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A governing assumption about repetitive transcranial magnetic stimulation (rTMS) has been 
that it interferes with task-related neuronal activity – in effect, by “injecting noise” into the 
brain – and thereby disrupts behavior. Recent reports of rTMS-produced behavioral enhancement, 
however, call this assumption into question. We investigated the neurophysiological effects 
of rTMS delivered during the delay period of a visual working memory task by simultaneously 
recording brain activity with electroencephalography (EEG). Subjects performed visual working 
memory for locations or for shapes, and in half the trials a 10-Hz train of rTMS was delivered to 
the superior parietal lobule (SPL) or a control brain area. The wide range of individual differences 
in the effects of rTMS on task accuracy, from improvement to impairment, was predicted by 
individual differences in the effect of rTMS on power in the alpha-band of the EEG (∼10 Hz): a 
decrease in alpha-band power corresponded to improved performance, whereas an increase 
in alpha-band power corresponded to the opposite. The EEG effect was localized to cortical 
sources encompassing the frontal eye fi elds and the intraparietal sulcus, and was specifi c to task 
(location, but not object memory) and to rTMS target (SPL, not control area). Furthermore, for 
the same task condition, rTMS-induced changes in cross-frequency phase synchrony between 
alpha- and gamma-band (>40 Hz) oscillations predicted changes in behavior. These results 
suggest that alpha-band oscillations play an active role cognitive processes and do not simply 
refl ect absence of processing. Furthermore, this study shows that the complex effects of rTMS 
on behavior can result from biasing endogenous patterns of network-level oscillations.
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spatial

 “virtual lesion” account and suggest that the physiological effects 
of rTMS are more complex.

One candidate alternative account is that rTMS, because it is 
delivered at regular intervals, interacts with endogenous neuronal 
oscillations in a manner that infl uences processing (Klimesch et al., 
2003). Consistent with this idea, TMS pulses have been shown to 
affect oscillatory activity across many different frequency bands 
(Brignani et al., 2008; Fuggetta et al., 2008; Thut et al., 2003). There 
is also evidence of a role for neuronal oscillations in the storage of 
information in working memory (e.g., Jokisch and Jensen, 2007; 
Leiberg et al., 2006; Raghavachari et al., 2006). Thus, it is conceiv-
able that the behavioral changes observed with rTMS in previous 
studies of working memory were due to an effect on task-related 
oscillatory activity.

We examined the effect of rTMS on working memory storage 
by recording the electroencephalogram (EEG) while simultane-
ously delivering 10-Hz rTMS during the delay period of a delayed 
recognition working memory task. In addition to the fact that this 
stimulation frequency is commonly used in rTMS studies of cog-
nition (e.g., Hamidi et al., 2009; Preston et al., in press; Rosenthal 
et al., 2008), 10 Hz was chosen because we previously observed a 

INTRODUCTION
Although the storage of information in working memory has 
been studied for several decades, its underlying neurophysiologi-
cal mechanisms remain unclear. Recently, several studies have 
utilized high-frequency (>1 Hz) repetitive transcranial magnetic 
stimulation (rTMS) during the delay-period of working memory 
tasks in order to explore the role of various brain areas implicated 
in storage (Hamidi et al., 2008; Luber et al., 2007; Postle et al., 
2006). These studies have revealed that rTMS specifi cally to the 
parietal cortex alters working memory performance, suggesting 
a preferential role for the parietal cortex in storage. However, the 
direction of the behavioral effects varied, with both decrements 
(Postle et al., 2006) and improvements (Hamidi et al., 2008; Luber 
et al., 2007) reported. rTMS is often used with the assumption 
that it will produce electrical noise in the targeted region and 
will thereby disrupt task performance (Pascual-Leone et al., 2000; 
Walsh and Rushworth, 1999). There have been numerous demon-
strations of such rTMS-induced “virtual lesions” that have pro-
duced theoretically interesting effects (e.g., Feredoes et al., 2006; 
Stewart et al., 2001). However, recent studies describing behavio-
ral improvement with rTMS are not easily accommodated by a 
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rTMS-induced improvement in working memory function with 
10-Hz rTMS (Hamidi et al., 2008). We hypothesized that 10-Hz 
rTMS, because it lies at the center of the alpha band (8.5–14 Hz), 
will interact with endogenous working memory-related alpha-band 
processes (e.g., Jensen et al., 2002; Michels et al., 2008). Additionally, 
because recent studies have emphasized the role of gamma-band 
(>40 Hz) activity in working memory (e.g., Jensen et al., 2007; 
Kaiser et al., 2009), we analyzed rTMS-induced changes in gamma-
band power, as well as cross-frequency phase relationships between 
alpha- and gamma-band oscillations (Palva et al., 2005). rTMS was 
applied to two brain areas, the superior parietal lobule (SPL) and 
a control brain area, the area representing the leg in the primary 
somatosensory cortex (S1), while subjects performed two differ-
ent working memory tasks: one requiring memory of locations 
(spatial memory), the other requiring memory of shapes (object 
memory). Because the SPL is an area that is known to be involved 
in processing of spatial stimuli and spatial working memory (e.g., 
Schluppeck et al., 2006; Srimal and Curtis, 2008; Ungerleider et al., 
1983), we expected a task-specifi c effect of SPL rTMS during loca-
tion memory trials. The other three task conditions in our mul-
tifactorial design, during which we targeted a control brain area 
and/or used a ventral visual stream-dependent task (i.e., object 
memory) served as controls, in that each featured rTMS of a task-
irrelevant brain area.

MATERIALS AND METHODS
SUBJECTS
Sixteen young adults (12 male, mean age = 22.5; SD = 3.8) were 
recruited from the University of Wisconsin community. Subjects 
did not have any psychiatric or neurological conditions, as deter-
mined by a psychiatrist or clinical psychologist who administered 
a structured psychiatric diagnostic interview (Mini-International 
Neuropsychiatric Interview, Sheehan et al., 1998) and mood assess-
ment (Hamilton Depression Rating Scale, Hamilton, 1960). All 
subjects participating in this study provided informed consent 
and the protocol was approved by the University of Wisconsin 
Institutional Review Board.

BEHAVIORAL TASK
Subjects performed a delayed-recognition working memory task. 
Half the trials, randomly distributed, required memory for spatial 

locations, while the other half of trials required memory for shapes 
(Figure 1). Both trial types started with a 1-s display of instruc-
tions, indicating whether the upcoming trial required them to 
remember the identities (SHAPE) or the locations (LOCATION) 
of the subsequently presented shapes. After this instruction dis-
play, there was a 1-s fi xation period, followed by the sequen-
tial presentation of four targets, abstract shapes (Arnoult and 
Attneave, 1956), of approximately 2° of visual angle, presented 
for 1 s each. The target stimuli were followed by a luminance mask 
(100 ms), a 3-s delay period, and, fi nally, a probe stimulus (3 s). 
In location memory trials, the probe consisted of a white circle of 
2° of visual angle and subjects were required to determine, with a 
yes/no button press, whether the location of the probe matched 
that of any of the four targets. In the object memory trials, a shape 
was presented at the center of the screen and subjects had to make 
a decision as to whether the probe shape matched the shape of 
any one of the four targets (once again, with a yes/no button 
press). In both trial types the probe was presented for 3 s and 
subjects were limited to 3 s to make their response. To minimize 
eye movement artifacts in the EEG recordings, a fi xation cross 
was presented for the duration of the task. Object and location 
trials were randomly interleaved. All trials were separated by an 
intertrial interval of 5 s. In half the trials, randomly distributed, 
a 3-s, 10-Hz rTMS train was applied to the target brain area with 
the onset of the delay period. Accuracy and reaction time (RT) 
of the responses were recorded.

In order to assess whether the effect of 10-Hz rTMS on behav-
ior is dependent on endogenous alpha-band activity (as suggested 
by Klimesch et al., 2003), prior to the working memory task, we 
also recorded each subject’s EEG, in three 1-min sessions while the 
subject had his/her eyes-closed and maintained a wakeful resting 
state. This allowed us to calculate their “natural” peak individual 
alpha-band frequency (IAF; Klimesch et al., 1990).

rTMS
rTMS was applied to the SPL and, as a control, S1 (c.f. Hamidi et al., 
2008; Postle et al., 2006). Inclusion of a cortical control allowed 
us to account for any nonspecifi c effects of rTMS, such as scalp 
sensations and auditory noise, as well as any general physiologi-
cal effects that rTMS may have on the cortex (Hamidi et al., in 
press). Both areas were identifi ed based on individual anatomy 
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FIGURE 1 | Behavioral task. For each brain area targeted (SPL and S1), subjects performed 192 memory trials (96 location memory and 96 object memory, randomly 
interleaved). On half the trials, randomly distributed across both memory tasks, a 3-s train of 10-Hz rTMS (30 pulses) coincided with the onset of the delay period.

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103
104
105
106
107

108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150



Frontiers in Integrative Neuroscience www.frontiersin.org June 2009 | Volume 3 | Article 14 | 3

Hamidi et al. rTMS and oscillations

from whole-brain anatomical MRIs that were obtained for each 
subject prior to the study (GE Signa VH/I, 256 sagittal slices, 
0.5 mm × 0.5 mm × 0.8 mm). The SPL was identifi ed as the area 
dorsal and medial to the intraparietal sulcus and posterior to the 
postcentral sulcus [Brodmann Area (BA) 7]. The S1 was identifi ed 
as the area immediately posterior to the central sulcus, close to the 
midline. An infrared-based frameless stereotaxy system was used 
to accurately target each brain area with the TMS coil (eXimia 
Navigated Brain Stimulation, Nexstim, Helsinki, Finland). Because, 
in our previous study (Hamidi et al., 2008), there was no signifi cant 
difference in the effect of left versus right SPL rTMS on behavior, 
for all subjects, rTMS was applied to the left hemisphere.

In rTMS
present

 trials, a 10-Hz rTMS train [110% of motor 
threshold, corrected for scalp-to-cortex distance (Stokes et al., 
2005)] was applied during the entire 3-s delay period (30 pulses). 
TMS was delivered with a Magstim Standard Rapid magnetic 
stimulator fi t with a 70-mm fi gure-8 stimulating coil (Magstim, 
Whitland, UK) placed against the scalp. Because the presence 
of rTMS was randomized, the inter-train interval varied. The 
stimulation parameters were well within the established safety 
limits (Wasserman, 1998).

EEG RECORDINGS
EEG was recorded with a 60-channel carbon cap and TMS-
 compatible amplifi er (Nexstim, Helsinki, Finland). This amplifi er 
is designed to avoid saturation by the TMS pulse by employing a 
sample-and-hold circuit that keeps the output of the amplifi er con-
stant from 100 µs pre- to 2 ms post-stimulus (Virtanen et al., 1999). 
To further reduce residual TMS-related artifacts, the impedance at 
each electrode was kept below 3 kΩ (c.f. Massimini et al., 2005). 
The right mastoid was used as the reference and eye movements 
were recorded using two electrodes placed near the eyes. Data were 
acquired at a sampling rate of 1450 Hz with 16-bit resolution.

DATA PREPROCESSING
Data were processed offl ine using the EEGlab toolbox (version 
5.03 and 6.01b, Delorme and Makeig, 2004) running in a MATLAB 
environment (Mathworks, Natick, MA, USA). The data were fi rst 
down-sampled to 500 Hz (after application of a low-pass anti-
a liasing fi lter) and then band-pass fi ltered between 0.1 and 500 Hz. 
Following this, the data were cleaned of large movement-related 
artifacts and channels with excessive noise were reinterpolated 
using spherical spline interpolation (Perrin et al., 1989). Residual 
TMS-related electrical artifacts were identifi ed and removed using 
independent component analysis (see Hamidi et al., in press, for 
a detailed description of the method). Before further analysis, the 
data were rereferenced to the average of all 60 electrodes.

SPECTRAL ANALYSIS
Delay-period oscillatory changes in power were measured by deter-
mining the event-related spectral perturbation (ERSP, Makeig, 
1993) with each behavioral condition. ERSPs were computed using 
a moving Hanning-windowed wavelet with three cycles for the low-
est frequency (4 Hz) increasing linearly to 30 cycles for the highest 
frequency analyzed (80 Hz). All ERSP analyses were performed over 
a time period from 500 ms prior to the onset of the delay period 
to 500 ms after the presentation of the probe stimulus (4-s epoch). 

Mean delay-period ERSP was calculated separately for each subject 
and experimental condition (SPL/location memory; SPL/object 
memory; S1/location memory; S1/object memory). Responses were 
normalized for each subject by subtracting the calculated mean 
ERSP from that of a 2-s period within the middle of the intertrial 
interval for that subject. The effect of rTMS on ERSP was calculated 
by subtracting the mean ERSP during the rTMS

absent
 trials from the 

mean ERSP during the rTMS
present

 trials for each task condition.
IAF was determined by calculating the “center of gravity” fre-

quency as described by Klimesch et al. (1990). This method takes 
into account individual differences in shape and distribution of 
the alpha-band peak.

SOURCE LOCALIZATION
Estimates of the cortical location of the rTMS-induced oscillatory 
changes were calculated using the FieldTrip toolbox1 and a linear 
beamforming technique (Gross et al., 2001; Van Veen et al., 1997). 
Source estimation was performed with a three-compartment model 
based on a standardized MRI of the brain (Oostenveld et al., 2001). 
The leadfi eld matrix was determined by using the boundary ele-
ment model for each point in a regular 5-mm grid. At each point the 
source estimate was obtained with a spatial fi lter using the leadfi eld 
for the point and the cross-spectral density matrix from the data 
at each frequency of interest. The calculated transform was used 
to produce source estimates of the individual spectral information 
for each task condition. Normalized rTMS effect at each grid point 
was calculated for each subject using the following formula: rTMS 
effect = (rTMS

present
 − rTMS

absent
)/rTMS

absent
. Source estimates were 

performed on the mean spectral power over the time and frequency 
ranges that showed signifi cant correlations with behavior at the 
scalp level (see Figures 5 and 6).

CORRELATION BETWEEN SPECTRAL POWER AND BEHAVIOR
To determine if the rTMS-induced change in power is related to 
the rTMS-induced change in behavior, linear correlations between 
these two measures were calculated for each electrode across sub-
jects. To assess for non-linear monotonic relationships, we also 
used non-parametric (Spearman’s rho) measures of correlation. 
The results were similar for both measures, thus we only present 
linear correlations. Signifi cance of the correlations was calculated 
by comparing the correlation coeffi cient to the normalized (t) dis-
tribution of correlation coeffi cients from a population for which the 
correlation coeffi cient is 0. For all time-frequency analyses, because 
working memory maintenance-related effects must be sustained 
over time, a temporal signifi cance criterion was imposed, such 
that an effect had to be signifi cant at p < 0.05 continuously for at 
least one time-domain standard deviation of the wavelet used for 
analysis at the frequency of interest (i.e., for 10 Hz, at least 94.9 ms 
of continuous time points must have a p < 0.05; c.f., Slagter et al., 
2009). The cortical locations of these correlations were estimated 
by correlating the rTMS-induced change in power at each voxel 
in the source solution with change in behavior across subjects. 
The source estimates were corrected for multiple comparisons by 
determining the minimum number of contiguous voxels required 
to reduce the probability of false positives to p < 0.01 using Monte 

1http://www.ru.nl/fcdonders/fi eldtrip
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Carlo  simulations as implemented by the AFNI software package 
(Cox, 1996; Ward, 2000). Based on this analysis, we only  considered 
the source estimates of the correlations as signifi cant if at least nine 
contiguous voxels showed a signifi cant correlation at p < 0.05. Using 
a similar method, we determined that with scalp topography, to 
account for multiple comparisons, an area showing signifi cant cor-
relations must encompass at least three contiguous channels.

CROSS-FREQUENCY PHASE ANALYSES
Recent evidence suggests that a critical function of neuronal oscil-
lations may occur through phase interactions (Palva and Palva, 
2007; Palva et al., 2005). Because gamma-band activity has been 
previously linked with storage of information in working memory 
(Jensen et al., 2007; Kaiser et al., 2009), we therefore analyzed the 
effect of rTMS on cross-frequency phase synchronization between 
alpha- and gamma-band oscillations and examined its relation to 
task performance. Cross-frequency phase-locking factor (PLF) was 
calculated as described by Palva et al. (2005). Briefl y, the phases 
of oscillations at f

1
 and f

2
 were obtained by convolving the delay 

period signal (+500 ms on either end of the period) with a Morlet 
wavelet and calculating PLF based on the degree to which their 
phase difference was not uniformly distributed. PLF = N−1Σz

i
, 

where z
i
 describes complex valued measurement of the depend-

ence between the two phases (Sinkkonen et al., 1995). f
1
 and f

2
 

were chosen such that nf
1
 = mf

2
 (Tass et al., 1998). In this study, 

we limited our analysis to the relationship between alpha- and 
gamma-band oscillations: n = 1 (10 Hz) and m = 4–6 (40–60 Hz). 
PLF calculations were performed over the second half of the delay 
period (which showed signifi cant, task-dependent effects of rTMS 
on alpha-band power; see Figure 5). The effect of rTMS was deter-
mined by subtracting PLF during rTMS

present
 trials from that of 

rTMS
absent 

trials. Correlations of this effect with behavior were 
calculated as described above.

RESULTS
BEHAVIORAL EFFECTS
Behavioral performance of one subject was deemed to be an 
extreme outlier (effect of rTMS was >2 standard deviations from 
the mean for both accuracy and RT) and data from this subject 
was thus excluded from all analyses. For the remaining subjects, 
on aggregate, for both target sites, rTMS had the selective effect 
of increasing accuracy on the location task, but not the object 
task (Figure 2). The effects of rTMS of these two regions differed, 
however, in the relation between rTMS effect on EEG and its effect 
on behavior.

rTMS EFFECTS ON OSCILLATORY POWER
With and without rTMS, the delay period was associated with a 
sustained increase in alpha-band power (Figure 3A), more so with 
object memory than location memory (p < 10−5), a fi nding that 
has been observed in previous studies (e.g., Jokisch and Jensen, 
2007). On aggregate, there were no signifi cant changes in power 
with rTMS (Figures 3B,C). At the individual level, in all task con-
ditions, rTMS produced large, sustained changes in delay-period 
alpha-band power, with some subjects showing an increase, and 
others showing a decrease in power. These individual differences 
in the effect of TMS on alpha-band power predicted its effect on 
behavior: On location memory trials, with SPL rTMS, there was a 
negative correlation between the effect of rTMS on accuracy and 
its effect on mean delay period alpha-band power (Figure 4). The 
sources of this effect were localized to three regions, a posterior 
frontal region, which included the frontal eye fi elds, a posterior 
region that extended from the ventral intraparietal sulcus to lateral 
occipital regions, and a region encompassing the right hippoc-
ampus (Figure 5A). There was no such relation for EEG signal 
from these cortical sources with rTMS to S1 and/or during object 
memory. In contrast, for each of the three control conditions, we 

Accuracy

0

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y 
(p

ro
po

rt
io

n 
co

rr
ec

t)

RT

700

800

900

1000

1100

1200

R
T 

(m
se

c)

Object Location

S1 SPL S1 SPL

Object Location

S1 SPL S1 SPL
0

*
rTMSpresent

rTMSabsent

FIGURE 2 | Behavioral effect of rTMS. A three-way ANOVA (rTMS, brain area, 
memory task) on accuracy from revealed a main effect of memory task 
[F(1,14) = 5.22; p < 0.05] and a signifi cant rTMS × memory task interaction 
[F(1,14) = 4.72; p < 0.05, marked with an asterisk]. The main effect of memory 
task was driven by the fact that subjects had a higher accuracy in object 
memory trials compared to location memory trials [t(14) = 2.29; p < 0.05]. The 
rTMS × memory task interaction was due to an increase in accuracy with rTMS 

specifi cally during location working memory trials [t(14) = 2.17; p < 0.05]. All 
other effects and interactions were non-signifi cant (all F-values <1.47). 
Three-way ANOVA (rTMS, brain area, memory task) on RT showed only a main 
effect of memory task [F(1,14) = 10.00; p < 0.01]. Subjects were faster at 
responding to location memory trials compared to object memory trials 
[t(14) = 3.16; p < 0.01]. There were no other signifi cant main effects or 
interactions with RT (all F-values <2.76).

258
259
260
261
262
263
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321



Frontiers in Integrative Neuroscience www.frontiersin.org June 2009 | Volume 3 | Article 14 | 5

Hamidi et al. rTMS and oscillations

observed a positive correlation between the effect of rTMS on accu-
racy and its effect on alpha-band power (Figures 5B–D). These 
correlations signifi cantly differed from that of SPL rTMS during 
location memory (p-values <10−4). The source estimates of these 

correlations varied, but in general were located in posterior parietal 
and bilateral occipital cortices (see Figure 5 for details). For all task 
conditions, the correlations were stronger during the second half 
of the delay period.
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rTMS and for both object memory conditions, there was a trend toward a 
positive relationship between rTMS-induced change in alpha-band power and 
change in accuracy (this trend became signifi cant during the second half of the 
delay period). Data shown is from the electrode immediately below the TMS 
coil (electrode P3, circled).
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For three task conditions (SPL/location memory, SPL/object 
memory and S1/object memory), there was a positive correla-
tion between rTMS-induced change in power between 14 and 
16 Hz and RT (with an increase in power corresponding to slower 
responses). Additionally, for two control conditions (SPL/object 
memory and S1/location memory) there was a signifi cant negative 
correlation between change in RT and change in power at approxi-
mately 7–10 Hz. The sources of these correlations were localized to 
several areas for each task condition without any regular pattern 
(details are presented in Figure 6 and Table 1).

Although on an individual level, with all task conditions, rTMS 
had variable effects on oscillations of other frequencies [theta- 
(4–8 Hz), beta- (15–30 Hz), and gamma-bands], there were no 
consistent effects or any signifi cant correlations between the effect 
of rTMS at these frequency bands and its effect on behavior.

CROSS-FREQUENCY PHASE SYNCHRONY
rTMS had no signifi cant group-level effect on phase synchrony 
between alpha- and gamma-band oscillations for either object or 
location memory trials. However, with SPL rTMS, two clusters of 

A B

C D

FIGURE 5 | Topographic and source maps of correlations between 

rTMS-induced change in alpha-band power and accuracy. (A) With SPL 
rTMS, during location memory trials, there was a negative correlation between 
rTMS-induced change in alpha-band power and accuracy. These correlations 
originated from three cortical sources: a large region of cortex extending from 
the left inferior parietal lobule, along the intraparietal sulcus (BA 39) to the left 
extrastriate cortex (BA 18), a region covering the left precentral sulcus (BA 6) and 
superior frontal gyrus, which included the putative frontal eye fi elds, as well as a 
region in the right medial temporal lobe corresponding to the hippocampus (not 
shown). (B) With object memory trials there was a positive correlation between 
effect of rTMS on alpha-band power and accuracy that was localized to a small 
area in the right calcarine fi ssure (not shown). There was also a region showing a 
negative correlation at the anterior region of the superior frontal sulcus (BA 9). 
(C,D) With S1 rTMS, for both memory tasks, there was a positive correlation 
between rTMS-induced change in alpha-band power and rTMS-induced change 

in accuracy. These correlations were localized predominantly to the precuneus 
(BA 7), and bilateral occipital cortex (BA 19) for location memory and bilateral 
occipital cortex (BA 18), right posterior superior temporal gyrus (BA 22) and right 
anterior superior frontal sulcus (BA 10) for object memory trials. For all task 
conditions, the correlation was more signifi cant during the late half of the delay 
period. Topographic and surface plots were calculated after averaging change in 
power at the time and frequency range indicated by the dotted rectangles on the 
corresponding time-frequency plots. The standard error of the source estimates 
of the correlations varied across voxels and task conditions, but had a mean of 
0.20 (0.08–0.37). The time-frequency plots were obtained from the electrode 
shown circled on the topographic plots and were thresholded by time domain as 
described in the “Materials and Methods” section. Yellow asterisks indicate the 
target of stimulation with TMS. Colors indicate the r-value of the correlation for 
each condition (r > 0.5 or less than −0.5 correspond to a signifi cance level of 
p < 0.05).
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posterior electrodes (one in each hemisphere) evinced a relation-
ship between PLF and accuracy, such that an increase in alpha:
gamma phase synchrony was associated with improved behavioral 
performance during location trials, and with impaired  behavioral 

performance during object trials (Figure 7). For S1 rTMS, we 
observed the opposite pattern, for location memory, the posterior 
electrodes trended toward a negative correlation, whereas for object 
memory they trended toward a positive correlation (although the 
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FIGURE 6 | Topographic and source maps of correlation between rTMS-

induced change in oscillatory power and RT. (A,B,D) For three task conditions 
(SPL/location memory, SPL/object memory and S1/object memory), there was a 
positive correlation between rTMS-induced change in power at 14–16 Hz and RT. 
(B,C) For two task conditions (SPL/object memory and S1/location memory), 
there was a negative correlation between rTMS-induced change in power at 7–
10 Hz and RT. Topographic and surface plots were calculated after averaging 

change in power at the time and frequency range indicated by the dotted 
rectangles on the corresponding time-frequency plots. The standard error of the 
source estimates of the correlations varied across voxels and task conditions, 
but had a mean of 0.21 (0.09–0.42). Time-frequency plots were obtained at the 
electrodes indicated and were thresholded by time domain as described in the 
“Materials and Methods” section. The cortical locations of this relationship 
varied for each task condition and are listed in Table 1.

Table 1 | Cortical sources of correlations between rTMS-induced change in oscillatory power and rTMS-induced change in RT. For each task condition, 

correlations were calculated by determining the mean change in power over the time and frequency ranges indicated by the dotted rectangles in Figure 6.

Task condition Frequency Correlation Brain area BA

SPL/location 14–16 Hz Positive Left postcentral gyrus 3/1/2

  Positive Left insula/postcentral gyrus 43

SPL/object 14–16 Hz Positive Left precuneus 7

  Negative Right precentral gyrus 4

  Negative Right superior frontal sulcus 6

 7–9 Hz Negative Right paracentral gyrus 5

S1/location 7–9 Hz Negative Right parahippocampal gyrus 27

  Positive Right inferior parietal lobule 40

  Positive Left inferior frontal gyrus 47

S1/object 14–16 Hz Positive Left postcentral gyrus 3/1/2

  Negative Right inferior temporal gyrus 37

349
350
351
352

353
354
355
356



Frontiers in Integrative Neuroscience www.frontiersin.org June 2009 | Volume 3 | Article 14 | 8

Hamidi et al. rTMS and oscillations

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.02 −0.015−0.01 −0.005 0 0.005 0.01 0.015
 

 

r-
va

lu
e

Change in alpha:gamma phase synchrony with rTMS

C
h

an
g

e 
in

 a
cc

u
ra

cy
 w

it
h

 r
TM

S

Location Memory

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015
−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

 

 

Change in alpha:gamma phase synchrony with rTMS

C
h

an
g

e 
in

 a
cc

u
ra

cy
 w

it
h

 r
TM

S

Object Memory

−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

 

−3

−2

−1

0

1

2

3

Z
-v

al
u

e

Difference

 

 

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01
C

h
an

g
e 

in
 P

LF
B

C

 

 

−3

−2

−1

0

1

2

3

t-
va

lu
e

 

0.14

0.142

0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

0.16

ra
w

 P
LF

 −3

−2

−1

0

1

2

3

t-
va

lu
e

A

FIGURE 7 | (A) Raw alpha:gamma phase synchrony for location and object 
memory in rTMSabsent trials. Pairwise analysis reveals a greater alpha:gamma 
synchronization in the right posterior electrodes during object memory trials. 
(B) Change in alpha:gamma phase synchrony with SPL rTMS. (C) Correlation 
between SPL rTMS-induced change in alpha:gamma phase synchrony and 
rTMS-induced change in accuracy (r > 0.50 corresponds to p < 0.05). Scatter plots 
show this relationship for electrode P3 (nearest the location of stimulation). The 
difference between the correlations in object versus spatial memory trials was 

signifi cant at right posterior electrodes (Z = 1.83–2.34 for electrodes CP6, TP8 and 
P6; p = 0.02–0.06) and marginally so for the left posterior electrodes (Z = 1.75–1.87 
for electrodes P7, P5 and P3; p = 0.06–0.08). For S1 rTMS, the difference between 
the correlations for the two task conditions did not reach signifi cance (there were 
no clusters of channels with Z > 2). All plots are derived from the mean change in 
PLF during the second half of the delay period. All plots are based on phase 
synchrony between 10 and 40 Hz oscillations. Analysis of synchrony between 10 
and 50 and 10 and 60 Hz reveals qualitatively similar results.
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difference between the two did not reach signifi cance). The effects 
of rTMS on alpha:gamma phase synchrony across subjects were 
independent of its effects on alpha-band power (no signifi cant 
relationship between the two; r = 0.14).

RESTING OSCILLATORY ACTIVITY AND rTMS EFFECT
Because the behavioral effect of rTMS has been previously shown to 
be dependent on the relationship between frequency of stimulation 
and endogenous oscillatory activity as indicated by IAF (Klimesch 
et al., 2003), it is possible that the variability in the effect of rTMS 
in this study is due to differences in peak IAF across subjects. Thus, 
we evaluated the relation between peak IAF (measured in a sepa-
rate rest session) and change in behavior with rTMS. With the 
experimental task condition there was a trend toward a positive 
linear relationship (r = 0.41; p = 0.11) and a marginally signifi cant 
quadratic relationship (r = 0.45; p = 0.09) between peak IAF and 
rTMS-induced change in accuracy. These trends suggest that the 
effects of 10-Hz SPL rTMS on behavior may relate, at least in part, to 
an individual’s peak alpha frequency. With all other task conditions 
we found no evidence for a signifi cant relationship between peak 
IAF and change in accuracy (all r-values <0.29). Additionally, with 
all task conditions there were no signifi cant relationships between 
peak IAF and rTMS-induced change in RT (all r-values <0.16). 
There was no signifi cant relationship between each subject’s peak 
IAF and the effect of rTMS on alpha:gamma phase synchrony for 
any task condition (all r-values <0.37).

DISCUSSION
The current study used EEG to examine the neural correlates of 
the behavioral effects of rTMS. We found that 10-Hz rTMS-related 
changes in power in the alpha-band of the EEG selectively pre-
dicted corresponding changes in task accuracy, with a decrease in 
alpha-band power corresponding to improved performance, and 
an increase in alpha-band power corresponding to decreased per-
formance. This effect was specifi c to task (spatial, but not object 
memory) and to rTMS target (SPL, not control area) and was 
localized to cortical sources implicated in the short-term reten-
tion of spatial information. These novel results suggest that the 
control of network-level oscillations in the alpha-band contributes 
importantly to the storage of information in working memory. 
Furthermore, they show that the complex effects of rTMS on behav-
ior can result from biasing endogenous patterns of network-level 
oscillations. Below we discuss these fi ndings and their implications 
in more detail.

SPL rTMS INFLUENCES LOCATION MEMORY PERFORMANCE
Our study fi ndings indicate that 10-Hz rTMS to SPL selectively 
enhances spatial working memory performance, and they extend 
previous fi ndings (Hamidi et al., 2008), by showing that rTMS had 
no effect on object working memory2. This specifi city is not surpris-
ing, since many studies have shown that the SPL is active during 
storage and processing of spatial information (e.g., Schluppeck 

et al., 2006; Srimal and Curtis, 2008; Ungerleider and Mishkin, 
1982) and that lesions to the SPL can selectively impair spatial 
working memory (e.g., Ferber and Danckert, 2006). Object memory 
and processing of object visual information, on the other hand, is 
thought to rely more on object processing areas of the ventral visual 
stream (e.g., Postle et al., 2003; Ranganath et al., 2004; Ungerleider 
and Mishkin, 1982).

Our data also suggest that rTMS may modulate behavior via an 
effect on neuronal oscillations. During location memory trials, the 
observed negative relationship between rTMS-induced change in 
alpha-band power and rTMS-induced change in accuracy indicate 
that 10-Hz rTMS to the SPL may directly affect spatial memory-
related alpha band-dependent processes. It is notable that this 
effect was not localized to the tissue directly under the rTMS coil, 
but rather to two other regions in the network responsible for the 
storage and control of spatial information. Additionally, the effect 
did not occur at exactly 10 Hz, suggesting that rTMS modulates 
endogenous oscillatory activity, rather than imposing its own 
rhythm. The direction of the observed correlation suggests that, 
in the dorsal visual stream, alpha-band activity may interfere with 
or inhibit storage of spatial information. Of course, the precision 
of cortical localization of EEG data is limited. Thus, one cannot 
draw defi nite conclusions about the neural generators of the scalp-
recorded activity. Nonetheless, the observed pattern in this study 
is generally consistent with the idea that one function of cortical 
alpha-band activity is inhibition of ongoing processing (Klimesch 
et al., 2007) and provides important support for the notion that 
rTMS may infl uence behavior by modulating endogenous oscilla-
tory activity (Klimesch et al., 2003).

An intriguing question that arises from the results of this study is 
whether the relationship between rTMS and neuronal oscillations is 
dependent on the stimulation frequency used. As described above, it 
is unlikely that rTMS simply leads to entrainment of neural activity. 
Yet, previous studies have shown that altering stimulation frequency 
can dramatically affect the behavioral effects of rTMS (Klimesch 
et al., 2003; Luber et al., 2007). Thus, stimulation frequency is 
clearly important. Further research is required to determine why 
and a next step toward determining the mechanism behind rTMS-
induced changes in endogenous oscillations would be to observe 
the effect of varying rTMS frequency on brain activity.

FUNCTIONAL ROLE OF ALPHA-BAND ACTIVITY IN STORAGE
Oscillations within the alpha band have been associated with 
decreased processing since the advent of EEG (Berger, 1929; 
Klimesch et al., 2007), and this idea has gained considerable 
support in recent years. For example, simultaneous EEG and 
18- fl uorodeoxyglucose positron emission tomography reveals a 
negative correlation between alpha-band EEG power and neuronal 
metabolism (Oakes et al., 2004). Similar results have been observed 
with simultaneous EEG and functional magnetic resonance imag-
ing (e.g., Goldman et al., 2002; Laufs et al., 2003). Additionally, 
single pulses of TMS to the occipital cortex are more likely to induce 
phosphenes if delivered when spontaneous alpha-band power is low 
than when it is high (Romei et al., 2008). In the context of work-
ing memory, however, the role of alpha-band activity is less clear. 
Although EEG studies of verbal working memory have reported 
a positive relation between delay-period alpha-band power and 

2The improvement in location memory performance with rTMS of S1 was unex-
pected, and was not observed in our previous study with a much larger sample size 
(Hamidi et al., 2008). Whatever its explanation, it is unrelated to the tight linkage 
with oscillations in the alpha-band that we observed with rTMS of SPL.
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working memory load (Jensen et al., 2002; Michels et al., 2008), a 
recent summary of fi ndings from intracortical recordings reveals 
both positive and negative changes in “local” EEG depending on 
electrode location (Meltzer et al., 2008). A previous study of spatial 
versus object visual working memory with magnetoencephalogra-
phy reported that parietal alpha-band power increased to a much 
greater extent during object memory trials compared to that of 
location memory trials (an effect that was replicated in this study), 
whereas parietal gamma-band activity (which is thought to signify 
local neuronal processing) was increased in location memory trials 
only. The observed increase in alpha-band power during object 
memory trials in parietal brain areas was taken to refl ect inhibition 
of task-irrelevant (spatial) processing (Jokisch and Jensen, 2007). 
The opposite effects on behavior of rTMS-induced alpha-band 
changes with spatial versus object memory trials in this study verify 
this idea. In fact, for all three control conditions (in which rTMS 
was applied to task-irrelevant brain areas), a positive relationship 
between change in alpha-band power and change accuracy was 
observed. This observation provides further evidence that alpha-
band oscillations are performing a task-specifi c function. One 
possible explanation for the positive relationship observed in the 
control conditions may be that, by targeting task-irrelevant brain 
areas, rTMS-induced alpha-band oscillations decrease task-irrel-
evant processing and, thereby, improve memory performance. The 
current fi ndings thus extend previous fi ndings by showing that 
alpha activity may not only play a role in inhibiting task-irrelevant 
areas, but can also interfere with, or inhibit processing in task-
relevant brain areas.

Independent of the negative relationship between rTMS-
induced changes in alpha-band power and accuracy, SPL rTMS-
induced changes in alpha:gamma phase synchrony were positively 
related with task performance. This observation fi ts with the idea 
that phase and amplitude dynamics may underlie independent 
functions (Palva et al., 2005; Palva and Palva, 2007), as well as with 
models of cross-frequency nesting as a mechanism of informa-
tion storage (e.g., Lisman and Idiart, 1995). Although it was not 
possible to determine the cortical sources of these cross-frequency 
effects, the observed pattern may suggest that rTMS-induced 
increases in alpha:gamma synchrony in posterior parietal brain 
regions result in improved location memory performance, whereas 
rTMS-induced increases in alpha:gamma synchrony in inferior 
and temporal brain regions result in improved object memory 
performance.

How alpha-band activity affects neuronal processing is unknown, 
although low frequency neuronal oscillations, including alpha, are 
thought to signify top-down attention-mediated control (Klimesch 
et al., 2007; Michels et al., 2008; von Stein et al., 2000). Yet, several 
groups have recently reported multiple independent alpha-band 
sources, suggesting that alpha-band activity may serve multiple 
functions (i.e., Bollimunta et al., 2008; Meltzer et al., 2008; Michels 
et al., 2008). For example, with intracortical recordings a recent study 
distinguished infragranular and supragranular alpha-band activity 
at different cortical areas and provided evidence for both alpha 
band-related top-down and bottom-up processing (Bollimunta 
et al., 2008). Thus, with respect to our data, it is conceivable that one 
alpha-band oscillator is performing an inhibitory function through 
amplitude modulation, whereas another is  supporting memory via 

cross-frequency phase dynamics. How rTMS  interacts with these 
processes to bring about the observed changes in brain activity 
requires further study. Nevertheless, together with prior work show-
ing that the behavioral effects of rTMS are highly dependent on the 
frequency of stimulation (Klimesch et al., 2003; Luber et al., 2007), 
our data suggest that 10-Hz stimulation likely directly interacts with 
endogenous neural processes across a wide range of frequencies. 
This novel fi nding suggests that oscillatory neuronal activity plays 
an active role in cognitive processing and is not a passive epiphe-
nomenon (Klimesch et al., 2007).

14–16 HZ OSCILLATIONS AND RT
We also observed that rTMS-induced change in 14–16 Hz power 
correlated positively with RT, such that, an increase in 14–16 Hz 
power was associated with a slowing of RT. Interestingly, this fre-
quency range falls within the frequency band associated with the 
mu motor rhythm and post-movement beta rhythm (Pfurtscheller 
and Neuper, 1997; Pfurtscheller et al., 1997). These rhythms pre-
dominate in brain areas involved in motor control and are maxi-
mal when movements are being inhibited (Chen et al., 1997; Hari 
et al., 2006). Thus, an intriguing possibility is that this rhythm also 
suppresses a motor preparation process resulting in a slowing of 
response.

INDIVIDUAL DIFFERENCES
The neurophysiological and behavioral effects of rTMS varied 
widely across subjects. The factors that contribute to these intersub-
ject differences are unclear. We did not fi nd any relations between 
gender or age and effect of rTMS (data not shown). There are 
several other factors that may explain the observed individual dif-
ferences in rTMS-induced effects. One possibility concerns inter-
individual differences in the location of the peak IAF (Klimesch 
et al., 2003). In our experimental task condition, we found marginal 
evidence for a relationship between peak IAF and the effect of 
rTMS on behavior. Thus, the effect of rTMS may depend, at least 
in part, on the interaction between stimulation frequency and the 
“natural” frequency of the area targeted and/or the frequency of 
task-induced endogenous processes in the targeted area (Rosanova 
et al., 2009). Other possible explanations of variability in the effect 
of rTMS include differences in the orientation of the coil relative 
to the underlying anatomy (Bonato et al., 2006), differences in 
functional connectivity or use of alternative behavioral strategies 
during task performance.

Another explanation for the variable effects of rTMS across sub-
jects may be that to a certain extent, the brain activity induced by 
rTMS facilitates cognitive processing, but above a certain level, the 
effect of rTMS becomes detrimental. In other words, the effect of 
rTMS on cognitive processing may follow an inverted-U pattern. 
Hence, for some subjects the peak of the facilitatory effects of rTMS 
may be higher than for others. Such an effect may be a result of 
stochastic resonance, such that, superimposition of a noisy signal 
by rTMS will facilitate detection of subthreshold oscillatory signals. 
However, after a certain point, the level of noise will overwhelm 
any underlying signal (Moss et al., 2004). This possibility can be 
tested by altering the stimulation intensity on an individual subject 
basis, and observing the effect of rTMS on brain activation and 
behavior.
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Although it is unclear why rTMS produces differential 
effects across subjects, this does not detract from our fi nding 
that rTMS-induces changes in working memory performance 
are related to its effect on alpha-band power. Importantly, the 
observed individual differences suggest that, perhaps, by tai-
loring the stimulation parameters for each subject, it may be 
possible to selectively inhibit or potentiate cognitive process-
ing. Determining the factors underlying individual differences 
in rTMS effects will be important for refi ning the functional 
effects of rTMS in future studies and, potentially, for improving 
the clinical effi cacy of rTMS.

CONCLUSIONS
The present fi ndings reveal that rTMS may infl uence behavior 
by interacting with endogenous neuronal oscillations. Individual 
differences in rTMS-induced changes in behavior were predicted 
by individual differences in the effect of rTMS on power in the 
alpha-band of the EEG, an effect that was localized to a distributed 

network implicated in spatial cognition. These results demonstrate 
that rTMS can have complex effects on neuronal oscillations with 
variable effects across subjects. They illustrate that the behavioral 
effects of rTMS are not necessarily due to induction of a “virtual 
lesion”. In addition, in line with previous work, our results pro-
vide strong evidence that there are multiple, distinct alpha-band 
sources that independently support cognitive processing and, fur-
thermore, that amplitude and phase dynamics both play active 
roles in cognition.
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