinct conse-
quences for CTFs generated from evoked and induced activity. If
evoked CTFs are determined by the initial volley of stimulus-
driven activity, then the postsample cue should not influence the
content of the evoked CTF.

We examined the pattern of evoked and induced CTFs across
time for both store and drop conditions (Fig. 5). While there was

no apparent difference in the evoked CTFs (from the 0 the 250
ms) between the store (Fig. 5A) and drop (Fig. 5B) conditions,
there was a clear difference between delay-specific (i.e., 250 –1500
ms) induced CTFs observed in store (Fig. 5D) and drop (Fig. 5E)
conditions. Confirming this qualitative observation, randomiza-
tion analyses of the evoked CTF during the encoding period (0 –
250 ms; Fig. 5C) revealed a significant effect of channel (F � 9.16,
p � 0.047), in line with the orderly CTF evoked by the stimulus,
but there was no significant effect of condition (store vs drop; F �
0.23, p � 0.89) and no channel by condition interaction (F �
1.21, p � 0.65). Randomization analyses of the induced CTF
during maintenance (250 –1500 ms; Fig. 5F) revealed a main

Figure 4. Ruling out alternative explanations. A, To demonstrate that significant CTFs would not be observed under random
conditions, we compared the observed empirical delay-specific CTF (solid black line) against a chance distribution (thin gray lines)
derived from the analysis of 1000 surrogate time series that share statistical properties with the original data, which generated the
expected flat average CTF (dotted black line). A similar flat CTF was observed during the baseline period (dark gray dotted line),
during which time no stimulus was present. B, Empirically observed F statistics were compared against null distributions of
surrogate F statistics derived from the randomization routine described in Materials and Methods, Randomization analyses. For
baseline (black), encoding (blue), and maintenance (orange) epochs, 1000 surrogate CTFs were generated for each subject, and F
statistics were calculated for each surrogate series. Each distribution of surrogate F statistics (dotted histograms) served to deter-
mine the deviation of the empirically observed pattern (thick vertical lines) from the null distribution. These data were used to
estimate the probability of observing similar F statistics between null and empirical data. C, To demonstrate that stimulus-
specific eye movement patterns did not contribute to the observed CTFs, we examined horizontal EOG amplitudes across
each orientation channel (colored filled circles with error bars; thin gray circles represent each subject), and observed no
significant modulation of EOG amplitude as a function of orientation channel. D, A linear classifier was trained on vertical
EOG (black line), horizontal EOG (green line), and both horizontal and vertical (blue line) EOG amplitudes to determine if the
pattern of EOGs could allow for above-chance (black dotted line) classification accuracy. None of the EOG measures could
reliably predict the angle of the remembered stimulus during the delay period. Inset figure shows the average classification
accuracy for each EOG measure.
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effect of both channel (F � 7.77, p � 0.038) and condition (F �
21.35, p � 0.014), as well as a trending condition by channel
interaction (F � 10.30, p � 0.08; Fig. 7H), driven by significant
channel modulation in the store condition (F � 25.45, p � 0.023)
and a lack of significant channel modulation in the drop condi-
tion (F � 0.98, p � 0.68).

Thus, the CTFs generated from induced alpha band activity
reflect the volitionally stored contents of working memory rather
than the neural activity evoked by the presentation and initial
encoding of the sample.

Experiment 3: examining the role of feature-based attention
on evoked and induced population tuning functions
To further examine the observers’ ability to exert voluntary control
over the feature values that drive EEG-based CTFs, Experiment 3
required observers to use feature-based attention to encode a target
of one color into WM while ignoring a distractor of a different color.
Because observers had advance knowledge of which color was rele-
vant, this design allowed us to examine whether feature-based selec-
tion would influence both the initial encoding and subsequent
maintenance of the targets and distractors.

Evoked alpha tuning functions track the deployment of feature-
based attention
We observed a transient evoked feature-selective tuning function
during the sample display (0 –250 ms post stimulus; Fig. 6A,B).
Examination of the evoked tuning functions from 0 to 250 ms
(Fig. 6E) revealed a significant effect of channel (F � 18.04, p � 0)
and a significant interaction between channel and target-
distractor status (F � 4.33, p � 0.024). Compared with the dis-
tractor stimulus, attending the target stimulus led to an apparent
enhancement of on-channel responses (channels at or near the
encoded feature value, e.g., �0, 22.5°) and an attenuation of
off-channel responses (channels further from the encoded fea-
ture value, e.g., �67.5, 90°), consistent with previous studies of

feature-based attention (Treue and Martínez-Trujillo, 1999;
Martinez-Trujillo and Treue, 2004; Serences et al., 2009b; Garcia
et al., 2013). We then fitted evoked CTFs with a Gaussian func-
tion to evaluate the influence of feature-based attention on CTF
amplitude and dispersion parameters, which revealed an effect of
target/distractor status on amplitude (Fig. 6F; t(24) � 2.61, p 

0.01), but not dispersion (Fig. 6G; t(24) � 1.59, p � 0.13). Thus,
the amplitude of evoked CTFs was reliably larger for the item
of the attended color. In line with the findings from Experiment
1, the precision of the evoked CTF to the target did not predict
between-subject differences in WM precision; a median split be-
tween high and low precision subjects revealed no difference (Fig.
7A; F(1,23) � 0.10, p � 0.76), and there was no correlation be-
tween WM precision and CTF dispersion (Fig. 7B; R 2 � 0.10, p �
0.13) or amplitude (Fig. 7C; R 2 � 0.02; p � 0.54).

Induced alpha tuning functions track the content of selectively
stored representations
The feature-based enhancement of target-evoked channel re-
sponses suggests that observers were selectively encoding the tar-
get stimulus, while actively suppressing the distractor stimulus.
In line with this interpretation, we observed a sustained induced
feature-selective tuning function during the delay period (250 –
1500 ms post stimulus) in response to the target stimulus (Fig.
6C), but not the distractor stimulus (Fig. 6D). Confirming this
observation, the induced CTFs during the delay period (250–1500
ms; Fig. 6H) showed a significant effect of stimulus (F � 55.85, p �
0.051) and channel (F � 9.27, p � 0.004), and a significant stimulus
by channel interaction (F � 12.93, p � 0.001). The significant inter-
action was driven by significant channel modulation in response to
the target stimulus (F � 51.20, p � 0) and a lack of significant
channel modulation in response to the distractor stimulus (F�0.53,
p � 0.508). Thus, Experiment 3 provides further evidence that EEG-
based CTFs selectively represent the feature values that are relevant
to the observers’ current storage goals.

Figure 5. CTF time course across different storage demands. In Experiment 2, subjects were cued to store or drop the sample stimulus during the maintenance period. Evoked CTFs during store
(A) and drop (B) trials revealed similar profiles during the initial encoding period (boundaries of gray windows). C, Average encoding-specific evoked CTFs revealed no difference in CTF selectivity
during store (solid black line) and drop (dotted black line) trials. In contrast, induced CTFs revealed a sustained delay-specific CTF during store (D), but not drop (E), trials (boundaries of gray
windows). F, Average delay-specific-induced CTFs revealed clear channel tuning in store trials, whereas a flat CTF was observed in drop trials.
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Replication of the link between CTF dispersion and
memory quality
Replicating the findings from Experiment 1, we observed a sig-
nificant relationship between mnemonic precision (s.d.) and
channel responses observed in delay-specific induced CTFs (Fig.
7D; F(1.77,44.92) � 4.25, p 
 0.05), such that there was an apparent
reduction in CTF selectivity in low precision subjects compared
with high precision subjects. To evaluate how selectivity interacts
with mnemonic precision, we fitted channel response functions with
a Gaussian function to estimate CTF dispersion and amplitude. As
in Experiment 1, we observed a significant link between individ-
ual differences in mnemonic precision and dispersion (Fig. 7E;
R 2 � 0.30, p 
 0.01), but not amplitude (Fig. 7F; R 2 � 0.09, p �
0.16). In addition, Experiment 3 replicated the interaction be-
tween CTF selectivity and within-subject variations in response
error (Fig. 7G); CTF selectivity was reduced for low relative to
high error trials, leading to a significant interaction between error
bin (high vs low) and orientation channel (F(1.87,44.83) � 3.90, p 

0.05). Next, we fitted low and high error CTFs with a Gaussian
function to examine whether the observed error-related differ-
ence in selectivity was due to changes in response amplitude or
dispersion. Consistent with the pattern observed in the between-
subject analysis, we observed larger dispersion estimates in low–
relative to high– error trials (Fig. 7G; t(24) � 2.46, p 
 0.05),
whereas we observed no difference in amplitude (Fig. 7G; t(23) �

1.17, p � 0.25). Thus, we replicated the basic empirical link be-
tween mnemonic precision and the selectivity of EEG-based
CTFs.

Discussion
Mounting evidence has implicated oscillatory activity in the al-
pha frequency band in the on-line storage of information in WM,
with multiple studies linking activity in this frequency band with
the number of representations stored in WM (Jensen et al., 2002;
Sauseng et al., 2009; Palva et al., 2010). The present work provides
a critical extension of these findings by demonstrating that the
spatial distribution of activity in the alpha frequency band tracks

Figure 6. CTF time course during deployment of feature-based attention. In Experiment 3,
subjects were presented with two differently colored sample stimuli during encoding, and cued
to remember one (target) and ignore the other (distractor). Evoked CTFs revealed similar
encoding-specific CTF profiles for target (A) and distractor (B) sample stimuli. In contrast, in-
duced CTFs revealed a sustained delay-specific CTF profile for target stimuli (C), whereas we
observed no delay-specific CTF for distractor stimuli (D). E, Average evoked CTFs during encod-
ing (0 –250 ms) revealed a significant loss of selectivity in distractor CTFs relative to target CTFs.
The loss of selectivity observed in distractor-evoked CTFs was driven by a decline in CTF ampli-
tude (F ), but not CTF dispersion (G). H, Average induced CTFs during maintenance (250 –1500
ms) revealed a significant target-induced CTF, whereas distractor-induced CTFs were flat.

Figure 7. Replicating between- and within- subject links with mnemonic precision. A, D, A
median-split analysis based on between-subject differences in mnemonic precision (s.d.) was
performed on evoked and induced CTFs. No group difference was observed in evoked CTFs (A),
and no apparent link was observed between mnemonic precision and CTF dispersion (B; R 2 �
0.10, p � 0.13) or amplitude (C; R 2 � 0.02; p � 0.54). D, A clear loss of selectivity was
observed for low precision (dark blue) relative to high precision (light blue) subjects in induced
CTFs ( p 
 0.05). A strong link was observed between mnemonic precision and induced CTF
dispersion (E; R 2 � 0.30, p 
 0.01), but not amplitude (F; R 2 � 0.09, p � 0.16). G, A
median-split analysis based on within-subject differences in response error. CTFs were gener-
ated from trials grouped into high error (low precision; pink line) or low error (high precision;
red line) bins. A clear loss of selectivity was observed in high error trials. The observed loss of
selectivity was attributable to a significant difference in CTF dispersion (H; p 
 0.05), but not
amplitude (I; p � 0.25).
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both the content and quality of representations stored in WM.
Using a forward modeling approach to reconstruct orientation-
specific population response profiles, Experiment 1 revealed two
temporally and functionally distinct generators of stimulus-
specific CTFs: (1) evoked (i.e., stimulus-locked) alpha power en-
abled the construction of orderly CTFs during the initial
encoding period (0 –250 ms after sample onset) and (2) induced
(not stimulus-locked) alpha power revealed sustained stimulus-
specific CTFs from shortly after stimulus onset to the end of the
delay period. Critically, whereas the dispersion of delay-specific
(250 –1500 ms) induced tuning functions strongly predicted both
between- and within-subject variability in mnemonic precision,
we observed no link between mnemonic precision and the dis-
persion of evoked tuning functions.

Experiments 2 and 3 showed that these EEG-based CTFs are
specific to the intentionally stored aspects of the stimulus display.
Experiment 2 showed that when a postsample cue instructed
observers to drop the sample stimulus from memory, the CTF
was abolished within about 300 ms; thus, the sustained CTFs
observed during the delay period are not a passive consequence of
the initial encoding of the sample. Similarly, Experiment 3
showed that when observers were instructed to store a target of a
relevant color while ignoring a distractor of a different color, both
evoked and induced CTFs were modulated by feature-based at-
tention. The target-evoked CTF was more selective than the one
for the distractor, reminiscent of past demonstrations of feature-
similarity gain (Treue and Martínez-Trujillo, 1999; Martinez-
Trujillo and Treue, 2004; Serences et al., 2009a; Scolari et al.,
2012; Garcia et al., 2013). In addition, only the target stimulus
elicited a sustained induced CTF during the delay period, while
the distractor stimulus representation faded quickly after sample
offset. Finally, Experiment 3 replicated the prior finding that the
dispersion of the induced CTF was a robust predictor of both
between- and within-subject variations in WM precision. Thus,
EEG-based CTFs appear to provide an expedient method for
measuring the integrity of the sensory population codes that are
thought to support on-line memory representations (Awh and
Jonides, 2001; Jonides et al., 2005; Postle, 2006; D’Esposito,
2007).

Our findings suggest that evoked and induced activity track
qualitatively different aspects of stimulus-specific activity during
the encoding and storage of information in visual working mem-
ory. While evoked activity yielded CTFs that were early and brief,
induced activity yielded CTFs that were sustained throughout the
delay period and predictive of memory quality. Also, recall that
early and late trial epochs had distinct profiles in our analysis of
MI. MI analyses of induced oscillatory alpha power during stim-
ulus encoding revealed higher MI in posterior relative to anterior
electrodes, while the same analysis during the subsequent delay
period revealed uniform MI levels across anterior and posterior
electrodes. One possibility is that these dynamic changes in
feature-selective activity across time reflect the translation of the
memoranda from early stimulus-driven format to an endoge-
nously sustained representation that extends across a broader
range of feature-selective neural populations (Engel et al., 2001;
Varela et al., 2001; Jensen and Colgin, 2007; Siegel et al., 2012).
Indeed, recent neuroimaging studies have revealed spatially
global feature selectivity in visual cortex (Ester et al., 2009), pari-
etal cortex (Christophel et al., 2012), and frontal eye fields (Ser-
ences and Yantis, 2007; Heinen et al., 2013). The present work
raises the possibility that feature-selective assemblies may be co-
ordinated across relatively large cortical distances by synchro-

nized activity in the alpha band (Varela et al., 2001; Palva and
Palva, 2007; Palva et al., 2010).

A broad array of evidence converges on the conclusion that
representations in WM are maintained via sustained activity in
the same brain regions enabling the sensory encoding of the
memoranda, the so-called sensory recruitment hypothesis (Awh
and Jonides, 2001; Jonides et al., 2005; Postle, 2006; Ester et al.,
2009; Harrison and Tong, 2009; Serences et al., 2009a; Anderson
et al., 2013; Emrich et al., 2013). One hypothesis suggests syn-
chronization in a specific frequency band supports the integra-
tion of the sensory population codes that represent information
in WM (Singer and Gray, 1995; Singer, 1999) while amplifying
their downstream influence by facilitating the temporal summa-
tion of postsynaptic potentials (Salinas and Sejnowski, 2001;
Fries, 2005). If alpha is the binding frequency in visual WM, this
broad framework may explain why variations in the spatial dis-
tribution of alpha power tracked the stored orientation value.
Because different units participate in the population code for
different orientations, different units–with reliably different spa-
tial distributions–may have been synchronized in the alpha band
for different orientations. Thus, the clear links between alpha
band activity and the content and quality of visual WM fall in line
with a biologically plausible model of storage in working mem-
ory, with the following properties: (1) the number of on-line
representations is determined by the number of simultaneously
activated alpha oscillators. (2) the precision of the representa-
tions is determined by the quality of population codes integrated
into each alpha oscillator, and (3) offsets in the phase of each
alpha oscillator enable the segregation of each item’s population
code from that of other items (cf., Lisman and Idiart, 1995; Raf-
fone and Wolters, 2001). This model makes specific predictions
about the consequences of increasing the number of items stored in
working memory: (1) the number of phase-offset alpha genera-
tors will increase, leading to a reduction in alpha power and (2)
the selectivity of orientation-selective population codes– exam-
ined via activity in the alpha frequency band–should decline.
Further work with the approach outlined here will provide a clear
test of these predictions, and may provide an approach for eval-
uating neural mechanistic models of the inverse relationship be-
tween precision and storage load in working memory (Wilken
and Ma, 2004; Zhang and Luck, 2008; Anderson et al., 2011,
2013b; Anderson and Awh, 2012).

Although we have emphasized the role of alpha band activity
in the coordination of feature-specific population codes, there is
active debate regarding the functional role of oscillatory alpha
activity (Jensen and Mazaheri, 2010). The so-called inhibition-
timing hypothesis proposes alpha as a gating mechanism for the
transmission of information (Jensen et al., 2002; Klimesch et al.,
2007; Sauseng et al., 2009). According to this hypothesis, alpha
synchronization reflects functional inhibition of task-irrelevant
cortical populations, whereas alpha desynchronization reflects
release from inhibition and the emergence of functionally coor-
dinated neural activity among differentiated neural assemblies.
The present data does not offer a direct test of whether fluctua-
tions in alpha power reflect changes in functional inhibition, but
we note that the present data do not necessarily contradict the
putative link between alpha power and inhibition. First, it is plau-
sible that multiple neural processes cause changes in alpha power,
and that our paradigm holds most of those processes constant
while manipulating the stored orientation. In this case, further
work that combines storage demands with inhibitory demands
may help to elucidate whether fluctuations in alpha power may be
linked with more than one aspect of cognitive processing. Sec-
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ond, if increased alpha power is associated with increased inhibi-
tion, this inhibitory activity could theoretically help to determine
which neural units participate in the sensory population codes
that are thought to underlie storage in working memory.

Although we have highlighted past work (Sauseng et al., 2009;
Palva et al., 2010) that has linked variations in alpha power with
variations in the number of items stored in working memory,
another prominent neural signature of storage in working mem-
ory has been documented in studies of contralateral delay activity
(CDA; Vogel and Machizawa, 2004; McCollough et al., 2007).
Similar to load-dependent alpha activity (Sauseng et al., 2009; Palva
et al., 2010), CDA amplitude increases monotonically with set size,
reaching an upper bound at set sizes predicted by behavioral mea-
sures of working memory capacity (Vogel and Machizawa, 2004;
Anderson et al., 2011). Jensen et al. (2010) have proposed a possible
link between alpha activity and CDA (Mazaheri and Jenson, 2008;
van Dijk et al., 2010). Supported by observed asymmetric ampli-
tude modulations of alpha activity (Stam et al., 1999), Jensen et al.
(2010) have proposed that differences in CDA amplitude across
contralateral and ipsilateral hemispheres result from asymmetric
changes in the peak– but not the trough– of alpha oscillations
across hemispheres. For example, event-related averaging of
multiple trials containing a reduction in the peak of contralateral
desynchronized alpha activity and an increase in the peak of ip-
silateral synchronized alpha activity (Sauseng et al., 2009) would
lead to a larger sustained negativity in contralateral, relative to
ipsilateral, electrodes. Thus, the link between CDA activity and
the number of items stored in working memory may reflect
asymmetric modulations of alpha band activity, while the spatial
distribution of those modulations may track the specific neural
populations that encode the stored feature values.
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