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Working memory (WM) is a latent cognitive structure that serves to store and manipulate a limited amount of
informationover a short timeperiod.How information ismaintained inWMremains a debated issue: it is unclear
whether stimuli fromdifferent sensory domains aremaintained under distinctmechanisms ormaintained under
the same mechanism. Previous neuroimaging research on this issue to date has focused on individual brain re-
gions and has not provided a comprehensive view of the functional networks underlying multi-domain WM.
To study the functional networks involved in visual and auditory WM, we applied constrained principal compo-
nent analysis (CPCA) to a functionalmagnetic resonance imaging (fMRI) dataset acquiredwhen participants per-
formed a change-detection task requiring them to remember only visual, only auditory, or both visual and
auditory stimuli. Analysis revealed evidence of both [1] domain-specific networks responsive to either visual
or auditory WM (but not both), and [2] domain-general networks responsive to both visual and auditory WM.
The domain-specific networks showed load-dependent activations during only encoding, whereas a domain-
general network was sensitive to WM load across encoding, maintenance, and retrieval. The latter domain-
general network likely reflected attentional processes involved in WM encoding, retrieval, and possibly
maintenance as well. These results do not support the domain-specific account of WMmaintenance but instead
favor the domain-general theory that items from different sensory domains are maintained under the same
mechanism.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Workingmemory (WM) is a latent cognitive structure that serves to
store andmanipulate a limited amount of information over a short time
period (Baddeley and Hitch, 1974; Cowan, 1995). WM is crucial for a
number of advanced cognitive processes, such as language, reasoning,
and decision-making. How items are maintained in WM, however, re-
mains a debated issue. Some researchers hold that items from different
sensory domains, such as vision and audition, are stored in relatively
separate WM stores and maintained under distinct mechanisms
(Baddeley and Hitch, 1974; Cocchini et al., 2002). This account is re-
ferred to as a domain-specific view ofWMstorage. In contrast, although
acknowledging the existence of domain-specific stores in WM, others
(e.g. Cowan, 1995; Kane et al., 2004; Saults and Cowan, 2007) argue
for the existence of a unitary WM maintenance system that retains
stimuli from different sensory domains. This account is referred to as a
domain-general view of WM storage.
ogical Sciences, University of
The domain-specific and domain-general theories give rise to dis-
tinct predictions of the patterns of brain activity associated with WM
maintenance. For example, the domain-specific view predicts that dif-
ferent brain regions are involved in WM maintenance of stimuli from
different domains. Consistent with this view, Smith and Jonides
(1999) found lateralized activation of the left and right prefrontal cortex
during maintenance of verbal versus spatial information, respectively.
Additional support comes from studies suggesting that the dorsolateral
prefrontal cortex is involved in spatial WM maintenance whereas the
ventrolateral prefrontal cortex is involved in nonspatial object WM
maintenance (Courtney et al., 1996; Haxby et al., 1994; Ungerleider
et al., 1998).

In contrast to the domain-specific view, the domain-general view
predicts that in addition to brain regions specific for individual domains,
a common brain region (or regions) is consistently involved in WM
maintenance regardless of stimulus domain. This region (or regions)
may serve as either a storage system for domain-general information
or an attention system that directs attention to item-specific informa-
tion during WM maintenance. Evidence consistent with this view
comes from our recent study (Cowan et al., 2011), which found that a
region in the intraparietal sulcus (IPS)was consistently activated during
themaintenance of stimuli inWM regardless of whether it was visual or
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auditory in nature. Overlapping brain regions have also been found to
activate for verbal and spatialWM (Chein et al., 2011), visual and verbal
WM (Majerus et al., 2010), as well as verbal and tonal WM (Koelsch
et al., 2009).

As detailed above, previous neuroimaging studies have failed to re-
solve the domain-specific versus domain-general debate regarding the
nature of WM storage. Of note, the majority of these studies have relied
on univariate statistical approaches. Univariate approaches, such as the
general linear model, are focused on the time series of each voxel inde-
pendently and disregard the correlation between voxels. It can be ar-
gued, however, that the correlation between spatially distant brain
voxels is a critical feature of fMRI datasets and reflects important infor-
mation about the functional networks underlying cognitive tasks,which
would not otherwise be evident using a univariate approach alone.
Multivariate approaches take into account such inter-voxel correlations
and thusmay provide amore comprehensive viewof the functional net-
works underlying WM.

An exploratorymultivariate approach, constrained principal compo-
nent analysis (CPCA), is used in this study to investigate the domain-
general and domain-specific functional networks in WM. CPCA
combines principal component analysis (PCA) with multivariate multi-
ple regression and has been used in neuroimaging studies on WM
(Metzak et al., 2011, 2012;Woodward et al., 2006, 2013; for a complete
introduction of the theory and applications of CPCA, see Hunter and
Takane, 2002; Takane and Hunter, 2001). CPCA has several advantages
over the other multivariate approaches. First, it is an exploratory
whole-brain analysis approach and unlike other approaches such as dy-
namic causal modeling and structural equation modeling, does not re-
quire a priori extraction of a specified group of regions of interest.
Second, unlike some other exploratory approaches such as PCA and in-
dependent component analysis, CPCA excludes the task-irrelevant var-
iance and operates on the task-related variance in a data set. Finally, a
finite impulse response (FIR)-based CPCA (Metzak et al., 2012), which
is used in this analysis, is capable of tracking the dynamics of functional
network over the entire trial. This is especially important inWMstudies,
in which the successive encoding and maintenance periods appear to
recruit distinct functional networks (Woodward et al., 2006).

Application ofmultivariate techniques such as CPCA to fMRI data has
already yielded valuable insights into other WM-related questions. For
example, Woodward et al. (2006) identified separate load-dependent
functional networks for WM encoding and maintenance and found
strong negative correlation between the encoding and maintenance
networks, which indicates complementary processes underlying WM
encoding and maintenance. Importantly, past multivariate fMRI studies
ofWM (e.g., Abe et al., 2007; Chang et al., 2007; Cohen et al., 2012; Edin
et al., 2007; Edin and Klingberg, 2009; Fiebach et al., 2006; Gazzaley
et al., 2004, 2007; Habeck et al., 2012; Hampson et al., 2006, 2010;
Honey et al., 2002; Kim et al., 2012; Kondo et al., 2004a,b; Kuo et al.,
2011; Lenartowicz and McIntosh, 2005; Ma et al., 2012; Mayer et al.,
2010; Palva et al., 2010; Payne and Kounios, 2009; Rissman et al.,
2008; Schlösser et al., 2006; Sundermann and Pfleiderer, 2012) have
used stimuli from only one sensory domain. Consequently, their poten-
tial value for answering the question of a domain-general versus
domain-specific WM storage system is extremely limited.

In the present study,we bringmultivariate techniques to bear on the
question of whether theWM storage system is better conceptualized as
a domain-specific or domain-general mechanism. Specifically, we ap-
plied CPCA to an existing fMRI dataset (Experiment 2 in Cowan et al.,
2011) inwhich participants performed a task requiring them to remem-
ber stimuli from a single domain (i.e., only visual or only auditory) or
multiple domains (both visual and auditory). The domain-specific theo-
rywould predict that, when both visual and auditory stimuli are used in
the task, theWM storage systemwould recruit multiple functional net-
works, each of which includes specific brain areas for visual or auditory
processing and shows distinct activity patterns for visual and auditory
WM. In contrast, the domain-general theory would predict that in
addition to domain-specific functional networks for visual or auditory
process, a single functional network would be recruited for both visual
WM and auditory WM.

Method

For this study, we re-analyzed the data from Experiment 2 of Cowan
et al. (2011), and a detailed description of the experiment can be found
in that article. A brief summary of the experimental tasks is presented
below.

Participants

Sixteenparticipants (7males), ranging from18 to 20 years old,were
included in the analysis. All participants were college students at the
University of Missouri. Another participant was not included in the
analysis because of excessive head motion.

Behavioral procedure

Fig. 1 shows the procedure of the experiment. The participants per-
formed a change-detection task, inwhich they remembered a fewvisual
and/or auditory items for several seconds. Each trial started with a
1000ms fixation, afterwhich the participantswere presented two audi-
tory letters (2A), two visual colored squares (2V), two visual colored
squares plus two auditory letters (2V2A), or four visual colored squares
(4V), for 1500 ms. For conditions including auditory letters, the letters
were presented sequentially, with each letter lasting approximately
500 ms with a 250 ms inter-stimulus interval. For conditions including
colored squares, the colored squares were presented simultaneously
on the screen for 1500ms. Presentation of the to-be-remembered stim-
uli was followed by a 1000 ms blank display and a 500 ms visual and
acoustic mask in order to eliminate traces of sensory memory.

The sensory mask was followed by an 8000 ms retention interval,
which consisted of a blank display. Next, a single test itemwas presented,
and the participants were instructed to press a button to indicate wheth-
er this test item was the same as the remembered item at the same spa-
tial location or verbal serial position as the test item, orwas different from
any item that they remembered. The test stimulus was presented for
1000 ms, after which a “?” appeared on the screen. The participants had
3000 ms to respond to the test, after which feedback was provided.
Additionally, to discourage verbal rehearsal, the participants were
required to continuously whisper the word “the” at a rate of twice per
second from the trial onset until the test stimulus appeared. Each trial
lasted 18 s. Each participant performed 10 fMRI runs, and each run in-
cluded 16 trials (4 trials for each condition).

Neuroimaging data acquisition

The neuroimaging data was acquired with a 3T Siemens Trio scanner
at the Brain Imaging Center in the Department of Psychological Sciences
at the University of Missouri. High-resolution T1- and T2-weighted struc-
tural images were collected for use in later volume registration. Ten func-
tional runs, each lasting 195 TRs,were then collectedwith a T2*-weighted
echo planar pulse sequence (TR = 2000 ms, TE = 30 ms, resolution =
4 mm3, 32 axial slices).

Neuroimaging data preprocessing

The fMRI data were preprocessed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8/). The preprocessing included slice-
timing correction, head motion correction, co-registration of functional
and anatomical images, spatial normalization into the Montreal Neuro-
logical Institute (MNI) space, resampling to isotropic 2-mm voxels, and
spatial smoothing using a 6 mm FWHM Gaussian filter.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/


Fig. 1. Experimental procedure.
After Cowan et al. (2011).
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Functional network analysis

The univariate analysis method and results have been reported in
Cowan et al. (2011). Belowwe describe the functional network analysis
method.

The preprocessed data were analyzed using CPCA implemented
in the fMRI-CPCA toolbox (version 1.1.0.06, http://www.nitrc.org/
projects/fmricpca), which combines principal component analysis
(PCA) with multivariate multiple regression analysis. As a first (and
critical) step, CPCA performs a multivariate multiple regression on the
entire fMRI dataset in order to extract a relatively pure estimate of
task-related variance. The goal of this process is to remove nuisance var-
iance related to all task-irrelevant factors such as head movement, MR
signal drift over time, and any cognitive process unrelated to timings
of the task. In the multivariate multiple regression, two matrices are
generated: a datamatrix Z and a designmatrixG. The datamatrix Z con-
tains the standardized BOLD signal, with each row representing one
participant-specific volume and each column representing a voxel.
The design matrix G contains timing of the experimental task condi-
tions, with each row representing one participant-specific volume and
each column representing one participant- and condition- and time-
point-specific predictor. With respect to the current analysis, the
resulting matrix Z had 30,880 rows and 189,368 columns, and the ma-
trix G had 30,880 rows and 1024 columns. A finite impulse response
(FIR) model was used to estimate the BOLD signal change over post-
stimulus time. BOLD response for each condition and each participant
was modeled by 16 predictors that cover a time duration of 32 s, with
the first predictor corresponding to the trial onset corresponding to
the 1000 ms fixation. For each column of the G matrix, a value of 1
was assigned to the rows that are to be estimated by this predictor,
and a value of 0 was assigned to the remaining rows.

Multivariate least-square linear multiple regression is performed in
which the data matrix Z is regressed on the design matrix G:

Z ¼ GC þ E;
in which C contains each voxel's beta weights for each experimental
task condition in each participant, and E is the error matrix. The product
of GC reflects the variance relevant to the experimental design.

The second step of CPCA is to perform PCA on the GC matrix. This
procedure identifies a set of orthogonal variables called principal com-
ponents that explain a relatively large amount of variance in the data
set. The number of selected principal components is usually less than
the number of the original variables, and thus the dimensionality of
the data set is reduced. The procedure involves generalized singular
value decomposition of GC:

UDV 0 ¼ GC;

in which D is a diagonal matrix with nonnegative real numbers, known
as singular values, on the diagonal, U is a matrix containing the left-
singular vectors, and V is a matrix containing the right-singular
vectors. Each column of the V matrix represents a functional network
and could be rescaled using the singular values in D (VD) and be
mapped on a brain template to show the involved brain regions.
Given that the original components represented by the matrix VD
showed reasonable spatial patterns, the matrix VD was not rotated in
this study.

Condition-specific predictor weights are calculated in matrix
P (U = GP). The predictor weights in the matrix P represent the
contribution of each predictor to each principal component for each
participant, and thus allow for statistical tests of the effects of WM
load condition and time points on the functional networks represented
by the principal components.

Results

Four primary principal components were selected based on visual
examination of the scree plot. The four components each accounted
for 41.69%, 11.17%, 4.90%, and 4.19%, respectively, of the task-related
variance. We believe that these components reflect, respectively,

http://www.nitrc.org/projects/fmricpca
http://www.nitrc.org/projects/fmricpca
image of Fig.�1
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(1) domain-general encoding; (2) articulatory suppression, which was
used in all conditions; (3) domain-general attention involved in WM
encoding, maintenance, and retrieval; and (4) domain-specific visual
encoding. Another important component, reflecting domain-specific
auditory encoding, showed up sixth in the analysis and will also be
described.

The functional networks represented by the two domain-general
components, Components 1 and 3, are shown in Figs. 2A and C, respec-
tively. The predictor weights of Components 1 and 3, which depict the
contribution of each component to the task conditions over time, are
plotted in Figs. 2B and D, respectively. The functional network repre-
sented by Component 2 is shown in Fig. 3A, and its predictor weights
are plotted in Fig. 3B. The functional networks represented by the two
domain-specific components, Components 4 and 6, are shown in
Figs. 4A and C, respectively. The predictor weights of Components 4
and 6 are plotted in Figs. 4B and D, respectively. Figs. 5C1, C3, C4, and
C6 shows results of the post hoc Newman–Keuls tests comparing the
predictor weights of each pair of memory conditions at each time
point for Components 1, 3, 4, and 6, respectively.

In all figures of time courses of predictor weights, theWMencoding,
late maintenance, and response periods were marked with gray, red,
and blue rectangles, respectively, after correcting for 6 s delay of the he-
modynamic response function. The earlymaintenance periodwas influ-
enced by carryover signal from the encoding period and was thus not
marked in the figures and was not considered in interpretation of
results.

Supplemental Tables 1, 2, 3, and 4 contain the coordinates,
Brodmann area, and size (mm3) of each brain region for Components
1, 3, 4, and 6, respectively (as detailed below, Component 2 appears to
Fig. 2. Brain networks and predictor weights of two domain-general components (Components
square in C shows the left anterior IPS. Only voxelswith themost extreme 5% component loadin
shown as yellow, and voxels with negative loadings are shown as blue. Results are visualized o
vided by the Caret software (http://www.nitrc.org/projects/caret/; Van Essen et al., 2001). B and
curve: 2 visual items (2V). Yellow curve: 2 visual and 2 auditory items (2V2A). Blue curve: 4 vis
response periods, respectively. The error bars represent standard error of the means.
have limited theoretical significance and therefore was excluded from
the aforementioned tables).

Component 1: domain-general encoding

Fig. 2A shows the functional network represented by Component 1.
The functional network associated with Component 1 consisted of sev-
eral brain regions including the bilateral lateral occipital cortex, left lin-
gual gyrus, bilateral superior IPS, bilateral precuneus, bilateral superior
temporal gyrus, right fusiform gyrus, left precentral gyrus, right
premotor cortex, left dorsolateral prefrontal cortex, bilateral inferior
frontal gyrus, bilateral medial frontal gyrus, bilateral anterior cingulate
cortex, bilateral insula cortex, bilateral thalamus, and bilateral dorsal
striatum. All brain regions showed positive loading values.

Fig. 2B shows the predictor weights for each WM load condition.
Visual inspection of the plots showed that this network had the highest
predictor weights during WM encoding, which seem to depend on the
number of items to be encoded into WM regardless of sensory domain.
A two-way repeatedmeasure ANOVAwithWM load conditions (2A, 2V,
2V2A, and 4V) and time points (1 to 16) as within-subject factors
showed a significant main effect of time points, F(15, 225) = 5.77,
p b .001, ηp= .28, as well as a significant interaction ofWM load condi-
tion by time points, F(45, 675) = 1.87, p b .001, ηp = .11. The main ef-
fect of time points was mainly due to the increased predictor weights
during encoding compared with those during maintenance and probe
(Fig. 2B).

The post hoc Newman–Keuls test of the interaction effect revealed
that the 2A and the 2V condition showed almost identical predictor
weights across the trial, and that the 2V2A and the 4V condition also
1 and 3). A and C: brain regions of Components 1 and 3, respectively. The region in the red
gs (whether positive or negative loadings) are displayed. Voxels with positive loadings are
n an inflated PALS-B12 fiducial atlas (Van Essen, 2005; Van Essen and Dierker, 2007) pro-
D:mean predictorweights over time (TR=2 s) of Components 1 and 3, respectively. Red
ual items (4V). The gray, red, and blue rectangles denote encoding, late maintenance, and

image of Fig.�2
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Fig. 3. Brain networks and predictor weights of Component 2. A: brain regions of Component 2. Only voxels with themost extreme 5% component loadings (whether positive or negative
loadings) are displayed. Voxels with positive loadings are shown as yellow, and voxels with negative loadings are shown as blue. Results are visualized on an inflated PALS-B12 fiducial
atlas (Van Essen, 2005; Van Essen and Dierker, 2007) provided by the Caret software (http://www.nitrc.org/projects/caret/; Van Essen et al., 2001). B: mean predictor weights over time
(TR = 2 s) of Component 2. Purple curve: 2 auditory items (2A). Red curve: 2 visual items (2V). Blue curve: 4 visual items (4V). Yellow curve: 2 visual and 2 auditory items (2V2A). The
gray, red, and blue rectangles denote encoding, late maintenance, and response periods, respectively. The error bars represent standard errors.
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showed almost identical predictor weights across the trial (Fig. 5C1).
Importantly, the interaction was caused by higher predictor weights
for the 2V2A condition versus the 2V and the 2A condition, as well as
higher predictor weights for the 4V condition versus the 2V condition
during the encoding phase. Thus, Component 1 showed that such a pat-
tern that conditions with four items had higher predictor weights than
conditions with two items, regardless of sensory domains, during WM
encoding. This pattern suggests that this brain network is sensitive to
domain-general WM load during encoding. The 4V versus 2A contrast
Fig. 4. Brain networks and predictor weights of two domain-specific components (Components
most extreme 5% component loadings (whether positive or negative loadings) are displayed.
shown as blue. Results are visualized on an inflated PALS-B12 fiducial atlas (Van Essen, 2005
projects/caret/; Van Essen et al., 2001). B and D: mean predictor weights over time (TR= 2 s) o
and 2 auditory items (2V2A). Blue curve: 4 visual items (4V). The gray, red, and blue rectangles
resent standard error of the means.
during encoding was not significant, though the means were in the an-
ticipated order.

Component 2: articulatory suppression

Fig. 3A shows the functional network represented by Component 2.
Both positive and negative brain regions were included in this network.
The positive brain regions included the bilateral inferior frontal gyrus,
bilateral middle frontal gyrus, right superior and middle temporal
4 and 6). A and C: brain regions of Components 4 and 6, respectively. Only voxels with the
Voxels with positive loadings are shown as yellow, and voxels with negative loadings are
; Van Essen and Dierker, 2007) provided by the Caret software (http://www.nitrc.org/
f Components 4 and 6, respectively. Red curve: 2 visual items (2V). Yellow curve: 2 visual
denote encoding, late maintenance, and response periods, respectively. The error bars rep-
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Fig. 5. Significant results of the post-hoc Newman–Keuls tests. C1, C3, C4, and C6 correspond to Components 1, 3, 4, and 6, respectively. The rows are pairwise contrasts betweenWM load
conditions. The columns are 10 time points, in which time point 1 refers to the onset of a trial (fixation). The “+” sign denotes a significant positive contrast, and the “−”sign denotes a
significant negative contrast. 2V: 2 visual items. 2A: 2 auditory items. 4V: 4 visual items. 2V2A: 2 visual plus 2 auditory items. Time points 11–16 are not included in this figure, because
these time points correspond mainly to the undershoot period of the hemodynamic function which does not carry a significant amount of task-related information. Very few contrasts
were significant during this time period, the only ones being 2V–2A at time point 11 and 4V–2A at time points 11 and 12 in Component 4. Both contrasts were negative. aEncoding period,
4 and 5. bLate maintenance period, 7 and 8. cResponse period, 9 and 10.
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gyrus, bilateral caudate nucleus, and right inferior temporal gyrus. The
negative brain regions included the left postcentral gyrus, as well as
areas around the brain and near the medial line. Importantly, there
were no differences between conditions in this component (Fig. 3B).
This limits its theoretical significance; it is presented here only because
it accounts for the second-highest amount of variance overall. It is likely
to represent the brain activity related to articulatory suppression
(whispering “the” repeatedly), which was carried out from the begin-
ning of each trial through themanual response to prevent covert verbal
rehearsal, but was not carried out between trials. There also were some
indications of movement artifact from this suppression task (Birn et al.,
2005; Yetkin et al., 1996) that had been subtracted out for univariate
analyses reported by Cowan et al. (2011).

Component 3: domain-general attention

Fig. 2C shows the functional network represented by Component 3.
Both positive and negative brain regions were included in this network.
The positive brain regions included the left IPS and bilateral precentral
gyrus. The negative brain regions included the bilateral posterior
cingulate cortex, left inferior parietal lobule, bilateral occipital cortex,
bilateral postcentral gyrus, bilateral superior frontal gyrus, bilateral
ventral cingulate cortex, and bilateral ventral medial prefrontal cortex.

Visual inspection of the predictor weight plots in Fig. 2D suggests
that this network is sensitive to multimodal WM load during encoding,
maintenance, and retrieval periods. A two-way repeated measure
ANOVA with WM load conditions (2A, 2V, 2V2A, and 4V) and time
points (1 to 16) as within-participant factors showed significant main
effects of WM load conditions, F(3, 45) = 10.03, p b .001, ηp = .40,
and time points, F(15, 225) = 16.91, p b .001, ηp = .53. As illustrated
in Fig. 5C3, the main effect of WM load conditions was due to
higher overall predictor weights for the 2V2A and the 4V condition
compared with those for the 2A and the 2V condition, as well as
higher overall predictor weights for the 4V condition compared with
those for the 2V2A condition. The main effect of time points was due
to an “M”-shaped time course in which the predictor weights were
higher during encoding and retrieval and lower during maintenance
(Fig. 2D).

image of Fig.�5
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The interaction between WM load conditions and time points was
also significant, F(45, 675) = 5.79, p b .001, ηp = .28. This interaction
reflected changes of WM load effect across different periods of WM,
and it is mostly driven by a large domain-general load effect during
encoding that persisted during maintenance, and a much smaller load
effect during retrieval. Importantly, both the 2V2A and the 4V condition
showed significantly higher predictor weights than the 2A and the 2V
condition atmost timepoints representingWMencoding,maintenance,
and retrieval (Fig. 5C3). This fact suggests that Component 3 was
involved in domain-general processes in all periods of WM. Adding
the fact that most brain regions showing negative loading values in
Component 3 are part of the default mode network which typically
shows negative activation during attention-demanding tasks compared
with baseline (Buckner et al., 2008), Component 3 was likely to be
involved in domain-general attentional processes in WM. These atten-
tional processes appear to be manifested as transient peaks of activa-
tions during encoding and retrieval, as well as sustained activation
duringmaintenance.We argue that this componentwas likely recruited
in different types of attention-demanding tasks in different periods of
WM such as: feature integration, object binding, memory consolidation
during encoding, direction of attention to domain-specific stores during
maintenance, and retrieval of information just prior to response.

Component 4: domain-specific visual encoding

Fig. 4A illustrates the functional network represented by Component
4. Both positive and negative brain regions were included in this net-
work. The positive brain regions included the bilateral posterior IPS,
bilateral precuneus, left occipital cortex, left precentral gyrus, left
dorsolateral prefrontal cortex, bilateral medial frontal gyrus, and
bilateral cerebellum. The negative brain regions included the bilateral
supramarginal gyrus, right inferior frontal gyrus, bilateral ventral ante-
rior cingulate cortex, bilateral insula, and left parahippocampal gyrus.

Visual inspection of the predictor weight plots showed that this
brain network is sensitive to visual load during WM encoding but not
during maintenance and retrieval (Fig. 5C3). A two-way repeated mea-
sure ANOVAwithWM load conditions (2A, 2V, 2V2A, and 4V) and time
points (1 to 16) as within-participant factors showed significant main
effects of WM load conditions, F(3, 45) = 8.07, p b .001, ηp = .35, and
time points, F(15, 225) = 9.63, p b .001, ηp = .39. The main effect of
WM load conditions was primarily due to higher overall predictor
weight for the 4V condition compared with those for the other three
conditions (Fig. 5C3). The main effect of time points appears to be due
to elevated predictor weights during WM encoding and maintenance,
but not during retrieval (Fig. 5C3).

The interaction between WM load conditions and time points was
also significant, F(45, 675) = 14.73, p b .001, ηp = .50. The post hoc
Newman–Keuls test showed that the interaction wasmainly due to dif-
ferences of predictor weights caused by visual load during the encoding
period. During the encoding period represented by approximately time
points 4 and 5, the predictor weights for the 4V condition were higher
than those for the 2V2A and the 2V condition,which in turnwere higher
than those for the 2A condition (Fig. 5C4). After encoding, the predictor
weights for different WM load conditions converged and showed
smaller differences. Although the 4V condition continued to show
higher predictor weights than the 2V condition throughout themainte-
nance window, this load effect did not generalize to the other contrasts,
such as [4V–2V2A], [2V2A–2A], and [2V–2A], during the maintenance
period. It thus seems likely that this neural network is responsible for
processing visual information during WM encoding.

Component 6: an additional component-of-interest: domain-specific
auditory encoding

In order to identify additional components thatmay have shown in-
sightful patterns but did not explain a relatively large amount of
variance, we extracted ten components in a separate analysis. Besides
Components 1 to 4, only Component 6 showed WM load-dependent
predictor weights. Therefore, another analysis was conducted in
which six components were extracted. Components 1 to 4 revealed by
this analysis were identical to Components1 to 4 described in the
previous sections. Component 6 in this analysis accounted for 2.3% of
the task-related variance. Fig. 4C shows the functional network repre-
sented by Component 6. This functional network included both positive
and negative brain regions. The positive brain regions included the bi-
lateral superior temporal gyrus and bilateral inferior frontal gyrus. The
negative brain regions included the bilateral precentral and postcentral
gyrus, left fusiform gyrus, left thalamus, and left parahippocampal
gyrus.

Fig. 4D shows the predictor weights for each WM load condition in
Component 6. Visual inspection of the plots shows that this network
was sensitive to auditory load during only the encoding period. A two-
way repeated measure ANOVA with WM load conditions (2A, 2V, 2V2A,
and 4V) and time points (1 to 16) as within-participant factors showed
significant main effects of WM load conditions, F(3, 45) = 17.91,
p b .001, ηp = .54, and time points, F(15, 225) = 7.66, p b .001, ηp =
.34. Themain effect ofWM load conditionswas due to higher overall pre-
dictorweights for the 2Aand the2V2Acondition comparedwith those for
the 2V and the 4V condition (Fig. 5C6). Themain effect of time pointswas
due to elevated average predictor weights during the encoding period
(Fig. 4D).

The interaction between WM load conditions and time points was
also significant, F(45, 675) = 21.08, p b .001, ηp = .58. The post hoc
Newman–Keuls test showed that the interaction was primarily due to
higher predictor weights for the 2A and the 2V2A condition than
those for the 2V and the 4V condition during only the encoding period
(Fig. 5C6). This functional network is therefore likely to be responsible
for processing auditory information during WM encoding.

Discussion

In this studywe investigated functional networks underlying a mul-
timodal change-detection experiment. An exploratorymultivariate data
analysis method, CPCA, was used to extract functional networks under-
lying the WM task.

CPCA revealed distinct brain networks sensitive to domain-general
versus domain-specific processes. On one hand, two components dem-
onstrated characteristics consistent with domain-general load depen-
dency: Component 1 was sensitive to both visual and auditory loads
during only the encoding period, and Component 3 was sensitive to
both visual and auditory loads throughout the trial. On the other hand,
the results for two other components were consistent with domain-
specific load dependency: Component 4 was sensitive to visual load
(but not auditory load) during the encoding period, and Component 6
showed dependency on auditory load (but not visual load) during the
encoding period. These findings are consistent with the assertion that
different functional networks are involved in domain-general and
domain-specific processes in the WM task.

The two domain-general components, Components 1 and 3, showed
different patterns of predictor weights and consisted of different brain
regions. Component 1 was sensitive to visual and auditory load during
only the encoding period and included primary sensory regions as
well as several association areas including the IPS, the precuneus, the
dorsolateral prefrontal cortex, the anterior insula, the premotor cortex,
and the dorsal anterior cingulate cortex. Most of these brain regions,
such as the precuneus, the dorsolateral prefrontal cortex, the premotor
cortex, and the dorsal anterior cingulate cortex, are frequently found to
be active during WM encoding (Cairo et al., 2004; Habeck et al., 2005;
Woodward et al., 2006). Moreover, Component 1 showed the largest
predictor weights during WM encoding. Therefore, this component
seems to represent a functional network for domain-general encoding.
Component 1 also showed a small peak of predictor weights during
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WM retrieval equally for all memory conditions, which might reflect
encoding of test stimuli.

In contrast, Component 3 was sensitive to visual and auditory loads
throughout the trial. This component was consisted of both negative
and positive regions. Most of the negative brain regions overlapped
with the default mode network which shows deactivation during
attention-demanding tasks compared to rest (Buckner et al., 2008). In
Component 3, these default mode brain regions showedmore deactiva-
tion in 4-item conditions, whichweremore difficult and likely recruited
more attention resource than 2-item conditions (Cowan et al., 2011),
regardless of sensory domain. This fact supports the role of Component
3 in domain-general attention processes in WM. Another piece of
evidence supporting this role of Component 3 is that duringWMmain-
tenance, the 2V2A, 2V, and 2A conditions had similar predictor weights,
which were significantly smaller than predictor weights in the 4V con-
dition (Figs. 2D, 5B). This pattern is consistent with behavioral results
that participants had similar accuracy rates in the 2V2A (0.95 ± 0.04),
2V (0.94 ± 0.06), and 2A (0.95 ± 0.07) conditions, which were lower
than that in the 4V condition (0.86 ± 0.08) (Cowan et al., 2011).
These results suggest that the 4V condition was the most difficult and
attention-demanding, and that the time course of Component 3 during
WM maintenance reflected the amount of attention resource involved
in the task, which supports the argument that Component 3 reflects
domain-general attention processes.

Component 3 also consisted of several brain regions with positive
loading values, among which was a subregion within the left anterior
IPS (MNI coordinates: −42, −40, 42; see Fig. 2C, expanded region).
Interestingly, in the univariate analysis of the same data, another subre-
gion in the left anterior IPSwas also identified to be sensitive to bimodal
memory load during WM maintenance (Talairach coordinates: −27,
−46, 31; see Cowan et al., 2011, Fig. 3). After MNI-to-Talairach conver-
sion (Lacadie et al., 2008; http://noodle.med.yale.edu/~papad/mni2tal/),
the IPS region in this analysis shows center coordinates of (−42,−38,
40), which appears to be spatially separated from the IPS region in
Cowan et al. (2011) (−27, −46, 31). It should be noted, however, that
interpretations of such a comparison require extra caution given the dif-
ferent processing streams and registration algorithms used to derive
these brain regions, as well as less-than-ideal conversion algorithms be-
tween MNI and Talairach spaces. Therefore, it is unclear whether these
two IPS subregions represent the same neural clusters or two different
Fig. 6. Spatial locations of the IPS subregions found in Components 1, 3, and 4 in the left
hemisphere. Red: the left IPS subregion in Component 1 (domain-general encoding).
Green: the left IPS subregion in Component 3 (domain-general attention). Blue: the left
IPS subregion in Component 4 (domain-specific visual encoding). The right IPS subregions
in Component 1 and 3 showed similar spatial locations as their counterparts in the left
hemisphere. Results are visualized on an inflated PALS-B12 fiducial atlas (Van Essen,
2005; Van Essen and Dierker, 2007) provided by the Caret software (http://www.nitrc.
org/projects/caret/; Van Essen et al., 2001).
ones. Only a small region within the precentral gyrus was found to be
positively connected with the left anterior IPS in this network, although
there were several negative brain regions as noted. When we relaxed
the criterion to examine the brain regions with top 10% loading values,
however, we found that the positive brain regions also included the bi-
lateral dorsal anterior cingulate cortex, which has been suggested to be
part of the executive control attention network (Posner and Petersen,
1990; Petersen and Posner, 2012) and tomodulate activities in the later-
al frontal and parietal regions (Bush et al., 2000). It thus seems that the
left anterior IPS, the dorsal anterior cingulate cortex, the precentral
gyrus, and regions in the default mode network form a network respon-
sible for domain-general attention processes in WM.

The time course of Component 3 shows that this domain-general at-
tention network exhibited anM shape with two peaks at encoding and
retrieval and persisted activity duringmaintenance. Thus, Component 3
clearly reflected attentional processes in encoding and retrieval, and
possibly in maintenance as well. The peaks at encoding and retrieval
suggest that these periods might require more attention resources
than WM maintenance because they both consist not only of WM but
also of some other processes, such as perception and motor response,
respectively. The absence of a peak during maintenance might reflect
sustained maintenance activity which typically does not involve a
sharp increase of neural activity. Despite the absence of a peak, the
role of Component 3 in maintenance could possibly be supported by
two points. First, the time course of Component 3 showed a domain-
general load effect during maintenance, suggesting its active role in
maintenance. Importantly, the load effect during maintenance showed
a different pattern (4V N 2V2A = 2V= 2A) from that during encoding
(4V=2V2A N 2V=2A) (Figs. 2D & 5C3), suggesting that the load effect
during maintenance was not carryover signal from encoding but
reflected attention processes different from those in encoding. Second,
as discussed in the above paragraphs, levels of predictor weights of Com-
ponent 3 during maintenance (4V N 2V2A = 2V= 2A) were consistent
with accuracy rates. This fact indicates that the time course of Component
3 during maintenance was not random fluctuation but was indicative of
behavioral performance. Thus, although these points cannot be consid-
ered as direct evidence, it is possible that Component 3 was involved in
domain-general maintenance as well, not just encoding and retrieval.
More specifically, during maintenance, this domain-general network
might reflect the focus of attention which directs attention to item infor-
mation held in domain-specific stores (Harrison and Tong, 2009; Ruchkin
et al., 2003). In sum, we propose that Component 3 was likely to be in-
volved in various attention-demanding processes in all periods of WM,
such as feature integration, object binding, and memory consolidation
in encoding, direction of attention to domain-specific stores in mainte-
nance, and retrieval of information in the period just preceding a re-
sponse. It should be noted, however, that the clearer evidence is
necessary to provide more direct support of this network's role in WM
maintenance.

Unlike the domain-general components, the two domain-specific
components, Components 4 and 6, showed similar patterns of predictor
weights: both components were sensitive to domain-specific load
during the encoding period. Component 4 was sensitive to visual load
during encoding and included the lateral occipital cortex and the poste-
rior IPS. The lateral occipital cortex is widely accepted to be responsible
for visual object recognition (Grill-Spector et al., 2001). The posterior
IPS is spatially distinct from the anterior IPS discovered in Component
3. The posterior IPS has been reported to be sensitive to visual object
complexity (Xu and Chun, 2006), to be dependent on visual load in a
perceptual task with no memory requirements (Mitchell and Cusack,
2008), and to be structurally connected to the superior occipital lobe
(Uddin et al., 2010). Interestingly, a similar posterior IPS regionwas pre-
viously proposed to be responsible for visual WM maintenance (Todd
and Marois, 2004). Combined with our findings, we could suggest that
this region carries visual-specific encoding information that under
some circumstances can also contribute to visual working memory. An

http://noodle.med.yale.edu/~papad/mni2tal/
image of Fig.�6
http://www.nitrc.org/projects/caret/
http://www.nitrc.org/projects/caret/
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alternative possibility is that different subregions within the posterior
IPS, which are indistinguishable with current experimental paradigms
and techniques, are involved in WM encoding versus maintenance.

Component 6 was sensitive to auditory load and consisted of the bi-
lateral superior temporal gyrus and inferior frontal gyrus. The superior
temporal gyrus is responsible for auditory processing (Demonet et al.,
1992). The left inferior frontal gyrus is important for verbal comprehen-
sion and is frequently reported to be active during verbalWM encoding
and maintenance (Cohen et al., 1997; Nixon et al., 2004). The latter re-
gion, however, was not necessarily recruited during verbalWMmainte-
nance in this study, given that Component 6 was not sensitive to
auditory load during the maintenance period.

It is thus clear that different functional networks were responsible
for domain-general and domain-specific processes in WM. On one
hand, the domain-specific networks showed load-dependent patterns
during only the encoding period, suggesting their roles in domain-
specific encoding. On the other hand, the domain-general network rep-
resented by Component 1 showed load-dependent patterns during the
encoding period, whereas the domain-general network represented by
Component 3 showed load-dependent patterns throughout the entire
trial.

WMencoding recruited bothdomain-specific (Components 4 and 6)
and domain-general (Component 1) networks. These networks are like-
ly to be involved in both perceptual encoding and WM consolidation.
One possibility is that the domain-specific networks are involved in per-
ceptual encoding, and that the domain-general network subsequently
consolidates the perceptual representations into WM. This possibility
is partly supported by the fact that the onset of the load effect was
earlier in the domain-specific networks than in the domain-general net-
works (Figs. 5C1, C4, C6). Another piece of evidence is that Components
4 and 6 includemostly posterior sensory regions, and that Component 1
includes not only sensory but also association regions. None of the
above evidence, however, is conclusive enough to exclude the possibil-
ity that Components 4 and 6 also reflectedmemory-related encoding. It
is unclear whether these two components will show up in a pure per-
ceptual task without memory requirement. Elucidation of the exact
functions of these networks, therefore, requires more investigation.

In contrast to WM encoding, WM maintenance appears to recruit
only a domain-general network represented by Component 3. This net-
work showed domain-general load dependency during all periods of
WM and likely reflected attention processes involved in WM. During
maintenance, this network might direct attention to item information
held in domain-specific stores. Although no domain-specific brain net-
work was involved in WM maintenance in this analysis, this does not
necessarily imply that WM storage does not recruit any stimulus-
specific process. In fact, a few recent studies used multi-voxel pattern
analysis to decode the BOLD signal and found that the posterior sensory
regions showed stimulus-specific activity patterns during WM mainte-
nance (Harrison and Tong, 2009; Lewis-Peacock and Postle, 2012;
Riggall and Postle, 2012). These studies proposed that the posterior sen-
sory regions function in a sub-thresholdmannerwhich cannot typically
be detected by traditional analysis methods. It is thus possible that the
posterior sensory regions receive attentional regulation from the
domain-general attention network represented by Component 3. In
this way, lower-level stimulus-specific information is well preserved
inWM. The notion of using attention as a process to refresh representa-
tions, keeping them active in memory, is supported by previous behav-
ioral research (e.g., Camos et al., 2011) and neuroimaging research
(e.g., Raye et al., 2007).

Interestingly, several subregions within the IPS were functionally
connected to different brain regions and showed different properties
in this study (Fig. 6). Component 3 included a small region within the
left anterior IPS that worked with several frontal regions and showed
domain-general WM load dependency during multiple stages in the
WM tasks. Component 4 included a regionwithin the bilateral posterior
IPS that was primarily functionally connected to the lateral occipital
cortex and was sensitive to only visual load during the encoding pe-
riods. Component 1 included a region within the bilateral posterior IPS
that was functionally connected to both posterior sensory regions and
multiple frontal and subcortical regions and was sensitive to domain-
general load during only the encoding period. Importantly, these three
IPS subregions showed little overlap, consistent with the view that the
IPS consists of multiple subregions each with distinct functions
(Culham and Kanwisher, 2001; Xu and Chun, 2006). Fig. 6 shows
these three IPS subregions in the left hemisphere. This finding is also
supported by a resting-state and structural connectivity study by
Uddin et al. (2010), which partitioned the IPS into three parts and
found that the two anterior parts showedgreater resting-state function-
al connectivity and structural connectivity with prefrontal regions, and
that the posterior part showed greater resting-state functional connec-
tivity and structural connectivity with extrastriate visual areas. The
exact segregations of the IPS as well as the functions of different segre-
gations, however, still warrant further investigation.

In summary, the present application of CPCA to data from a multi-
modal working memory fMRI study revealed multiple functional net-
works. By using simultaneous visual and auditory stimuli in a single
trial, this study allowed for evaluation of separate domain-general and
domain-specific networks underlying different processes in WM. The
results showed two domain-specific networks involved in stimulus
encoding but not in other periods of WM. Two domain-general net-
works were also observed. The first domain-general network was in-
volved in WM encoding, and the second, a domain-general attention
network, was involved in attention processes in WM encoding, retriev-
al, and possibly maintenance as well. It seems likely that visual WM
maintenance and auditory WM maintenance share a mechanism, in
which the domain-general attention network directs attention to
item-specific information stored elsewhere (cf. Lewis-Peacock and
Postle, 2012), although domain-specific stores were not observed in
this analysis. These results do not support the domain-specific account
but favor the domain-general account that visual WM and auditory
WM share a common maintenance mechanism, whereas existence of
secondary domain-specific stores is also acknowledged (Cowan, 1995;
Cowan et al., 2011; Harrison and Tong, 2009; Majerus et al., 2010).
The interaction between domain-general and domain-specific net-
works and how this interaction supports WM maintenance are
questions that warrant further investigation.
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