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Abstract

■ Many aspects of perception and cognition are supported
by activity in neural populations that are tuned to different
stimulus features (e.g., orientation, spatial location, color).
Goal-directed behavior, such as sustained attention, requires
a mechanism for the selective prioritization of contextually
appropriate representations. A candidate mechanism of sus-
tained spatial attention is neural activity in the alpha band (8–
13 Hz), whose power in the human EEG covaries with the focus
of covert attention. Here, we applied an inverted encoding
model to assess whether spatially selective neural responses
could be recovered from the topography of alpha-band oscilla-
tions during spatial attention. Participants were cued to covertly
attend to one of six spatial locations arranged concentrically

around fixation while EEGwas recorded. A linear classifier applied
to EEG data during sustained attention demonstrated successful
classification of the attended location from the topography of
alpha power, although not from other frequency bands. We
next sought to reconstruct the focus of spatial attention over
time by applying inverted encoding models to the topography
of alpha power and phase. Alpha power, but not phase, allowed
for robust reconstructions of the specific attended location be-
ginning around 450msec postcue, an onset earlier than previous
reports. These results demonstrate that posterior alpha-band
oscillations can be used to track activity in feature-selective neu-
ral populations with high temporal precision during the deploy-
ment of covert spatial attention. ■

INTRODUCTION

The visual system is composed of interacting populations
of neurons that are specialized for processing distinct
stimulus features, such as orientation or spatial location
(Riesenhuber & Poggio, 1999). An emerging hypothesis
is that oscillatory mechanisms have a role in routing in-
formation through networks of these feature-selective
neural populations to effect goal-directed behavior
(Akam & Kullmann, 2014; Zumer, Scheeringa, Schoffelen,
Norris, & Jensen, 2014; Saalmann, Pinsk, Wang, Li, &
Kastner, 2012; Jensen & Mazaheri, 2010; Fries, 2005).
During covert spatial attention, the scalp distribution of
power in the alpha-band (8–13 Hz) of human M/EEG re-
cordings has been observed to covary with attended loca-
tions (Capotosto, Babiloni, Romani, & Corbetta, 2009; Van
Gerven & Jensen, 2009; Rihs, Michel, & Thut, 2007; Kelly,
Lalor, Reilly, & Foxe, 2006; Sauseng et al., 2005; Worden,
Foxe, Wang, & Simpson, 2000). Furthermore, stronger
phase synchronization between alpha oscillations over
frontal sensors and posterior sensors contralateral to the
attended hemisphere has also been observed (Sauseng
et al., 2005), suggesting that specific topographic phase
relationships may code the attended location.

Given the tight correspondence between these alpha-
band dynamics and the focus of spatial attention, we in-

vestigated whether topographic patterns of alpha power
and/or phase could be used to reconstruct activity in neu-
ral populations tuned to spatial location using a multivari-
ate inverted encoding model (IEM). Multivariate IEMs
model the relationship between neural activity and stim-
ulus features using hypothesized response profiles,
which can then be used to reconstruct the neural repre-
sentation of novel stimuli that vary with respect to the
trained feature (Sprague & Serences, 2015). Previous
work applying IEMs to fMRI data has been able to recon-
struct the perception of and STM for basic visual features,
such as color, orientation, and spatial location (Ester,
Sprague, & Serences, 2015; Sprague, Ester, & Serences,
2014; Ester, Anderson, Serences, & Awh, 2013; Kok,
Brouwer, van Gerven, & de Lange, 2013; Sprague &
Serences, 2013; Ho et al., 2012; Scolari, Byers, & Serences,
2012; Brouwer & Heeger, 2009, 2011). Applying this
approach to EEG provides estimates of neural representa-
tion on a finer temporal scale (Garcia, Srinivasan, &
Serences, 2013) and can be used to assess hypotheses
about the functional specificity of oscillatory activity within
particular frequency bands.
To test whether neural activity in the alpha-band tracks

the focus of spatial attention, we took two approaches.
First, we trained a linear support vector machine (SVM)
to decode which of six possible spatial locations partici-
pants were attending using the topography of different
frequency bands. Decoding was only successful for the
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alpha band. Next, using the time-resolved scalp topogra-
phy of alpha power (but not phase), we were able to re-
construct the temporal evolution of the deployment of
selective attention to six different visual field locations.
These results demonstrate the utility of IEMs to measure
feature-selective neural representations encoded over
multivariate population level activity in near real time.

METHODS

Participants

Data were taken from the publicly available BNCI Horizon
2020 research consortium database (www.bnci-horizon-
2020.eu) and were first reported by Treder, Bahramisharif,
Schmidt, van Gerven, and Blankertz (2011). Eight healthy
volunteers (seven men; aged 18–27 years) participated in
this study. All had normal or corrected-to-normal vision.
All participants gave written consent, and the study was
performed in accordance with the Declaration of Helsinki.

Stimuli and Procedures

Each trial began with a central fixation dot surrounded by
six white disks (eccentricity: 9°, size: 3.27° of visual angle)
lasting 1000 msec. A cue indicating the location to attend
appeared in the center of the screen for 200 msec. After a
variable duration of 500–2000 msec, a 200-msec target
appeared in either the attended circle (80% of trials) or
a different, randomly selected location (20% of the trials).
To increase difficulty, a 200-msec mask (“*”) was pre-
sented after each target (see Figure 1). Stimuli were pre-
sented on a 24-in. thin-film transistor LCD screen with a
refresh rate of 60 Hz and a resolution of 1920 × 1200 pixels.
The experiment was implemented in Python using the
open-source BCI framework Pyff (Venthur et al., 2010)
with Pygame (www.pygame.org).

Targets were either a “×” or a “+” and were de-
termined randomly on each trial. To reduce lateralized
preparatory motor activity, participants had to indicate
which target they saw via a thumb press on a button
box in their right or left hand. To ensure that the cue
did not have an orientation that covaried with the orien-
tation of the attended location (otherwise decoding and
reconstructions could be based on cue orientation, rather
than spatial attention, per se), a symbolic, omnidirectional
color cue was used. This was a hexagon with each of the
six faces pointing to one of the target discs. Three of the
faces were gray, and the other three were colored blue,
red, and green. One of these colors was assigned as the
cue (color counterbalanced across participants). In 50%
of trials, the cue–target interval was 2000 msec; it varied
randomly between 500 and 2000 msec on the remaining
trials. This helped ensure that participant’s attention was
sustained throughout the trial. The task was 600 trials
spread over six blocks of 100 trails each, with ∼2-min rests
in between blocks. Participants were instructed to main-
tain fixation throughout the trial and to respond as quickly
and accurately as possible.

EEG Acquisition and Analysis

EEG was recorded at 1000 Hz from a Brain Products
(Munich, Germany) 64-channel actiCAP. Electrodes were
referenced against a nose electrode, and impedances were
kept below 20 kΩ. Eye movements were monitored with
an EOG electrode placed below the right eye. Referencing
Fp2 against the EOG and F10 against F9 created vertical
and horizontal bipolar EOG channels, respectively. Data
were downsampled offline to 200 Hz.

Only trials where the cue–target interval was 2000 msec
were analyzed. Data from these trials were cut into
−800:2500 msec epochs, relative to cue onset. Each epoch
was carefully screened for eye-related or muscle-related

Figure 1. Task design and
behavioral data. (A) Covert
spatial attention was directed
with an omnidirectional
symbolic cue (80% valid)
that indicated in which of six
spatial locations an upcoming
target was likely to appear.
Participants were instructed
to attend to the cued location
while maintaining fixation and
then decide if the target was a
“×” or a “+.” (B) RT decreased
when targets appeared in cued,
as contrasted with uncued
locations (t(1, 7) = 5.62,
p < .001), suggesting that
participants were indeed
attending the cued location.
Each line represents one
participant.
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artifacts, leaving an average of 241 artifact-free trials per
participant, and an average of 40 observations for each
attended location per participant. Time–frequency decom-
position was performed using EEGLAB (Delorme &
Makeig, 2004) and custom code, running in a MATLAB
environment (TheMathworks, Natick, MA). Single trial data
were convolved with a family of wavelets, spanning 4–
30 Hz, in 1-Hz steps, with wavelet cycles increasing linearly
between three and eight cycles as a function of frequency.
Power and phase were extracted from the resulting com-
plex time series by squaring the absolute value of the time
series (μV2) in the case of power and by taking the phase
angle (Matlab function angle.m) in the case of phase. Alpha
power was defined by averaging power between 8–13 Hz.
The circular average of this frequency range created the
phase time series. Power data were normalized by dividing
power at each time point by the average power from the
precue baseline period of −350 to −50 msec. Because
the general linear model used in the IEMmay not optimally
capture relationships with circular variables-like phase, we
also conducted the same IEM phase analysis (see below
Multivariate IEM) using the complex values from the wave-

let decomposition after normalizing the amplitude compo-
nents by dividing each complex number by the absolute
value of the real component of the number. This analysis
resulted in channel responses virtually identical to those
we report based on phase angles only (see Results).

Multivariate Classification

To assess whether the spatial distribution of power during
the cue–target interval could be used to decode the
attended location, we applied an SVM classifier to our data
(implemented in the MATLAB Machine Learning Toolbox).
SVMs were constructed with a linear kernel and default
parameters supplied by the software (box constraint = 1,
sequential minimal optimization separating algorithm). For
each electrode, data were averaged into different frequen-
cy bands between 3 and 28 Hz (see Figure 2B) and then
averaged over the cue–target interval 1000–1900 msec.
We focused on this interval to avoid cue-evoked responses
and temporal smearing of target-evoked responses
because of wavelet decomposition. This procedure re-
sulted in one power value per channel, per frequency

Figure 2. Classification and
IEM. (A) The topography of
alpha-band power (8–13 Hz)
over posterior electrodes
during sustained attention
(1000–1900 msec) shows a clear
spatial correspondence with the
attended location (indicated by
a red dot). (B) A linear SVM
classifier trained to decode the
attended location using the
topography of power from 1000
to 1900 msec could successfully
classify the attended location,
but only from activity in the
alpha band (t(1, 7) = 3.46,
p = .010). As a control,
classification did not differ from
chance (dashed line) when
precue alpha power was used
(t(1, 7) = 0.29, p = .774). Error
bars represent 95% confidence
intervals. Each gray point
represents a participant’s
average classification accuracy.
(C) The basis set used for
the IEM contained six tuning
functions, one for each spatial
location, that represent the
idealized response of the
neural population tuned to
each location.
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band, as input to the classifier. Leave-one-trial-out cross-
validation, iterated over every trial, ensured that training
and testing data were independent. We evaluated the sta-
tistical significance of classification against theoretical
chance (1/6), but also because this comparison can over-
estimate significance with a small number of observations
(Combrisson & Jerbi, 2015), we also compared perfor-
mance against classification obtained from a prestimulus
baseline (−350 to −50 msec).

Multivariate IEM

Following similar approaches (Garcia et al., 2013; Brouwer
& Heeger, 2009, 2011), we modeled the response in each
electrode as a linear sum of six information channels (one
per polar angle location) composed of half-rectified sinu-
soids raised to the fifth power and centered on each polar
angle (0°, 60°, 120°, etc.; Figure 2C). In the first step, “train-
ing data” from all but one trial (“test data”) is used in a
general linear model of the form:

B1 ¼ WC1

where B1 (m electrodes × n trials) is the observed signal at
each electrode (either power values or phase angles) for
each training trial, C1 (k channels × n trials) is a matrix
of predicted responses for each information channel on
each trial, and W (m electrodes × k channels) is a weight
matrix that characterizes the mapping from “channel
space” to “electrode space.” The weight matrix W (m elec-
trodes × k channels) can be derived using ordinary least-
squares regression as follows:

W ¼ B1CT
1 C2CT

1

� �−1

Next, the model is inverted to transform the observed
test data B2 (m electrodes × 1 trial) into a set of esti-
mated channel responses, C2 (k channels × 1 trial),
using the weights W derived from the training data, via
the equation:

C2 ¼ WTW
� �−1

WTB2

This procedure was iterated until every trial served as a
testing set (i.e., leave-one-trial-out cross-validation). The
estimated channel responses were then circularly shifted
to a common center (0°) and averaged across trials.
Note that the response in the most distant orientation
channel (180°) in Figures 3 and 4 was duplicated for dis-
play symmetry. To construct tuning functions over time
(Figures 3A and 4A), this procedure was performed for
every sample of phase or power, after downsamping to
100 Hz.
To statistically assess the robustness of the reconstructed

tuning functions, we compared the amplitude of the on-
channel response (i.e., the attended location) averaged
over the covert attention interval 1000–1900 msec to
both the amplitude of the response during a prestim-
ulus baseline (−350 to −50) and to the amplitude of the

most distant nonattended channel (i.e., 180°) during at-
tention using a nonparametric permutation procedure.
Condition labels were randomly shuffled, and condition
differences were computed and saved. This was repeated
20,000 times, forming a distribution of difference scores
under the null hypothesis that there is no amplitude dif-
ference between conditions. If the true difference be-
tween conditions exceeded the 95 percentile of this
distribution, it was considered statistically significant at
α < 0.05. The selectivity of the tuning functions was also
analyzed across time (Figures 3A and 4A) by using linear
regression to estimate the slope of responses of channels
tuned to equidistant locations at each time point (Foster,
Sutterer, Serences, Vogel, & Awh, 2015). More positive
slopes indicate greater selectivity to the attended loca-
tion, whereas a large negative slope would indicate selec-
tivity to the location opposite the one cued. 99%
confidence intervals were generated empirically with a
bootstrap analysis in which data from all participants
were pooled and sampled with replacement 80,000
times, generating a distribution of slopes around the
group mean slope. If zero (the null hypothesis of no se-
lectivity) fell outside the lower 99th percentile of this dis-
tribution, it was considered statistically significant at p <
.01, one-tailed.

Mutual Information Analysis

To quantify which electrodes contained information
about the attended location, we computed the mutual
information (MI) between each electrode and the cued
location using code provided in Cohen (2014). MI de-
scribes the extent to which uncertainty about the state
of one variable (e.g., cued location) is reduced by knowl-
edge of the state of another variable (e.g., electrical brain
activity; Shannon, 1948). When MI equals 0 bits, the two
variables are statistically independent. MI was computed
for each electrode using a number of bins determined by
the rule of Freedman and Diaconis (1981).

RESULTS

Behavior

RTs to targets were significantly lower on validly ver-
sus invalidly cued trials. (t(1, 7) = 5.62, p < .001; see
Figure 1B), which also held true when using a log trans-
form (t(1, 7) = 5.92, p < .001), and when no trials were
excluded based on oculomotor artifacts (t(1, 7) = 4.49,
p < .01). Mean discrimination accuracy was 95% correct
(SEM = 1.8%) following valid cues and 79% correct
(SEM = 11%) following invalid cues. Although this differ-
ence did not reach statistical significance ( p = .23), it sug-
gests that there was no speed–accuracy tradeoff. These
results indicate that participants were indeed allocating
attention to the cued location.
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Decoding Attended Location

The topography of alpha power varied systematically with
attended location (Figure 2A), which allowed for signifi-
cant classification, as compared against both theoretical
chance (i.e., 1/6, t(1, 7) = 3.80, p = .006) and an empir-
ical baseline (t(1, 7) = 3.46, p= .010; Figure 2B). Extend-
ing prior work (Treder et al., 2011; Bahramisharif, van
Gerven, Heskes, & Jensen, 2010; Van Gerven & Jensen,
2009), we found that successful decoding was specific for
the alpha band; no other frequency range analyzed al-
lowed for significant classification ( ps > .177).

Reconstructing the Focus of Attention

To determine whether patterns of alpha-band oscillations
could be used to reconstruct population level, feature-
selective tuning profiles, we implemented two IEMs, one
based on the topography of alpha power and one based
on alpha phase topographies. IEMs can be thought of as
a form of targeted data reduction that allows for quantifica-
tion of characteristics of the underlying feature-specific

neural population, such as its response selectivity (Sprague
& Serences, 2015). Figure 3A shows the temporal evolution
of reconstructed channel tuning functions, with time
points with significant selectivity marked with black
squares. The response shows a characteristic Gaussian
profile, with maximal amplitude for the attended location
(0°) and a steady reduction in responses from neural
populations tuned to locations further away, with this
profile beginning around 450 msec and persisting through-
out the sustained attention interval. To further quantify
these reconstructions, we compared the amplitude of
the response in the attended channel with the response
in that channel during the baseline interval using a per-
mutation test (see above Multivariate IEM). This revealed
significantly higher amplitude responses from neural pop-
ulations tuned to the attended location during attention
as compared with baseline (Mdiff = 0.125 μV2, p = .017)
as well as significantly higher responses in the attended
channel than the channel tuned 180° away, (Mdiff =
0.279 μV2, p = .001), indicating that the reconstructions
tracked the deployment and the location of spatial at-
tention (Figure 3B). An MI analysis revealed a posterior

Figure 3. Reconstructed tuning functions from alpha power. (A) Using the topography of 8–13 Hz power over time, we were able to reconstruct the
spatial focus of attention. Tuning functions for each polar angle location were circularly shifted and averaged so that 0° corresponds to the response
of the channel representing the attended location on that trial. The reconstructed tuning functions demonstrate a characteristic Gaussian shape,
with a maximal response at the attended location (0°) and a fall off in response for channels tuned to locations further away. Time points with
significant selectivity ( p < .01), as measures by the slope of the tuning function at each time point, are indicated with black squares. (B) Comparison
of channel tuning during the prestimulus baseline (−350 to −50 msec) and covert attention interval (1000–1900 msec). The amplitude of the
attended channel response (0°) was significantly higher compared with both baseline (Mdiff = 0.125 μV2, p = .017) and to the channel tuned to
the most distant location (i.e., 180°; Mdiff = 0.279 μV2, p = .001), indicating that the reconstructions depended on the allocation of spatial attention.
Error bars indicate ± within-subject SEM. (C) As a metric of which regions were most informative for the reconstructions, we computed MI between
alpha power and attended location for each electrode for 11 time windows. This analysis reveals a clear posterior distribution of electrodes that
carried the most information about the attended location, beginning around 400 msec.
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distribution of informative electrodes (Figure 3B), consis-
tent with the topographies in Figure 2A.
Because spatial attention may also be supported by

long-distance phase synchronization in the alpha band
(Sauseng et al., 2005), we determined whether phase
topographies could be used to reconstruct the attended
location. If, for example, the phase relationship between
frontal and posterior regions reliably covaries with at-
tended location, reconstructions should be successful.
In contrast to this proposal, however, we did not observe
robust reconstructions based on alpha-band phase topog-
raphy. Figure 4A shows the reconstructed tuning func-
tions over time, which suggests a transient, cue-evoked
response but no sustained tuning during the attention in-
terval. This was supported statistically via comparison
with both the baseline attended channel response ( p =
.54) and the response in the channel tuned 180° away from
the attended location ( p = .78; Figure 4B). These results
were virtually identical when using amplitude-normalized
complex values as input to the phase-based IEM (see
Methods). As anticipated, the MI analysis revealed no clear
scalp topography of location-informative electrodes.
To assess whether eye movements may have been a

confound in these results, we tested for a correspon-
dence between EOG activity and cued location in several
ways. Horizontal EOG amplitudes during sustained atten-
tion did not differentiate attention to horizontal from ver-

tical locations (t(1, 7) = 1.8, p = .12). SVM classifiers
trained on horizontal and vertical EOG activity at each
sample during the epoch resulted in above-baseline clas-
sification at only one sample (out of 200) during the sus-
tained attention interval. Because this sample was not
neighbored by other significant samples, it is likely spuri-
ous. Lastly, EOG-based classification accuracy did not re-
liably predict EEG-based alpha decoding accuracy (r =
0.37, p = .36), in line with a previously published decod-
ing analysis of this same data set (Treder et al., 2011) that
also found no correlation (r = 0.029, p = .75) when ex-
amining EEG and EOG accuracies to the best classifiable
pairs of locations. These analyses suggest that eye move-
ments do not explain the EEG results.

DISCUSSION

We present evidence that the topography of alpha-band
power allows for tracking the focus of spatial attention
with relatively fine temporal resolution. Our decoding
analysis revealed that spatial location information was
predominantly carried in the alpha band. Our IEM re-
vealed that population level neural activity in the alpha
band showed robust spatial tuning during covert atten-
tion. Mechanistically, it has been proposed that alpha os-
cillations play a role in coordinating information flow
between feature-selective neural populations (Saalmann

Figure 4. Reconstructed tuning functions from alpha phase. (A) In contrast to the alpha power results, reconstructions based on the topography
of phase angles did not reveal sustained location tuning during spatial attention (black squares indicate p < .01). A transient response was observed
immediately following cue onset, likely reflecting phase locking (e.g., an evoked response) from the cue. (B) The attended-channel response
during attention was statistically indistinguishable from baseline and from the response in the channel tuned 180° away ( ps > .54). Error bars
indicate ± within-subject SEM. (C) MI analysis shows no clear topography of information between phase and attended location.
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et al., 2012; Siegel, Donner, & Engel, 2012; Jensen &
Mazaheri, 2010). The fact that the topography of our MI
analysis was maximal over occipital and parietal sensors
is consistent with the idea that alpha rhythms may be re-
sponsible for coordinating activity between spatial recep-
tive field maps in visual and parietal cortex (Saygin &
Sereno, 2008; Silver, Ress, & Heeger, 2005), rather than
within only a single feature-selective region.

That the IEM based on alpha-band phase topography
failed to reconstruct the focus of sustained attention sug-
gests that phase relationships across electrodes may not
contain feature specific information. Prior findings of
long-distance phase coupling during spatial attention
(Sauseng et al., 2005) may reflect a more general signa-
ture of the engagement of top–down control mechanisms
in frontoparietal attentional systems (Kundu, Johnson, &
Postle, 2014; Capotosto et al., 2009). Although alpha
phase may be controlled in other ways (Samaha, Bauer,
Cimaroli, & Postle, 2015; Bonnefond & Jensen, 2012),
these findings suggest a privileged role for the dynamics
of alpha-band power in the implementation of covert
spatial attention.

Multivariate, information-based techniques, such as
IEMs, are offering new insight about the mechanisms that
underlie core cognitive functions (Naselaris & Kay, 2015;
Serences & Saproo, 2012). For covert spatial attention,
results from univariate analyses have been interpreted
as evidence for multistage accounts of attentional con-
trol, with early bilateral “alpha desynchronization”
(emerging within 700 msec postcue) reflecting a re-
orienting operation and a later pattern of sustained
asymmetric “alpha synchronization,” beginning around
700 msec postcue, corresponding to sustained attention
(Rihs, Michel, & Thut, 2009). Results from our IEM, how-
ever, do not follow this pattern. Instead, the time course
of the power-based reconstructions in Figure 3A showed
a short-lived window of significant selectivity concurrent
with cue onset (likely driven by a cue-evoked response,
rather than spatial attention) with relativity sustained
tuning emerging around 450 msec. This estimate of
450 msec is congruent with the well-characterized behav-
ioral time course of cued shifts of spatial attention, which
reveals benefits around 400–500 msec postcue (Müller,
Teder-Sälejärvi, & Hillyard, 1998; Cheal, Lyon, & Gottlob,
1994). Future work will be needed to reconcile the inter-
pretations arising from univariate versus multivariate
analyses. These results demonstrate that IEMs provide a
useful new technique to track the deployment of spatial
attention in near real time from extracranial signals.
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