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Our understanding of the neural bases of visual short-term

memory (STM), the ability to mentally retain information over

short periods of time, is being reshaped by two important

developments: the application of methods from statistical

machine learning, often a variant of multivariate pattern

analysis (MVPA), to functional magnetic resonance imaging

(fMRI) and electroencephalographic (EEG) data sets; and

advances in our understanding of the physiology and functions

of neuronal oscillations. One consequence is that many

commonly observed physiological ‘signatures’ that have

previously been interpreted as directly related to the retention

of information in visual STM may require reinterpretation as

more general, state-related changes that can accompany

cognitive-task performance. Another is important refinements

of theoretical models of visual STM.
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Signal intensity-based versus multivariate
analyses of fMRI data
Reconsidering the link between delay-period activity

and ‘storage’

For decades, a governing assumption in STM research has

been that the short-term retention of visual information is

supported by regions that show elevated levels of activity

during the delay period of STM tasks. Thus, for example,

debates over the role of the prefrontal cortex (PFC) in STM

and the related construct of working memory were framed

in terms of whether or not its delay-period activity showed

load-sensitivity — systematic variation of signal intensity

as a function of memory set size [1–4]. Similarly, patterns of

load-sensitive variation of activity in the intraparietal sulcus

have been used to test and refine theoretical models about

mechanisms underlying capacity limits in visual STM e.g.,

5,6]. With the advent of MVPA, however, this signal-

intensity assumption has been called into question.
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A fundamental difference between MVPA and univariate

signal intensity-based analyses is that the former does not

entail thresholding the dataset before analysis, but,

rather, analyzes the pattern produced by all elements

in the sampled space. The analytic advantages to this

approach are marked gains in sensitivity and specificity

e.g., 7]. In the domain of visual STM, this was first

demonstrated with the successful decoding of delay-

period stimulus identity from early visual cortex, in-

cluding V1, despite the absence of above-baseline

delay-period activity [8,9]. Subsequently, it was demon-

strated that although the short-term retention of specific

directions of motion was decodable from medial and

lateral occipital regions (despite the absence of elevated

delay-period activity), this information was not decodable

from regions of intraparietal sulcus and frontal cortex

(including PFC) that nonetheless evinced robust elev-

ated delay-period activity [10�]. Further, in these

posterior areas the strength of MVPA decoding, a proxy

for the fidelity of neural representation, declined with

increasing memory load. Importantly, these changes in

MVPA decoding predicted load-related declines in beha-

vioral estimates of the precision of visual STM [11��]
(Figure 1). Relatedly, an fMRI study using a forward

encoding-model approach [12�] has demonstrated that

interindividual differences in the dispersion (i.e., ‘sharp-

ness’) of multivariate channel tuning functions in areas V1

and V2v predicts recall precision of STM for orientations

[13��]. Thus, studies [11��] and [13��] indicate an import-

ant link between the fidelity of the distributed neural

representation and the fidelity of the mental representa-

tion that it is assumed to support.

The localization of visual STM, and insight into

mechanism

It is not the case that intraparietal sulcus and frontal

cortex are inherently ‘undecodable’ (see Box 1), nor that

they are never recruited for the short-term retention of

information. A determinant of whether a network will be

engaged in the short-term retention of a particular kind of

information is whether it is engaged in the perception or

other processing of that information in situations that do

not explicitly require STM. Thus, for example, when the

short-term retention of abstract visuospatial patterns [23�]
or dynamically morphing flow-field stimuli [24] is tested,

MVPA reveals delay-period stimulus representation in

intraparietal sulcus, in addition to occipital regions; the

same is true for face, house, and human-body stimuli in

ventral occipitotemporal regions (e.g., [20��]). When the

to-be-remembered stimulus affords oculomotor planning,

its identity can also be decoded from oculomotor-control

regions of intraparietal sulcus and of frontal cortex [25��].
www.sciencedirect.com
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Figure 1
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Box 1 Population coding in PFC

PFC shows increases in activity during difficult versus easy

conditions of many types of task, not just STM (for which load is an

operationalization of difficulty) [14�]. With regard to STM, MVPA of

neuronal activity recorded from monkeys provides hints of what

functions may be supported by the elevated activity measured in

humans with fMRI. In two studies, MVPA revealed a delay-period

transition from an initial representation of properties specific to a

stimulus, to one of either the item’s status as a ‘Go’ or ‘No-go’ cue

[15��], or the trial’s status as a ‘Match’ or ‘Nonmatch’ trial [16�]. In a

test of STM for the color of varying numbers of objects, PFC

represented the passage of time across the delay period and the

location of to-be-remembered stimuli, but not the colors themselves

[17��] (cf [18��]). Consistent with these unit-level findings, MVPA of

human fMRI of STM has shown PFC to encode such factors as

stimulus category, attentional context, and match-nonmatch status

of a trial (e.g., [10�,19��,20��]). Thus, in addition to its well-established

role in the top-down control of neural processing (e.g., [14�,20��]),

another function of PFC may be the processing of information that,

although not explicitly being tested, is nonetheless unfolding, and of

possible relevance to the organism [17��,21,22].

Box 2 Network-level dynamics in STM

Under conditions for which a stable mental code is assumed (e.g., no

instructions to strategically recode [19��,26]), MVPA typically reveals

a stable set of regions to represent memoranda across the duration

of a delay-period. However, the activity patterns within these regions

can be dynamic. For example, with auditory STM, the frequency-

specific pattern of elevated stimulus-evoked activity transitions to

become a pattern of negative activity during the delay period [30].

For visual STM, a classifier trained on a time point early in the trial will

often perform progressively worse as it is slid forward across the

remainder of the delay period, the converse being true for a classifier

trained on a late-in-the-delay time point and slid backwards

(Figure 1b). This suggests a temporal evolution of the neural code

underlying the short-term retention of a subjectively ‘stable’ mental

representation [11��,31�]. It remains to be determined whether these

observations from fMRI relate in a meaningful way to the finding of

dynamic coding in populations of neurons in monkeys performing

tasks requiring sustained attention to an object [32,33].
Indeed, [25��] demonstrated that an MVPA classifier trained

on only one condition — attention to a location, planning a

saccade to a location, or STM for a location — can decode

the other two. This could only be possible if similar patterns

of neural activity, implying similar mechanisms, underlie

the behaviors that have traditionally been categorized as

‘attention’ versus ‘intention’ versus ‘retention’.

Patterns of localization can also reflect how the brain

supports the strategic recoding of information from the

format presented at study into one best suited for the

impending memory-guided action. One study first pre-

sented subjects with a sample object, then, early in the

delay, indicated whether memory for fine-grained per-

ceptual details or for category membership would be

tested. For the former, MVPA found evidence for

delay-period stimulus representation in inferior occipito-

temporal cortex, but not PFC; for the latter, the converse

was true [19��]. Combining MVPA with univariate and

functional connectivity analyses has revealed a role for

frontal cortex and intraparietal sulcus in implementing

such strategic shifts of mental coding in visual STM

[20��]. MVPA can also track the evolution of mental

coding in the absence of instructions, demonstrating,

for example, that the verbal recoding of visually pre-

sented information also entails the recruitment of a

semantic code [26].
(Figure 1 Legend) Dissociating elevated delay-period signal from the short-t

subjects were scanned with fMRI while viewing one, two, or three sample displa

statistical maps indicating regions showing load sensitivity during sample pres

voxels (panel on left) or ‘delay-only’ voxels. Teal waveform illustrates decodin

stimulus-evoked response (indicated with dot) then swept across the remaind

performance of classifiers trained at a time point late in the delay period, or 2 se

decoding at p < .05(*) and p < .01(**). Superimposed is the trial-averaged BOLD

on the right-hand side of the plot. C. Plots of neural precision against behaviora

(3, 2, or 1) to that individual’s neural and behavioral precision at the correspon
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Neural data also provide important constraints on models

of capacity limitations of visual STM [27�,28�]. One

influential model holds inferior intraparietal sulcus to

be important for individuating objects that are to be

encoded into visual STM, whereas superior intraparietal

sulcus and an area of lateral occipital cortex are respon-

sible for identifying these objects [6]. Recently, however,

although the univariate analyses of data from a follow-up

experiment [29��] did reproduce many of the findings from

the earlier study, MVPA of the same data failed to support a

model of segregated circuits performing these two oper-

ations. Instead, the study of Naughtin et al. [29��] produced

two novel findings. First, the contrasts intended to oper-

ationalize individuation versus identification recruited

primarily overlapping regions, thereby calling into ques-

tion the dissociability of these two hypothesized mechan-

isms. Second, many regions outside of the intraparietal

sulcus regions emphasized by [6] were also sensitive to

these contrasts, suggesting that broadly distributed sys-

tems underlie the control of visual STM (Box 2).

Signal intensity-based versus multivariate
analyses of EEG data
Event-related potential (ERP) correlates of STM

Another neural effect that has influenced models of

visual STM capacity limitation is the contralateral delay

activity (CDA), an ERP component that scales mono-

tonically with STM load, but asymptotes at the psycho-

physically estimated capacity of an individual [34]. The
erm retention of information. Summary of results from [11��], in which

ys of moving dots, then probed to recall the direction of one. (a) Univariate

entation, the delay period, or both. (b) Time series data from ‘sample-only’

g performance of a classifier trained at the time point with the maximal

er of the trial. Maroon and solid gray waveforms are the analogous

c before sample onset, respectively. Asterisks indicate better-than-chance

 activity, depicted in the dotted waveform and aligned with the vertical axis

l precision. Each color corresponds to an individual subject and each digit

ding memory load. Lines are the fit indicated by ANCOVA (r2 = .35).
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1 Note that, although [47��,48] decoded delay-period activity at the

category level, and may therefore have lacked the sensitivity to detect

the active representation of a single item, this finding has been repli-

cated with item-level MVPA for STM for specific directions of motion,

thereby reducing concerns that poor sensitivity may explain failure to

find evidence for an active representation of UMIs [LaRocque, Riggall,

Emrich, and Postle, unpublished data].
CDA is widely interpreted as an index of the short-term

retention of information (e.g., [35]), such that, for

example, the presence of a CDA during visual search

has been taken as evidence for ‘memory in search’

[36,37], and the diminution of the CDA across consecu-

tive trials requiring search for the same target as evidence

for the ‘handoff’ of the mnemonic representation of the

search template from STM to LTM [38].

Not unlike with univariate analyses of fMRI data, how-

ever, there can be problems with equating a 1-D, signal

intensity-based measure like the CDA with a single

psychological construct (in this case, the short-term reten-

tion of information). For example, empirically, the CDA

can be observed during tasks for which it is unclear that

the short-term retention of information is required, such

as during multiple object tracking [39], or during change

detection ‘even when the observers know that the objects

will not disappear from the visual field’ [40] (p. 8257).

Further, the CDA during STM and during visual search is

markedly reduced after intensive visual working memory

training, despite the fact that STM capacity is increased

and search performance improves with training [41�].
Under these conditions, a physiological marker specific

to the short-term retention of information would be

expected to increase in intensity. An additional challenge

to the idea that the CDA is specific to the short-term

retention of information comes from the proposal that it

may, in fact, be the consequence of averaging across trials

containing asymmetric amplitude modulation of alpha-

band oscillations [42]. From this perspective, because the

CDA is linked to alpha-band oscillations (and, hence, to a

general aspect of neurophysiological state, such as cortical

excitability or inhibitory tone), the CDA may not index a

memory storage mechanism per se, but rather a ‘general

mechanism for allocation of resources’ [43] (p. 903).

Perhaps relatedly, multivariate analyses of alpha-band

dynamics have provided important new insights into

the neural bases of the short-term retention of visual

information.

Multivariate analysis of EEG in STM

Using a multivariate forward-encoding-model approach

similar to [13��], Anderson et al. [44��] constructed channel

tuning functions for two narrowly filtered components of

the EEG: alpha-band oscillations that were evoked by

memory-sample onset; and alpha-band oscillations whose

amplitude, but not phase, was modulated by sample onset

(i.e., induced). Their results indicated that spatially distrib-

uted patterns in induced — but not evoked — delay

period-spanning alpha-band activity predicted both inter-

subject and intra-subject variation in precision of STM for

line orientation. Note that these results do not necessarily

implicate induced alpha-band oscillations in the delay-

period representation, per se, of stimuli. Alternatively, they

may reflect distributed patterns of local inhibition and/or

the long-range synchronization of localized representations
www.sciencedirect.com 
of features, either of which would nonetheless be unique to

each stimulus (cf [17��]). Although several oscillatory

phenomena have been associated with the short-term

retention of information (including, e.g., local field potential

oscillations at different frequencies, local and distal cross-

frequency coupling, phase-amplitude coupling, and long-

distance spike-field coherence (reviewed, e.g., in [45�])),
their investigation with multivariate methods (e.g., [46])

will be an important step in determining their specificity for

stimulus representation versus their possible contributions

to other processes engaged by STM tasks.

Do distributed patterns of activity reflect STM
or attention?
The multivariate methods reviewed here draw on two

longstanding assumptions about STM. First, that

stimulus representation is accomplished by anatomically

distributed networks. Second, that the short-term reten-

tion of these representations is accomplished via elevated

activity in these networks. Most often, however, STM

tasks confound the focus of attention with the short-term

retention, per se, of information. Recent studies have

addressed this by first presenting two sample items, then

indicating with a delay-period retrocue which of the two

will be relevant for the impending memory probe. (Thus,

the cue designates an ‘attended memory item’.) Because

the first memory probe will be followed by a second delay

period, a second retrocue, and a second probe, the item that

was not cued during the initial delay (the ‘unattended

memory item’) must be retained in STM, because it may

be cued as relevant for the second probe. Intriguingly,

MVPA of fMRI [47��] and EEG [48] variants of this task

fail to find evidence for an active neural representation of

the unattended memory item, even though its active

neural representation is reinstated if it is selected by the

second retrocue (Figure 2).1 These findings provide

empirical support for the possibility that elevated activity

may correspond more directly to the focus of attention than

to the short-term retention of information, per se. The short-

term retention of information, by this account, may depend

on the establishment of representations encoded in dis-

tributed patterns of transiently modified synaptic weights,

a code that would not be detectible by activity-based

measurements. This phenomenon has been observed

directly in the PFC of monkeys performing a visual work-

ing-memory task [15��], and has been simulated in many

computational implementations [49�]. It has also been

inferred to support the short-term retention of visual

information in inferotemporal cortex [50], and so need

not be assumed to be a PFC-specific phenomenon. An
Current Opinion in Behavioral Sciences 2015, 1:40–46
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Figure 2
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Neural evidence for AMIs versus UMIs versus absent items, on trials when the second retrocue cues the same item as had the first (‘Repeat’), or the

previously uncued item (‘Switch’). Legend labels ‘cued’ and ‘uncued’ refer to an item’s status relative to the first cue. (a) MVPA of fMRI data from [47��].

Circles along timeline denote sample presentation, triangles denote retrocues, and squares denote recognition probes. Circles at top of plots indicate

statistical significance of a stimulus category versus the empirical baseline of MVPA evidence for the category that was absent on that trial. MVPA

classifiers were trained on data acquired in a prior training session. (b) MVPA of EEG data from [48]. Graphical conventions are the same as in A, with

the exception that statistical significance (only tested during delay periods) is denoted with color-coded asterisks. MVPA classifiers were trained and

tested on the same dataset using hold-one-trial-out cross validation.
important focus of current study is whether there are

differences between the neural representation of unat-

tended memory items, which are presumed to passively

‘slip out of’ the focus of attention versus of items that are

intentionally removed from STM [20��,35].

Conclusion
High-level cognition, including STM, emerges from

dynamic, distributed neural interactions that unfold on

multiple time scales. The adoption of methods that more

closely align with these principles of brain function is

leading to discoveries with important implications for

cognitive models of STM and working memory (e.g.,

[51,52]), and is informing ongoing research into such

questions as the factors that underlie capacity limitations

of visual STM [27�,28�], and the relation between STM

and attention (e.g., [53,54]).
Current Opinion in Behavioral Sciences 2015, 1:40–46 
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