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Abstract 22 

Channel encoding models offer the ability to bridge different scales of neuronal measurement by 23 

interpreting population responses, typically measured with BOLD imaging in humans, as linear sums 24 

of groups of neurons (channels) tuned for visual stimulus properties. Inverting these models to form 25 

predicted channel responses from population measurements in humans seemingly offers the potential to 26 

infer neuronal tuning properties. Here, we test the ability to make inferences about neural tuning width 27 

from inverted encoding models. We examined contrast invariance of orientation selectivity in human 28 

V1 (both sexes) and found that inverting the encoding model resulted in channel response functions 29 

that became broader with lower contrast, thus, apparently, violating contrast invariance. Simulations 30 

showed that this broadening could be explained by contrast-invariant single-unit tuning with the 31 

measured decrease in response amplitude at lower contrast. The decrease in response lowers the signal-32 

to-noise ratio of population responses that results in poorer population representation of orientation. 33 

Simulations further showed that increasing signal-to-noise makes channel response functions less 34 

sensitive to underlying neural tuning width, and in the limit of zero noise will reconstruct the channel 35 

function assumed by the model regardless of the bandwidth of single-units. We conclude that our data 36 

are consistent with contrast invariant orientation tuning in human V1. More generally, our results 37 

demonstrate that population selectivity measures obtained by encoding models can deviate 38 

substantially from the behavior of single-units because they conflate neural tuning width and noise and 39 

are therefore better used to estimate the uncertainty of decoded stimulus properties.  40 

  41 
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Significance Statement 42 

It is widely recognized that perceptual experience arises from large populations of neurons, rather than 43 

a few single-units. Yet, much theory and experiment has examined links between single-units and 44 

perception. Encoding models offer a way to bridge this gap by explicitly interpreting population 45 

activity as the aggregate response of many single neurons with known tuning properties. Here we use 46 

this approach to examine contrast invariant orientation tuning of human V1. We show with experiment 47 

and modeling that due to lower signal-to-noise, contrast-invariant orientation tuning of single-units 48 

manifests in population response functions that broaden at lower contrast, rather than remain contrast-49 

invariant. These results highlight the need for explicit quantitative modeling when making a reverse-50 

inference from population response profiles to single-unit responses.  51 

 52 

53 
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Introduction 54 

Bridging knowledge derived from measurements at different spatial and temporal scales is a significant 55 

challenge for understanding the link between neural activity and behavior. While much work has 56 

focused on linking single-unit measurements to behavior, there is increasing recognition of the 57 

importance of population-scale representations (Benucci et al., 2009; Graf et al., 2011; Churchland et 58 

al., 2012; Mante et al., 2013; Fusi et al., 2016). In human neuroscience, these bridging challenges are 59 

even more severe as many of the core building blocks of knowledge learned from invasive animal 60 

experiments are difficult to verify and replicate in humans. It is therefore often unknown whether basic 61 

phenomena from the single-unit literature are applicable to humans, let alone how these phenomena 62 

will manifest at the larger scale of population activity that is typically interrogated by non-invasive 63 

measurement of the human brain. 64 

 Recently, an encoding model approach has proven useful in the analysis of large scale population 65 

activity measured by functional imaging (Naselaris et al., 2011; Serences and Saproo, 2012) and offers 66 

the promise of bridging knowledge from different species and scales of measurements. Encoding 67 

models build off of fundamental results in visual physiology, by encoding complex stimuli in lower 68 

dimensional representations such as receptive field or channel models. The assumption is that if these 69 

neural representations are operative in human cortex, then large-scale measurements of activity 70 

represent the aggregated responses of these basic neural operations. For example, a channel encoding 71 

model (Brouwer and Heeger, 2009, 2013) has been used to examine continuous stimulus dimensions 72 

such as color or orientation where it is reasonable to expect that there are large groups of neurons, or 73 

channels with known selectivity, and that voxel responses can be modeled as linear combinations of 74 

such channels. These channel encoding models have been used to examine responses for orientation, 75 

color, direction and speed of motion and somatosensory response to better understand apparent motion 76 

(Chong et al., 2015), cross-orientation suppression (Brouwer and Heeger, 2011), normalization 77 
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(Brouwer et al., 2015), speeded decision making (Ho et al., 2012), attention (Scolari et al., 2012; Garcia 78 

et al., 2013; Saproo and Serences, 2014; Ester et al., 2016), working memory (Ester et al., 2013, 2015), 79 

perceptual learning (Byers and Serences, 2014; Chen et al., 2015), biases in motion perception (Vintch 80 

and Gardner, 2014), and exercise (Bullock et al., 2016) using both functional imaging and EEG (Garcia 81 

et al., 2013; Bullock et al., 2016) measurements. Inverting these models to form predictions of channel 82 

response from cortical measurements produces tuned response profiles. The interpretations of these 83 

tuned response profiles are encouraging for the effort of bridging across measurements as they have 84 

shown results in concordance with expectations from electrophysiological measurement of phenomena 85 

such as decision-making reliance on off-target populations (Purushothaman and Bradley, 2005; Scolari 86 

et al., 2012) and feature-similarity gain (Treue and Maunsell, 1996; Saproo and Serences, 2014) and 87 

response gain (McAdams and Maunsell, 1999; Garcia et al., 2013) modulation effects of attention.  88 

 Here we test the ability of the channel encoding model approach to bridge single-unit and 89 

population scale measurement by asking whether the well-known property of contrast-invariant 90 

orientation tuning is manifest in predicted channel responses from human primary visual cortex. We 91 

reasoned that examining whether orientation tuning bandwidth of human cortical population responses 92 

change with contrast would provide a good test case for the use of encoding models to bridge 93 

measurements, because there is a clear prediction of invariance from single-unit measurements (Sclar 94 

and Freeman, 1982). However, contrary to the electrophysiology literature, we found that an encoding 95 

model produced channel response functions that increased in bandwidth as contrast was lowered. 96 

Computational modeling revealed that these effects can be explained by the reduced signal-to-noise 97 

ratio of cortical responses at lower contrast. These results emphasize that bridging different levels of 98 

measurement through these analyses requires explicit quantitative statements of how properties of 99 

single-units are expected to manifest in population activity. 100 

101 
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Materials and Methods 102 

Subjects 103 

Six healthy volunteers (ages 33-42, two female) from the RIKEN Brain Science Institute 104 

community participated in the experiment; all had normal or corrected-to-normal vision and were 105 

experienced subjects in functional imaging experiments. The study protocol was approved by the 106 

RIKEN Functional MRI Safety and Ethics Committee and all subjects gave written consent to 107 

experimental procedures in advance to participating in the experiment. 108 

Stimuli 109 

Stimuli were generated using MGL, a set of Matlab routines for implementing psychophysical 110 

experiments (http://gru.stanford.edu/mgl). Stimuli were back projected onto a screen using a LCD 111 

projector (Silent Vision 6011; Avotec) at a resolution of 800×600 and a refresh rate of 60 Hz. Subjects 112 

viewed the screen via an angled mirror attached to the head coil. The projector was gamma corrected to 113 

achieve a linear luminance output. 114 

Visual stimuli were sinusoidal gratings (spatial frequency: 0.7 cpd) in a circular aperture (10°), 115 

located to the left or the right of a central fixation cross (1°) at an eccentricity of 8°. The gratings were 116 

either low (20%) or high (80%) contrast, and could be in one of eight evenly spaced orientations from 117 

0° to 180° (see Figure 1). 118 

Task and Procedures 119 

On each trial, two gratings were presented for 5.12 s, followed by a 3.84 s inter-trial interval. 120 

During the grating presentation, the phases of both gratings were updated every 0.2 s. The phase of 121 

each grating was randomly chosen from one of 16 uniformly distributed phases from 0 to 2π, and the 122 

starting time of the phase update of each grating was randomly determined such that the phase updates 123 
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of the two gratings were asynchronous. The phase updates were implemented to reduce retinal 124 

adaptation and afterimages. The contrast and orientation of each grating was randomly chosen on each 125 

trial such that each combination of contrast (two levels) and orientation (eight levels) was presented 126 

three times in each run (48 trials in total). While the inter-trial interval was short which could result in 127 

non-linear summation of responses from the previous trial (Boynton, et al., 1996), the trial 128 

randomization procedure served to minimize previous trial effects as on average they would come from 129 

a random trial type. In addition, a fixation period of 5.12 s preceded each run, making each run 435.2 s 130 

in the scanner. Subjects completed 9 runs in the scanner (432 trials in total), which yielded 27 trials per 131 

orientation/contrast combination. 132 

While the gratings were presented in the periphery, subjects performed a luminance 133 

discrimination task at fixation. On each trial in this task, the fixation cross dimmed for 0.4 s twice, 134 

separated by a 0.8 s interval, and subjects had to indicate in which interval the cross appeared darker. 135 

The magnitude of dimming was held constant for one interval while the magnitude of dimming in the 136 

other interval was controlled by a one-up two-down staircase. Subjects pressed one of two keys (1 or 2) 137 

to indicate their response. The fixation task was performed continuously throughout a run and was 138 

asynchronous with the display of the grating stimuli. This task was used to control subjects' attention 139 

and ensure a steady behavioral state and eye fixation. The independently randomized contrast and 140 

orientations of the two gratings on either side also served as an internal check of the fixation quality, as 141 

any systematic bias of eye position for one stimulus would not be systematic for the other.  142 

MRI methods. 143 

Imaging was performed with a Varian Unity Inova 4T whole-body MRI system (now Agilent 144 

Technologies) located at the RIKEN Brain Science Institute, Saitama, Japan. A volume RF coil 145 

(transmit) and a four-channel receive array (Nova Medical) were used to acquire both functional and 146 
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anatomical images. 147 

Each subject first participated in a separate scanning session to obtain their retinotopic maps 148 

(see below for more details), using standard procedures. During this session, a high-resolution 3D 149 

anatomical T1-weighted volume (MPRAGE; TR, 13 ms; TI, 500 ms; TE, 7 ms; flip angle, 11°; voxel 150 

size, 1 × 1 × 1 mm; matrix, 256 × 256 × 180) was obtained, which served as the reference volume to 151 

align all functional images. The reference volume was segmented to generate cortical surfaces using 152 

Freesurfer (Dale et al., 1999). Subsequently, the anatomy volumes taken at the beginning of each 153 

session were registered to the reference volume so that the cortical regions in the functional scans were 154 

aligned with the retinotopy. All analyses were performed in the original (non-transformed) coordinates 155 

before being mapped to the cortical surface and specific visual regions.  156 

During the main experiment, functional images were collected using a T2*-weighted echo-157 

planar-imaging sequence (TR, 1.28 s; TE, 25 ms; flip angle, 45°; sensitivity encoding with acceleration 158 

factor of 2). We collected 29 slices at an angle approximately perpendicular to the calcarine sulcus, 159 

with resolution of  3 × 3 × 3 mm (field of view, 19.2 × 19.2 cm; matrix size, 64 × 64). The first four 160 

volumes in each run were discarded to allow T1 magnetization to reach steady state. In addition, a T1-161 

weighted (MPRAGE; TR, 11 ms; TI, 500 ms; TE, 6 ms; flip angle, 11°; voxel size, 3 × 3 × 3 mm; 162 

matrix, 64 × 64 × 64) anatomical image was acquired to be used for co-registration with the high-163 

resolution reference volume collected in the retinotopic session. 164 

Various measures were taken to reduce artifacts in functional images. During scanning, 165 

respiration was recorded with a pressure sensor, and heartbeat was recorded with a pulse oximeter. 166 

These signals were used to attenuate physiological signals in the imaging time series using 167 

retrospective estimation and correction in k space (Hu et al., 1995).  168 

Retinotopic mapping procedure 169 
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In this separate scanning session, we mapped each subject's occipital visual areas using well-170 

established phase-encoding methods (Sereno et al., 1995; DeYoe et al., 1996; Engel et al., 1997), so 171 

only a brief description is provided here.  We presented rotating wedges and expanding/contracting 172 

rings over multiple runs and averaged runs of the same type. Then a Fourier analysis was applied to the 173 

averaged time course to derive the polar angle map and eccentricity map from the wedge and ring data, 174 

respectively. Borders between visual areas were defined as phase reversals in the polar angle map of 175 

the visual field. The map was visualized on computationally flattened representations of the cortical 176 

surface generated by FreeSurfer. For each subject, we could readily define many visual areas, including 177 

V1, V2, V3, and hV4. However, we will mainly focus on V1 in this study. 178 

BOLD Data Analysis. 179 

Data were processed and analyzed using mrTools (http://gru.stanford.edu/mrTools) and other 180 

custom code in MATLAB (MathWorks, Natick, MA). Preprocessing of function data included head 181 

movement correction, linear detrend, and temporal high-pass filtering at 0.01 Hz. The functional 182 

images were then aligned to high-resolution anatomical images for each participant, using an 183 

automated robust image registration algorithm (Nestares and Heeger, 2000). Functional data were 184 

converted to percentage signal change by dividing the time course of each voxel by its mean signal 185 

over a run, and data from the 9 scanning runs were concatenated for subsequent analysis. 186 

Voxel selection 187 

We used an event-related (finite impulse response or deconvolution) analysis to select voxels in 188 

V1 that responded to the stimulus presentation. Each voxel’s time series was fitted with a general linear 189 

model with regressors for 16 conditions (2 contrasts × 8 orientations) that modeled the BOLD response 190 

in a 25 s window after trial onset. The design matrix was pseudo-inversed and multiplied by the time 191 

series to obtain an estimate of the hemodynamic response for each stimulus condition. Because the 192 
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stimulus was independently randomized in the left and right visual field, we fitted two event-related 193 

models for each subject, one based on the stimulus in the left visual field and one based on the stimulus 194 

in the right visual field.  195 

For each voxel, we also computed a goodness-of-fit measure (r2 value), which is the amount of 196 

variance in the BOLD time series explained by the event-related model (Gardner et al., 2005) . In other 197 

words, the r2 value indicates the degree to which a voxel’s time course is modulated by the task events, 198 

and hence we can use it to select voxels in V1 that were active during the experiment. We selected 199 

voxels whose r2 values were greater than 0.05, which yielded ~100 voxels in each V1 in each 200 

hemisphere. Subsequent analysis focused on imaging data in this subset of V1 voxels. Our results did 201 

not vary substantially with the voxel selection criterion. For example, when we varied the r2 cut-off to 202 

select a larger number of V1 voxels (~150), the tuning widths of the channel response function were 203 

30.6 and 49.9 deg for the high and low contrast stimulus, respectively. For a smaller number of V1 204 

voxels (~65), the tuning widths values were 22.7 and 38.7 deg, respectively.  205 

Channel encoding model 206 

We used a channel encoding model (also referred to as an “encoding model” for brevity below), 207 

proposed by Brouwer & Heeger (2009), to characterize the orientation tuning of V1 voxels. 208 

Conceptually, the model assumes each voxel’s response is some linear combination of a set of 209 

channels, each channel having the same bandwidth, but with a different preferred stimulus value. We 210 

refer to the tuning functions that specify the channels as “model basis functions”, which together span 211 

the range of all stimulus values. The intuition is that each voxel’s response is due to populations of 212 

neurons that are tuned to different stimulus values and the analysis proceeds by trying to determine 213 

which combination of these neural populations (channels) are most responsible for a voxel’s response. 214 

For every stimulus presentation, the ideal response of each channel is calculated based on the stimulus 215 
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value and model basis functions. The weights of each channel that best fit each voxel’s response in the 216 

least-squares sense is determined using linear regression from a training data set. Once these weights 217 

are fit, the model can be inverted on a left-out test data set to reconstruct channel responses from 218 

observed voxel responses. The average channel responses relative to the actual presented stimulus is 219 

called a channel response function.  220 

To use as training and test data for the channel encoding model, we obtained single-trial BOLD 221 

responses for each V1 voxel with the following procedure. For each V1 hemisphere, we first averaged 222 

the event-related BOLD response (see voxel selection above) across all voxels and conditions, which 223 

served as an estimate of the hemodynamic impulse response function (HIRF) in each V1 hemisphere. 224 

We then constructed a boxcar function for each individual trial (with the boxcar length equaling the 225 

length of the stimulus presentation), and convolved it with the estimated HIRF, to produce a design 226 

matrix coding for each individual trial in each condition. The design matrix was then pseudo-inversed 227 

and multiplied by the time series to obtain an estimate of the response amplitude for each individual 228 

trial in each voxel. We call the set of response amplitudes across all voxels in a V1 hemisphere a 229 

response “instance”.  230 

We fit the encoding model to the instances with a 5-fold cross-validation scheme, in which 4/5 231 

of the trials were randomly selected to be the training data and the remaining 1/5 of trials constituted 232 

the test data. This analysis was performed on instances for the high contrast and low contrast trials 233 

separately (216 trials per contrast). Our encoding model consisted of 8 evenly-spaced channels (i.e., 234 

model basis functions) from 0 to 180°, with each channel a half-wave rectified sinusoid raised to the 235 

power of 7. These basis functions were chosen to approximate single-neuron’s orientation tuning 236 

function in V1. In the following exposition, we adopted the notation from Brouwer & Heeger (2009). 237 

The training instances can be expressed as a m×n matrix B1, where m is the number of voxels, and n is 238 

number of trials in the training data. We then constructed hypothetical channel outputs given the 239 
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stimulus orientation on each trial of the training dataset, which yielded a k×n matrix C1, where k is the 240 

number of channels (i.e., k=8). Each column in the C1 matrix represented a set of ideal response to the 241 

stimulus orientation on that trial from the eight channels. A weight matrix W (m×k) relates the 242 

observed data B and the hypothetical responses 243 

B1  = W C1          (Equation 1) 244 

Each row of W represents the relative contribution of the eight channels to that voxel’s 245 

response. The least-square estimate of W was obtained with the following equation (T indicates the 246 

transpose of the matrix): 247 

Ŵ = B1 C1
T (C1 C1

T)-1         (Equation 2) 248 

The test instances can be expressed as a m×p matrix B2, where p is the number of trials in the 249 

test data. The estimated channel response to each test stimulus (Ĉ2) can then be estimated using the 250 

weights W: 251 

Ĉ2 = (ŴT Ŵ)-1 ŴT B2         (Equation 3) 252 

Ĉ2 is a k×p matrix, with each column representing each channel’s response to the stimulus on 253 

that test trial. The columns of Ĉ2 were circularly shifted such that the channel aligned to the test 254 

stimulus on that trial was centered in the orientation space. The shifted columns were then averaged to 255 

obtain a mean channel response. This procedure was repeated in each fold of the cross-validation, and 256 

the mean channel responses from each fold were further averaged to obtain what we will refer to as a 257 

“channel response function”. For each V1 hemisphere in each participant, we obtained channel 258 

response functions for both the contralateral and ipsilateral stimulus, separately for the high contrast 259 

and low contrast conditions. 260 

In addition to the channel response function, we also calculated a goodness-of-fit measure of 261 
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the encoding model. In each cross-validation fold, after we obtained estimates of the channel weights 262 

Ŵ, we also constructed another set of hypothetical channel outputs given the actual stimulus 263 

orientation in the test data, C2 (note that this is a matrix similar to C1 but for the test trials, and differs 264 

from Ĉ2 which is the estimated channel responses based on the voxel responses). The predicted voxel 265 

response can be obtained via: 266 

B2pred = Ŵ C2          (Equation 4) 267 

To the extent that the encoding model provides a good fit to the data, the predicted response 268 

B2pred (m×p) should be similar to the observed response, B2. We can thus calculate the amount of 269 

variance explained by the model as 270 

         (Equation 5) 271 

 is the mean voxel responses across voxels and trials, and the summation was performed 272 

across voxels and trials (i.e., all values in the m×p matrix). We calculated r2 from each fold of the cross 273 

validation and averaged them across the folds to obtain a single measure of the goodness-of-fit, for 274 

each contrast. Note this r2 is different from the r2 that represents the goodness-of-fit of the event-related 275 

model (see above section Voxel selection). In the remainder of this report, we will focus on this r2 value 276 

that indexes the goodness-of-fit of the channel encoding model. 277 

Quantifying the channel response function 278 

We fitted a circular bell shaped function (von Mises) to the channel response function   279 

        (Equation 6) 280 

Where κ is the concentration parameter which controls the width of the function, μ is the mean, x is the 281 

orientation, A is the amplitude parameter, and y0 is the baseline. Thus there were four free parameters 282 

of the fit: baseline (y0), amplitude (A), mean (μ), and concentration (κ). Because orientation is on [0 π], 283 
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whereas the von Mises function spans the interval [0 2π], orientation values were multiplied by 2 284 

during the fit, after which the fitting results were scaled back to [0 π]. Fitting was performed using a 285 

non-linear least square method, as implemented in MATLAB. To ease the interpretation of the results, 286 

we report the half-width-at-half-maximum instead of the concentration parameter, κ, because the latter 287 

is inversely related to the variance. 288 

Linking neuronal tuning to channel response: a computational model 289 

 We implemented a computational model that links neuronal tuning to channel response 290 

functions, using the assumptions underlying the channel encoding model. Given the channel response 291 

function is a highly derived statistic, this modeling effort was used to clarify how various assumptions 292 

of neural tuning and signal-to-noise would manifest in channel response functions. Specifically, we 293 

used this model to fit our observed data and simulate other scenarios to test the validity of the encoding 294 

model. The schematic of the model is outlined in Figure 3. The model contains 100 V1 voxels, 295 

comparable to the actual number of voxels used in our data analysis (see above). Each voxel is assumed 296 

to contain neurons tuned to all orientations, whose tuning functions are described by von Mises 297 

functions (see above). The preferred orientation (μ) are evenly distributed across all possible 298 

orientations in 1° increment (left column, “Neural tuning functions”), forming 180 classes of neurons. 299 

The width of the neural tuning function is specified by the concentration parameter, κ, which is the 300 

same for all neurons but can be manipulated across different simulations. The area under the orientation 301 

tuning function for neurons was normalized to one so that average firing rate for each neuron would not 302 

vary with tuning width. For each voxel, a weight vector, w, was generated by randomly sampling 180 303 

numbers from [0 1]. This weight vector specifies how much each class of neurons contributes to the 304 

voxel’s response. For an input stimulus with an orientation, θ, the response of each neuron is calculated 305 

according to its tuning function (see Eq. 6). For each voxel, the responses of individual neurons are 306 

multiplied by the weight vector, w, and then summed to arrive at a predicted response (middle column,  307 
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“Random weights”). To calculate the final voxel response, Gaussian noise with N(0, σ), is then added 308 

to this response to simulate physiological and thermal noise in BOLD measurements. Thus, each 309 

voxel’s response is determined by neuronal tuning width (κ), weight vector (w), and noise (σ). Note w 310 

is randomly generated for each voxel in each simulation, whereas κ and  σ are parameters that we 311 

examined systematically in several simulations (see Results).  312 

 We simulated experiments with the same basic set-up as our empirical study: 8 possible 313 

orientations, with each orientation shown 27 times (trials). For each trial, we obtained a vector of voxel 314 

responses (instances), calculated as above. Then all the trial instances were subjected to the same 315 

analysis as the real data described above, i.e., cross-validation in which 4/5 of data were used to obtain 316 

the channel weights and 1/5 of the data were used to obtain channel response functions. We used the 317 

same exact code to analyze the synthetic and real data. 318 

Computation of the posterior distributions 319 

 We computed the probability of different stimulus values given the test data, i.e., the posterior 320 

distribution, using a technique from van Bergen et al. (2015). The method begins with finding the 321 

weights of the channel encoding model as above. After removing the signal due to the encoding model, 322 

a noise model is fit to the residual response. The noise model assumes that each individual voxel’s 323 

variability is Gaussian with one component which is independent among voxels and another that is 324 

shared across all voxels. Each of the channels is modeled to have independent, identically distributed 325 

Gaussian noise. This leads to a covariance matrix for the noise as follows: 326 

Ω = ρττT + (1-ρ) I  ττT+σ2ŴŴT      (Equation 7) 327 

Where Ω is the noise model’s covariance matrix, I is the identity matrix,  denotes element-wise 328 

multiplication, τ is a vector containing each voxel’s independent standard deviation, ρ is a scalar 329 

between 0 and 1 which controls the amount of shared variability among voxels, σ is the standard 330 
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deviation of each channel and Ŵ is the estimated weight matrix from Equation 2. This noise model 331 

with parameters, τ, ρ and σ is fit via maximum likelihood estimation to the residual and can be used to 332 

compute the probability of generating any particular response given a stimulus value. Inversion of this 333 

equation using Bayes’ rule and a flat prior allows one to compute the probability of any stimulus value 334 

given a response—the posterior distribution. For a derivation and detailed explanation see (van Bergen 335 

et al., 2015). All analysis followed the same 5-fold cross-validation scheme used for the encoding 336 

model by which 4/5 of the data were used to fit the model weights and noise model parameters and the 337 

1/5 left out data were used to compute the posterior distribution using Bayes’ rule. Results are shown 338 

averaged across all five left-out folds. 339 

340 
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Results 341 

We measured BOLD responses from retinotopically defined V1 to oriented sinusoidal gratings 342 

(Fig 1) and used the resulting data to train and test a channel encoding model. We first report average 343 

(univariate) activity across voxels. While responses averaged across subjects and voxels in V1 did not 344 

show any apparent selectivity for orientation (Fig 2A), they were, as expected (Boynton et al., 2012), 345 

greater for higher contrast compared to low contrast contralateral stimuli (compare red vs. yellow). 346 

Consistent with the laterality of V1, responses did not vary with contrast of the ipsilateral stimulus 347 

(black). The presence of a strong contrast response for the contralateral stimuli but a complete absence 348 

of such a response for ipsilateral stimuli also suggest that subjects maintained stable central fixation.  349 

Despite this lack of orientation selectivity, channel response functions obtained from the 350 

encoding model and averaged across subjects displayed peaked responses at the true orientation of the 351 

contralateral stimulus for both high (Fig 2B, red) and low (Fig 2C, yellow) contrast stimuli. We 352 

computed r2, a measure of goodness-of-fit, which showed that the channel encoding model accounted 353 

for 31% and 13% (high and low contrast contralateral stimuli, respectively) amount of the variability of 354 

the data. The ability to recover these peaked function of orientation is consistent with previous studies 355 

using classification approaches (Kamitani and Tong, 2005) and is presumably due to biases in response 356 

to orientation which differ for individual voxels but are eliminated when responses are averaged across 357 

voxels. As expected from the lateralization of V1, these channel response functions are flat when 358 

constructed for the ipsilateral stimulus (black), thus serving as an internal control on the validity of the 359 

encoding model approach. 360 

However, contrary to the expectations of contrast-invariance, channel response functions were 361 

broader for low contrast compared to high contrast contralateral stimuli (Fig 2D, compare yellow to 362 

red). Fitting a bell shaped function (von Mises) to the subject-averaged channel response functions 363 
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revealed that the tuning width went from 25.6 to 42.0 deg (half-width at half-height) as contrast was 364 

lowered. Amplitude was also decreased for the low contrast stimuli from 0.27 to 0.23, where 1 would 365 

be the ideal height of the channel response function if voxel responses contained noise-free information 366 

about stimulus orientation. This pattern of results was also evident in individual subject’s channel 367 

response functions. 9 out of 12 hemispheres showed a decrease in tuning width as contrast was 368 

decreased (p = 0.013, t(11) = -2.60, one-tailed paired t-test). 10 out of 12 hemispheres had lower 369 

amplitude for the low contrast condition (p = 0.042, t(11) = 1.90, one-tailed paired t-test). We also 370 

examined extrastriate areas V2, V3, and hV4 and found similar results. In V2, tuning width went from 371 

21.3 to 75.5 deg and amplitude went from 0.25 to 0.19 as contrast was lowered. In V3, tuning width 372 

went from 17.8 to 88.6 deg and amplitude went from 0.23 to 0.18 as contrast was lowered. Finally, in 373 

hV4, tuning width for high contrast stimuli was 14.2 deg and channel response function was essentially 374 

flat for low contrast stimuli. Below we will focus on results from V1, which is best informed by 375 

neurophysiological results  (Sclar and Freeman, 1982; Skottun et al., 1987; Carandini et al., 1997).  376 

While the lack of contrast-invariant channel response functions might imply broader neuronal 377 

tuning at low contrast in human visual cortex, we instead considered whether it might be due to the 378 

weaker stimulus-driven signal at lower contrast. As noted above, BOLD responses had lower amplitude 379 

with lower contrast (Fig 2A). Given that many sources of noise in BOLD are non-neural (e.g. 380 

hemodynamic variability and head motion) and thus not expected to vary with signal strength, these 381 

lower amplitude responses result in lower signal-to-noise ratio (SNR) of the measurements made with 382 

lower contrast. Indeed, the amount of variance accounted for by the  encoding model, r2, was 383 

significantly lower for low contrast compared to high contrast stimuli for 12 out 12 hemispheres (p < 384 

0.001, t(11) = 5.58, one-tailed paired t-test). In the extreme case, channel response functions built on 385 

responses without any signal, as for the ipsilateral stimulus, are flat. Thus, we reasoned that the lower 386 

SNR measurements at low contrast could also result in flatter, i.e. broader, channel response functions.  387 
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To test whether reduced SNR at low contrast, rather than changes in neural tuning, could 388 

account for the increased channel response bandwidth at low contrast, we built simulations (Fig 3, see 389 

Materials and Methods). Briefly, each simulated voxel received randomly weighted responses from 390 

simulated orientation-tuned neurons. Different voxels had different weightings of the neuronal 391 

responses, thus resulting in weak, but different orientation selectivity across voxels. We added random 392 

Gaussian noise to these voxel responses and trained and tested the encoding model using the same 393 

procedures as we did for the actual BOLD data. We varied the standard deviation of the added noise 394 

(σ) to produce channel response functions that best fit the empirical data (in the least-squares sense) 395 

from the high contrast trials (Fig 4A). We then noted that in the empirical data there was a 42.2% 396 

decrease in neural response from high to low contrast across voxels (Fig 2A). We therefore decreased 397 

neural response by this amount for all the simulated neurons and found that the resulting channel 398 

response function to be a reasonable fit for the low contrast data (Fig 4B). Importantly, this good 399 

correspondence between model predictions and data was achieved without fitting any parameter, 400 

because the only thing we changed in the simulation was to decrease the magnitude of response across 401 

all neurons according to the value found from the empirical data. This suggests that reductions in 402 

response magnitude, and therefore SNR, are sufficient to produce changes in channel response width 403 

commensurate with what we observed. 404 

While tuning width is not expected to change with contrast, what if we had tested a property for 405 

which we expect a neural tuning width change? Do channel response functions track changes in neural 406 

tuning width? We simulated neural tuning functions from 5 to 40 degrees half-width at half-height as 407 

well as a “stick function” which responds only to a single orientation maximally and does not respond 408 

to any other orientation and computed channel response functions under different amounts of noise (Fig 409 

5A, cyan to magenta curves represent different neural tuning widths). We found that the resulting 410 

channel response functions did indeed track the neural tuning widths, but as the goodness-of-fit r2, 411 
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increased (achieved by varying the standard deviation of the added noise, abscissa in Fig 5B), the 412 

difference in channel response widths was diminished (note the larger splay of curves on the left vs 413 

right side of Fig 5B). Thus, channel response functions can reflect underlying neural tuning widths, but, 414 

perhaps counterintuitively, the better the goodness-of-fit of the encoding model, the less difference the 415 

neural tuning width makes. 416 

To understand why better goodness-of-fit implies worse model discriminability of underlying 417 

neural tuning functions, it is important to note that the absolute width of channel response functions is, 418 

in the limit of no noise, determined by the basis functions used in the encoding model and not by the 419 

neural tuning widths themselves. We simulated two variations of the encoding model in which we 420 

varied the model basis function widths. We increased the basis function width by decreasing the 421 

exponent on the sinusoidal basis to 3 (Fig 5A) and decreased the basis function width by using stick 422 

filters (Fig 5C). For all the simulations, as the goodness-of-fit increases, the recovered channel 423 

response functions approach the width of the model basis function (dashed line) rather than the 424 

neuronal response width (note that for both the channel response functions and the model basis 425 

functions, we use the fitted half-width at half-height as our measure of tuning width and therefore the 426 

stick functions do not have infinitely narrow tuning). Given that the encoding model is essentially a 427 

linear regression model, this is not an unexpected outcome. Linear weights are being determined to best 428 

map the voxel responses into ideal channel responses. As long as the voxel responses are determined 429 

by stimulus orientation, then the regression model will be able to recreate exactly any model basis 430 

functions that can be formed as linear combinations of the represented orientations 431 

 The above analysis suggests that while absolute neural tuning width may not be readily 432 

determined from the channel response function width, changes in tuning width might be meaningful if 433 

SNR does not change between conditions. That is, reading vertically for one level of goodness-of-fit in 434 

Fig 5A-C, the channel response function width changes systematically as a function of neural tuning 435 
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width. Might we be able to determine that neural tuning width has changed if we observe data in which 436 

we have matched goodness-of-fit of the encoding model? While this does not occur for changes in 437 

contrast, this could be the case for potential modulation of tuning width by cognitive factors like 438 

attention and learning. 439 

 However, changes in neural tuning width also result in changes in the model’s goodness-of-fit 440 

thus complicating the possibility of interpreting changes in channel response width. We simulated 441 

different neural tuning widths from 5-45 degrees half-width at half-height (Fig 6, abscissa) for different 442 

amounts of additive noise (standard deviation ranging on a logarithmic scale from 0.001 to 1, blue to 443 

yellow curves). As can be appreciated by the downward slopes of the curves in Fig 6, as the neural 444 

tuning widths get larger, the fit of the encoding model gets worse (lower r2, ordinate). The reason for 445 

this worsened fit is because as neural tuning width gets wider, there is less information about 446 

orientation available to fit the model. In the extreme, a flat neural tuning function would result in no 447 

orientation specific response and the encoding model would fail to fit the data completely. Each curve 448 

in the simulation is what one might expect to measure if neural tuning width is the only variable that 449 

changes in the experiment and noise is due mostly to external factors that do not change with 450 

conditions. That is, if one expects only a change in neural tuning width, the resulting channel response 451 

functions would be expected to have both wider tuning and lower r2. This pattern of results would make 452 

it difficult, if not impossible, to determine whether the changes in tuning were due to decreased SNR, 453 

decreased neural tuning width, or some combination of both. 454 

These empirical and simulation results suggest caution in interpreting changes in channel 455 

response functions because they could be due to either or both changes in neural tuning width and 456 

changes in signal strength. What better ways are there for interpreting these functions? A recent report 457 

(van Bergen et al., 2015) proposes to transform these channel response functions into posterior 458 

distributions that show the probability of different stimulus values given the measured response. We 459 
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applied the same analysis to our channel response functions, by estimating the distribution of noise in 460 

the voxels and model to determine the probability of measuring responses given any oriented stimulus 461 

and then applying Bayes’ rule with a flat prior to obtain the probability of various stimuli given the 462 

responses we measured in a left-out validation set of data (see Materials and Methods for details, Fig 463 

7). This resulted in posterior distributions that were peaked around the actual orientation for the 464 

contralateral stimulus (red and orange curves), but flat for the ipsilateral stimulus (black curves), thus 465 

replicating the results on channel responses. This transformation of the results into posterior 466 

distributions allows for a more straight-forward interpretation of the encoding model approach — 467 

encouraging interpretation in terms of the certainty by which a given neural response tells us what the 468 

stimulus was, rather than what it implies about underlying neural tuning functions. 469 

 470 

  471 
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Discussion 472 

Using an encoding model approach we built channel response functions for orientation and found that, 473 

unlike contrast-invariant single-units, they were broader at lower contrast. Simulations showed that this 474 

effect could be fully explained by the measured decrease in overall neural response between high and 475 

low contrast, which results in lower signal-to-noise ratio. As signal-to-noise is increased, channel 476 

response functions become narrower, until, in the limit of no noise, they approximate the shape of the 477 

model basis function (and not the underlying neural tuning function). While changes in underlying 478 

neural selectivity in our model could be reflected in channel response functions, our results 479 

demonstrate that changes in channel response functions do not necessarily reflect changes in 480 

underlying neural selectivity. 481 

Orientation selectivity of single-unit responses have been shown to be invariant to image 482 

contrast (Sclar and Freeman, 1982; Skottun et al., 1987; Carandini et al., 1997), suggestive of a general 483 

neural computational mechanism (Carandini and Heeger, 2012) by which visual perception can remain 484 

relatively unaffected by differences in visibility of stimuli. Despite this central theoretic importance, 485 

obtaining non-invasive measurement of selectivity bandwidth from human cortex has been technically 486 

difficult because orientation selectivity is organized into cortical columns (Hubel and Wiesel, 1962, 487 

1968; Blasdel and Salama, 1986; Bonhoeffer and Grinvald, 1991), much smaller than the typical spatial 488 

resolution of blood-oxygen level dependent (Ogawa et al., 1990, 1992) measurements. While direct 489 

measurements of such columnar structures in humans has been achieved (Cheng et al., 2001; Sun et al., 490 

2007; Yacoub et al., 2007, 2008), multivariate analysis using pattern classification approach to decode 491 

orientation and motion direction (Haynes and Rees, 2005; Kamitani and Tong, 2005, 2006) from 492 

distributed activity patterns has become a more common approach (Norman et al., 2006). However, this 493 

classification approach generally produces a categorical outcome, for example, which of two 494 

orientations was more likely to have resulted in the measured response pattern and thus is not typically 495 
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used for probing selectivity bandwidth of neural representations. The encoding model approach allows 496 

one to reconstruct a response profile for a stimulus that has a tuning bandwidth that can be inspected 497 

across different contrasts. 498 

While we found an increase in the bandwidth of channel response functions for lower contrast 499 

stimuli from human V1, this increase could be fully accounted for by the measured reduction of 500 

response amplitude due to contrast, thus reconciling our data with contrast-invariant orientation tuning. 501 

We recognize that contrast invariance at the population level as measured with BOLD is not guaranteed 502 

even if single-unit spiking responses display contrast-invariance. Systematic relationships between 503 

contrast-sensitivity and selectivity for orientation could result in population responses changing 504 

selectivity with contrast. For example, if the least orientation-selective neurons saturate their responses 505 

at lower contrast than the most selective neurons, then population response would become more 506 

selective as contrast increases because population response would be dominated by the most selective 507 

neurons. However, no such systematic relationship has been observed and population spiking responses 508 

appear contrast-invariant in cats (Busse et al., 2009), consistent with our results. Furthermore, BOLD 509 

measurements may be better correlated with local field potentials than spiking activity (Logothetis et 510 

al., 2001), which could also result in deviations of BOLD population measures of contrast invariance 511 

and spiking activity of neurons. If BOLD measures are sensitive to sub-threshold, synaptic activity that 512 

can contribute to local field potentials, broadening of channel response functions that we observed 513 

could be reflective of sub-threshold activity, if such activity is not contrast-invariant. However, 514 

intracellular measurements of membrane potentials show that selectivity does not broaden at lower 515 

contrast, in fact, selectivity is slightly increased at low contrast (Finn et al., 2007), consistent with our 516 

interpretation that channel response function broadening at low contrast is due to reduction in signal-to-517 

noise. 518 

Given our results, bridging effects of attention on single units with effects uncovered using 519 
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encoding models of functional imaging measurements (Sprague et al., 2015) may be similarly 520 

complicated as bridging contrast invariance effects. Single unit studies have suggested that neurons 521 

change gain, not selectivity bandwidth (McAdams and Maunsell, 1999; David et al., 2008) with spatial 522 

attention, a key finding that has shaped our understanding of neural mechanisms of attention (Carrasco, 523 

2011; Ling et al., 2015). In human population measurements, improved orientation encoding has been 524 

found when orientation (but not contrast) is task relevant (Jehee et al., 2011; Ling et al., 2015). While it 525 

would be of interest to know whether these population effects of attention reflect differences in neural 526 

tuning bandwidth, selective attention, like image contrast, also modulates response amplitudes 527 

(Brefczynski and DeYoe, 1999; Gandhi et al., 1999; Kastner et al., 1999; Kastner and Ungerleider, 528 

2000; Reynolds and Chelazzi, 2004) and thus is expected to improve signal-to-noise ratio for 529 

population measures. Similarly to contrast effects, attention should be expected to bias channel 530 

response functions toward a narrower tuning even if neural tuning bandwidth does not change.  531 

A similar disconnect between single-unit and population measures impacts even simpler 532 

measures of cortical response that do not require multivariate approaches. Contrast sensitivity can be 533 

directly imaged because single-units monotonically increase response with contrast (Albrecht and 534 

Hamilton, 1982; Sclar et al., 1990; Busse et al., 2009) resulting in a population response that also 535 

monotonically increases (Tootell et al., 1998; Boynton et al., 1999; Logothetis et al., 2001; Avidan and 536 

Behrmann, 2002; Olman et al., 2004; Gardner et al., 2005). Spatial attention has generally been shown 537 

to shift contrast response vertically upward when measured with functional imaging (Buracas and 538 

Boynton, 2007; Li et al., 2008; Murray, 2008; Pestilli et al., 2011; Hara and Gardner, 2014), which 539 

appears to be different from the variety of effects from contrast-gain to response-gain reported for 540 

single-units (Reynolds et al., 2000; Martínez-Trujillo and Treue, 2002; Williford and Maunsell, 2006; 541 

Lee and Maunsell, 2010; Pooresmaeili et al., 2010; Sani et al., 2017). Consideration of normalization 542 

and the size of the attention field relative to stimulus-driven responses can give rise to effects that can 543 
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account for single-unit responses and EEG measures (Reynolds and Heeger, 2009; Itthipuripat et al., 544 

2014). But, predictions of this normalization model of attention may differ for single-units and 545 

population measures as different neurons in a population can be exposed to different balance of 546 

attention field and stimulus-drive, giving rise to additive shifts when considered as a population (Hara 547 

et al., 2014). Relatedly, response gain changes may also manifest as additive shifts when directly 548 

examining voxel feature selectivity (Saproo and Serences, 2010). 549 

While neural tuning width can be reflected in channel response functions, neural tuning width 550 

and signal-to-noise changes are intertwined, making it hard to disentangle their effects. For example, 551 

one might examine conditions in which signal-to-noise is matched and then hope to attribute changes in 552 

channel response function bandwidth solely to changes in neural tuning bandwidth. However, our 553 

simulations show signal-to-noise measures such as the variance accounted for by the encoding model 554 

(r2), covaries with neural tuning width. As neural tuning width broadens there is less modulation of 555 

voxel response with orientation and thus the encoding model shows a decrease in r2. Therefore, even 556 

pure changes in neural tuning width would result in conditions with lower r2, making it hard to attribute 557 

changes in channel response functions solely to changes in neural tuning width. 558 

The results of our simulation are agnostic to the source of selectivity for orientation in voxels. 559 

One possible source of orientation information are the irregularities of columnar organization which 560 

could give rise to small, idiosyncratic biases in voxels (Boynton, 2005; Swisher et al., 2010). However, 561 

large scale biases for cardinal (Furmanski and Engel, 2000; Sun et al., 2013) and radial (Sasaki et al., 562 

2006) orientations have been reported, and these biases have been shown to be an important source of 563 

information to drive classification (Freeman et al., 2011, 2013; Beckett et al., 2012; Wang et al., 2014; 564 

Larsson et al., 2016), but see (Alink et al., 2013; Pratte et al., 2016). Large-scale biases may result from 565 

vascular (Gardner, 2010; Kriegeskorte et al., 2010; Shmuel et al., 2010) or stimulus aperture (Carlson, 566 

2014) related effects. Our simulations do not require, or exclude, any topographic arrangement of 567 
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biases. Regardless of the source of orientation bias, channel response function widths would be 568 

expected to broaden as signal-to-noise decreases. 569 

More generally, our results suggest a “reverse-inference” problem (Aguirre, 2003; Poldrack, 570 

2006) when interpreting outputs from inverted encoding models. Forward encoding from hypothetical 571 

neural responses to population activity is a powerful tool, but reversing this process to infer about 572 

neural responses is problematic when there is not a one-to-one mapping between single-unit and 573 

population measures. Consequently, this reverse-inference problem is not restricted to channel 574 

encoding models, but will occur for other encoding model approaches such as population receptive 575 

fields (Dumoulin and Wandell, 2008) or Gabor wavelet pyramids (Kay et al., 2008), if one were to 576 

invert these models to infer properties of the underlying neural responses. For contrast and orientation, 577 

both increases in response amplitude and neural selectivity can result in narrower bandwidth of the 578 

channel response functions so reverse inference requires taking both into account. Regardless of which 579 

neural change has occurred, read-out of these responses, be they in the brain or from external 580 

measurement, will have less certainty about what stimulus has caused those responses. Techniques that 581 

represent the output of encoding models as posterior distributions (van Bergen et al., 2015) offer a 582 

straightforward interpretation of the uncertainty in determining stimulus properties from cortical 583 

responses. 584 

585 
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Figure legends 586 

Figure 1. Schematics of the experiment. Low and high contrast gratings of eight possible orientations 587 

were presented, with contrast and orientation independently randomized for each visual field. A 588 

luminance change-detection task was performed at the fixation to control subjects’ fixation and state of 589 

attention.  590 

Figure 2. (A) Group-averaged mean BOLD response across V1 for each orientation, separately for the 591 

contralateral and ipsilateral high- and low- contrast stimuli. (B) Group-averaged channel response 592 

functions from V1 to a high contrast grating. contra: response calculated for the contralateral stimulus; 593 

ipsi: response calculated for the ipsilateral stimulus. (C) Same as B except for low contrast grating. (D) 594 

Group-averaged channel response functions to the low and high contrast grating in the contralateral 595 

visual field (symbols, same as the contralateral response in B and C). Solid lines are best fitting von 596 

Mises functions to each contrast level. Error bars in these graphs are standard error of the mean (s.e.m.) 597 

across participants. 598 

Figure 3. Schematic of the model linking neuronal response to channel response. Each voxel (right 599 

column) received randomly weighted responses from orientation-tuned neurons (left column). After 600 

weighting and summing, random Gaussian noise was added to obtain simulated voxel responses (see 601 

text for more details). 602 

Figure 4. Model predictions of empirical channel response functions. (A) Empirical channel response 603 

function for contralateral high contrast stimuli (red symbols, same data as in Fig 2B) were fit by the 604 

computational model, with the best-fitting channel response shown in black symbols and lines. (B) 605 

Empirical channel response function for contralateral low contrast stimuli (red symbols, same data as in 606 

Fig 2C) and the channel response from the same model used in A (black symbols and lines), except that 607 

the neuronal response amplitude was reduced. Error bars are standard error across subjects and 608 
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hemispheres. 609 

Figure 5. Model simulations of how channel response function varies with neural tuning, signal-to-610 

noise ratio, and model basis function. Each panel uses a different model basis function (shown in the 611 

top graph) to derive channel responses from synthetic data generated with different combinations of 612 

signal-to-noise (r2, x-axis) and neural tuning width (colored lines). The width of the channel response 613 

function is plotted on the y-axis. Horizontal dashed lines indicate the width of the model basis function. 614 

Figure 6. Model simulations of how goodness-of-fit of the encoding model (r2) varies with neural 615 

tuning width and noise level in the synthetic data. Different colors represent different amount of 616 

Gaussian noise added to the simulated neural response. 617 

Figure 7. Posterior distributions from the Bayesian analysis. These functions represent the probability 618 

that a given stimulus (measured by the offset from the true orientation, x-axis) caused the observed 619 

BOLD response. Posterior distributions for high and low contrast contralateral stimuli are shown in red 620 

and yellow, respectively, whereas posterior distributions for ipsilateral stimuli are shown in black. 621 

Shaded region represents the standard error over subjects and hemispheres. 622 

 623 

  624 
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