
The brain has a modular design. The advantages of modu-
larity are well known to engineers: modules that can be rep-
licated and cascaded, such as transistors and web servers, 
lie at the root of powerful technologies. The brain seems to 
apply this principle in two ways: with modular circuits and 
with modular computations. Anatomical evidence suggests 
the existence of canonical microcircuits that are replicated 
across brain areas, for example, across regions of the cerebral  
cortex1,2. Physiological and behavioural evidence sug-
gests that canonical neural computations exist — standard 
computational modules that apply the same fundamental 
operations in a variety of contexts. A canonical neural com-
putation can rely on diverse circuits and mechanisms, and 
different brain regions or different species may implement 
it with different available components.

Two established examples of canonical neural 
computations are exponentiation and linear filtering. 
Exponentiation, a form of thresholding, operates at  
the level of neurons and of networks3 — for example, in the  
mechanism that triggers eye and limb movements4–6. 
This operation has multiple key roles: maintaining sen-
sory selectivity7, decorrelating signals8 and establishing 
perceptual choice9,10. Linear filtering (that is, weighted 
summation by linear receptive fields) is a widespread 
computation in sensory systems. It is performed, at least 
approximately, at various stages in vision11, hearing12  
and somatosensation13. It helps to explain a vast 
number of perceptual phenomena14 and may also be 
involved in sensorimotor15 and motor systems16.

A third kind of computation has been seen to oper-
ate in various neural systems: divisive normalization. 
Normalization computes a ratio between the response 
of an individual neuron and the summed activity of a 
pool of neurons. Normalization was proposed in the 
early 1990s to explain non-linear properties of neurons 
in the primary visual cortex17–19. Similar computations20 
had been proposed previously to explain light adaptation 
in the retina21–24, size invariance in the fly visual system25 
and associative memory in the hippocampus26. Evidence 
that has accumulated since then suggests that normali-
zation plays a part in a wide variety of modalities, brain 
regions and species.

Here, we review this evidence and suggest that 
normalization is a canonical neural computation in 
sensory systems and possibly also in other neural 
systems. We introduce normalization by describing 
results from the olfactory system of invertebrates. We 
then describe its operation in retina, in primary visual 
cortex, in higher visual cortical areas and in non-visual 
cortical areas, and discuss its role in sensory process-
ing and in the modulatory effects of attention. Finally, 
we review the multiple mechanisms and circuits that 
may be associated with normalization, and the behav-
ioural measurements that are captured well by nor-
malization. Two independent sections define the basic 
elements of the normalization equation and the many 
roles that have been proposed for normalization in 
relation to optimizing the neural code. 
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Attention
The cognitive process of 
selecting one of many possible 
stimuli or events. In this Review, 
we focus on visuospatial 
attention. Rigorous methods 
have been developed for 
quantifying the effects of 
attention on performance.

Normalization as a canonical neural 
computation
Matteo Carandini1 and David J. Heeger2

Abstract | There is increasing evidence that the brain relies on a set of canonical neural 
computations, repeating them across brain regions and modalities to apply similar 
operations to different problems. A promising candidate for such a computation is 
normalization, in which the responses of neurons are divided by a common factor that 
typically includes the summed activity of a pool of neurons. Normalization was developed to 
explain responses in the primary visual cortex and is now thought to operate throughout the 
visual system, and in many other sensory modalities and brain regions. Normalization may 
underlie operations such as the representation of odours, the modulatory effects of visual 
attention, the encoding of value and the integration of multisensory information. Its 
presence in such a diversity of neural systems in multiple species, from invertebrates 
to mammals, suggests that it serves as a canonical neural computation.
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Local contrast 
(Also known as Weber 
contrast). An image that is 
obtained by subtracting the 
intensity at each location by 
the mean intensity averaged 
over a nearby region and 
dividing the result by that 
mean intensity.

Normalization in the invertebrate olfactory system
The fruitfly (Drosophila melanogaster) senses odours 
through receptor neurons, each of which expresses a 
single odorant receptor. Receptor neurons project to  
the antennal lobe, a brain region that is analogous  
to the olfactory bulb in vertebrates. The response R  
of an antennal lobe neuron increases with the activity I of  
the receptor neurons that drive it27:

R = γ In

σ 
n + I n

 
(1)

The parameters γ, σ and n determine the shape of the 
response curve (FIG. 1a). A mask odorant that does not 
drive an antennal lobe neuron nonetheless suppresses 
the responses to a test odorant that does drive the neu-
ron (FIG. 1b). The interaction of the two odorants is  
accurately described27 by the normalization equation: 

R = γ In

σ 
n + I    + Inn  

m

 
(2)

Here, I is the response of receptor neurons that drive 
the antennal lobe neuron (which responds to the test 
odorant), and Im are the pooled responses of the other 
receptor neurons (which respond to the mask odorant). 
As Im appears as an additive term in the denomina-
tor, increasing it has the same effect as increasing σ in 
equation 1: it shifts the response curve to the right on a  
logarithmic scale (FIG. 1b). 

Normalization in the retina
The retina needs to operate in a wide range of light 
intensities. Across visual environments (for example, 
an overcast night and a sunny day) light intensities 
range over 10 factors of 10 (REFS 28,29). Within a given 
visual scene the variation is typically smaller, but still 
more than a factor of 10 (REF. 30). The retina uses ana-
tomical solutions (rod and cone photoreceptors and an 
adjustable pupil) for some of this wide range. For the 

rest of the range, light adaptation adjusts the sensitiv-
ity of neurons through normalization (FIG. 2a), resulting 
in responses that represent contrast (deviations from 
the mean over recent time and local space) rather than 
absolute intensities.

Photoreceptor responses increase with the intensity of  
a stimulus  (FIG.  2b). Their sensitivity (the position  
of the intensity–response curve on the intensity axis) 
depends on background light intensity22–24,31,32 (FIG. 2b). 
Increasing background intensity shifts the response 
curve to the right on a logarithmic axis23,24,31,32, plac-
ing the steepest portion of the curve (where the cell 
is most sensitive to changes) near the background 
intensity (FIG. 2b). As with a mask odorant in insect 
olfaction, equation 2 fits this effect well. Here, the back-
ground intensity constitutes the additive term Im in the  
denominator, and the exponent n is 1. 

Normalization makes photoreceptors adjust their 
operating point to discount mean light intensity (FIG. 2c). 
For example, consider two images differing only by a 
scaling factor (for example, because of different illumina-
tion33). Their distributions of light intensities are shifted 
laterally on a logarithmic axis (FIG. 2c). Normalization 
makes the photoreceptor responses shift accordingly, so 
that the responses to both images are similar34.
This adjustment of sensitivity approximates a neural 
measure of visual contrast (FIG. 2c,d). If background light 
is sufficiently high (Im >> σ), equation 2 can be rewritten 
(through a Taylor series) as: 

R – Rm α C (3)

Here, Rm is the response to the background light Im. C is 
local contrast, the relative deviation of local light intensity 
from the mean:

C = (I – Im) / Im
 (4)

The approximation in equation 3 assumes that local 
contrast C is moderate (so that C2 and higher can be 
ignored). This condition is often met in natural scenes, 
in which local contrast is typically low30. 

The key factor in determining local contrast is the 
spatial and temporal scale over which one computes  
the mean light intensity Im. Computing it over a scale 
that is too wide or long would entail large deviations 
from the mean, so equation 3 would no longer apply 
and light adaptation would no longer provide a meas-
ure of contrast. At the other extreme — computing local 
contrast over a tight spatial scale and brief temporal scale 
— estimates of mean intensity would become unreliable 
because of noise (variability inherent in the photoreceptor  
responses)29.

Following light adaptation, signals in retina are 
thought to feed into a second normalization stage, which 
performs contrast normalization (FIG. 2e). This stage 
adjusts responses to one location in an image based on the 
contrast in a surrounding spatial region35–40. Conceptually, 
it is useful to consider contrast normalization as separate 
from light adaptation29,30, but mechanistically the two 
stages may overlap in bipolar cells. Light adaptation is 
thought to operate in photoreceptors and bipolar cells, 
whereas contrast normalization is thought to occur in 

Figure 1 | Normalization in the olfactory system of the 
fruitfly. a | Responses of olfactory neurons in the antennal 
lobe to a single test odorant, as a function of activity in the 
presynaptic receptor neuron. γ and σ are constants (shown 
by the dotted line and the arrow). b | Responses of olfactory 
neurons in the antennal lobe to test odorant in the presence 
of mask odorants of increasing concentration (lower 
concentrations are shown by darker colours). Curves are 
fits of the normalization model (equation 2), with I

m
 free to 

vary with mask concentration. Data from REF. 27. 
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bipolar cells and ganglion cells41, and to become stronger 
in subsequent stages of visual processing.

Under contrast normalization, responses are no 
longer proportional to local contrast Cj (the output of 
the first normalization stage). Instead, the response Rj 
of neuron j is divided by a constant σ plus a measure of 
overall contrast40: 

Σk 
αk 

Ck

Σi wi CiRj = γ
σ + 2

 
(5)

Here, the weights wi (positive or negative) define the 
spatial profile of the summation field (typically, a centre-
surround difference of Gaussians), and the weights αk 
(positive) define the spatial profile of the suppressive field 
(typically, a large Gaussian40). The responses of neurons 
at the output of the retina (as measured in the lateral 
geniculate nucleus (LGN)) are characterized well by this 
equation, in which the normalization in the denomina-
tor corresponds to the standard deviation of contrasts 
over a region of the visual field42. 

A common way to probe contrast normalization is to 
use gratings that vary in overall contrast and size (FIG. 2f). 
As predicted by the model, increasing grating contrast 
leads to response saturation when gratings are shown in 
a large window, but not when they are shown in a small 
window40 (FIG. 2f). For small windows, local contrast is 
zero in most of the suppressive field, so the denomi-
nator has a small role in equation 5. For larger stimuli, 
increasing grating contrast increases local contrast not 
only in the numerator but also in the denominator, and 
responses saturate. Response saturation, therefore, is due 
to contrast and not to the evoked response: it is strongest 
for largest stimuli, which evoke weaker responses than 
smaller stimuli. 

Normalization in the primary visual cortex
Normalization is thought to operate not only in the ret-
ina but also at multiple subsequent stages along the vis-
ual pathway. Indeed, the normalization model was first 
developed to account for the physiological responses of 
neurons in the primary visual cortex (V1)17–19,43–45.

Here, we describe the normalization model for a pop-
ulation of V1 neurons differing in preference for stimu-
lus position and orientation. This characterization of the 
responses of neural populations46–48 encompasses previ-
ous descriptions of single neurons19,43. In the model, the 
responses of a population of V1 neurons are given by:

R(x, θ) = D(x , θ)n

σ n + N(x , θ)n

 
(6)

Here, x and θ indicate the preferred position and orien-
tation of each neuron in the population (the only two 
stimulus attributes that we consider in this simplified 
explanation). The numerator contains the stimulus drive 
D, which results from each neuron’s summation field and 
determines the selectivity for stimulus position and ori-
entation. The normalization factor N in the denominator, 
in turn, is determined by the suppressive field α(x,θ), 
which provides weights with which to pool the stimu-
lus drive received by each of the neurons (BOX 1). The 

Figure 2 | Normalization in the retina. a | Light adaptation operates on light intensity 
to produce a neural estimate of contrast (multiple arrows indicate light intensities from 
multiple locations). b | Responses of a turtle cone photoreceptor to light of increasing 
intensity. The intensity of the coloured squares reflects background intensity. Curves are 
fits of normalization model (equation 2) with n = 1. c | Light adaptation moves the 
operating point to suit images of differing intensity. Histograms on abscissa indicate 
distributions of light intensity for a sinusoidal grating under dim illumination (shown in 
blue) and bright illumination (shown in green). Histograms on ordinate indicate 
distributions of responses, which are more similar to one another than the light  
intensity distributions. d | The same data as in part c plotted as a function of local 
contrast (Weber contrast) rather than light intensity. Light adaptation makes responses 
roughly proportional to local contrast. The linear approximation given by equation 3 is 
shown (indicated by the dotted line). e | Contrast normalization operates on the neural 
estimate of contrast and normalizes it with respect to the standard deviation (sd) of 
nearby contrasts (multiple arrows indicate local contrast from multiple locations).  
f | Effects of contrast normalization. Responses of a neuron in lateral geniculate nucleus 
(which receives input from the retina) as a function of grating contrast and size. deg, 
degrees. Data in part b, from REF. 24. Data in part f, from REF. 40.
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normalization factor typically responds to a broader set 
of stimuli than the summation field. So a neuron that 
responds to stimuli with particular spatial positions and 
orientations can be suppressed by stimuli with a broader 
range of spatial positions and orientations. The exponent 
n in V1 neurons is generally between 1.0 and 3.5, with an 
average of about 2 (REFS 48–50).

Normalization explains why responses of V1 neurons 
saturate with increasing stimulus contrast, irrespective 
of stimulus orientation, and therefore irrespective of 
firing rate49 (FIG. 3a). Normalization explains this behav-
iour17–19,43 because both the stimulus drive and the  
normalization factor are proportional to grating contrast c:

R = γ(θ – φ) cn

σ n + cn

 
(7)

Here, γ is the neuron’s tuning curve for orientation, 
which depends on the difference between the neuron’s 
preferred orientation θ and the stimulus orientation φ. 
This characterization of the responses is a separable 
function of contrast and orientation, so the responses 
saturate with contrast regardless of stimulus orienta-
tion (FIG. 3a), and orientation tuning is invariant with 
contrast51,52.

Another non-linear phenomenon that is captured by 
normalization is cross-orientation suppression (FIG. 3b). 
The responses of a V1 neuron to a test grating that drives 
responses are suppressed by superimposing on the test 
grating a mask grating that is ineffective in eliciting 
responses when presented alone — for example, because 
its orientation is orthogonal to the neuron’s preferred 
orientation43,53–56. Normalization explains this effect 
because the suppression in the denominator increases 
with both test contrast ct and mask contrast cm, whereas 
the stimulus drive increases only with test contrast ct (the 
summation field does not respond to the mask):

m
R = γ

cn

σ n + cn + cn
t

t

 
(8)

The effect of increasing mask contrast, therefore, is to 
increase the denominator, which shifts the curve to the  
right on a logarithmic contrast axis (FIG. 3b). This is 
remarkably similar to the effect in the fruitfly anten-
nal lobe of adding a non-preferred odorant (FIG. 1b), or 
increasing background light intensity in photoreceptors 
(FIG. 2b). In all of these cases, the responses to a preferred 
stimulus are effectively divided by the strength of a non-
preferred stimulus.

Normalization also explains the more general case in 
which the mask does provide some drive to the neuron, 
for example, because its orientation is close to the preferred 
one (FIG. 3c). In this case, normalization makes an important 
prediction43,57: the mask should evoke activity when pre-
sented alone, but it should become suppressive in the pres-
ence of a more effective stimulus. To see how this prediction 
arises, consider the response of a neuron (equation 6)  
to the sum of two stimuli with contrasts c1 and c2:

R = σ  + c1 + c2

w1 c1 + w2 c2
 

(9)

w1 >> w2 measure the degree to which stimulus 1 
and 2 drive the neuron (and for simplicity we are set-
ting the exponent n to 1). When stimulus 1 is absent 
(c1 = 0), responses increase with stimulus 2 contrast. If 
instead stimulus 1 has sufficiently high contrast c1, one 
can ignore the term w2c2 in the numerator. Therefore c2 
appears only in the denominator, where it exerts a purely 
suppressive effect.

Box 1 | The normalization equation

The normalization model is defined by a simple equation, the normalization equation. 
This equation specifies how the normalized response R

j
 of neuron j depends on its 

inputs D
k
 (which are not normalized):

Rj = γ Dj
n

k
nσ 

n + Σk D

 
(10)

The numerator is the neuron’s driving input D
j
; in sensory systems, this driving input 

provides the stimulus drive to the responses. Its units depend on the system under 
study. They could be in units of stimulus intensity in a sensory system, or in spikes per 
second if the input is considered to arise from another neuron. The denominator is a 
constant σ plus the normalization factor, which is the sum of a large number of inputs 
D

k
, the normalization pool. The constants γ, σ and n constitute free parameters that are 

typically fit to empirical measurements: γ determines overall responsiveness, σ prevents 
division by zero and determines how responses saturate with increasing driving input, 
and n is an exponent that amplifies the individual inputs.

This operation is called ‘normalization’ by analogy to normalizing a vector. In this 
vector, each element of the vector is one of the inputs (D

j
) and the exponent is n = 2. If 

the normalization factor is the same for all neurons in the population, then the activity 
of the whole population of neurons is scaled (normalized) by the same number. 

In a sensory system, the normalization equation is often used in combination with a 
summation field (or linear receptive field) that determines the neuron’s selectivity for 
stimulus attributes. In that case the stimulus drive D

j
 to neuron j is taken to be 

a weighted sum of sensory inputs: 

Dj = Σk 
wjk 

Ik
 (11)

Here, the I
k
 are activities of afferent neurons, and the weights w

jk
 specify the summation 

field of neuron j. A number of variations of the normalization equation have been 
applied to model different systems:

Different inputs D
k
 can be assigned different weights α

jk
 in the normalization pool. 

These weights define a suppressive field. The suppressive field may differ across 
neurons (hence the subscript 

j
). For example, neurons in primary visual cortex whose 

summation fields are centred on different spatial locations would have suppressive 
fields that are centred at corresponding locations.

A baseline response β can be added to the numerator (to account for the spontaneous 
activity of the inputs). Doing so allows the normalization pool to affect not only the 
driven responses but also the resting (spontaneous) activity of the neuron. 

The exponent n can be the same in the numerator and denominator, as in equation 10, 
and it is applied to the individual inputs before being pooled. The exponent can also be 
applied to the output of the entire normalization pool, or different exponents m, n and 
p can be used in the numerator and denominator.

The normalization signal can be averaged over a period of recent time to model 
adaptation, such as light adaptation in retina or contrast adaptation in visual cortex. 
Combining these variations results in the following equation:

Rj = γ
k
mσ 

n + (Σk 
αjk 

I
 
   )p

(Σk 
wjk 

Ik)n + β  
(12)

This expression encompasses various implementations of the model that have been 
found to characterize different neural systems. When applying the model to a given 
neural system, however, it is best to strive for simplicity and have as few parameters as 
possible — for example, as in equation 10.

A typical way to characterize systems exhibiting normalization is to fit the 
normalization equation to the responses of a neuron to stimuli that drive that neuron, 
to stimuli that drive other nearby neurons, and to various combinations of these stimuli. 
More recent approaches involve fitting the equation to the responses of a large 
population of neurons at once48.
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Summation field
A region of sensory space that 
provides drive to a neuron. In 
many sensory systems, 
neurons derive their stimulus 
selectivity from a weighted sum 
of sensory inputs. The 
summation field comprises the 
weights in this sum.

Suppressive field
A region of sensory space 
providing suppression. In the 
normalization model, 
responses are suppressed by  
a weighted sum of activity of a 
population of neurons. The 
suppressive field comprises the 
weights in this weighted sum.

Grating contrast 
(Also known as Michelson 
contrast). The contrast of a 
grating is given by twice the 
mean intensity minus the 
lowest intensity divided by the 
highest intensity. This is often 
expressed as a percentage. A 
100% contrast grating is one in 
which the black bars have zero 
intensity.

Response saturation
Neural responses that increase 
with the strength of the input 
but progressively level off with 
very strong inputs. 
Normalization controls the 
strength at which responses 
saturate.

Normalization factor
A weighed sum of activity of a 
population of neurons, as 
determined by the suppressive 
field.

Winner-take-all
A neural computation in which 
the response depends on the 
maximum of the inputs.

MT
(Middle temporal area). 
Primate cortical area in which 
most neurons are selective for 
speed and direction of visual 
motion.

Another widespread phenomenon in V1 that is 
explained by normalization is surround suppression58,59 
(FIG. 3d). A neuron’s responses to stimuli inside the sum-
mation field can be suppressed by placing additional 
stimuli in the surrounding region60,61. Normalization 
accounts for this phenomenon58 (FIG. 3d) for similar rea-
sons to those discussed in relation to cross-orientation 
suppression: the suppressive field covers a larger region 
of visual space than does the summation field.

Normalization correctly predicts that the V1 popu-
lation exhibits strong winner-take-all competition in 
response to sums of stimuli with different contrasts48 
(FIG. 3e). When a low-contrast vertical grating is added 
to a high-contrast horizontal grating, the popula-
tion responses mostly reflect the high-contrast grat-
ing (FIG. 3e), even though the low-contrast grating was 
perfectly able to elicit strong responses when presented 
alone (FIG. 3e). Normalization provides winner-take-all 
competition because the presence of multiple stimuli 
effectively raises the constant in the denominator, 

reducing the sensitivity of the neurons to the point that 
the weaker stimuli become unable to drive them (FIG. 3b). 
An exponent n > 1 strengthens this effect, but normaliza-
tion can provide winner-take-all competition even when 
the exponent in the numerator is 1 (see FIG. 3e).

Normalization in other cortical areas
There is evidence for normalization downstream from 
area V1, and particularly in the visual cortical area 
MT62–64, where neurons are selective for visual motion 
(speed and direction). An established model of MT 
responses62,63 involves a summation field that operates 
on the population activity of V1, followed by a normali-
zation stage. The summation field determines the selec-
tivity for velocity, and the normalization stage helps to 
make this selectivity independent of spatial pattern63. 
The presence of normalization in MT would explain 
a number of suppressive phenomena that have been 
observed65, but it is challenging to determine whether 
normalization is computed de novo in MT or simply 

Figure 3 | Normalization in the primary visual cortex. a | Contrast saturation. Responses as a function of grating 
contrast for gratings having optimal orientation (shown in red) and suboptimal orientation (shown in yellow).  
b | Cross-orientation suppression. Responses to the sum of a test grating and an orthogonal mask grating (colours indicate 
mask contrast, from 0% (shown in yellow) to 50% (shown in dark red)). c | Transition from drive to suppression. Grating 1 
had optimal orientation and grating 2 had suboptimal orientation. Grating 2 could provide some drive to the neuron when 
presented alone (shown in yellow) but became suppressive when grating 1 had moderate contrasts (shown in red).  
d | Surround suppression. A grating contained in a central disk was surrounded by a grating in an annulus. The annulus 
elicited minimal responses when presented alone, but suppressed responses to the central disk. e | Effects of 
normalization on population responses. Each dot indicates the response of a population of neurons selective for a given 
orientation, and each panel indicates the population responses to a stimulus. Stimuli are gratings of increasing contrast, 
presented alone (top) or together with an orthogonal grating (bottom). Data in part a from REF. 43; data in part b from 
REF. 56; data in part c from REF. 43; data in part d from REF. 142; data in part e from REF. 48.
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V4
Primate visual cortical area in 
which neurons respond 
selectively to combinations of 
visual features. The modulatory 
effects of attention on neural 
activity have been extensively 
studied in V4.

IT 
(Inferotemporal cortex). A 
region of primate cortex in 
which neurons respond 
selectively to pictures of 
objects, faces and complex 
combinations of visual 
features.

Spectrotemporal receptive 
field
The receptive field of auditory 
neurons, which is typically 
defined in terms of sound 
frequency and time.

inherited from the V1 inputs64. Indeed, normalization 
in area V1 can profoundly shape the pattern of popula-
tion activity (FIG. 3d), and thereby have strong effects on 
MT neurons that receive inputs from V1 (REF. 48).

Other examples of normalization in visual areas 
beyond V1 lie in the ventral pathway, where visual neu-
rons are thought to perform a series of transformations 
that lead to object recognition66. Models of object rec-
ognition propose that information is combined from 
multiple features to construct object representations. In 
one such model67, a large set of summation fields extract 
features, and each successive visual cortical area inte-
grates features by a non-linear pooling operation. The 
non-linear pooling operation selects the largest responses 
(winner-take-all) and feeds those forward to the next 
stage of integration. This winner-take-all competition can 
result from the normalization model48 (FIG. 3d), particu-
larly when the exponent is large68 (BOX 2). Normalization, 

in this model, serves a role in the non-linear pooling 
that underlies feature integration. As predicted by such 
a model, there is evidence for suppression in ventral 
stream area V4 and the inferotemporal cortex (IT) when 
a non-preferred stimulus (or object) is presented with a 
preferred stimulus69,70. Some of the best current computer 
vision systems for visual object recognition follow a simi-
lar architecture as the model of the ventral visual pathway, 
with alternating stages of linear filtering and non-linear 
pooling through normalization. Normalization plays an 
important part in these computer vision systems as it 
enhances the accuracy of object recognition71.

There is also evidence for normalization in cortical 
areas that are devoted to other sensory modalities, and 
in particular in primary auditory cortex72–74 (A1). It has 
been known for a long time that responses of A1 neurons 
to sounds depend on sound intensity and context. For 
example, the spectrotemporal receptive field provides only 

Box 2 | Normalization and neural coding

Theoreticians have offered several (not mutually exclusive) rationales for normalization, most of which are related to 
coding efficiency.

Maximizing sensitivity. Normalization adjusts the gain of the neural responses to efficiently use the available dynamic 
range, maximizing sensitivity to changes in input. Light adaptation in the retina enables high sensitivity to subtle changes 
in visual features over a huge range of intensities (FIG. 2). Normalizing reward values yields a representation that can 
distinguish one dollar from two dollars and one million dollars from two million dollars, that is, widening the effective 
dynamic range of the reward system.

Invariance with respect to some stimulus dimensions. Normalization in the antennal lobe of the fly is thought to enable 
odorant recognition and discrimination regardless of concentration27,127. Normalization in retina discards information 
about the mean light level to maintain invariant representations of other visual features35,128 (for example, contrast). 
Normalization in V1 discards information about contrast to encode image pattern (for example, orientation)17,19,48,49 
(FIG. 3e), optimizing discriminability regardless of contrast129. Normalization in the visual cortical area MT is thought to 
encode velocity independent of spatial pattern62,63. Normalization in the ventral visual pathway may contribute to object 
representations that are invariant to changes in size, location, lighting and occlusion68.

Decoding a distributed neural representation. Visual area MT is thought to encode visual motion in the responses of a 
population of neurons tuned for different speeds and directions. These responses can be interpreted as discrete samples 
of a probability density function in which the firing rate of each neuron is proportional to a probability; the mean of the 
distribution estimates stimulus velocity and the variance of the distribution measures the uncertainty in that estimate63. 
Mean and variance can be computed simply as weighted sums of the firing rates if they are normalized to sum to a 
constant, the same constant for any stimulus.

Discriminating among stimuli. Normalization can make the neural representations of different stimuli more readily 
discriminable by a linear classifier27,127,129,130. The response of n neurons to a stimulus is a point in n‑dimensional space. The 
points belonging to similar stimuli cluster together. A linear classifier discriminates stimulus categories by drawing 
hyperplanes between the clusters. This is difficult if some stimuli evoke strong responses (points far from the origin) but 
others evoke weak responses (points near the origin); the hyperplane that defines the boundary far from the origin can 
fail near the origin, and vice versa. Normalization prevents this problem from arising.

Max-pooling (winner-take-all). Normalization can cause a neuronal population to operate in two regimes, averaging the 
inputs when these are approximately equal and computing a winner-take-all competition (max-pooling, selecting the 
maximum of inputs) when one input is considerably larger than the rest48 (FIG. 3e). Max‑pooling is thought to operate in 
multiple neural systems and to underlie perceptual decisions by selecting the neuronal subpopulation (or psychophysical 
channel) with the largest responses131–135. Models of object recognition propose multiple stages of max-pooling (winner-
take-all)67. Attention might interact with normalization to shift the computation from averaging to max‑pooling, thus 
selecting the subpopulation with largest responses and suppressing the rest, similar to the ‘biased competition’ model136.

Redundancy reduction. A neural representation is thought to be inefficient when its outputs are redundant137–139. 
Normalization can reduce this redundancy. Normalization contributes to statistical independence of V1 responses to 
natural images140,141. Natural images tend to be similar at nearby locations (for example, along a contour). Consequently, 
the response of a V1 summation field can be estimated from the responses of V1 summation fields that are selective for 
nearby locations. Normalization removes the dependence, making the representation more efficient140,141. Likewise, 
responses of the population of antennal lobe neurons (post-normalization) in the fly olfactory system are more 
statistically independent than are the (pre-normalization) olfactory receptor neurons27,127.
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MST
(medial superior temporal 
area). Primate cortical area in 
which neurons combine 
information about visual 
motion, head movements and 
eye movements.

Heading
Trajectory of movement 
through the environment.

Lateral intraparietal area
Primate cortical area in which 
neural activity depends on 
visual input, eye movements, 
attention to visual input, 
intention to make an eye 
movement and factors that 
affect when and where to move 
the eyes (including the 
expected probability and 
magnitude of a reward).

Rational choice theory
Economic model of decision 
making.

Attentional gain factors
A key component of the 
normalization model of 
attention. Each attentional gain 
factor corresponds to a 
particular spatial location and 
sensory feature, and has a 
value that is larger than one 
when that location and/or 
feature is attended.

a rough approximation to an A1 neuron’s responses, and 
it seems to change depending on the stimulus set that is 
used to measure it72,73,75. Responses of A1 neurons show a 
roughly logarithmic dependence on sound intensity (the 
commonly used decibel scale), but the responses can be 
shifted to the right on the logarithmic intensity axis by 
increasing intensity of a background noise76. These non-
linear behaviours are qualitatively reminiscent of normali-
zation: we have seen similar effects in the olfactory system 
(FIG. 1) and in two stages of the visual system (FIGS 2–3). 
In fact, the deviations from linearity can be characterized 
quantitatively by the normalization equation74. First, A1 
responses increase with a measure of spectrotemporal 
auditory contrast that is analogous to spatiotemporal 
visual contrast (equations 3 and 4). Second, A1 responses 
saturate with auditory contrast (equation 1). Third, the 
responses can be suppressed by superimposing a noise 
stimulus that does not evoke responses in the neuron 
when presented alone (equation 2). Normalization may be 
a widespread phenomenon in auditory processing: similar 
divisive effects as those seen in mammalian area A1 have 
been characterized in the auditory midbrain of the owl77.

Normalization seems to be at work not only in indi-
vidual sensory modalities but also at the stage of multi-
sensory integration57. A prime example is provided by 
neurons in the cortical medial superior temporal area 
(MST) of primates, which are thought to integrate vis-
ual cues and vestibular cues about head, body and eye 
movements to estimate heading. Some of these neurons 
are driven more strongly by visual cues, and others are 
driven more strongly by vestibular cues, but many seem 
to have their activity modulated by both modalities. The 
nature of the interaction is divisive, as in equation 9. In 
the numerator there is a contribution by both modalities 
that is often biased in favour of one modality, whereas 
the denominator sums signals from both modalities. 
Normalization thus explains why neurons that integrate 
sensory inputs from different modalities weigh each 
modality depending on its strength78, why multisensory 
enhancement decreases with stimulus intensity (also 
known as the ‘principle of inverse effectiveness’)57, and 
possibly why stimuli of the non-preferred modality can 
both drive the cell when presented alone and suppress it 
when presented with a stimulus of the preferred modal-
ity. We have already illustrated analogous effects of  
normalization in V1 (FIG. 3c).

In addition to sensory systems, there is evidence that 
the cortex uses normalization when encoding the value 
associated with different actions79,80. For example, neu-
rons in the lateral intraparietal area (LIP) of the macaque 
monkey encode the value of saccadic eye movements, 
but they are modulated by relative rather than absolute 
value: the neural representation of saccadic value is 
explicitly dependent on the values of the other available 
alternatives. The responses of a LIP neuron increase with 
the reward value (magnitude of juice reward) of a sac-
cade target presented within the neuron’s response field, 
and the responses decrease with the value of saccade tar-
gets simultaneously presented outside the response field. 
The normalization equation fits the responses to various 
combinations of reward values well. Other models (such 

as those based on absolute value or relative value com-
puted differently from the normalization equation) do 
not fit the data as well. Rational choice theory assumes that 
options are assigned absolute values that are independ-
ent of the values of other available alternatives. However, 
animals and humans violate this assumption, suggest-
ing that normalization may help to explain violations of 
rational choice theory79.

Normalization and visual attention
The normalization model has been extended to explain 
how responses in visual cortex are modulated by atten-
tion46. In the extended model, attention multiplicatively 
enhances the stimulus drive before normalization. As the 
normalization model can exhibit winner-take-all com-
petition (FIG. 3e), even a small enhancement can provide 
a substantial advantage to the attended stimulus.

A typical experiment that probes spatial attention 
involves two spatially separate stimuli, and attention is  
directed towards one of them (FIG. 4a). Recordings in vis-
ual cortex indicate that the neurons that respond to the 
attended stimulus show stronger responses (FIG. 4b,c). To 
model this experiment, consider a population of neurons 
whose responses R(x,θ) depend on preferred position x 
and preferred orientation θ (equation 6). The stimulus 
drive D(x,θ) is largest for the neurons whose preferred 
positions and orientations match the stimuli (FIG. 4d). The 
effect of attention is simulated in the model by an array of 
attentional gain factors A(x,θ). This array depends on the 
range of attended locations and features; in the case of spa-
tial attention (as in this example) it is narrow in space and 
broad in orientation (FIG. 4e). In other conditions it can 
instead be narrow in orientation (or other features) and 
broad in space (feature-based attention). The attentional 
gain factors multiply the stimulus drive, so that they affect 
both the numerator and the denominator of the normali-
zation equation (FIG. 4f). The resulting output firing rates 
R(x,θ) are largest at the attended location (FIG. 4g).

Although conceptually simple, the model can explain 
a seeming discrepancy in the literature about the effects 
of attention on responses of neurons in visual cortex 
(FIG. 4b–c). Different experiments have reported ostensibly 
conflicting outcomes46: a change in contrast gain (FIG. 4b), 
a change in response gain (FIG. 4c) or a combination of the 
two. According to the model, the discrepancy stems from 
differences in the size of the stimulus and the spread of 
attention (that is, the extent of the attentional gain fac-
tors), relative to the sizes of the summation and suppres-
sive fields. The model predicts that attention increases 
contrast gain when the stimulus is small and attention 
is broad (FIG. 4b), because the attentional gain factors 
multiply the stimulus drive and the normalization fac-
tor by the same amount. The model predicts that atten-
tion increases response gain when the stimulus is large 
and attention is narrowly focused (FIG. 4c), because the 
attentional gain factors multiply the entire summation 
field (which appears in the numerator of the normali-
zation equation) but only the centre of the suppressive 
field (in the denominator). These predictions were fur-
ther confirmed by a behavioural study that systematically 
manipulated stimulus size and attention spread81.
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Circuits and mechanisms underlying normalization
A large body of research has sought to identify the 
specific biophysical and cellular mechanisms that are 
responsible for normalization. Much of this research 
has focused on the role of GABA-mediated inhibition, 
which has often been suggested to underlie the operation 
of division. This emphasis has proven useful in the olfac-
tory system of the fruitfly27 but less so in mammalian 
V1, where GABA inhibition seems have a small or no 
role in essential aspects of normalization82. Therefore, 
it is unlikely that a single mechanistic explanation will 
hold across all systems and species: what seems to be 
common is not necessarily the biophysical mechanism 

but rather the computation. Moreover, in some systems 
(for instance, the visual system) normalization seems to 
result from multiple circuits and mechanisms operat-
ing in concert and cascading across multiple stages. In 
the visual system, for example, contrast normalization is 
thought to be progressively strengthened in retina, LGN, 
V1 and MT. Below, we review some key mechanisms that 
have been proposed, with an emphasis on research per-
formed in visual cortex, where the debate is most open.

Although there are notable exceptions (for example, 
much of light adaptation operates in single photorecep-
tors), normalization generally involves pooling a larger 
set of signals than those received by any single neuron. 
Therefore, its most useful explanations are those based 
on networks of neurons.

A key question concerns the basic arrangement of 
such networks (FIG. 5a,b). The normalization equation 
operates on neural signals (both in the numerator and 
in the denominator) that have not themselves been nor-
malized. A simple way to obtain such signals would be 
through a feedforward network that taps them before 
they have been subjected to normalization (FIG. 5a). Such 
an arrangement has been proposed for the visual sys-
tem of the housefly (Musca domestica)25, for the olfactory 
system of the fruitfly83 and for some aspects of normali-
zation in the mammalian visual cortex84. However, nor-
malization can also be achieved in a feedback circuit 
(FIG. 5b). It is well known to electrical engineers that gain 
control can be implemented using either a feedforward 
or a feedback system. A feedback circuit has been tra-
ditionally proposed for primary visual cortex, where 
signals in the denominator have been thought to origi-
nate from lateral feedback within V1 (REFS 19,43–45) or 
from feedback from higher visual areas85. The origin of 
divisive signals is generally hard to distinguish based on 
responses alone, that is, unless the underlying anatomy is 
known and the signals themselves can be manipulated at 
various stages in the circuit. Some models, therefore, are 
agnostic as to the origin of divisive signals18,25.

A clue to the nature of divisive signals is given by 
their timing and sensory properties. For example, in the 
visual cortex, normalization signals that originate near 
a neuron’s preferred position (responsible, for example, 
for cross-orientation suppression (FIG. 3b)) resemble LGN 
responses more than V1 responses: they exhibit broad 
selectivity for stimulus attributes56, lack of adaptability56 
and extremely short delay86. These characteristics might 
suggest a feedforward arrangement (FIG. 5a). Conversely, 
normalization signals that reach a neuron from a broader 
region of visual space (responsible, for example, for sur-
round suppression (FIG. 3d)) resemble V1 responses in 
many ways, such as orientation selectivity59, susceptibility 
to adaptation87 and longer delay88. These characteristics 
suggest a feedback arrangement (FIG. 5b). It is possible, 
therefore, that phenomena such as cross-orientation sup-
pression and surround suppression might be mediated by 
different mechanisms that operate in concert within the 
computational framework of normalization.

A second set of questions concerns the nature of the 
biophysical mechanisms that perform division. One of 
the very first proposals was shunting inhibition25,43,45. 

Figure 4 | Attentional modulation of responses in the visual cortex and 
predictions of the normalization model of attention. a | A typical attention 
experiment. A pair of gratings is presented, one on each side of the fixation point (shown 
by a dot). The task engages attention around one of the gratings (shown by a red circle). 
One of the gratings lies in the summation field of a recorded neuron (shown by a grey 
circle). b | In some experiments, attending to the stimulus in the summation field (shown 
by a red curve) changes contrast gain (leftward shift) relative to attending the opposite 
side (shown by a blue curve). The normalization model of attention predicts this result 
when the attended region is large and the stimulus is small relative to the summation and 
suppressive fields (shown in the inset). c | In other experiments, attention changes 
response gain (upward scaling). The model predicts this result for large stimulus size and 
small attended region (shown in the inset). d | Stimulus drive D(x,θ) for a population of 
neurons indexed by their preference for stimulus position x (abscissa) and orientation θ 
(ordinate) (the grey level indicates the stimulus drive for each neuron). e | Attentional 
gain factors A(x,θ) when attending to the stimulus on the right (the red circle in a) without 
regard to orientation (light grey indicates a value of 1 and white indicates a value >1). 
The attentional gain factors are multiplied point-by-point (×) with the stimulus drive.  
f | Normalization factors N(x,θ) are computed from the result of this multiplication, by 
pooling over space and orientation (shown by the asterisk) through convolution with the 
suppressive field α(x,θ). g | The output firing rates R(x,θ) of the population can be 
computed by dividing the stimulus drive (÷) by the normalization factors. Figure is 
modified, with permission, from REF. 46 © (2009) Cell Press.
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Shunting inhibition increases membrane conductance 
without introducing depolarizing or hyperpolarizing 
synaptic currents (FIG. 5c). Conductance increases could 
be obtained either through channels with a reversal 
potential close to the resting potential25,43 (for example, 
GABA type A (GABAA) receptors permeable to Cl– ions) 
or by concomitant increases in excitation and inhibi-
tion, balanced so that there is an increase in conduct-
ance with no net synaptic current45. It is easy to see how 
conductance controls the gain of membrane potential 
responses, as this follows directly from Ohm’s law: the 
membrane potential response V to a synaptic input cur-
rent I is scaled by membrane conductance g as V = I / g.  
It is less obvious to see how conductance controls the 
gain of firing rate responses, because spiking itself intro-
duces large, albeit brief, conductance increases89. It is 
now agreed that the effect of conductance increases on 
firing rates is divisive, but only if the source of increased 

conductance varies in time90. This variation could be 
achieved if the conductance changes were evoked by the 
noisy activity of other neurons91.

The shunting inhibition hypothesis makes a strong 
prediction: that normalization should affect not only the 
amplitude of the responses but also their time course. 
Increasing the conductance of a resistor–capacitor cir-
cuit such as the cellular membrane reduces not only the 
gain but also the time constant of the responses (FIG. 5c). 
The reduction in time constant is another way to reduce 
responsiveness, as briefer responses allow for less tem-
poral summation. This prediction is valid in the retina 
during light adaptation35,92 and during contrast normali-
zation35 (FIG. 5d). The evidence for conductance increases 
in normalization, however, is mixed. In V1, for example, 
intracellular measurements show that conductance does 
grow with stimulus contrast, but that it is not invariant 
with orientation93,94 as it would be if it reflected only the 
strength of normalization.

More generally, inhibition seems to have a role in 
some but not all forms of normalization. In the olfactory 
system of the fruitfly, normalization seems to be due to 
presynaptic inhibitory connections between neurons in 
the antennal lobe83, because blocking inhibition with a 
GABA antagonist greatly reduces the suppressive effect 
of a mask stimulus27. However, in V1 the normalization 
mechanisms underlying contrast saturation (FIG. 3a) or 
cross-orientation suppression (FIG. 3b) do not seem to 
rely on GABAA inhibition: they are unaffected by block-
age of GABAA receptors82. Inhibition in V1 may contrib-
ute to surround suppression95 (FIG. 3d), but this remains 
controversial96.

Alternative mechanisms have been proposed that 
could explain normalization phenomena without relying 
on inhibition. Some of these explanations rely on non- 
linearities in the afferent input27,84,97. In particular, a mech-
anism that could provide the appropriate non-linearity is 
synaptic depression98: if a synapse is engaged in transmit-
ting both test signals and mask signals, its effectiveness is 
reduced in a way that resembles the divisive effect required 
by normalization84 (FIG. 5e). Explanations of this kind, 
however, can only explain divisive effects provided by the 
same afferents that feed the numerator of the normaliza-
tion equation. In area V1, for example, they could explain 
phenomena of cross-orientation suppression (FIG. 3b) but 
not phenomena of surround suppression (FIG. 3d).

Other possible mechanisms rely on the effect of fluc-
tuations in membrane potential on firing rate responses51 
(FIG. 5f,g). The membrane potential of neurons is not only 
dependent on the afferent signals that are meant to drive 
the neuron but also on other signals originating from 
the rest of the brain in the form of ongoing activity99. In 
neurons such as those in area V1, the resulting fluctua-
tions in membrane potential are essential in making the 
neuron fire: without them, many stimuli would evoke 
membrane potential fluctuations that are too small to 
reach spike threshold100,101. Consequently, the ampli-
tude of ongoing activity controls the responsiveness of 
these neurons. As ongoing activity is weaker in V1 when 
stimulus contrast increases51, the neurons become less 
responsive, mimicking divisive suppression.  

Figure 5 | Some networks and mechanisms that have been proposed for 
normalization. a | The connections underlying normalization can be arranged in a 
feedforward manner, in which signals contributing to the denominator have not been 
normalized themselves. b | An alternative configuration involves feedback. The function f 
performs the appropriate transformation of signals so that they can be multiplied by the 
input, giving rise to division in steady state43,44. c | A resistor–capacitor (C) circuit and its 
transformation of an impulse into an exponential response. Conductance g determines 
both response gain and time constant. d | Effect of stimulus contrast on impulse 
responses of a lateral geniculate nucleus (LGN) neuron. Increasing contrast (left part) 
causes impulse responses to be weaker and faster, both in the model (middle part) and in 
the data (right part). e | Synaptic depression as a mechanism for normalization. 
Depression changes the relationship between presynaptic current and postsynaptic 
current (arbitrary units) in a divisive way. f,g | Noise as a mechanism for normalization 
(arbitrary units). The transformation between stimulus-driven membrane potential (g) 
and firing rate (f) depends on signals originating from the rest of the brain in the form of 
‘ongoing activity’, modelled from the point of view of a single neuron as noise added to 
the membrane potential (shown by the inset Gaussian curve in g). Data in part d from 
REF. 35; data in part e from REF. 84; data in parts f and g from REF. 143.
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Finally, an intriguing possibility is that normalization 
in some systems may rely on amplification rather than 
suppression. In the visual cortex, for example, a canoni-
cal microcircuit has been proposed1,2 to amplify and 
shape responses inherited from the LGN. This circuit 
and more recently proposed circuits, such as one centred 
on balanced amplification102, suggest an alternative path 
to normalization. Instead of increasing normalization 
by increasing suppression, these circuits may increase  
normalization by decreasing amplification.

Behavioural evidence for normalization
Psychophysical studies of visual pattern perception have 
paralleled research on the neurophysiological response 
properties of neurons in the visual cortex. The pre-
vailing view has been that judgments about pattern 
discrimination and pattern appearance are limited by 
neural signals in early visual cortical areas such as area 
V1. Consistent with this view, it has been possible to use 
normalization equations that summarize responses of 
V1 neurons to make specific predictions about human 
perception.

The simultaneous contrast–contrast illusion, for 
example, is created by surrounding a central texture 
patch with a textured background103. When the central 
texture patch is surrounded by a high-contrast pattern, 
the bright points of the central patch appear dimmer 
and, simultaneously, the dark points appear lighter. To 
explain this illusion with the normalization model, we 
must adopt a decision rule, a testable hypothesis that 
predicts behavioural performance from the pooled activ-
ity of a population of neurons. It has been proposed that 
perceived contrast is a monotonic function of the aver-
age activity of neurons with summation fields centred on 
the patch. The normalization model suggests that each 
of these neurons is suppressed by the pooled activity of a 
larger number of neurons, including those with summa-
tion fields in a surrounding spatial region. The responses 
of these surrounding neurons increase with back-
ground contrast. Hence, when there is a high-contrast 
background the suppression is stronger, and perceived 
contrast of the central texture patch is lower. Indeed, 
the normalization model has been used to explain the 
appearance of this illusion104.

The psychophysics of superimposed and surround 
suppression parallels the physiology. Surround suppres-
sion, as measured behaviourally, depends on whether 
the orientations and spatial frequencies of target and 
surround are matched103–106, unlike a superimposed 
mask for which the suppression is largely nonspecific107. 
Surround suppression, as measured behaviourally, is also 
slightly delayed, unlike a superimposed mask for which 
the suppression is immediate106. Both of these results 
parallel the physiological findings86,88.

Analogous behavioural markers of normalization 
should be measurable in the other domains, for exam-
ple, olfactory behaviour in the fruitfly while manipu-
lating the concentrations of two or more odorants, and 
choice behaviour in human and non-human primates 
while manipulating the reward values of two or more 
alternative options.

Deficits in computations related to normalization 
have been linked with amblyopia108–110, epilepsy111,112, 
major depression113,114 and schizophrenia67,115–121. This 
suggests the possibility that the origin of these brain 
disorders may lie not in a particular brain area or sys-
tem (such as the prefrontal cortex in schizophrenia), but 
instead in computational deficits, and that normaliza-
tion may be one of the fundamental computations that 
is compromised in these disorders.

Discussion
We have seen that divisive normalization is a wide-
spread computation in disparate sensory systems, and 
that it may also play a part in cognitive systems (for 
example, those that encode value). Why is normaliza-
tion so widespread? A tempting answer would be to see 
it as a natural outcome of a very common mechanism 
or network; a canonical neural circuit. However, there 
seem to be many circuits and mechanisms underlying 
normalization and they are not necessarily the same 
across species and systems. Consequently, we pro-
pose that the answer has to do with computation, not 
mechanism. Normalization is thought to bring multiple 
functional benefits to the computations that are per-
formed by neural systems (BOX 2). Some of these benefits 
may be more important for some neural systems than 
for others.

Some of the literature that we have reviewed 
concerns aspects of normalization that are still the 
subject of intense research. A key set of questions 
concerns the circuits and mechanisms that result 
in normalization. As reviewed above, these circuits 
and mechanisms are understood for some systems 
but not for others. Understanding these circuits and 
mechanisms is fundamental, especially if deficits in 
normalization are indeed at the root of psychiatric,  
neurological or developmental disorders.

Another question for further exploration is the degree 
to which normalization resembles — in computational 
terms or in underlying circuitry — the more general 
non-linear interactions that constitute ‘gain modulation’. 
Gain modulation is the multiplicative control of one  
neuron’s responses by the responses of another set of 
neurons. It arises in a wide range of contexts122, including 
in the interaction of proprioceptive and visual signals in 
the parietal cortex15,123, in the coordinate transformation 
needed for visually guided reaching15,122,123 and in invari-
ant object recognition122. A variety of studies address the 
computational advantages of gain modulation15,124,125 and 
its possible underlying biophysical mechanisms90,91,122,126. 
In its simpler forms, normalization is a special case of 
gain modulation in that the signals controlling gain are 
a superset of the signals that determine the responses. 
However, when the normalization model is expanded 
to include distinct gain factors, as in the normalization 
model of attention, it incorporates more general aspects 
of gain modulation. 

Because normalization is a computation that is 
repeated modularly in a number of brain systems, we 
propose that it should be considered a canonical neural 
computation. Under this proposal, normalization should 
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be added to a short list of known canonical neural com-
putations. These include not only two well-established 
computations that we have already mentioned — linear 
filtering and exponentiation — but also other compu-
tations, such as recurrent amplification, associative 
learning rules, coincidence detection, population vec-
tors and constrained trajectories in dynamical systems. 
Identifying and characterizing more modular computa-
tions of this kind will provide a toolbox for developing a 
principled understanding of brain function.

Understanding canonical neural computations could 
help us to understand brain function in a number of 

ways. First, it would provide a single language to describe 
the functional specialization of different brain areas. 
Second, as we have discussed above, a computational 
understanding of normalization provides a platform 
for characterizing behaviour and cellular mechanisms. 
Finally, understanding canonical neural computations 
such as normalization may also shed light on psychi-
atric, neurological and developmental disorders. If 
this hypothesis is correct for some of these disorders, 
then elucidation of these neural computations, and 
of the underlying mechanisms and microcircuits, is a 
fundamental mission.
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On page 52 of this article, in the legend for figure 1, the text “lower concentrations are shown by lighter colours” should 
have read “lower concentrations are shown by darker colours”. This has been corrected in the online version.
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