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Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM
contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to
increase the variability of WM precision over time. Although WM precision was recently associated with neural codes particularly in early
sensory cortex, we have so far no understanding of the neural bases underlying the variability of WM precision, and how WM precision
is preserved under high load. To fill this gap, we combined human fMRI with computational modeling of behavioral performance in a
delayed color-estimation WM task. Behavioral results replicate a reduction of WM precision and an increase of precision variability
under high loads (5 � 3 � 1 colors). Load-dependent BOLD signals in primary visual cortex (V1) and superior intraparietal sulcus (IPS),
measured during the WM task at 2– 4 s after sample onset, were modulated by individual differences in load-related changes in the
variability of WM precision. Although stronger load-related BOLD increase in superior IPS was related to lower increases in precision
variability, thus stabilizing WM performance, the reverse was observed for V1. Finally, the detrimental effect of load on behavioral
precision and precision variability was accompanied by a load-related decline in the accuracy of decoding the memory stimuli (colors)
from left superior IPS. We suggest that the superior IPS may contribute to stabilizing visual WM performance by reducing the variability
of memory precision in the face of higher load.
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Introduction
Recent computational modeling studies have established that the
limitation of visual working memory (WM) capacity depends
both on the number of items that can be stored and the quality or

precision with which they can be stored (Bays and Husain, 2008;
Zhang and Luck, 2008). Further, it was suggested that perfor-
mance impairments under high load may result from a decrease
in WM precision as well as from an increased variability of pre-
cision (i.e., higher amount of variation in precision across trials)
(Fougnie et al., 2012; van den Berg et al., 2012, 2014). However,
the neural mechanisms underlying the deterioration in the qual-Received April 24, 2015; revised April 12, 2016; accepted April 14, 2016.

Author contributions: E.M.G.W., B.P., C.B., and C.J.F. designed research; E.M.G.W. and B.P. performed research;
E.M.G.W. and T.H. analyzed data; E.M.G.W., B.P., T.H., C.B., and C.J.F. wrote the paper.

This work was supported by the Initiative for the Development of Scientific and Economic Excellence of the state
of Hessen. C.J.F. was supported by The Netherlands Organization for Scientific Research VIDI Grant 45209006 and
European Research Council Consolidator Grant Agreement 617891. C.B. was supported by German Research Foun-
dation (DFG) Grant BL 931/3-1. We thank Tobias Becker for assistance during data collection.

The authors declare no competing financial interests.

Correspondence should be addressed to Elena M. Galeano Weber, Goethe University Frankfurt, Depart-
ment of Psychology, Theodor-W.-Adorno-Platz 1 (PEG), D-60323, Frankfurt am Main, Germany. E-mail:
galeanoweber@psych.uni-frankfurt.de.

DOI:10.1523/JNEUROSCI.1596-15.2016
Copyright © 2016 the authors 0270-6474/16/365623-13$15.00/0

Significance Statement

This study investigates the neural bases of capacity limitations in visual working memory by combining fMRI with cognitive
modeling of behavioral performance, in human participants. It provides evidence that the superior intraparietal sulcus (IPS) is a
critical brain region that influences the variability of visual working memory precision between and within individuals (Fougnie
et al., 2012; van den Berg et al., 2012) under increased memory load, possibly in cooperation with perceptual systems of the
occipital cortex. These findings substantially extend our understanding of the nature of capacity limitations in visual working
memory and their neural bases. Our work underlines the importance of integrating cognitive modeling with univariate and
multivariate methods in fMRI research, thus improving our knowledge of brain-behavior relationships.
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ity of WM representations under high load and individual differ-
ences in this load-related performance impairment are not yet
understood. Understanding the nature of these limits, however,
is critical given the existence of large individual and developmen-
tal differences in WM capacity, which in turn may be important
for education and life-long learning (Todd and Marois, 2005;
Burnett Heyes et al., 2012; Simmering and Perone, 2012; Peich et
al., 2013).

WM storage is achieved by sustained neural activity, mainly
in frontal and parietal cortex (Curtis and D’Esposito, 2003),
whereby parietal regions show a capacity-limited response to
WM load (Todd and Marois, 2004, 2005; Xu and Chun, 2006),
but also perceptual load (Mitchell and Cusack, 2008). In this
context, it has been proposed that the function of frontoparietal
cortex during WM relates more to attentional processes (such as
directing selective attention to sensory representations), rather
than storage per se (Magen et al., 2009; Riggall and Postle, 2012;
Sreenivasan et al., 2014). Moreover, by using multi-voxel pattern
analysis (MVPA), WM contents could be decoded from low-level
sensory regions, reflecting the maintenance of high-fidelity rep-
resentations mediated by the sustained activation of sensory
codes (Postle, 2006; Harrison and Tong, 2009; Emrich et al.,
2013; Ester et al., 2013). However, given that WM content could
also be decoded from parietal (Christophel et al., 2012; Peters et
al., 2015) and prefrontal regions (Lee et al., 2013), it is assumed
that the exact regions representing WM contents depend on task
characteristics (e.g., visual versus verbal memoranda) (Lee et al.,
2013).

While this research substantially advances our knowledge of
the neural mechanisms underlying WM, we have so far only lim-
ited understanding of how the capacity limitation of WM
emerges from the activity of these systems. Given that recent
modeling work suggests that the detrimental effect of increased
task load (i.e., WM set size) on behavioral performance is mainly
driven by decline in WM precision coupled with increasing pre-
cision variability, we used fMRI to investigate the neural mecha-
nisms underlying the precision of visual WM, as well as the
variability of representational precision over time, in situations of
increasing set size (i.e., up to five items). We assessed whether
individual differences in behavioral precision and precision vari-
ability covaried with the activation strength of cortical systems
underlying visual WM (i.e., V1, V4, superior parietal areas 7A
and 7PC, and superior/middle frontal gyrus). We then ex-
plored in those brain areas supporting effects of WM preci-
sion, whether the precision of neural coding (here defined as
the accuracy of decoding color representations from brain
activation patterns) (Emrich et al., 2013) also relates to behav-
ioral precision and precision variability, which may provide a
potential mechanistic link between brain activation patterns,
WM precision, and, ultimately, the capacity limit of WM. To
this end, we combined fMRI with cognitive modeling of a
color WM task (variable precision model) (Fougnie et al.,
2012) and identified parietal and occipital brain regions whose
activation strength predicted between-person differences in
the variability of precision. We then independently trained a
multivariate pattern classifier to distinguish three colors dur-
ing attentive perception and tested the accuracy with which
the presence of these colors during WM encoding can be de-
coded from fMRI activity. Our results particularly highlight
the left superior IPS, as it relates behavioral WM performance
to both neural precision and overall BOLD activity.

Materials and Methods
Participants
Twenty-three right-handed volunteers from Goethe University Frank-
furt completed the experiment for monetary compensation (12€ per
hour) or student credits. All participants had normal color vision, self-
reported normal or corrected-to-normal visual acuity, and no history of
psychiatric or neurological diseases. Informed consent was obtained in
accordance with a protocol approved by the Medical Ethics Committee
of Goethe University Frankfurt. One participant was removed from the
sample due to high error rates in all memory load conditions (i.e., guess
rates �3 SDs from the mean in each load condition; load 1: g � 0.13, load
3: g � 0.29, load 5: g � 0.76). The final sample consisted of 22 partici-
pants (16 females, mean � SD age, 21.77 � 3.16 years).

Stimuli and procedure
While undergoing fMRI, the participants briefly viewed and memorized
a set of colored squares and, after a delay, reported the color of one
randomly chosen square using a continuous response format (Wilken
and Ma, 2004). The visual delayed response WM task (for more details,
see Visual delayed response WM task) was followed by a perceptual
attention task (see below), in which participants had to detect small color
changes of presented color stimuli. The perceptual task served to train a
pattern classification algorithm to discriminate colors, based on an inde-
pendent dataset (more details given below). All stimuli were generated in
MATLAB (The MathWorks) using the Psychophysics Toolbox (Brain-
ard, 1997; Pelli, 1997) and MemToolbox extensions (Suchow et al., 2013)
and were presented at a viewing distance of �64.5 cm. Stimuli were
back-projected from an LCD projector onto a screen viewable by a mir-
ror attached to the head coil of the MR scanner. In addition, participants
performed the WM task outside the scanner to obtain sufficient data for
behavioral model estimation of the variable precision model. In two
additional behavioral experimental sessions (lasting 0.5 and 1 h) preced-
ing the scanning session, participants performed the same visual WM
task as in the MR scanner, with the exceptions of more trials per condi-
tion. To reduce possible fatigue effects in the behavioral sessions, the
intertrial interval (ITI) was shortened and response time parameters
were slightly adjusted (see below).

Visual delayed response WM task. One, 3, or 5 colored squares (2 � 2°
of visual angle) were arranged on 5 possible locations on an invisible
circle (radius 4.5°) around a central fixation mark. Each square was
pseudo-randomly allotted one of 180 isoluminant, equally spaced colors
that were drawn from the CIE 1976 (L*, a*, b*) color space, centered at
L � 54, a � 18, b � �8 (Fougnie et al., 2012). The minimal difference
between colors that appeared at the same time on the sample display was
constrained to 25 degrees to reduce the potential influence of the simi-
larity between memory items (Kahana and Sekuler, 2002). At the begin-
ning of each trial, a black fixation square (presented centrally on a gray
background) changed to white 1.5 s before the onset of the memory
sample. Participants then briefly viewed a set of 1, 3, or 5 colors (0.5 s).
After a brief delay (4 s), participants reported the color of a pseudo-
randomly chosen target square (i.e., the color of one of the previously
presented stimuli) by scrolling through an invisible colorwheel using a
trackball (van den Berg et al., 2012).

We limited the delay to 4 s because information can be held in memory
with little loss in quantity or quality for this amount of time, while guess-
ing increases rapidly after longer delays (Zhang and Luck, 2009). This
short and unjittered delay also allowed to increase the number of repeti-
tions per condition, which was crucial for behavioral modeling. Further,
we did not use an overtly presented color wheel for responding (as was
done in some previous studies) because this response condition, com-
pared with a scrolling condition as used here, showed significantly higher
guess rates and, in addition, evidence for nontarget responses (van den
Berg et al., 2012). The probe display was presented for 6.5 s and was
followed by a feedback barometer informing the participant about trial
performance (0.5 s). A 7 s ITI followed the feedback at the end of each
trial and comprised a gray display with a central black fixation mark (Fig.
1A). In the behavioral experiment, the ITI was shortened (jittered ITI: 1,
1.5, or 2 s), and participants could immediately start the next trial after
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their response, to reduce possible fatigue effects (maximum duration of
probe display was 6 s).

The MRI experiment included 4 runs in total, each consisting of 18
trials with a duration of 20 s (180 volumes per run). In 9 of 18 trials per
run, the memory sample contained 1 of 3 “fixed colors” that differed 120
degrees from each other in the CIE 1976 (L � 54, a � 18, b � �8) color
space. The fixed colors were red, green, and violet (RGB: 241, 57, 73; 102,
140, 71; 140, 117, 190, respectively). The presentation of different mem-
ory loads (1, 3, or 5 items) and fixed color (present/absent) were imple-
mented in a full-factorial design. Hence, each fixed color appeared
equally often under the different load conditions. The full-factorized
combinations were thus presented in a pseudo-random fashion. The
three fixed colors (which never appeared together in one trial) were used
to test a classifier that was trained on fMRI data from a second, indepen-
dent experiment in which participants performed a target detection task
that only involved these three colors (see Color attention task). Thus, half
of the WM trials in the fMRI session (i.e., 36 trials) were used for classifier
testing. Behavioral pretesting had indicated that the repeated presenta-
tion (during WM stimulus presentation) of the same colors among ran-
domly chosen samples of colors did not systematically bias behavioral
error rates due to possible implicit learning processes in the course of the
WM task (4 fixed colors; fixed colors appearing in 40% of 180 trials;
memory load 1, 3, or 5; N � 35; absolute errors between presented and

reported colors for targets with fixed vs other colors across memory load,
F(df � 4,52) � 1.29; p � 0.29, not significant). Postexperiment interviews
indicated that participants were indeed not explicitly aware of the in-
creased probability of the fixed colors, and behavioral performance was
not improved for trials with fixed colors (see Behavioral results). Fixed
colors were only presented during the fMRI session, not during the be-
havioral sessions.

Color attention task. The color attention task served to provide a train-
ing dataset for MVPA classifier analyses of those three colors that were
presented during the WM task with slightly increased probability (“fixed
colors”; see above). One colored square at a time was presented, drawn
from the three fixed color values. In addition, trials with gray squares
(RGB: 132, 132, 132) were presented but not used for classifier training.
The four different items were presented equally often (i.e., 10 trials per
item, from which 1 trial per item was used as probe trial, but not for
classifier training) in a pseudo-random fashion, whereby the locations of
the colored squares were also pseudo-randomly selected from the five
positions used in the WM task. Based on previous results suggesting that
sensory information of different feature dimensions (i.e., color and loca-
tion) do not compete and can be stored in parallel (Wheeler and Treis-
man, 2002; Baddeley et al., 2011; Brady et al., 2011), we intentionally
designed this task to train a classifier to differentiate colors independent
of the specific location of stimulus appearance.

Each trial began with the presentation of a randomly chosen color on
a gray background with a white fixation mark at the center. A jittered
uniformly distributed ITI (3, 5, or 7 s), where participants viewed a white
fixation mark on a gray display, followed. Participants had to attend to
the presented colors and were instructed to press the left mouse button of
an MR-compatible trackball if a small color change (25°; 4 of 40 trials per
run) of the presented square occurred (Fig. 1B). In total, participants
completed 4 runs of the perceptual attention task (120 volumes per run).
The training of the classifier was based on 36 trials for each fixed color of
the perceptual attention task because trials designed for probing perfor-
mance were excluded, so that 4 runs � 9 trials � 36 trials were available
per fixed color.

Behavioral data analysis
Behavioral data analysis of the WM task was performed using the Statis-
tics toolbox and the MemToolbox (Suchow et al., 2013) for MATLAB (The
MathWorks). Because several previous studies found that mnemonic
precision is continuous and variable (Wilken and Ma, 2004; Bays and
Husain, 2008; Zhang and Luck, 2008; Fougnie et al., 2012; van den Berg
et al., 2012, 2014), rather than discrete and equal across trials (Luck and
Vogel, 1997), the variable precision model was fit to each subject’s data
(Fougnie et al., 2012; van den Berg et al., 2012), an expansion of the
mixture model by Zhang and Luck (2008) that additionally takes varying
instead of fixed mnemonic precision between trials into account. As
described above, we used a task that enabled a direct measure of mne-
monic precision along a continuous color dimension requiring subjects
to precisely remember the colors of 1, 3, or 5 colored squares (Wilken and
Ma, 2004; van den Berg et al., 2012). Many previous neurophysiological
studies used change detection tasks, including discrete measures of WM
performance (i.e., target present vs absent in WM), which gave less in-
formation about the quality of WM representation (for review, see Brady
et al., 2011).

The difference between presented and reported color, a continuous
measure on the basis of the 360 degree color wheel in each trial (i.e., the
“error”) was used for model estimation. In the classical (i.e., fixed preci-
sion model), these errors in recall are assumed to be distributed accord-
ing to a von Mises distribution (the circular analog of a Gaussian
distribution) centered at zero and with the free precision parameter �
(which is the inverse width of the distribution of errors). In this model,
the precision of WM representations corresponds to the SD of the von
Mises distribution (Zhang and Luck, 2008). Variable precision models,
in contrast, allow precision to vary from trial to trial; they can be distin-
guished in respect to how this trial-to-trial variation of the � parameter is
modeled (i.e., truncated normal or gamma distribution) and in the ex-
tent to which they allow for estimating guessing behavior or not (Fougnie
et al., 2012; van den Berg et al., 2012, 2014). In this study, trial-to-trial
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Figure 1. Experimental fMRI paradigms. A, Schematic illustration of continuous response
visual WM task (example showing set size � 5). The color delayed estimation WM task
(adapted from Wilken and Ma, 2004 and van den Berg et al., 2012) involved loads 1, 3, and 5 and
required that subjects use an MR-compatible trackball to reproduce the color of the indicated
stimulus during the retrieval phase. B, The color attention task was measured after the WM task.
Participants attended to color stimuli presented in isolation, to detect a small color change (25°)
that appeared in 4 of 40 trials per session. The color attention task was used for training a
classifier algorithm to differentiate three different colors (“fixed colors”) based on their brain
activation patterns. This classifier was then applied to the WM task, to decode the presence of
these colors during an early period of the WM task (i.e., at 2– 4 s after memory array onset). In
9 of 18 WM trials (per run), the memory sample contained one of the three fixed colors. The
presentation of load (1, 3, or 5) and fixed color (present/absent) was implemented in the WM
task in a full-factorial design.
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variation of the � parameter was modeled by a higher-order truncated
normal distribution with two parameters (mean [�] and SD [�]), which
we will refer to as the mean of precision (mean SD) and the variability of
precision across trials (SD variability), respectively. Higher values in
mean SD signify less precise memory representations, whereas higher
values in SD variability reflect a higher trial-to-trial variation in memory
precision. The model also implements the possibility of guessing behav-
ior (in the form of a guess rate parameter), where viewers either remem-
ber the item with probability 1 � guess rate, or they remember nothing
about the item at recall and guess randomly, resulting in uniformly dis-
tributed errors (Fougnie et al., 2012). Thus, the probability density func-
tion of an “error” x (in radians) is as follows:

f� x; �, �, g	 � g
1

2�
� �1 � g		�x; �, �, a, b	,

where the probability density function, 	, is given by integrating the von
Mises distribution (VM) with mean 0 and precision � over the higher
order density of � as follows:

	� x; �, �, a, b	 � �
a

b

VM� x; 0, ��s		
�s; �, �, a, b	ds

whereas 
(s; �, �, a, b) denotes a truncated normal distribution with
mean SD (�) and SD variability (�) bound within a and b, and �(s)
denotes the transformation of the width parameter s into precision �
(Jammalamadaka and Sengupta, 2001). Following Fougnie et al. (2012),
we chose to bound the width parameter s within a � 0 (0°) and b � 1.75
(100°). The three critical parameters (i.e., mean SD, SD variability, and
guess rate) were estimated separately for each load condition in each
participant using routines of the MemToolbox, including the Metropolis-
Hasting algorithm, a Markov Chain Monte Carlo technique that samples
from the posterior density of the parameter space, and noninformative
Jeffreys priors, which were placed on all free parameters (Fougnie et al.,
2012; Suchow et al., 2013).

As a first step, we compared model fits from this specific variant of the
variable precision model (i.e., VP-Gaussian-SD-g) with three other vari-
ants of the variable precision model using each model’s Akaike Informa-
tion Criterion (AIC; i.e., the relative goodness of fit corrected for the
number of free parameters) (e.g., Suchow et al., 2013). As alternative
models, we included the following: (1) a VP model with a truncated
normal over precision but with no guess rate parameter (i.e., VP-Gauss-
ian-SD-g-zero); (2) a model that used a gamma distribution as
higher-order distribution and estimated guessing behavior (i.e., VP-
Gamma-SD-g), and the same model but without guess rate parameter
(VP-Gamma-SD-g-zero) (Fougnie et al., 2012; Suchow et al., 2013; van
den Berg et al., 2014). On average, across participants and load condi-
tions, the AIC of the VP-Gaussian-SD-g was 1494.24, which was slightly
lower than the AICs of the other three model variants (VP-Gamma-
SD-g: AIC � 1494.32; VP-Gaussian-SD-g-zero: AIC � 1497.24; VP-
Gamma-SD-g-zero: AIC � 1498.45; lower AIC values correspond to
better fit). However, pairwise comparisons of AIC differences for each
model within each load condition, using t tests, showed no significant
differences in 16 of 18 comparisons (all p values �0.05, corrected for
multiple comparison). Based on these results, we conclude that model
fits from other variants of the variable precision model were statistically
not distinguishable from the VP-Gaussian-SD-g model; we arbitrarily
chose the VP-Gaussian-SD-g model.

In total, we used 477 trials (159 trials per load condition) per subject
based on the sum of trials from the behavioral and scanning sessions.
Most specifically, we had 405 trials (135 trials per load condition) from
the behavioral sessions plus 72 trials from the scanning session (24 trials
per load condition). To evaluate how performance changed as a function
of memory load, we conducted a one-way repeated-measures ANOVA
for each behavioral parameter (i.e., precision mean, precision variability,
or guess rate) with the factor memory load that contained three condi-
tions (levels): load 1, load 3, and load 5. Assumptions of equal variances
of the differences between levels were checked using Mauchly’s test for

sphericity. Bonferroni correction was applied to adjust for multiple com-
parisons of main effects. As well as an assessment of the within-subjects
effects of WM load (i.e., variation between the different levels 1, 3, and 5
compared with the error term) on mean SD, SD variability, and guess
rate, we tested for linear and quadratic trends of the relationship between
the levels of load. In the case of significant quadratic trends, individual
slopes from load 1 to load 3 and from load 3 to load 5 were computed and
analyzed separately, to account for nonlinearity in the rate of change in
behavioral performance.

fMRI data acquisition
Functional BOLD MR images were acquired on a 3-T Siemens Magnetom
Allegra Scanner using a T2*-weighted BOLD-sensitive gradient-echo, EPI
sequence (TR � 2000 ms; TE � 30 ms) with 32 slices (thickness � 3 mm,
gap � 1 mm, descending order, FOV � 192 mm, flip angle � 90°). In each
run, we collected either 185 (WM task) or 125 (perceptual attention task)
functional images, with a total of 4 runs per task. The first 5 volumes of each
run were discarded to allow for equilibrium magnetization. After the func-
tional data, structural MR images were recorded using a T1-weighted MP-
RAGE sequence (TR � 2200 ms, TE � 3.93 ms, TI � 900 ms, slice
thickness � 1 mm, gap � 0.5 mm, voxel size � 1 � 1 � 1 mm3, FOV � 256,
whole brain coverage, flip angle � 9°).

fMRI data analysis
fMRI data were analyzed using MATLAB (The MathWorks) and the
Statistical Parametric Mapping Software (SPM 8; Wellcome Trust Centre
for Neuroimaging). The preprocessing of the EPI images included slice-
time correction, spatial realignment (motion correction), and normal-
ization into the standard MNI 152 space. Data were smoothed using a 9
mm FWHM Gaussian Kernel. For multivariate analysis (MVPA), data
preprocessing was limited to spatial realignment; to preserve the fine-
grained spatial pattern of fMRI data, neither slice-time correction, nor
normalization, nor spatial smoothing was applied to the functional im-
ages (Norman et al., 2006).

The goal of the fMRI analysis was to assess the neural substrate of the
individual deterioration of mnemonic representations with increasing
set size (i.e., the neural mechanisms that are related to the decline in
mnemonic precision) and the increase in precision variability and guess
rate with load. For this aim, we defined five ROIs for each hemisphere
and tested for relationships between the slopes of load effects on behav-
ioral performance (i.e., mean SD, SD variability, and guess rate) and
load-related univariate BOLD signal estimates from these regions. Fur-
ther, we used MVPA to explore the relationship between load effects on
behavioral precision and decoding accuracy (which is assumed to repre-
sent the precision of the neural representation) (e.g., Emrich et al., 2013)
from brain regions that were identified as playing a crucial role for load-
dependent behavioral performance deterioration during univariate anal-
yses. The analysis of functional data relied on ROIs, so that results are best
comparable between univariate and multivariate analyses.

ROI definition. Anatomical ROIs (see Fig. 2A) from 3D probabilistic
cytoarchitectonic maps were created using the Anatomy Toolbox (Eick-
hoff et al., 2005) and wfu pickatlas (Maldjian et al., 2003) implemented in
SPM 8. ROI definition was informed by previous findings from univar-
iate and multivariate fMRI analyses, which showed WM encoding and
delay related load effects in occipital (visual), parietal, and frontal regions
and which had established that WM contents could be decoded from
these areas (Todd and Marois, 2004, 2005; Xu and Chun, 2006; Mitchell
and Cusack, 2008; Magen et al., 2009; Xu, 2009; Emrich et al., 2013; Lee et
al., 2013; Sprague et al., 2014). Specifically, the ROIs included areas “V1”
and “V4,” “7A” and “7PC,” and “superior/middle frontal gyrus (FG),”
for each hemisphere (compare Fig. 2A). Areas V1, V4, 7A, and 7PC were
derived from the Anatomy Toolbox, a probabilistic atlas of brain regions
based on a combination of functional imaging results and probabilistic
cytoarchitectonic maps obtained from the analysis of 10 postmortem
brains (Eickhoff et al., 2005). Probabilistic area V1 corresponds to pri-
mary visual cortex. Most specifically, this probabilistic map covered the
upper and lower bank of the calcarine sulcus extending to the mesial
surface of the cuneus (Amunts et al., 2000). Probabilistic area V4 in-
cluded the ventral extrastriate cortex lateral to BA 18; in particular, the
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V4 mask was located in the collateral sulcus covering the fusiform gyrus
(Rottschy et al., 2007). Brouwer and Heeger (2009) demonstrated em-
pirically that stimulus color can be decoded from these two visual re-
gions. Masks for the parietal areas 7A and 7PC represent two adjacent but
anatomically distinguishable areas within the superior parietal cortex
(Scheperjans et al., 2008). These two probabilistic ROI maps overlap with
superior portions of the IPS that proved relevant for individual differ-
ences in visual WM in earlier studies (e.g., Todd and Marois, 2004, 2005;
Xu and Chun, 2006). The ROI masks for the superior/middle frontal
gyrus are located in posterior portions of the frontal lobe and were cho-
sen so as to plausibly include the putative human analog of the frontal eye
fields (the exact description of the anatomical localization of the human
analog of the frontal eye fields differs between studies) (see also Paus,

1996; Blanke et al., 2000; Magen et al., 2009;
Akaishi et al., 2013; for review, see Vernet et al.,
2014). Frontal ROI masks encompassed dorsal
portions of the precentral, posterior and mid-
portions of the superior frontal gyrus, and
middle frontal gyrus. The superior/middle
frontal gyrus ROIs were constructed using the
wfu pickatlas toolbox and according to a proce-
dure described by Maldjian et al. (2003); they
consist of joined Brodmann areas 6 and 8 from
the Brodman area atlas (generated in MNI
space based on Talairach Daemon) intersected
by the middle frontal gyrus mask from the Ta-
lairach Daemon label atlas (Lancaster et al.,
2000; Maldjian et al., 2003). To warp MNI
space ROIs into subjects’ native space (for
MVPA), we used the individual segmentation
parameters derived during preprocessing to
perform a reversed normalization of the de-
fined ROIs.

As a validation of our definition of anatom-
ical ROIs, when analyzing data across the entire
brain in a voxelwise fashion, we observed task-
related univariate activity in a broad network,
encompassing clusters bilaterally in the pri-
mary and extrastriate visual cortex, including
areas covered by our V1 and V4 masks, IPS,
superior parietal lobule, precentral gyrus, and
middle frontal gyrus. Activity in these clusters
changed parametrically with the number of
items that were encoded, revealed by a second-
level t test of the parametric load estimates dur-
ing an early trial phase of the WM task (i.e., 2– 4
s after visual onset; time bin 2) (compare Table
1; T � 2.83, p � 0.05, corrected), thus largely
overlapping with our ROIs and also replicating
earlier research on visual WM (Pessoa et al.,
2002; Curtis and D’Esposito, 2003; Mitchell
and Cusack, 2008; Magen et al., 2009; Fusser et
al., 2011; Todd et al., 2011; Rottschy et al.,
2012).

Univariate analysis. We modeled the se-
quence of events of the WM trial with a finite
impulse response approach with 12 time points
in intervals of 2 s (corresponding to the TR)
due to the temporal proximity of WM events.
Our analysis thus encompassed the time win-
dow from 0 to 24 s after event onset (i.e., after
the onset of the encoding phase). The design
matrix also contained movement parameters
and a constant term for each run. We estimated
responses to the memory load manipulation in
terms of a parametric modulation of the WM
trial predictor representing memory load
(pmod regressor, load 5 � 3 � 1). Addition-
ally, in separate models, separate regressors for
each of the three levels of memory load were

estimated to further assess contrasts between load 1 and load 3, and load
3 and load 5 given the behavioral finding of nonlinear shapes of load
effects on the guess rate and mean SD parameters. Thus, for each partic-
ipant, the following three contrasts were computed with separate t tests
by using regressors at time bin 2 after visual cue onset: pmod contrast 5 �
3 � 1, load 3 � load 1, and load 5 � load 3. For each ROI, we extracted
these contrast values of the BOLD signal using the Marsbar toolbox
(http://marsbar.sourceforge.net/) for MATLAB (The MathWorks). Fig-
ure 2B represents extracted contrast values in each load condition for
each anatomical region, averaged across participants. Within each par-
ticipant, individual contrast estimates of the load effect for each ROI were
normalized using the contrast estimates across ROIs as variables for

Figure 2. WM load-related ROIs and their load-dependent activation patterns. A, Anatomical ROIs. Bilateral human primary
visual cortex (probabilistic area V1; blue) (Amunts et al., 2000), human ventral visual area 4 (probabilistic area V4; cyan) (Rottschy
et al., 2007), and two adjacent but anatomically distinct regions of superior IPS, probabilistic areas 7A (red) and 7PC (orange)
(Scheperjans et al., 2008) were defined from 3D probabilistic cytoarchitectonic maps using the Anatomy Toolbox (Eickhoff et al.,
2005). ROIs also included a frontal region (superior/middle frontal gyrus; green) designed as such to encompass also the human
homolog of the frontal eye fields (Maldjian et al., 2003). For details concerning ROI definition, see Materials and Methods. B, From
each ROI, BOLD signal contrast estimates under loads 1, 3, and 5 (against baseline) from time bin 2 (i.e., 2– 4 s after sample onset)
were extracted using the Marsbar toolbox (http://marsbar.sourceforge.net/) for MATLAB (The MathWorks) to illustrate set size
effects on BOLD signal activity. Color-coded dots connected by lines indicate averaged contrast estimates across participants (N �
22); SE for within-subjects effects was computed according to Cousineau (2005). Blue represents V1. Cyan represents V4. Red
represents 7A. Orange represents 7PC. Green represents superior/middle frontal gyrus/FG.
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mean-centering (i.e., contrast estimate of the respective ROI minus av-
eraged contrast estimate across all ROIs), which ensured higher compa-
rability of brain activity between ROIs within subjects and also reduced
between-subject variance. Individual contrast values, most specifically
their slopes, were integrated at the group level as dependent variables of
a general linear model (GLM) with factors ROI (5 levels: V1, V4, 7A, 7PC,
superior/middle frontal gyrus), hemisphere (2 levels: left, right), and
behavioral model parameter (i.e., mean SD, SD variability, or guess rate)
as covariates. This model corresponded to a two-way repeated-measures
ANCOVA and allowed us to directly test interactions between ROI,
hemisphere, and the respective behavioral performance estimate on the
slope of the load-related BOLD signal changes (load 5 � 3 � 1). To
further resolve significant interactions, we conducted post hoc correlation
analyses between behavioral performance estimates and normalized con-
trast estimates of BOLD load effects. We applied a significance level of 5%
and Bonferroni correction for multiple comparisons. Thus, by consider-
ing three GLMs (load 5 � 3 � 1; 5 � 3; 3 � 1), the corrected threshold
was p � 0.016. Assumptions of equal variances of the differences between
levels were checked using Mauchly’s test for sphericity. Greenhouse–
Geisser correction was applied when violation of sphericity between
groups occurred.

Multivariate pattern classification. Multivariate analysis was accom-
plished using a classification and regression tree (CART), a nonparamet-
ric binary decision tree learning technique that produces discrete
classification or continuous regression trees (Breiman, 2001). CART was
found to effectively deal with high-dimensional datasets and provides a
well-suitable method for the evaluation of multifactorial brain-behavior
relationships (Godefroy et al., 1998; Neeley et al., 2007; Duchesnay et al.,
2011). The CART algorithm was chosen because it can naturally handle
multiclass problems (i.e., here: decoding three fixed colors from brain
activity), whereas for other approaches such as for the widely used Sup-
port Vector Machine algorithm, finding an efficient extension to multi-
class problems is not straightforward and still heavily debated within the
field (Madzarov et al., 2009). We used the prediction of classification
trees, in which the estimated outcome variable was the class (i.e., here:
fixed color) to which the data of the multivariate brain activity belonged.
We conducted a cross-task classification analysis in which we trained the
nonparametric CART classifier on the trial-by-trial 
 estimates of the
three fixed colors (see above) obtained from the color attention task, and
tested the estimated information on the second time window (i.e.,
2– 4 s � 1 TR � 2 s) of the finite impulse response model of the WM trial.

Color information was decoded from those ROIs that were identified
in the univariate analysis as covarying significantly with the load-related
slope of one or more of the parameters of the variable precision model
(i.e., left and right probabilistic areas V1 and 7A; compare Univariate
results). In the first step of the multivariate analysis, we estimated param-
eters of a multivariate predictive model (based on the CART algorithm)
for each participant, each load, and each ROI separately and thus ob-
tained 22 ( N) � 3 (load conditions) � 4 (ROIs) � 264 decoding accu-
racies in total. For each participant, in each cross-classification fold, all
data (i.e., 2D matrix: number of trials � number of voxel of respective

ROI) was transformed to a lower dimensional representation using prin-
cipal components analysis as this reduces the dimensionality of the prob-
lem from the number of betas to the number of samples (for details of
this dimensionality reduction approach, see Mourão-Miranda et al.,
2005). Thus, for each ROI, the dimensionality of the feature space re-
duced to the number of samples/trials during classifier training (here:
3 � 36 training trials). Also, for each ROI, we applied feature selection to
extract 
 estimates from those 10% voxels that showed highest predictive
power within each cross-classification fold. In a second step, and before
the assessment of brain-behavior relationships, we tested whether the
obtained classifier accuracies were significantly different from chance
level (i.e., 0.33) at the group level, separately for the tested ROIs and load
conditions, using a Wilcoxon signed-rank test. A significance level of 5%
was applied with a modified Bonferroni correction (i.e., number of tests
per ROI � 3, df � 2: pcorrected � 0.033) (Keppel, 1991) to protect against
false-positives.

The cross-task classification approach enabled the generalization from
perceptual representations of colors to mnemonic representations of
these colors in the WM task, thereby counteracting the risk of possible
“double-dipping” (Kriegeskorte et al., 2009). Because both the percep-
tual attention task and the WM task are slow-event-related designs in
which the correlation between trial-specific regressors is assumed to be
low, we used a GLM to obtain trial-specific estimates, in which each trial
of training and testing task was modeled as separate regressor (Mumford
et al., 2012). The 
 estimates of the GLM of the perceptual attention task
reflected the responses to each trial of each of the three fixed colors. For
the visual delayed response task, a novel GLM was set up for the decoding
analysis. We used again an finite impulse response design (window
length � 24, order � 12) that consisted of regressors modeling set size (1,
3, or 5) and the presence versus absence of a fixed color within the
memory sample. Therefore, this GLM of the WM task encompassed 9
different combinations of load and fixed color as conditions (i.e.,
load1_violet, load3_violet, load5_violet, load1_green, load3_green, etc.)
within each session. The remaining 9 trials (i.e., those trials without fixed
colors and thus not entering the decoding analysis) were modeled as
regressors of no interest, only including information about memory
load. It should be noted that data are often mean-centered before classi-
fication. For a decision tree (i.e., CART), however, mean-centering does
not affect classification as node-specific rules are found for each vari-
able separately (Breiman, 2001), which is why there was no need for
mean-centering.

The multivariate data analysis served to explore whether or not
load-related decreases in behavioral precision can be accounted for by
decreases in classification accuracy of decoding fixed colors from
WM, which we thus use as an indicator of the precision of neural
representations during the WM task (compare Emrich et al., 2013).
Only those ROIs showing significant above-chance accuracies in the
decoding analysis in at least one of the three load conditions were
considered for subsequent ANCOVA to evaluate the relationship be-
tween decoding accuracy and parameters of the variable precision
model (i.e., mean SD, SD variability, and guess rate). To this end, we
conducted within-subject correlations using the method of Bland and
Altman (1995), by calculating ANCOVA with the factors behavioral
performance (i.e., mean SD under loads 1, 3, and 5) and subjects as
the covariates, and decoding accuracy (i.e., classifier accuracies under
loads 1, 3, and 5) as the dependent measure (Bland and Altman, 1995;
for a similar application of this approach, see Emrich et al., 2013). The
magnitude of the correlation coefficient � of the variation in classifier
accuracy due to variations in WM performance can be expressed as
the square root of the proportion of the “sum of squares for the
behavioral performance estimate” (e.g., mean SD) divided by the
“sum of the sum of squares for behavioral parameter and the residual
sum of squares.” The sign of the correlation coefficient � is given by
the estimated slope parameter (regression coefficient) (Bland and
Altman, 1995). In addition, we conducted the same analysis in a
control region (i.e., left and right primary auditory cortex; probabi-
listic area TE12 from the SPM Anatomy Toolbox) (Morosan et al.,
2001), as we would not expect any effects of visual load in this region.
A significance level of 5% was applied throughout the ANCOVA.

Table 1. Univariate resultsa

Brain region BA

MNI
Peak level
Tmax

Cluster size
kE (voxels)bx y z

L lingual gyrus 17/18/19 �3 �88 �8 8.34 4069c

L superior parietal lobule 7/40 �15 �64 55 8.32 c

R superior parietal lobule 7/40 18 �67 58 8.16 c

L precentral gyrus 6/8/9 �48 29 25 7.27 1705c

L middle frontal gyrus 6/8 �36 14 25 6.18 c

L middle frontal gyrus 10 �33 56 10 4.96 c

R middle frontal gyrus 10 36 56 �8 4.64 377
R superior frontal gyrus 6 30 2 58 4.16 177
aSignificant brain regions of parametric activity changes with increasing memory load threshold: T�2.83, p�0.05
(family-wise correction: voxel-level threshold: p � 0.005, cluster-level threshold: � � 54). BA, Approximate
Brodmann’s area; L, left; R, right; MNI, template brain included in the SPM8 software package.
bVoxel size: 3 � 3 � 3 mm 3.
cLocal peaks belonging to the same cluster.
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Results
Behavioral results
Using the variable precision model (Fougnie et al., 2012; van den
Berg et al., 2012), we estimated mean SD, SD variability, and
guess rate for each subject and load condition. These three pa-
rameters reflect the mean of mnemonic precision of color repre-
sentations (mean SD), its variability (SD variability), and the
proportion of guessing across trials, respectively. On average, the
mean SD across subjects was 14.99° (SD � 2.81°), 20.25° (SD �
3.43°), and 29.91° (SD � 6.79°) for loads 1, 3, and 5, respectively,
reflecting a decline in mnemonic precision as load on WM in-
creases (see distribution means on x-axis in Fig. 3A). Further, the
average SD variability across subjects was 4.3° (SD � 2.95°), 6.98°
(SD � 4.00°), and 13.88° (SD � 11.74°) (compare distribution
widths in Fig. 3A), which suggests that the amount of variability
of memory precision increased with load. Repeated-measures
ANOVAs demonstrated a significant increase in mean SD
(F(df � 1.4,28.4) � 96.03, p � 0.001; Fig. 3B, left) and SD variability

(F(df � 1.4,28.4) � 10.94, p � 0.001; Fig. 3B, middle) with increasing
load. We furthermore observed a significant increase in guess rate
with increasing load (F(df � 1.2,24.8) � 70.45, p � 0.001; Fig. 3B,
right). Furthermore, for each parameter, we observed a signifi-
cant linear trend across memory load (mean SD: F(df � 1,21) �
138.75, p � 0.001; SD variability: F(df � 1,21) � 14.58, p � 0.001;
guess rate: F(df � 1,21) � 75.12, p � 0.001). For the mean precision
and the guess rate parameter, we additionally observed a signifi-
cant quadratic trend (mean SD: F(df � 1,21) � 8.29, p � 0.009;
guess rate: F(df � 1,21) � 54.4, p � 0.001), but not for SD variability
(F(df � 1,21) � 2.25, p � 0.15). Therefore, we additionally com-
puted separate slopes across load 1 and load 3, and load 3 and load
5 for the mean SD and guess rate parameter to account for the
nonlinear relation when relating behavioral data to neural data.

Reliability of behavioral parameter estimates across sessions
Before incorporating the results of behavioral modeling with the
BOLD signal estimates, we validated whether the behavioral data

Figure 3. Results of model estimation of behavioral data. The difference between presented and reported color (“error”) in each trial was used to estimate three critical model parameters: the
mnemonic precision (mean SD), the variability of precision (SD variability), and the guess rate, separately for each load condition (1, 3, and 5) and participant (N � 22) by using the variable precision
model (Fougnie et al., 2012; van den Berg et al., 2012). A, Average mean SD and SD variability (i.e., as reflected by across participants averaged mean and SD of the higher-order truncated normal
distribution indicated by vertical and horizontal shaded lines, respectively, on the right panels) across participants in loads 1, 3, and 5, presented as probability density functions of the SD in degrees.
B, Parameter estimates from each participant are plotted for each load condition (left: mnemonic precision/mean SD; middle: precision variability/SD variability; right: guess rate). Each subject’s data
points across loads 1, 3, and 5 are plotted by either dots or squares in a different color. Gray lines indicate the individual linear regression slopes. To increase the clarity of visual display, for each load
condition, individual data points were slightly jittered along the x-axis and load conditions were separated by vertical dashed lines.
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measured in the scanner (i.e., the distribution of errors) match
behavior outside the MR scanner. Here, we compared the two
distributions of errors (i.e., inside vs outside the scanner) using
nonparametric two-sample Kolmogorov–Smirnov tests, sepa-
rately for each load condition. Within each load condition, we
observed no significant differences between these two distribu-
tions (load 1: p � 0.134, load 3: p � 0.616, load 5: p � 0.713),
suggesting that the behavioral data were comparable between the
sessions inside and outside the MR scanner. Furthermore, we
fitted the variable precision model to each subject’s data that were
acquired outside the scanner (i.e., 135 trials per load condition)
and compared parameter estimates with the current estimates
from all trials (i.e., 159 trials per load condition; trials per load:
135 � 24 trials acquired during fMRI). Here, trial numbers can be
considered, by and large, comparable and should not have a
strong influence on the accuracy of parameter estmation. Corre-
lational analyses between parameters based on all trials and those
based only on outside-scanner sessions revealed strong correla-
tions for guess rates (load 1: r � 0.973, load 3: r � 0.979, load 5:
r � 0.954, all p � 0.001), mean SD (r � 0.988, r � 0.943, r �
0.843; all p � 0.001), and SD variability parameters (r � 0.944,
r � 0.911, r � 0.896; all p � 0.001). We additionally computed
the intraclass correlation coefficient with the factor session (all vs
outside) using the model parameters as dependent variable.
Across participants, results demonstrated highly significant in-
traclass correlation coefficients in each load condition for each
parameter (all p values � 0.001), suggesting high consistency
between parameter estimates based on data measured inside ver-
sus outside of the scanner.

Control of effects of fixed color presentation
To exclude possible learning effects for the fixed colors (i.e., those
three colors that appeared with a slightly increased probability
during the fMRI session; compare Materials and Methods), we
tested for possible differences between trials in which a fixed
color was presented during memory encoding compared with
trials in which no fixed color occurred, collapsed across loads to
achieve sufficient trial numbers. Here we used the distribution of
absolute errors as trial numbers were too small for parameter
estimation after data splitting. Similar to the results of our pre-
testing, we observed no significant difference in error distribu-
tions (F(df � 1,21) � 2.89, p � 0.1), which indicates that no learning
of the fixed colors occurred.

fMRI results of univariate analysis
To assess the relationship between the degree of load-dependent
deterioration of WM performance and the recruitment of task-
related brain systems, we entered the linear slopes of WM param-
eters (i.e., mean SD, SD variability, or guess rate) as individual
differences covariates into group-level random effects models
with the contrast estimates of the load effect on BOLD signal
(equivalent to the slope of the neural load effect) as dependent
variable. With ANCOVA models, we tested for possible interac-
tions between these behavioral parameters and load-related ac-
tivity increase in five a priori defined anatomical ROIs (i.e.,
probabilistic visual areas V1 and V4, probabilistic superior pari-
etal regions 7A and 7PC, and superior/middle frontal gyrus; for
more details, see Fig. 2A; Materials and Methods), separately for
each hemisphere. Results revealed a significant interaction be-
tween the factor ROI and the variability of precision (most spe-
cifically the slope of the load 5 � 3 � 1 effect for the SD variability
parameter; F(df � 2.4,47.8) � 5.62, p � 0.004), but no interaction
with mean SD (p � 0.139) or the guess rate parameter (p �

0.375). No other interactions between ROI and/or hemisphere
and respective model parameters were observed (all p values
�0.176).

To evaluate which brain regions were in particular sensitive to
load-related changes of precision variability, post hoc correlation
analyses demonstrated that participants with more stable WM
performance in the face of high task load (i.e., participants with
lower load-dependent increase of the variability parameter � less
steep slopes of SD variability) showed a stronger task-related ac-
tivation increase within left and right area 7A of superior parietal
cortex, indicated by a significant negative correlation between SD
variability slope and the load effect in this area (left 7A: r �
�0.539, p � 0.009; right 7A: r � �0.474, p � 0.026; across left
and right: r � �0.55, p � 0.008; compare Fig. 4A, first row). In
contrast, within left and right visual area V1, we observed a dif-
ferent pattern (i.e., individuals with more variable WM represen-
tations [higher load-related increase in SD variability] showed a
stronger BOLD-signal increase: left V1: r � 0.592, p � 0.004;
right V1: r � 0.675, p � 0.001; across left and right: r � 0.65 p �
0.0009; compare Fig. 4A, second row). We observed no signifi-
cant correlation between SD variability slope and any of the other
ROIs (all p values �0.192). Figure 4A also indicates a significantly
positive relationship between the load-dependent slopes of mean
SD and BOLD activity in visual area V1. Collapsed across left and
right V1, we see a trend toward greater V1 activity increase in
persons that showed greater reductions of precision under in-
creasing load (i.e., greater increase in mean SD: r � 0.44, p � 0.04;
Fig. 4A, second row, left). (However, this result does not pass the
Bonferroni-corrected threshold of significance).

To evaluate whether the nonlinear load effects of behavioral
performance estimates (i.e., mean SD and guess rate; see Behav-
ioral results) may additionally contribute to the association be-
tween brain regions and behavioral parameters, we conducted
two additional group-level GLMs with BOLD signal contrast es-
timates for “load 3 � 1” and “load 5 � 3” as dependent variables,
respectively, for these two parameters. Under higher set size (i.e.,
load 5 � load 3), there was a trend toward a guessing � ROI
interaction (p � 0.047), which however did not pass the
Bonferroni-corrected significance threshold of p � 0.016. No
other interactions between ROI and/or hemisphere and respec-
tive model parameters were observed (all p � 0.117).

To summarize, univariate BOLD results revealed that the lin-
ear increase in the variability of visual WM precision under in-
creasing load (i.e., load 5 � 3 � 1) was significantly related to
load-modulated BOLD activity in superior IPS (i.e., probabilistic
area 7A), suggesting that superior parietal involvement helps to
stabilize WM representations in the face of higher load. In addi-
tion, individuals with less stable representations (i.e., stronger
load-related increase of SD variability with load) showed a stron-
ger load-dependent recruitment of probabilistic visual area V1.

fMRI results of multivariate analysis
We had hypothesized that the precision of the neural representa-
tion of WM stimuli may mediate the association between behav-
ioral performance parameters and brain activation. In this
context, the precision of neural coding is quantified as the accu-
racy of decoding stimulus features during the WM task from
brain activation patterns (Ester et al., 2013), as was previously
proposed, for example, by Emrich et al. (2013). Thus, to evaluate
how load-dependent deterioration in WM performance is related
to the precision with which visual WM stimuli are represented at
the neural level, we first identified those ROIs showing classifier
accuracies that were significantly different from chance level, in at
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least one of the three load conditions, and then in a second step
examined the relationship between behavioral parameters of the
variable precision model and load-dependent changes in decod-
ing accuracies. To this end, a cross-task classification was imple-
mented for which we trained a classifier to discriminate between
neural activation patterns associated with the perception of three
colors based on the fMRI data from an independent color atten-
tion task (see Materials and Methods). These “fixed” colors were
included into the WM study with slightly increased frequencies of
occurrence (see Materials and Methods), and the trained classi-
fier was applied to the WM task to decode which fixed color (of
three different fixed colors) was encoded into WM during the
current trial that included the presentation of a fixed color within
the memory array.

The cross-task classification was conducted for left and right
probabilistic areas 7A and V1 (i.e., for the four ROIs in which we
observed significant correlations between precision variability
and univariate BOLD activity). Results demonstrated that classi-
fication results from left area 7A were significantly above chance
for load 1 (p � 0.002) and load 3 (p � 0.03), but not load 5 (p �
0.47) (compare Fig. 4B, top). In addition, we observed a trend for
above-chance accuracies also for right area 7A at load 1 (p �
0.09), but none of the other tested combinations of ROI and load
condition showed classifier magnitudes that were significantly
different from chance (all p � 0.19) (compare Fig. 4B, top). Thus,
at least for load 1 and load 3, cross-task decoding was successful
within left superior IPS (i.e., probabilistic area 7A) at the group
level, indicating that color information of the trained feature
could be decoded from distributed patterns within this region
during the WM task (at 2– 4 s after onset of the sample stimulus
display).

Based on these results, we evaluated whether load-dependent
decoding accuracy from left superior IPS (i.e., probabilistic area
7A) is associated with the model parameters mean precision,
variability of precision, or guessing behavior. We applied a
within-subjects correlation approach (Bland and Altman, 1995)
that takes into account repeated-measures (i.e., three load condi-
tions) per participant and that has been used previously in a
similar context (Emrich et al., 2013) (see also Materials and
Methods). ANCOVA results showed significant relations be-
tween the load effects of decoding accuracy and mean precision
(� � �0.30, F � 4.18, p � 0.04) as well as variability of precision
(� � �0.31, F � 4.46, p � 0.04), such that lower decoding accu-
racy correlated with a higher mean SD (i.e., lower precision) and
a higher variability of precision (compare Fig. 4B, bottom). No
such relation was found for the guess rate parameter (p � 0.12).
Visual inspection of Figure 4B indicates that three participants
show no decoding accuracies above chance level in any of the
three load conditions. Replicating the brain-behavior correla-
tions after excluding these three participants did not substantially

change the results (mean precision: � � �0.447, p � 0.004; pre-
cision variability: � � �0.302, p � 0.06). To ensure that the
effects within left superior IPS are specific and not spuriously
induced by confounding factors not related to the experimental
intervention, we finally also conducted the same analysis for con-
trol ROIs in which no effects of visual WM precision were ex-
pected (i.e., for probabilistic masks of the left and right primary
auditory cortex). Importantly, we observed no significant rela-
tionship between decoding accuracy and behavioral mean preci-
sion (left TE: p � 0.69; right TE: p � 0.34), variability of precision
(left TE: p � 0.87; right TE: p � 0.07), and guessing behavior (left
TE: p � 0.85; right TE: p � 0.51) in these ROIs.

Thus, to summarize the multivariate fMRI results, neural pre-
cision (as determined on the basis of the accuracy of decoding
WM stimuli from brain activation patterns during the WM task
at 2– 4 s after memory array onset) correlated with the deteriora-
tion of behavioral mean precision under increasing set size. Pre-
cision variability showed a relation in the same direction, and
these effects were restricted to left superior IPS.

Discussion
To understand the neural underpinnings of capacity limitations
in visual WM, we combined fMRI with cognitive modeling of
behavioral performance during a color-WM task with continu-
ous response format. Consistent with previous reports, behav-
ioral modeling revealed that, when WM task load increased (i.e.,
5 � 3 � 1), encoded colors were remembered with lower preci-
sion (higher mean SD) and WM performance was more variable
(higher SD variability) and more random (higher guess rate)
(Bays and Husain, 2008; e.g., Zhang and Luck, 2008; Fougnie et
al., 2012; van den Berg et al., 2012). Subjects differed substantially
in their load-dependent deterioration patterns of these model
parameters. Combining these modeling results with fMRI dem-
onstrated that individual differences in the load-dependent in-
crease of precision variability predict the strength of superior
parietal (i.e., probabilistic area 7A) and primary visual (i.e., prob-
abilistic V1) activation during the WM task (at 2– 4 s after onset
of memory array). Further, within left area 7A, both decreasing
behavioral precision and increasing precision variability was mir-
rored by decreasing accuracy of decoding WM stimuli from brain
activation patterns, suggesting the precision of parietal represen-
tations as a potential contributor of WM capacity limitations.

The main novel contribution of this study is our observation
that precision variability, which has most recently been acknowl-
edged as an important parameter contributing to individual ca-
pacity differences (Fougnie et al., 2012; van den Berg et al., 2012,
2014) but has so far not been investigated at the neural level, is
associated both with the strength of BOLD activation and the
quality of neural representations in superior IPS. Earlier studies
suggested that superior IPS limits the number of items that can be
retained in WM (Todd and Marois, 2004, 2005; Vogel and
Machizawa, 2004; Vogel et al., 2005) or imposes variable capacity
limits dependent on WM delay length (Magen et al., 2009) or
object complexity (Xu and Chun, 2006; Xu, 2009; Domijan,
2011). However, other brain areas also showed capacity-limited
activation patterns (e.g., Mitchell and Cusack, 2008), so that the
neural mechanisms underlying WM capacity limitations are not
yet sufficiently understood. Our results extend and further spec-
ify these proposals by relating the activation of superior IPS as
well as early visual cortex to a specific aspect quantified in the
variable precision model (i.e., the variability of precision of WM
representations over time) and by indicating that these process-
ing limitations are operative already during perception and en-

4

(Figure legend continued.) variable WM performance, V1 shows a positive correlation with SD
variability increase. B, Mean classification accuracies from left and right superior IPS (area 7A;
red bars) and visual area V1 (blue bars) across participants (N � 22) (top). Error bars indicate SE
for within-subject effects (Cousineau, 2005). Bottom, The lower decoding accuracy from left
area 7A ( y-axis) was associated with higher mean SD (i.e., lower behavioral precision) and with
higher SD variability (x-axes) with increasing set size (load 5 � 3 � 1). Parallel lines indicate
within-subject correlations. Each participant is displayed using a different combination of line
color and line type (Bland and Altman, 1995; compare Emrich et al., 2013). *p � 0.05. Right,
Anatomical localization of probabilistic area 7A (red) in relation to the IPS, postcentral
sulcus (PoCS), central sulcus (CS), and Sylvian fissure (SF) (adapted from Scheperjans et
al., 2008).
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coding of stimuli. Our data further suggest, at least for left
superior IPS, that behavioral precision estimates are affected by
the precision of neural coding.

This result is consistent with single-neuron recordings from
monkey visual cortex and lateral intraparietal area (LIP) demon-
strating spike counts that could be described by doubly stochastic
processes (Churchland et al., 2011), which in turn are possible
neuronal correlates of behavioral variability (van den Berg et al.,
2012). The IPS is considered as human homolog of monkey LIP,
including its visual, attentional, memory, and saccade-related
specializations (Culham and Kanwisher, 2001). Consistent with
our work, monkey data show capacity limits during the initial
sensory encoding in area LIP (Buschman et al., 2011). Thus, noise
in the quality of WM encoding might be a critical component
underlying limits in WM capacity (Palmer, 1990; Buschman et
al., 2011; van den Berg et al., 2012), either stemming from per-
ceptual and/or mnemonic processes. Moreover, trial-to-trial and
item-to-item fluctuations in attentional gain could constitute
possible sources of variability of encoding precision (van den
Berg et al., 2012; Goris et al., 2014). Thus, it is possible that the
variability of WM precision may result from random fluctuations
of attention when (multiple) targets have to be remembered (e.g.,
Palmer, 1990; Pessoa et al., 2002; Wilken and Ma, 2004; Bays and
Husain, 2008; Zhang and Luck, 2008; Fougnie et al., 2012; van
den Berg et al., 2012; Ma et al., 2014). However, it has also been
proposed that variable memory precision may arise from con-
trolled shifts of attention occurring during WM encoding (Lara
and Wallis, 2012; van den Berg et al., 2012), a function that is
compatible with known superior IPS functionality (e.g., Serences
and Yantis, 2006). This assumption is based on findings that
visual cues during encoding can enhance memory precision, pos-
sibly due to a more focused allocation of selective attention re-
sources (Bays and Husain, 2008; Lara and Wallis, 2012). Even
without cueing, participants may have adopted a strategy of co-
vertly shifting attention to subsets of items during encoding and
greater engagement of brain regions controlling such attention
shifts may stabilize performance even in the face of high load.

Another attention mechanism that may be consistent with the
control of precision variability may be a higher vigilance or sus-
tained attention during the task, which may indirectly modulate
more transient attention processes during WM, which in turn
may affect precision and/or variability (van den Berg et al., 2012;
Ma et al., 2014). Lesion studies and a recent meta-analysis of
neural mechanisms underlying sustained/vigilant attention iden-
tified a mainly right-lateralized network, including prefrontal
cortex, anterior insula, IPS, temporoparietal junction, and sub-
cortical structures (Petersen and Posner, 2012; Langner and Eick-
hoff, 2013). These findings, however, are less likely to integrate
with our results, as the specific parietal subregion we identified,
left area 7A, was not part of this vigilant attention network. Fi-
nally, higher superior IPS activity may also result from increased
meta-cognitive processes during task engagement, which may
stabilize performance. Single-neuron recordings have revealed
that neurons in monkey LIP encode the certainty about percep-
tual decisions (Kiani and Shadlen, 2009). Moreover, parietal
damage was related to subjective confidence ratings in free-recall
episodic memory (Simons et al., 2010) and trial-to-trial variabil-
ity of subjective confidence ratings (i.e., meta-cognition of
ongoing task performance) was highly correlated with task per-
formance and consistent with the variable precision model
(Rademaker et al., 2012; Ma et al., 2014). Higher awareness of
ongoing task performance might, according to this assumption,
result in stronger IPS recruitment. While this meta-cognitive ac-

count could potentially explain the absence of a direct relation-
ship between load-dependent activation increase and mean
precision, it is difficult to integrate into the observed association
between neural and behavioral precision.

Whereas previous research observed a relation between load-
dependent decoding of WM contents and behavioral precision
for sensory regions (Emrich et al., 2013), we here additionally
demonstrate this association within left superior IPS. Combined,
these results suggest that increasing the load on WM results in a
decline in quality of neural representations of the memoranda
(see also Sprague et al., 2014; Ester et al., 2015), already during
WM encoding. Inconsistencies between studies, particularly with
respect to where in the brain such brain-behavior association can
be observed, may be due to distinct task and design choices (e.g.,
set sizes 5 � 3 � 1 vs 3 � 2 � 1; classification of direction of
motion vs location vs color, leave-one out approach vs generative
reconstruction model vs cross-classification, sequential vs simul-
taneous stimulus presentation). Our results are in line with the
recent demonstration that WM contents during simultaneous
distraction can be decoded from superior IPS but not from oc-
cipital regions (Bettencourt and Xu, 2016). We added to these
findings that superior IPS influences WM precision already dur-
ing early stages of the WM task (i.e., during memory array pre-
sentation), by modulating processes of mnemonic encoding
and/or perceptual processes that take place during encoding.
Given the central role of variability in current models of visual
WM capacity, superior IPS seems to play a critical role for WM
capacity limitations, at least under conditions of increased load
that reach or even exceed the individual capacity limit.

The temporal resolution of fMRI prevents a more time-
resolved analysis of component processes of WM. Here, we
worked with a relatively short delay length of 4 s, to keep the task
as comparable as possible with the behavioral research in which
the variable precision model is rooted, and to collect as many
trials as possible. Thus, we cannot unequivocally distinguish
brain activity reflecting encoding versus maintenance processes
(even though our analyses clearly bias the results toward encod-
ing processes). In particular, a limitation of this study, as well as
of many other studies using the same stimulus presentation for-
mat, is that as WM load increases, so does perceptual load, and
that the resulting neural effects are not separable using fMRI.
Thus, capacity limitations arising during WM encoding may be
rooted in mnemonic or perceptual processes (e.g., Palmer, 1990,
Ma et al., 2014). Hence, future work should focus on temporally
dissociating how different cognitive subprocesses contribute to
visual WM limitations (e.g., using electrophysiological signals)
(Bledowski et al., 2006, 2012).

In conclusion, our results suggest that superior IPS and V1 are
critical for individual differences in WM capacity, as their load-
related activity patterns are directly related to the quality of visual
WM. In particular, within superior IPS, the quality of neural
coding during perception and memorization of visual stimuli
relates to behavioral precision, whereas the overall recruitment of
this area seems to stabilize WM representations in the sense of
reducing behavioral performance variability.
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