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Perception reflects an integration of “bottom-up” (sensory-driven)
and “top-down” (internally generated) signals. Although models
of visual processing often emphasize the central role of feed-for-
ward hierarchical processing, less is known about the impact of
top-down signals on complex visual representations. Here, we in-
vestigated whether and how the observer’s goals modulate object
processing across the cortex. We examined responses elicited by
a diverse set of objects under six distinct tasks, focusing on either
physical (e.g., color) or conceptual properties (e.g., man-made).
Critically, the same stimuli were presented in all tasks, allowing
us to investigate how task impacts the neural representations of
identical visual input. We found that task has an extensive and
differential impact on object processing across the cortex. First, we
found task-dependent representations in the ventral temporal and
prefrontal cortex. In particular, although object identity could be
decoded from themultivoxel responsewithin task, there was a sig-
nificant reduction in decoding across tasks. In contrast, the early
visual cortex evidenced equivalent decoding within and across
tasks, indicating task-independent representations. Second, task
information was pervasive and present from the earliest stages
of object processing. However, although the responses of the ven-
tral temporal, prefrontal, and parietal cortex enabled decoding of
both the type of task (physical/conceptual) and the specific task
(e.g., color), the early visual cortex was not sensitive to type of
task and could only be used to decode individual physical tasks.
Thus, object processing is highly influenced by the behavioral goal
of the observer, highlighting how top-down signals constrain and
inform the formation of visual representations.
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Perception reflects not only the external world but also our
internal goals and biases. Even the simplest actions and deci-

sions about visual objects require a complex integration between
“top-down” (internally generated) and “bottom-up” (sensory-
driven) signals (1). For example, the information used for object
categorization depends on top-down signals arising from the spatial
(2) or conceptual (3) context in which the object appears, the prior
experience of the observers (4, 5), and the specific task (6, 7).
Despite such strong behavioral evidence, the neural correlates of
this integration remain unclear, both in terms of the cortical
regions involved and the extent of the integration within those
regions. Here, we investigate the impact of diverse behavioral
goals on the neural architecture that supports object processing.
Object recognition is known to depend on the ventral visual

pathway, a set of interconnected cortical regions extending from
early visual areas (e.g., V1/V2) into the anterior inferotemporal
cortex (8). It has been argued that object processing along this
pathway can largely be captured in feed-forward hierarchical
frameworks without the need for top-down signals (9–12). For
example, in the HMAX model (10), the integration of top-down
signals is largely constrained to the extrinsic targets of the
pathway (8), and in particular the lateral prefrontal cortex
(LPFC) (13–17). However, there is strong evidence that top-
down signals, such as attention and task, modulate the magni-
tude of response to simple visual stimuli (e.g., gratings) in early

visual areas (18–23) and the response to objects in extrastriate
regions (24–30).
Although these prior studies provide evidence of an effect of

top-down signals on object processing, they afford only limited
insight because they tested only the modulation of overall activity
and not the impact of top-down signals on fine-grained object
information available in the response. The importance of this
distinction between gross modulation versus fine-grained in-
formation is apparent in functional MRI (fMRI) investigations
of working memory, where not all regions that evidence activity
modulations contain information about the maintained objects
(31, 32). Crucially, quantifying object information allows for a di-
rect test of whether object representations are task-independent
(equivalent information within and across tasks) or task-dependent
(reduced information across compared with within tasks). Without
this test, it remains unclear whether top-down signals, such as task,
fundamentally alter the representations of objects or simply scale
the response to them.
To investigate the full range of task effects, we presented

a broad set of objects in six separate tasks, half of which probed
physical properties of the stimulus (e.g., color: red/blue) and half
its conceptual properties (e.g., content: manmade/natural). This
paradigm overcomes a limitation of previous studies, which often
treated task and stimulus as simple dichotomous variables (26–30),
making it difficult to generalize beyond the limited range of
tasks and objects tested. Furthermore, previous studies often
manipulated only whether an object was attended or not, and
therefore could not establish how different types of information
are extracted from the same attended stimuli. In contrast, by
presenting an identical set of object images under multiple tasks,
all requiring attention to the images, and extracting the response
to each combination of task and object, we were able to directly
test the effect of task on object responses.

Significance

Visual recognition is often thought to depend on neural rep-
resentations that primarily reflect the physical properties of
the environment. However, in this study we demonstrate that
the intent of the observer fundamentally perturbs cortical
representations of visual objects. Using functional MRI we
measured the patterns of response to identical objects under
six different tasks. In any given task, these patterns could be
used to distinguish which object was being viewed. However,
this ability was disrupted when the task changed, indicating
that object representations reflect not only the physical
properties of the stimulus, but also the internal state of
the observer.
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Our results revealed that task context has a pervasive effect on
visual representations throughout the early visual cortex (EVC),
the ventral visual pathway, and the LPFC. Task modulated
both response magnitude and multivariate response patterns
throughout these regions. Critically, responses in the ventral
object-selective as well as the LPFC, were task-dependent, with
reduced object information across tasks compared with within
task. In contrast, object information in the EVC was task-
independent, despite large task-related activity modulations.
Together, these findings demonstrate that top-down signals
directly contribute to and constrain visual object representa-
tions in the ventral object-selective and LPFC. Such effects
strongly support a recurrent, highly interactive view of visual
object processing within the ventral visual pathway that con-
trasts with many primarily bottom-up frameworks (9, 10).

Results
Twenty-five participants (10 males) viewed images of everyday
objects (Fig. 1A) while they performed six different tasks,
requiring judgments about either a physical (fixation, color,
tilt) or a conceptual property (content, movement, size). We
used a fully interleaved event-related fMRI design that allowed us

to simultaneously and independently manipulate both the object
presented and the task performed on each trial (Fig. 1B).
Our primary question was whether the neural representations

of objects vary as a function of task. Thus, we independently
localized two object-selective regions-of-interest (ROIs) in the
occipito-temporal cortex: lateral occipital (LO) and posterior
fusiform (pFs). To compare the effect of top-down signals on
these areas with the earliest and latest stages of visual processing,
we also localized the central-field representation of the EVC and
LPFC, respectively (Materials and Methods). We performed two
types of analyses: First, we used multivariate pattern analysis to
investigate the effects of task on object information present in
the distributed pattern of response. Second, we examined the
overall effect of task on both the multivoxel and average re-
sponse in each ROI.

Average Activation. In each ROI (EVC, LO, pFs, LPFC), we first
extracted the magnitude of response for each of the six tasks
averaged across objects (Fig. 2). A three-way ANOVA with
Task, ROI, and Hemisphere (left, right) as factors, revealed
a significant ROI × Task × Hemisphere interaction [F(15, 270) =
2.64, P < 0.03]. Separate two-way ANOVAs in each ROI with
Task and Hemisphere as a factor showed that the EVC and LO
evidenced significant task modulations [EVC, F(5, 120) = 4.77,
P < 0.001; LO, F(5, 105) = 6.76, P < 0.0001]; other ROIs (all F <
1.14, P < 0.35), largely because of a stronger response in the
fixation, compared with all other the tasks (paired t tests; all t >
2.55, P < 0.02). This modulation of activation in the EVC is
consistent with prior studies (e.g., refs. 18 and 21). Only the LPFC
showed any effect of Hemisphere, manifested in a significant
Task × Hemisphere interaction [F(5,120) 11.55, P < 0.00], largely
because of differing preferences for the conceptual and physical
tasks (see Task Type, below). The differences in task effects be-
tween ROIs argue against a general arousal or difficulty account
of the modulation. Furthermore, there was no evident relation-
ship between the observed activations and behavioral perfor-
mance measured outside the scanner. Briefly, across all ROIs,
none of the reaction times for the different task conditions were
significantly correlated with the response magnitude for the in-
dividual tasks (SI Text and Table S1). These findings strongly
suggest that the task effects cannot be simply explained by dif-
ferences in performance across tasks.

Multivariate Information Analysis. To quantify the precise effect of
task on object information, we used multivariate pattern analysis
(Materials and Methods) to quantify the relationship between
every possible pairing of object and task. Specifically, we cross-
correlated the voxel response patterns for every possible pair of
the 48 conditions (8 objects × 6 tasks) across independent halves
of the data. This split-half analysis yielded a 48 × 48 similarity
matrix for each ROI in which each point represents the response
similarity between a pair of conditions (Fig. 3). These matrices
provide a very rich description of the strong and differential
integration of task and object in the response patterns of the
ROIs. Here we will focus on three particular aspects of the in-
formation available in these matrices. First, and critically, the
relative strength of object decoding both within and across tasks
(Fig. 3C, Upper) as a measure of the impact of task on object
information; second, task type decoding (physical/conceptual)
(Fig. 3C, Lower Left) as a measure of the grouping of object
responses by the type of high-level judgment; finally, task
decoding within each task type (Fig. 3C, Lower Right) as a mea-
sure of the grouping of object responses by individual task.

Task-Dependence of Object Information. We started by investigating
the critical question of whether object decoding is equivalent
within and across tasks (task-independent) or reduced across
tasks (task-dependent) (Figs. 3C and 4A).

A

B

Fig. 1. Experimental paradigm. (A) Examples of each of the eight objects
presented (butterfly, cow, dresser, flower, motorcycle, roller skates, tree,
vase). Six unique exemplars of each object were used, totaling 48 individual
stimuli. Each stimulus was presented in each of the six tasks allowing us to
compare the effect of task when the physical stimuli are held constant. (B)
Sequence of events in a single trial. Each trial commenced with a cue spec-
ifying the task (physical tasks: fixation, color, tilt; conceptual tasks: content,
movement, size), followed by a jittered ISI and then the presentation of the
object stimulus. After another jittered ISI, a response screen was presented
indicating the two response alternatives for that task and which button (left
or right) was associated with each (response mapping).
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First, to compute within-task object decoding, for each sepa-
rate task we subtracted the average between-object correlations
(off-diagonals) from the average within-object correlation (main
diagonal; schematically illustrated in Fig. 3C, Upper Left, black
minus gray squares; e.g., Fig. 4A, Left). This results in an index of
object decoding, where any value significantly greater than zero
reflects the presence of significant object information. The strength
of within-task object decoding did not vary as a function of Task
[F(5, 90) < 1.00] or Task Type [F(1, 18) < 1.00], as assessed by a
Hemisphere × ROI × Task (or Task Type) ANOVA. Therefore,
the within-task object decoding indices were averaged across
all tasks, revealing significant object decoding in all visual areas
(see also refs. 33–35) (all t > 3.73, P < 0.001) (Fig. 4B; see also
Table S2 for analogous results in terms of percent correct) as well
as the LPFC (t > 2.55, P < 0.008). An ANOVA with ROI and
Hemisphere as factors revealed that within-task object decoding
varied across ROIs [F(3, 54) = 5.86, P < 0.003] and was stronger
in visual areas (EVC, LO, pFs) compared with the LPFC (all t >
3.15, P < 0.004).
We next calculated across-task object information by con-

ducting a similar subtraction across each pairwise comparison of
tasks (schematically illustrated in Fig. 3C, Upper Right) and then
averaged across all possible task pairs (e.g., Fig. 4A, Right; see
also Table S2), revealing significant across-task object decoding
in all visual areas (all t > 3.31, P < 0.003), but not the LPFC (t =
1.26, P > 0.10). An ANOVA with ROI and Hemisphere as
factors revealed that across-task object decoding also varied
across ROIs [F(3, 54) = 16.80, P < 0.0001] with stronger
decoding in visual areas (EVC, LO, pFs) than in the LPFC (all
t > 3.43, P < 0.001).
Although object decoding was significantly above chance both

within and across tasks in all visual ROIs, the critical test is the

relative level of object decoding. In the EVC and LO, within-
and across-task object decoding was similar, suggesting task-
independent object representations. However, in both the pFs
and LPFC, within-task object decoding was greater than across-
task object decoding, suggesting task-dependent object repre-
sentations (Fig. 4B). A three-way ANOVA with ROI, Hemisphere
(left, right), and Task (within task, across tasks) as within-subject
factors revealed a significant main effect of ROI [F(3, 54) = 11.01,
P < 0.0001], reflecting the weaker decoding in the LPFC than the
visual regions, no effects of Hemisphere and, critically, a signifi-
cant Task × ROI interaction [F(3, 54) = 5.12, P < 0.005]. A series

Fig. 2. Task effects on magnitude of response. Average response magni-
tude in each of the ROIs for the six tasks (physical tasks, blue; conceptual
tasks, red) averaged across hemispheres. The EVC and LO showed a sig-
nificant main effect of task, driven primarily by higher magnitude of re-
sponse to the fixation task relative to all other tasks. *P < 0.05, Main effect
of Task, assessed within each ROI by a Hemisphere × ROI ANOVA. Note
that although the LPFC did not show a significant main effect, it displayed
a significant Task × Hemisphere interaction (see text for details). n.s., not
significant.

A

B C

Fig. 3. Comparison of multivoxel object and task responses. (A) Raw simi-
larity matrices for the EVC, LO, pFs, and LPFC ROIs averaged across all par-
ticipants. Each matrix is 48 × 48 cells (6 tasks × 8 objects), with each cell
reflecting the correlation between a pair of conditions across two in-
dependent halves of the data. Solid lines denote borders between the two
Task Types (physical, conceptual). Dashed lines denote borders between in-
dividual tasks. Note that the positive and negative correlations are generally
well grouped by task, suggesting that information about task is manifest in
the neural pattern of response of all visual ROIs as well as in LPFC. The colors
are scaled from the highest (yellow) to lowest (cyan) correlation value in
each matrix. (B) Organization of the similarity matrices. (C) Schematic ma-
trices indicating how different effects would be manifest in the similarity
matrices and how the decoding indices were calculated. Object information
within task (Upper Left) is indicated by stronger correlations for the same
object (black) than for different objects (gray). Object information across
tasks (Upper Right) is indicated by stronger correlations for the same object
in different tasks (black) compared with different objects (gray). Task type
information (Lower Left) is indicated by stronger correlations between all
conditions of the same task type (black), compared with those across task
type (gray). Finally, task information (Lower Right) for each task type is in-
dicated by stronger correlations between objects in the same task (black)
compared with different tasks (gray).
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of t tests demonstrated stronger within- than across-task object
decoding in the pFs [t(24) = 2.91 P < 0.004] and LPFC [t(24) =
2.07, P < 0.02], but equivalent within- and across-task object
decoding in the EVC and LO (both t < 1.00, P > 0.20). This
pattern of results was also found when the fixation task, which
differed from the other tasks in response magnitude in some
ROIs, was excluded from the decoding analysis (Fig. S1).
Importantly, variations in noise across individual tasks cannot

account for the reduction in decoding, because there were no
significant differences in within-task object decoding (see above).
Thus, the present results demonstrate that object representations
in the pFs and LPFC are task-dependent (changing systemati-
cally and significantly across tasks).

Task Information. We next investigated whether task in general is
reflected in the response patterns of the ROIs. The full similarity

matrices suggest that task is a strong and differential driver of the
variance in correlations in all ROIs (Fig. 3A). To better visualize
this effect, we used multidimensional scaling (MDS) to produce
plots wherein the distance between points reflects the dissimi-
larity in their patterns of response (Fig. 5). There was clear
separation by task in all ROIs, but the exact nature of the sep-
aration varied. In particular, the LO, pFs, and LPFC primarily
showed a separation by Task Type (physical, conceptual). This
separation was most pronounced in the LPFC, which also showed
a strong segregation of individual physical tasks. In contrast to the
other ROIs, the EVC did not show a distinction between the two
Task Types, but did evidence a strong distinction between the fix-
ation and other tasks (Fig. 5). To quantify these observations we
used two measures of task information: decoding of Task Type (i.e.,
how distinguishable are the response patterns to physical and the
conceptual tasks), and decoding of individual tasks within each
Task Type (i.e., how distinguishable from one another are the re-
sponse patterns to individual tasks).

Task Type. We calculated Task Type decoding indices (Materials
and Methods, and Figs. 3C, Lower Left, and 6A; see Table S3 for
analogous results in terms of percent correct) and entered them
into a two-way ANOVA with ROI and Hemisphere as within-
subject factors. Confirming the patterns apparent in the MDS
plots, this ANOVA revealed only a significant main effect of ROI
[F(3, 54) = 6.09, P < 0.004], reflecting greater Task Type
decoding in all regions relative to the EVC (all t > 2.52, P <
0.01). Both the pFs and LPFC showed significant Task Type
decoding (all t > 2.26, P < 0.02), whereas the LO and EVC
carried no significant information [EVC: t(24) = −2.18, P <
0.02; note that negative decoding values reflect lack of a con-
sistent response across tasks within a Task Type].

A

B

Fig. 4. Object decoding within and across tasks. (A) Examples of within-task
object decoding (Left) and across-task object decoding (Right) averaged
across tasks in the pFs. For each individual task, we focused on the 8 × 8
object similarity matrix and calculated within-task object decoding indices by
subtracting the average between-object correlations (off-diagonals) from
the within-object correlations (diagonal). Across-task object-decoding indices
were calculated in a similar manner but focusing on the object similarity matrices
comparing object response patterns in two different tasks and averaging across
all possible pairwise comparisons of tasks. In this example for the pFs, strong
object decoding within task is abolished when comparing across tasks. (B)
Within-task object-decoding indices (green bars) and across-task indices (purple
bars). Although within- and across-task object-decoding indices were signifi-
cantly above chance in all ROIs except LPFC, the relative levels of within- and
across-task decoding varied. In the EVC and LO, there was no difference in
decoding, suggesting task-independent object representations. In contrast, in
both the pFs and LPFC across-task decoding was significantly weaker then
within-task decoding, suggesting task-dependent object representations. All er-
ror bars in this and every other plot indicate the between-subjects SE. *P < 0.05.

Fig. 5. Task information. MDS plots highlighting the relationship between
responses for each task in each ROI. The distance between points represents
the similarity in the response patterns for the different conditions, with
closer distance representing greater similarity. In the EVC and LO the
structure strongly reflects the distinctiveness of the fixation task, with little
grouping by Task Type. In contrast, the pFs and LPFC display a weaker sep-
aration of the fixation task, but also a strong grouping by Task Type, par-
ticularly in the LPFC. Response patterns in the LPFC also display a strong
separation of the individual physical tasks.
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Given the strong effect of Task Type in the response patterns,
we next examined modulations in response magnitude by Task
Type. Although the response in the EVC was stronger during the
physical than conceptual tasks, the opposite was true in the pFs
(Fig. 6B). Furthermore, the LPFC incorporated both effects,
with the left hemisphere showing a conceptual advantage and
the right hemisphere showing a physical advantage. A three-way
ANOVA with ROI, Hemisphere, and Task Type as within-subject
factors revealed a significant ROI × Hemisphere × Task Type in-
teraction [F(3, 54) = 9.93, P < 0.0001].
To establish the source of this three-way interaction, we then

ran separate two-way ANOVAs for each ROI with Task Type

and Hemisphere as factors. These analyses revealed a main ef-
fect of Task Type in the EVC and LO, with greater response in
the physical relative to the conceptual tasks [EVC: F(1, 24) =
10.85, P < 0.003, LO: F(1, 21) = 4.30, P < 0.05]. Object-selective
pFs showed an opposite pattern with greater response for the
conceptual than physical tasks, [F(1, 21) = 7.20, P < 0.02]. No-
tably, there were no significant interactions with Hemisphere (all
F < 4.02, P > 0.06) in any visual area. In contrast to the visual
areas, the LPFC showed a Task Type × Hemisphere interaction
[F(1, 24) = 29.23, P < 0.0001], reflecting a stronger conceptual
then physical response in the left hemisphere [t(24) = 2.70, P <
0.01] with the opposite pattern in the right [t(24) = 2.40, P <
0.02]. This differential effect of Task Type across the ROIs
argues against any general effect of difficulty or attention be-
tween the physical and conceptual tasks.
Having shown that Task Type plays a key role in driving the

responses to visual stimuli, we next evaluated whether the pat-
terns of response within each ROI contained information about
the specific task.

Individual Task. Given the effects of Task Type, we evaluated
decoding within each Task Type separately (i.e., physical: fixa-
tion vs. color vs. tilt; conceptual: content vs. size vs. movement).
Specifically, we calculated individual task-decoding indices by
subtracting across-task from within-task correlations (Fig. 3C,
Lower Right) separately for each Task Type (Fig. 7) (see Mate-
rials and Methods for further details).
Individual physical tasks could be decoded from one another

in all ROIs (all t > 3.49, P < 0.002), with strongest decoding in
the EVC and LO (Fig. 7A). A two-way ANOVA with ROI and
Hemisphere as within-subject factors revealed a significant main
effect of ROI [F(3, 54) = 13.20, P < 0.0001] and a significant
ROI × Hemisphere interaction. Pairwise comparisons between
ROIs revealed a posterior-anterior gradient: physical task decod-
ing was stronger in the EVC than the other ROIs (all t > 4.05, P <
0.0001), and the LO was stronger than the other pFs and LPFC
(all t > 2.75, P < 0.01), which, in turn, did not differ from each
other (P < 0.21). Whereas there was equivalent decoding in the
EVC and LPFC across hemispheres (all t < 1.64, P > 0.11), in
the object-selective cortex (LO and pFs) decoding was stronger
in the left (all t > 2.08, P < 0.05).
To evaluate physical task decoding absent the strong effects of

the fixation task in the early visual areas (Fig. 5), we recalculated
the physical task-decoding indices excluding this task. This pro-
cess results in significant (all t > 2.60, P < 0.02) and equivalent
decoding in all ROIs (Fig. 7B), as shown by a two-way ANOVA
with ROI and Hemisphere as within-subject factors revealing no
significant main effect of ROI [F(3, 54) < 1.00]. There was
a significant ROI × Hemisphere interaction [F(3, 54) = P <
0.02], stemming from stronger decoding in the left hemisphere in
the pFs and LPFC (all t > 2.74, P < 0.01), but not in the EVC
and LO (all t < 1.76, P > 0.09). The lack of a gradient with the
removal of the fixation task highlights the potential involvement
of spatial attention in the fixation task, consistent with previous
reports of strong spatial attention effects in early visual areas (for
reviews, see refs. 36 and 37).
Finally, decoding of individual conceptual tasks was significant

only in the LPFC [t(24) = 3.14, P < 0.004; all other t < 0.76, P >
0.45]. A two-way ANOVA with ROI and Hemisphere as factors
showed no effects of either factor on the strength of conceptual
task decoding (all F < 1.07).
To assess whether the strength of task decoding reflected

individual differences in task performed, we compared the mean
pair-wise decoding of tasks with the corresponding mean pair-
wise differences in reaction time (SI Text). There were no
significant correlations within any of the ROIs, suggesting that
decoding does not simply reflect individual differences in
task difficulty.

A

B

Fig. 6. Task Type information. (A) Task Type (physical, conceptual) decod-
ing across the ROIs. Any decoding index significantly greater than zero
indicates that the Task Type could be decoded in the region. Significant
decoding was found in all regions, except for the EVC. *P < 0.05. (B) Com-
parison of response magnitude for physical and conceptual tasks averaged
across the individual tasks. Bars show the difference in magnitude for con-
ceptual and physical tasks with blue bars indicating stronger responses to
physical tasks and red bars stronger response to conceptual tasks. In the EVC
and LO, the physical tasks elicited a higher response relative to the con-
ceptual tasks, but in pFs the reverse was true. In the LPFC, the effect of Task
Type interacted with Hemisphere: Left hemisphere evidenced a conceptual
task advantage, whereas the right hemisphere displayed a physical advan-
tage. **P < 0.01.
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In sum, these analyses of task information demonstrate that
task plays a major role in driving the response patterns within the
EVC, the ventral visual pathway, and the LPFC. Task Type could
be decoded from response patterns in the LPFC and pFs, but not
the LO or EVC. Furthermore, individual tasks could be deco-
ded, and the physical tasks could be decoded even with the fix-
ation task excluded.

Parietal Cortex. The main goal of the current work was to de-
termine how top-down signals impact object representations

along the ventral visual pathway. However, the parietal cortex is
also known to flexibly change its activity according to task
demands (38–40), and thus it has been suggested to represent the
behavioral relevance or prioritization of planned actions and
goals (41–44). To evaluate how the parietal cortex represents the
current task manipulations, we localized the parietal cortex
(similar to the LPFC; see Materials and Methods) and conducted
the same analyses reported above. Multivariate information anal-
ysis revealed that task has a profound effect on the patterns of
response in the parietal cortex. In particular, both the type of task
and the individual task could be decoded from the patterns of
response in the parietal cortex (Fig. 8A). The MDS showed a clear
separation between physical and conceptual tasks, as well as be-
tween individual physical and conceptual tasks (Fig. 8B). Task
Type decoding was highly significant [mean = 0.018, SEM =
0.004; t(24) = 4.26, P < 0.0001]. Furthermore, decoding of in-
dividual physical tasks (with and without the fixation task: mean =
0.036, SEM= 0.007; mean = 0.036, SEM= 0.007, respectively, all
ts > 4.93, P < 0.0001) and individual conceptual tasks [mean =
0.004, SEM = 0.001; t(24) = 3.69, P < 0.001] were both highly
significant. Task also had a significant effect on the response
magnitude of the parietal cortex [F(5, 120) = 10.17, P < 0.0001)]
(Fig. 8C), with the fixation task eliciting higher activation than all

A

B

C

Fig. 7. Individual task decoding. Decoding of individual tasks within each
Task Type. Any decoding index significantly greater than zero indicates that
the task could be decoded from the others within the same Task Type.
Schematic matrices illustrate the specific comparisons made to compute the
indices. (A) Decoding of individual physical tasks. (B) Decoding of individual
physical tasks (with fixation task removed from analysis). (C) Decoding of
individual conceptual tasks. *P < 0.05.

A B

DC

Fig. 8. Task and object representations in the parietal cortex. (A) Raw
similarity matrix for the parietal ROI averaged across all participants. As in
Fig. 4, the matrix is 48 × 48 cells (6 tasks × 8 objects), with each cell reflecting
the correlation between a pair of conditions across two independent halves
of the data (color-coded according the normalized correlation values). Solid
lines denote borders between the two Task Types (physical, conceptual) and
dashed lines denote borders between individual tasks. Note the strong
grouping by both Task Type and by individual tasks within each Task Type.
(B) MDS plot highlighting the relationship between responses pattern for
each task. Note the clear separation between the physical (blue) and con-
ceptual (red) tasks as a whole, as well as a clear separation within each type
of task between the individual tasks. (C) Average response magnitude for
the six tasks (physical tasks, blue; conceptual tasks, red) averaged across
hemispheres. *P < 0.05, Main effect of Task, assessed by a Hemisphere × ROI
ANOVA. (D) Object decoding indices within- and across-task (green and
purple bars, respectively). Within- and across-task object-decoding indices
were significantly above chance but there was no difference in decoding,
suggesting task-independent object representations in parietal cortex, even
though it contains rich task information. *P < 0.05.
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other tasks (paired t tests; all t > 2.49, P < 0.02) and the tilt task
eliciting significantly higher response relative to the conceptual
tasks (paired t tests; all t > 2.63, P < 0.02). Collapsing across Task
Type, the physical tasks elicited significantly higher activations
than the conceptual tasks [F(1, 24) = 20.22, P < 0.0001], with no
significant interaction with hemisphere [F(1, 24) = 3.22,
P > 0.08].
Critically, despite its rich task representations, object rep-

resentations in the parietal cortex were found to be task-
independent (Fig. 8D), as there was no significant difference
in the strength of object decoding within and between task [t(24) =
0.63, P > 0.50]. Consistent with prior studies highlighting
the presence of object representations in the parietal cortex
(45–47), significant object information was present both within
and between task (all t > 2.29, P < 0.03). Thus, the present
results are consistent with prior work highlighting the role of
the parietal cortex in representing behavioral relevance. No-
tably, however, task does not impact the object information
contained in this region.

Discussion
In the present study we demonstrated that object information in
the ventral object-selective and LFPC is significantly reduced
across tasks compared with within task, indicating task-dependent
neural representations of objects. In contrast, object information
in earlier visual areas was task-independent. Furthermore, the high-
level distinction between the physical and conceptual tasks
could be decoded from the object response of the ventral object-
selective and prefrontal cortex. The specific type of physical task
being performed could be decoded in all regions, including the
EVC, but the specific conceptual task in the LPFC only. These
findings suggest that object processing is highly influenced by
the behavioral goal of the observer, to the extent that the re-
sponse to identical objects is strongly determined by the task
context under which those objects appear.
Our results contrast with the common characterization of the

ventral visual pathway as a feed-forward hierarchical processing
stream that builds complex representations of visual objects in
a primarily bottom-up fashion (9, 48). Although these frame-
works do not reject the integration of top-down and bottom-up
signals, they propose that the primary neural locus of the in-
tegration is extrinsic to the pathway [e.g., the LPFC (13–17)],
with largely task-independent representations within the pathway
itself. However, our findings demonstrate that the neural rep-
resentations of objects in the ventral temporal cortex are strongly
influenced by the behavioral goals of the observer. Outside the
EVC and LO, these representations reflect a constant and on-
going interaction between sensory input and high-level behav-
ioral goals (see also refs. 1, 8, and 49–52 for related proposals).
Within the ventral visual pathway, we found that the pFs

evidenced stronger effects of behavioral goal on object repre-
sentations than the LO, although both were defined by the same
contrast. This pattern of results is consistent with the strong
engagement of the pFs cortex in the processing of high-level
visual object properties (53, 54), visual imagery (35, 55), and
visual working memory (32, 56), as well as with the character-
ization of the LO as representing lower-level visual object
properties (48, 57). Furthermore, this functional distinction may
reflect the greater density of connections in the monkey between
the ventral than lateral surfaces of inferotemporal cortex and
medial temporal lobe structures involved in long-term memory
(8). Further research is needed to elaborate the differential
mechanisms underlying object representation in the lateral and
ventral object-selective cortex.
Our results highlight the need to understand the exact con-

tribution of the LPFC to visual object representations. In the
present study, the LPFC evidenced object decoding, but only
within-task, and a strong general sensitivity to behavioral goal.

Furthermore, only the LPFC but not visual regions evidenced
significant decoding of the individual conceptual tasks. These
results suggest that there are selective visual object representa-
tions in the LPFC that are very strongly constrained by task (17,
58). Interestingly, the LPFC also evidenced a laterality differ-
ence in magnitude with greater responses for physical than
conceptual tasks in the right hemisphere and the opposite pat-
tern in the left (Fig. 6B). These findings support previous reports
of hemispheric specialization in the LPFC (59–64). The con-
ceptual bias we observed in the left LPFC is consistent with its
characterization as a semantic executive system, accessing long-
term conceptual knowledge in a task-specific manner (65, 66; for
a review, see ref. 67). The physical advantage in the right reso-
nates well with its proposed role in processing of nonverbal
content (68–70).
To reach the present conclusions we relied on a design that

allowed a direct quantification of the impact of task on object
information that goes beyond the previous studies (for a related
discussion, see refs. 31 and 32). Specifically, many studies (24–
30) treated task or object to a simple dichotomous variable (e.g.,
attended vs. unattended, faces vs. scenes) as well as averaging
over the pattern of response, making it impossible to assess ob-
ject information. In our study, we treated each combination of
task and object individually and measured information to pre-
cisely quantify the interaction between bottom-up and top-down
signals within each region. The differential sensitivity of this
approach compared with a standard approach is apparent within
our own results: whereas the pFs showed little modulation of
average activation by task but large effects on object information,
the EVC evidenced the opposite pattern. Although average ac-
tivation and multivariate measures of information are certainly
not orthogonal, these results indicate that they can reveal com-
plementary aspects of the neural response (see also ref. 71).
Our demonstration of a fundamental impact of task on object

representations even within the ventral visual pathway raises
important issues for the design of future studies. In particular, it
is clear that generalizing findings from one task to another is not
straightforward, although it is an implicit assumption in the lit-
erature. Great care must be taken in the interpretation of results
from any single task, especially complex tasks that require a very
specialized type of information to be extracted from the stimuli.
At the same time, it is important to note that in all visual regions
it was still possible to decode object identity across tasks, sug-
gesting that although representations are perturbed, they are not
completely changed. Future work, involving a wider array of
objects and tasks, is needed to establish exactly how much the
representations are perturbed within these regions and what
generalization is reasonable between tasks. This work could also
more firmly establish the exact perturbation caused by each
task: for example, by demonstrating predictable clustering of the
stimuli based on the features of interest.

Conclusion
In sum, we demonstrate that behavioral goals strongly perturb
object representations in the ventral object-selective and pre-
frontal cortex, producing reduced object decoding across tasks.
Moreover, both the individual task and type of task can be deco-
ded from visual response patterns in these regions. Even within the
EVC, the initial stage of visual processing, the task modulates the
response. Taken together, these findings suggest that behavioral
goals directly impact visual representations within the ventral vi-
sual pathway, strongly supporting a recurrent interactive view of
visual object processing, and suggest that top-down signals play
a major role at all levels of visual processing culminating in our
complex subjective perceptual experience.
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Materials and Methods
Participants. Twenty-five participants (10 males) aged 19–37 y participated in
the experiment. All participants had normal or corrected-to-normal vision
and gave written informed consent. The consent and protocol were ap-
proved by the National Institutes of Health Institutional Review Board.

Stimuli and Design. To test the influence of task on cortical object processing,
we designed an experimental paradigm that would enable the simultaneous
and independent manipulation of both task and object information on
a trial-by-trial basis. In every trial, participants saw an image containing an
object, and were required to make a judgment regarding a certain attribute
of the image. Before the presentation of the object, the specific task-relevant
attribute was presented in an instruction screen (Fig. 1A). Forty-eight unique
objects were presented in the experiment. These objects consisted of six
exemplars from eight object categories (butterflies, cows, dressers, flowers,
motorbikes, roller skates, trees, and vases). These object categories were
selected to span three conceptual dimensions: (i) Naturalness; is the object
manmade or natural? (ii) Movement: is the object mobile or static? (iii) Size:
is the object bigger or smaller than a stove? In addition, the objects were
systematically manipulated to vary in their physical appearance: the objects
were slightly tilted from their principal axis to the right or to the left, either
had a blue or a red outline, and the fixation cross changed either in the
length or height of the horizontal and vertical bars, respectively. The eight
combinations of these three physical dimensions were equally distributed
across the stimuli, so that each object category contained an even number of
each one of the physical attributes. In sum, each presentation of an object
contained three conceptual dimensions and the three physical dimensions.
These six dimensions formed the basis for the six tasks used in the experi-
ment: (i) Fixation: is the fixation cross changing in height or width? (ii) Color:
is the outline of the object colored red or blue? (iii) Tilt: is the object tilted
clockwise or counterclockwise? (iv) Content: is the object natural or man-
made? (v) Movement: is the object typically mobile or stationary? (vi) Size:
would the object fit in an oven or not? Each of the forty-eight objects was
presented in each task, allowing us to assess how the representations of the
same set of stimuli vary under different tasks.

Each trial had three components: (i) cue, indicating the task to be per-
formed; (ii) object image; and (iii) response screen. To estimate the neural
response to the object distinct from the activity driven by the cue and re-
sponse, these components were separated by variable interstimulus intervals
(ISIs) (Fig. 1B). Furthermore, to avoid effects of response planning on the
object response, participants did not know which button was associated
with the possible responses until the onset of the response screen. The ex-
periment consisted of six runs, each run composed of 48 unique (exemplar-
by-task) trials, giving a total of 288 individual trials. The order of the trials
was pseudorandomized across participants.

Event-Related fMRI Experiment. A trial commenced with the presentation of
a cue that specified the task the participant was to perform on the object in
the form of one of the six task names presented for 1 s at the center of the
screen. The cue was replaced by a uniform black screen, presented for a variable
ISI ranging from 3,000 to 5,000 ms, followed by the presentation of the stimulus
for 500 ms. All objects were presented in grayscale on a black background at the
center of the screen (subtending ∼5° of visual angle) with a superimposed white
fixation cross. Following the offset of the stimulus, a uniform black screen
appeared again for a variable ISI of 3,000–5,000 ms. Next, a response screen
appeared, indicating the two response alternatives relevant for the particular
task (color: red/blue; fixation: wide/tall; tilt: positive/negative; content: man-
made/natural; movement: still/moves; size: big/small). The response alternatives
were presented simultaneously, each alternative presented on a separate half of
the screen, indicating which button on the response box (left or right) needed to
be pressed. The button associated with a particular response appeared was
counter-balanced across the trials. The response alternatives appeared on the
screen for 500 ms, followed by a blank gray screen presented for an intertrial
interval of 1,500 ms. The overall length of each trial was 12 s. A 12-s fixation
block was added to the beginning and the end of each run, culminating in
a total run length of 10 min.

fMRI Localizer Experiment. Independent block-design scans were collected in
each participant to localize object-selective regions (LO and pFs) and the EVC.
Each of these scans was an on/off design with alternating blocks of different
types of stimuli presented while participants performed a one-back task. The
LO and pFs were defined by the contrast of objects versus retinotopically
matched scrambled objects (see also ref. 71). Object images were grayscale
photographs (5 × 3°) of objects from the same categories used in the main

experiment. Importantly, all images used in the localizer runs were from an
independent stimulus set not used in the event-related experiment. The EVC
was localized using a simple contrast of central and peripheral flickering
(8 Hz) checkerboards sized less or more than 5° of visual angle, respectively,
allowing us to identify retinotopic voxels that showed a greater preference
for the center relative to the periphery of the visual field. We also defined
a V1 ROI using the method developed by Hinds et al. (72) to identify V1,
producing qualitatively similar results.

fMRI Scanning Parameters. Participants were scanned on a research dedicated
GE 3-Tesla Signa scanner located in the Clinical Research Center on the
National Institutes of Health campus in Bethesda, MD. Whole-brain volumes
were acquired using an eight-channel head coil (30 axial slices, 3 × 3 × 3 mm,
0.3-mm interslice gap, TR for the event-related scans = 1.5 s, TR for the
localizer scans = 2 s, TE = 30 ms, matrix size = 64 × 64, FOV = 192 mm). Six
event-related runs (400 TRs each) and a minimum of two localizer scans (144
TRs) were acquired in each session. In addition, high-resolution MPRAGE
(magnetization prepared rapid gradient echo) anatomical volumes were
collected for each participant at the beginning of each scan session.

fMRI Preprocessing. Data were analyzed using the AFNI software package
(http://afni.nimh.nih.gov/afni) and custom Matlab (2007, Mathworks) scripts.
Before statistical analysis, all of the images for each participant were
motion-corrected to the eighth image of their first run. Following motion
correction, the event-related and the localizer runs were smoothed with
a 5-mm full-width half-maximum Gaussian kernel.

fMRI Statistical Analysis. Functional ROIs were created for each participant
from the two localizer runs. Significance maps of the brain were computed by
performing a correlation analysis between the assumed hemodynamic response
function and the activation time courses thresholded at P < 0.0001 (uncorrected).
ROIs were generated from these maps by taking the contiguous clusters of
voxels that exceeded threshold and occupied the appropriate anatomical loca-
tion based on previous work (33, 34). To more precisely define the LO cortex, we
excluded retinotopic voxels from the ROIs (in five of the participants, one of the
ROIs could not be localized: the right LO in three participants, left LO and
right pFs in two different participants).

To localize the LPFC we used a joint anatomical-functional ROI defined as
follows. Cortical reconstructionwas performedwith Freesurfer (http://surfer.
nmr.mgh.harvard.edu/) and SUMA (http://afni.nimh.nih.gov/afni/suma/)
software packages. Using FreeSurfer’s automatic cortical parcellation algo-
rithm (72, 73), we identified in each participant a region corresponding to
the inferior frontal gyrus pars opercularis, and rostral and caudal middle
frontal in the LPFC. To restrict this large anatomical ROI, we constrained the
ROI to only those voxels that showed significant activation during the pre-
sentation of the objects in the event-related experiment. To do this, we
calculated which voxels within the anatomical LPFC ROI that showed sig-
nificant average activation during the object presentations in each possible
split of the event-related data. We then extracted data from those voxels in
the other half of the data to assure independence. A similar procedure was
also applied to localize a parietal ROI. We identified in each participant
a region encompassing the supramarginal gyrus, inferior- and superior-
parietal cortex, using Freesurfer’s cortical parcellation, and then further re-
stricted this large ROI by selecting only the visually active voxels.

We conducted a standard general linear model using the AFNI software
package with a γ-fit to extract the event-related responses for each voxel within
the predefined ROI. β-Parameters were extracted for all individual voxels
within a given ROI and used as estimates of the magnitude of the ROI’s re-
sponse to the different conditions. The β-estimates were averaged across the
ROI and the 10 splits of the data (see below), and were later subjected to
omnibus ANOVAs (all reported P values throughout the article are Green-
house–Giesser corrected. For simplicity, we present the uncorrected degrees
of freedom). We report only the significant effects, unless the absence of the
effect is particularly relevant for the theoretical question asked.

Multivoxel response patterns across each ROI from the six event-related
runs were analyzed using an iterative version of the split-half analysis
method, a form of linear classifier (74). Specifically, the six runs were divided
into two separate datasets of three runs in all 10 possible ways (6C3/2). For
each half of the data in each of the 10 splits, significance maps were created
by performing t tests between each condition and baseline. The t values for
each condition were then extracted from the voxels within each ROI and the
mean t value subtracted from the resulting vector of condition responses
in each voxel (33, 34, 74). Note that the subtraction of the mean had no
qualitative effect on either the object of task decoding indices (Fig. S2). We
then cross-correlated across the halves of each split. The correlation values

Harel et al. PNAS | Published online February 24, 2014 | E969

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
PN

A
S
PL

U
S

http://afni.nimh.nih.gov/afni
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://afni.nimh.nih.gov/afni/suma/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1312567111/-/DCSupplemental/pnas.201312567SI.pdf?targetid=nameddest=SF2


were averaged across the 10 splits, resulting in a single 48 × 48 (6 tasks × 8
object categories) similarity matrix for each ROI, wherein each datapoint in
the matrix represented the correlation of the pattern of response for a pair
of conditions across the two halves of the data (Fig. 3). These correlation
values were either within a given condition, reflecting the consistency of
response across splits of the data (e.g., butterfly in the size task vs. butterfly
in the size task) or between a pair of different conditions (e.g., butterfly in
the size task vs. dresser in the movement task), reflecting the similarity be-
tween the patterns of response to the two conditions.
Object decoding.We investigated object decoding in each ROI both within and
across tasks. Comparing the strength of object decoding within and across
tasks provides a measure of the dependence of object representations on
task. Within-task object decoding was computed from the full matrices by
subtracting the average correlation between the different objects within
each task from the average correlation between objects and themselves
(main diagonal) (Fig. 3C, Upper Left). This subtraction resulted in an index of
within-task object identity decoding, representing the amount of object
information available in a particular task context. To measure the across-task
object decoding we computed the average correlations between the pat-
terns of response to objects and themselves across tasks and subtracted the
average correlation between different objects across tasks (Fig. 3, Upper
Right). The resulting between-task object-decoding indices represent the
amount of object information available across task context: that is, object
information that is task-independent within a particular ROI.

Task Type decoding. To quantify howwell can individual tasks be decoded both
within each type of task and between the two types, the full similarity
matrices in each ROI were averaged by task to produce a 6 × 6 matrix (Fig.
3B). Importantly, to remove any effect of the individual objects, the corre-
lations between an object and itself in the same task (main diagonal) and
across tasks were removed before averaging. The main diagonal of these
averaged task matrices represent the average within-task correlation be-
tween different objects. The off-diagonals are the average between-tasks
correlation between different objects. To formally assess how well distin-
guished the physical tasks are from the conceptual tasks, we derived a Task
Type decoding index by calculating the coherence within each Task Type
(the average between-task correlation within each Task Type) and sub-
tracting the average correlation between tasks of different types. A value
significantly greater than zero indicates that the response patterns in the
region can be reliably used to decode the type of task.
Individual task decoding. To establish whether individual tasks can be dis-
criminated from the response patterns within the physical and conceptual
tasks, we computed a task-decoding index for each of the three tasks within
each Task Type by subtracting the average between-task correlations from
the within-task correlations within each Task Type (Fig. 3C, Lower Right). This
process resulted in task-decoding indices for each of the six tasks, calculated
for each region across all participants.
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