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Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual
short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from
early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the
patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple
representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple
memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from
areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period
activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load,
indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification perfor-
mance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed
patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.

Introduction
Although performance on many everyday cognitive tasks de-
pends on the ability to maintain and manipulate multiple
items in visual short-term memory (VSTM), it remains un-
clear precisely how multiple visual items are represented si-
multaneously in the brain. A widely accepted hallmark of
VSTM storage is the presence of sustained, elevated delay-
period activity (Fuster and Alexander, 1971; Funahashi et al.,
1989), which is thought to underlie the “active” mechanisms
of short-term maintenance. In human neuroimaging, the sen-
sitivity of this activity to load is considered even stronger evi-
dence for VSTM storage. For example, functional magnetic
resonance imaging (fMRI) signal in intraparietal sulcus (IPS)
increases with increasing memory load and asymptotes at ap-
parent capacity limitations (Linden et al., 2003; Todd and
Marois, 2004; Xu and Chun, 2006).

More recently, studies using multivoxel pattern analysis
(MVPA) have demonstrated that the identity of a single item held
in VSTM can be decoded during the delay period from early
visual regions (e.g., V1-V4, MT), even in the absence of sustained

delay-period activity (Harrison and Tong, 2009; Serences et al.,
2009; Riggall and Postle, 2012). Although these more recent find-
ings suggest that VSTM representations are coded in distributed
patterns of activation in early visual cortex, it remains unclear
whether such presumably sensory-based representations re-
spond to changes in VSTM load and, critically, how these changes
may reflect load-dependent changes in VSTM performance.

The present study investigated the sensitivity of sensory-
cortex-based short-term memory representations to memory
load by acquiring fMRI while subjects performed delayed recall of
one, two, or three presented directions of motion (Fig. 1A). Pat-
tern classifiers were trained to classify the remembered direction
of motion and we examined how direction-specific classifier ev-
idence changed as a function of VSTM load. The manipulation of
load also enabled us to investigate the neural basis of precision in
VSTM. Recent evidence suggests that there is a measureable de-
cline in the level of detail or “precision” of VSTM representations
as information load increases (Bays and Husain, 2008; Zhang and
Luck, 2008; van den Berg et al., 2012). According to these mod-
els, this decrease in mnemonic resolution reflects a decrease in
the proportion of neural resources dedicated to each represen-
tation. Accordingly, we predicted that this loss of mnemonic
resolution as a function of load should be reflected in classifi-
cation performance, reasoning that declines in both classifica-
tion performance and behavioral precision may result from
noisier neural representations. Relating classification perfor-
mance to behavioral precision would be strongly consistent
with the idea that patterns of activity in sensory cortex reflect
the neural representation of information held in VSTM, even
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in the absence of sustained, elevated delay-period activity in
these regions.

Materials and Methods
Participants
Ten right-handed volunteers, three female, ages 23–31 years (me-
dian � 25.5 years), from the University of Wisconsin–Madison com-
munity participated in the study for a small remuneration ($15/h). All
subjects provided informed consent according to the procedures ap-
proved by the Health Sciences Institutional Review Board at the Uni-
versity of Wisconsin–Madison. Subjects had normal or corrected-to-
normal vision, no contraindications for MRI, and no reported history
of neurological disease.

Stimuli and procedure
Participants underwent fMRI while performing six runs of a delayed
recall task for visual motion (Fig. 1A). A gray fixation cross (�0.22°) was
presented at the beginning of each trial on a black background and was
changed to white 2 s before the onset of the memory sample. The mem-
ory sample lasted a total of 2 s (1 TR), during which 3 patterns of dots
were presented. Dot patterns were circular patches (�11° diameter) of
dots (�0.13°) with a density of �0.7 dots-per-square degree. Dot pat-
terns were centered around the fixation and uniquely and randomly
presented in red, green, or blue without repeating colors within a trial.
Each dot pattern was presented for 500 ms and stimuli were separated by
an interstimulus interval of 250 ms. On any given trial, one, two, or three
of the dot patterns could be moving with 100% coherence at 2.75°/s while
the remaining dots (loads 1 and 2) remained static. On 90% of trials, one
of the presented directions was sampled from one of three directions (7°,
127°, 247°). These were the directions used as labels for the patterns used
to train the classifier and were also selected as the probed (target) direc-
tions on those trials. Because we wanted behavioral estimates of precision
to correspond directly to the neural data, the probed item was always the
stimulus with one of these three directions of motion. The remaining
moving patterns on these trials were sampled randomly from the 360°
space. No restrictions were placed on the selected directions of these
remaining items. On the remaining 10% of trials, all moving patterns

were randomly selected, including the probed direction, to prevent par-
ticipants from learning the target directions. The sample display was
followed by an 8 s delay period, over which participants were instructed
to remember the direction of motion of all moving patterns. After the
delay, a probe display appeared for 5 s. The probe consisted of a colored
circle (�11° in diameter) with a line (�4.5°) extended between the center
of the screen and random location on the circumference of the circle.
Participants were instructed to rotate the line so that it matched as closely
as possible the direction of motion of the color-matching dot pattern.
Participants rotated the line by pressing buttons that rotated the line 10°
clockwise, 10° counterclockwise, or flipped it 180°. The starting position
of the line segment was randomly selected, with the constraint that it was
presented within a multiple of 10° of the probed sample direction. On
those trials in which one of the critical items was presented, the probe
color always matched the color of the critical stimulus. On the remaining
10% of trials, the probed stimulus direction was randomly selected. The
temporal position of the target stimulus was also counterbalanced within
each block. A 7 s intertrial interval followed the probe, during which the
fixation cross changed to gray.

Participants performed 180 trials over the six runs in the scanner. Each
block contained 27 critical trials, three of each load � direction � tem-
poral position pairing, as well as three noncritical trials, one of each
load. The color of the sample was always randomly selected. Experi-
mental stimuli were controlled by the Psychophysics Toolbox
(http://psychtoolbox.org; Brainard, 1997) running in MATLAB (Math-
Works), presented using a 60 Hz projector (Silent Vision 6011; Avotec),
and viewed through a coil-mounted mirror.

Behavioral analysis
Behavioral performance was assessed using the mixture-model devel-
oped by Zhang and Luck (2008) and extended by Bays et al. (Bays et al.,
2009; Zokaei et al., 2011). This model breaks down the distribution of
error (the angular deviation between the sample direction and the indi-
cated response direction) into estimates of target accuracy [proportion of
responses toward the target direction (PT)], error [nontarget responses
(PNT) and guesses (PG)], and measure of precision (�, or concentration;
the variability of recall of the target and nontarget responses). That is,
responses are modeled to be a mixture of a Von Mises distribution (a
circular analog of the Gaussian distribution) with a concentration of �
for all target and nontarget responses plus a uniform distribution of
random responses (guesses). The concentration parameter, �, corre-
sponds to the variability of the target (and nontarget) responses, with
larger values indicating less variability. The model is defined as follows:

p��̂� � ��k ��̂ � � � � �
1

m �i
m �k ��̂ � 	1� � 


1

2�
,

(1)

where � is the target motion direction, �̂ is the response direction on a
given trial, � is the probability of reporting the target direction, and � is
the probability of reporting a nontarget direction (of m nontarget direc-
tions). 
 is defined as 1 � � � �, and represents the probability of
responding at random (Bays et al., 2009 and Zokaei et al., 2011 contain
figures depicting the relationship between the response distribution and
the model parameters).

Parameter estimates for �, �, 
, and � were obtained using maximum-
likelihood estimation (expectation maximization) using MATLAB rou-
tines (available at http://www.bayslab.com). Responses were entered for
each trial, and separate estimates were obtained for each participant and
condition.

Imaging analysis
Functional data were preprocessed using the Analysis of Functional
NeuroImages (AFNI) software package (http://afni.nimh.nih.gov; Cox,
1996). All volumes were spatially aligned to the final volume of the final
run using a rigid-body realignment and corrected for slice-time acquisi-
tion. Linear, quadratic, and cubic trends were removed from each run to
reduce the influence of scanner drift. For univariate analyses, data were
spatially smoothed with a 6 mm FWHM Gaussian. For classification
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Figure 1. Behavioral paradigm and performance. A, Schematic of the delayed-recall task
performed by participants while undergoing fMRI. On every trial, participants were presented
with 3 patches of dots displayed within a single 2 s TR and instructed to remember the direction
of motion of the moving dots. Memory load was manipulated by varying the number of dot
patterns that contained 100% coherent motion. After the 8 s delay, participants indicated the
direction of the probed (color-matching) direction by rotating the angle of the line segment.
B–D, Behavioral results derived from maximum likelihood estimates of the response error. B,
The concentration parameter, �, decreased as a function of memory load, indicating a decrease
in mnemonic precision. C, The PT similarly decreased with increasing VSTM load. D, PNT and PG.
Nontarget responses account for the majority of the errors and increased with VSTM load.
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analyses, data were z-scored separately within run for each voxel. Data
were not smoothed and were left in their native space.

Univariate region-of-interest analysis. The goal of these analyses was to
identify regions-of-interest (ROIs) in which the activity, either in re-
sponse to stimulus presentation or during the delay period, varied mono-
tonically with load. We did this by solving a modified general linear
model (implemented in AFNI) in which regressors modeling the sample
presentation and delay period were generated as 2 and 8 s boxcars, re-
spectively, and convolved with the canonical hemodynamic response
function supplied with AFNI. This approach is commonly used to dis-
criminate transient, “stimulus-evoked” activity that returns to baseline
upon the offset of the sample from activity that persists at an elevated
level across the delay period despite the absence of stimulus input (Postle
et al., 2000). The model also included three levels of stimulus load (1, 2,
and 3).

Figure 2 illustrates regions in which “sample” and/or “delay” activity
varied significantly with load. To construct ROIs for hypothesis testing
MVPA analyses, the parameter estimates used to produce the map shown
in Figure 2 were used to identify regions for which load sensitivity of the
sample epoch was statistically greater than load sensitivity of the delay
epoch (“Sample ROI”) and regions for which the converse was true
(“Delay ROI”).

Anatomically defined ROIs. In addition to the univariate ROIs, MVPA
was also performed on anatomical ROIs created with the automatic par-
cellation routines (Fischl et al., 2008) implemented by FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/). These ROIs included: V1 and V2,
MT, intraoccipital sulcus (including the transverse occipital and superior
occipital sulci) and intraparietal sulcus (including the transverse parietal
sulcus). All voxels within the anatomical ROIs were included in the
MVPA analyses.

Note that we did not include frontal areas among anatomical ROIs for
two reasons. First, many previous studies using fMRI, fMRI-guided re-
petitive transcranial magnetic stimulation, and patients with frontal le-
sions have either failed to find load sensitive delay-period activity in
frontal cortex (Postle et al., 1999; Feredoes and Postle, 2007) or failed to
find that disruption of frontal cortex affects the retention of multiple
items (D’Esposito and Postle, 1999; Postle et al., 2006; Feredoes et al.,
2007; Koenigs et al., 2009). Second, two recent studies using MVPA
methods similar to those used here failed to find evidence for delay-
period retention of stimulus-related information in frontal cortex
(Christophel et al., 2012; Riggall and Postle, 2012).

Pattern classification analyses. To examine the neural representations
associated with VSTM maintenance, we trained pattern classifiers to clas-
sify each of the three critical directions of motion and examined classifier
sensitivity for each direction using a leave-one-trial-out approach. Clas-
sification was performed using the Princeton Multi-Voxel Pattern Anal-
ysis toolbox (www.pni.princeton.edu/mvpa/) and custom routines in
MATLAB. Preprocessed fMRI data from individual trial time points were
used to train separate classifiers to classify the direction of motion (three
possible directions) or the memory load (three possible loads). Classifi-

cation was accomplished using L2-regularized logistic regression with a
lambda penalty term of � � 25. Training for direction was performed
collapsed across all three loads; similarly, training for load was performed
collapsed across all three directions. Note that all MVPA analyses were
performed on data that were neither smoothed nor time-shifted in any
other way. Classification was performed on the top 2000 voxels from the
sample- and delay-load-sensitive general-linear-model-derived ROIs
and on all voxels within the anatomically defined ROIs.

For each 2 s TR of fMRI data, the trained classifier produced a proba-
bility estimate (from 0 –1) of the extent to which the observed pattern on
the tested trial matched the trained pattern for each of the trained items
(e.g., the three directions of motion). Classification performance was
determined using leave-one-trial-out cross-validation, in which the clas-
sifier was trained on data from all but one trial and then tested on the
remaining trial, rotating through all possible permutations. Training was
performed using all possible trials (collapsing across the untrained di-
mension of load or direction). For each of the three motion directions,
we computed a receiver-operating characteristic (ROC) based on the
values obtained across all tested trials, and then averaged across the di-
mensions of interest. Therefore, this method evaluated whether, across
trials, evidence for one direction of motion was higher when that direc-
tion was in fact presented on that trial relative to when it was not pre-
sented. The area under the ROC curve, averaged across the three
directions of motion, provides a measure of overall classifier sensitivity,
with chance performance at 0.5. Analogous methods of classification and
ROC-based sensitivity analysis were used to classify memory load, col-
lapsing across direction of motion.

To examine the dynamics of the memory representation, each classi-
fier was trained on data from only a single time point in the trial (e.g., TR
5) and then tested on all points in the left-out trial. This resulted in a time
course of decoding sensitivity for the entire trial that was determined by
the weights of the single training point and provides a measure of how
stable the representations were over time.

The significance of classifier performance was determined using one-
tailed, one-sample t tests, testing against chance performance of 0.5. Tests
performed across individual TRs were corrected for multiple compari-
sons using the method of Larzelere and Mulaik (1977). Within-subject
correlations were computed using the method of Bland and Altman
(1995) by calculating ANCOVA with the factors of classifier sensitivity
and subjects as the covariates and behavioral performance as the depen-
dent measure, and fitting the model to parallel lines.

Within-subject correlation. Although classification performance was
significantly above chance at the group level, there was significant
variance between subjects in the ability to classify direction of motion.
Consequently, we attempted to examine the relationship between
classification performance and behavioral precision while accounting for
these individual differences in classification performance. A number of
studies of VSTM have typically normalized between-subject differences
in neural signal by calculating pairwise differences between loads (Vogel
and Machizawa, 2004; Vogel et al., 2005; Emrich et al., 2009). Here we
instead attempted to examine whether changes in the relative amount of
neural information across all three tested memory loads predicted the
change in the quality of representations maintained in VSTM; that is, we
took advantage of the variation in dependent measures across all three
loads by using a within-subject correlation approach (Bland and Altman,
1995) to examine the change in both classifier performance and behav-
ioral precision across loads. Specifically, we used ANCOVA to remove
between-subject differences in classification performance and measured
the remaining variation in classification performance explained by vari-
ation in behavioral precision.

Results
Behavioral results
Behavior was analyzed according to the method of Bays et al.
(Bays et al., 2009; Zokaei et al., 2011). This method uses a
mixture-model of the behavioral response error (the angular dis-
tance between the reported direction and the actual direction of

Figure 2. ROIs used for classification analysis. Initial analysis was restricted to those areas
that showed parametrically increasing BOLD activity as a function of load that were either
transiently evoked by the initial sample or sustained throughout the delay. Subtractions were
performed to isolate the Sample (green) and Delay (red) ROIs. Areas showing load sensitivity
during both periods (yellow) and those not showing load sensitivity were also included in the
subsequent analysis of anatomically defined ROIs. Note that this figure demonstrates group-
averaged data, whereas all analyses were performed on single-subject ROIs.
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the probed memory stimulus) to obtain maximum-likelihood
estimates for the proportion of correctly recalled targets, the pre-
cision of those responses (the distribution of error around the
target), and the proportion of errors (both nontarget responses
and guesses; see Materials and Methods).

Examining the concentration parameter (�, the estimate of
the variability of memory precision) of this model using
repeated-measures ANOVA revealed a significant effect of load
(F(2,18) � 8.55, mean squared error [MSE] � 500.4, p � 0.0025;
Fig. 1B). A similar effect was observed for the proportion of target
responses (PT; F(2,18) � 7.97, MSE � 0.011, p � 0.0033). There-
fore, consistent with previous studies examining memory for di-
rection of motion (Zokaei et al., 2011), both the number of
correctly recalled targets and the precision of those responses
decreased as the amount of to-be-remembered information in-
creased. We also observed a significant number of nontarget (i.e.,
“binding”) errors that increased at larger set sizes (PNT; F(2,18) �
7.15, MSE � 0.01, p � 0.0052).

Because we wanted behavioral responses to match as closely as
possible the decoded patterns of brain activity, participants were
probed on the three critical directions on a majority of trials. This
procedural limitation could have allowed participants to learn
which directions were most likely to be probed, thereby affecting
their behavioral responses. To determine whether such learning
occurred, we obtained parameter estimates for the first and sec-
ond half of the experiments, collapsed across load. This analysis
revealed no significant changes in either the concentration of
target responses (t(9) � �1.31, SD � 12.33, p � 0.22) or the
likelihood of reporting the target (t(9) � �1.12, SD � 0.043, p �
0.29), which is consistent with previous studies that failed to
show learning for individual items in tasks of VSTM (Olson and
Jiang, 2004; Beck et al., 2008). Moreover, the estimates obtained
here are very similar to those obtained in a task that used a similar
design, but that selected probes at random (Zokaei et al., 2011),
suggesting that participants’ responses were unaffected by non-
randomzied target probes.

Classification results
ROI analysis
Before examining whether classification performance changes as
a function of VSTM load, we first tested whether it was possible to
successfully decode the direction of motion of one of the memory
stimuli while multiple directions were held in VSTM. A previous
study by our group (Riggall and Postle, 2012) reported that de-
coding the direction of a single item is possible within those areas
that support motion perception (i.e., calcarine and extra-
calcarine occipital cortex, including MT�) but not in areas that
showed sustained activity during the delay (IPS, frontal areas).
Accordingly, we focused our initial analysis on nonoverlapping
ROIs that demonstrated load-sensitive BOLD signal intensity ei-
ther in a phasic response to the memory sample (“Sample ROI”)
or in a response that was sustained throughout the delay period
(“Delay ROI”). In this way, we sought to determine whether
information about the remembered direction of motion was
coded in cortical areas sensitive to visual stimulation indepen-
dently from those that exhibited load-sensitive, sustained, delay-
period BOLD signal.

Examining the patterns of activity in the Sample ROI, classi-
fication of the direction of motion resulted in significantly
greater-than-chance sensitivity, averaged across all three loads
(Fig. 3C). This was true both when the classifier was trained on
the time point that captured the peak of the sample-evoked re-
sponse and when it was trained on the final time point of the delay

period, a time point that would be dominated by delay-period
activity. In contrast, those areas that exhibited sustained, elevated
delay-period BOLD signal (i.e., the Delay ROI) showed no evi-
dence of direction sensitivity during any point in the trial (Fig.
3D), replicating the results of Riggall and Postle (2012). As a
control analysis, training the classifier on intertrial fixation activ-
ity resulted in chance-level classification performance for both
ROIs.

It is possible that by focusing on areas in which the load-
sensitive response was specific to either the sample or delay peri-
ods, this analysis overlooked important voxels that are critical to
the maintenance of information in VSTM (e.g., those that show
elevated levels of BOLD signal intensity to both encoding and
maintenance–those that appear yellow in Fig. 2). However, fur-
ther analysis restricted to several anatomically defined areas con-
firmed that the majority of information about direction of
motion during the delay period was exhibited in calcarine and
extra-calcarine occipital cortex (Fig. 3E). Classification perfor-
mance was not significantly better than chance in the IPS. There-
fore, although elevated delay-period activity was absent from the
observed BOLD signal intensity in areas associated with visual
perception (Fig. 3A), the ability to maintain the representation of
multiple items in VSTM appears to be supported by distributed
patterns of activity in these areas rather than in those areas that
exhibit elevated delay-period activity.
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Load sensitivity
A critical aim of the present study was to
determine whether classification perfor-
mance would decrease as a function of
memory load in a manner that reflected
the decline in behavioral precision. To in-
vestigate this, we trained a classifier on the
final time point of the delay period for
both of the Sample and Delay ROIs. Next,
for each ROI, we decoded classification
performance at each time point from each
of the three load conditions, resulting in a
classification time course that reflected
the extent to which stimulus-specific neu-
ral representations were present across the
entirety of the trial.

Examining the entire delay period
(4 –12 s) in the Sample ROI, mean classification sensitivity was
significantly greater than chance for all three loads (p � 0.01
adjusted; Fig. 4A). Therefore, even in the presence of competing
within-category representations, memory representations can be
identified in the patterns of activity in sensory cortex. Direction
sensitivity significantly decreased during the delay period at
higher loads (F(2,18) � 5.63, MSE � 0.009, p � 0013), which is
consistent with the decline in behavioral performance at higher
set sizes. One concern with this result might be that presenting
multiple stimuli in a single location might lead to a loss in classi-
fier sensitivity at higher loads independently of VSTM; that is, by
presenting multiple items at one location, the same neurons
(within the same voxels) in visual cortex would be required to
process the perceptual information of each of the directions of
motion, resulting in a loss in sensitivity for any given direction. If
this alternative account were correct, one would expect to see the
same load-related decline in classification during the stimulus
presentation epoch of the trial. However, no such decrease as a
function of load was observed when this procedure was repeated
with classifiers trained on the time point that captured the peak of
the sample-evoked response (i.e., 4 – 6 s) and testing classification
sensitivity during the sample-evoked period (i.e., 4 – 8 s; F(2,18) �
2.5, MSE � 0.006, p � 0.11). Therefore, our results are consistent
with the interpretation that the load-dependent decrease in clas-
sification sensitivity during the delay period was due to a reduc-
tion in the proportion of neural resources dedicated to
representing that information in VSTM.

In addition, even though delay-period BOLD signal intensity
in the Sample ROI was not significantly affected by load (Fig. 2A;
F(2,18) � 2.64, MSE � 0.0052, p � 0.0991), VSTM load could be
successfully decoded from sensory regions (Fig. 4C). This finding
provides further evidence that the patterns of delay-period
activity in areas involved in visual perception reflect the rep-
resentation of multiple items in VSTM independently of
changes in BOLD signal intensity identified in univariate signal
intensity. In contrast, despite the presence of load-sensitive
BOLD signal in the Delay ROI (Fig. 2B; F(2,18) � 5.11, MSE �
0.01386, p � 0.0174), classification performance of the contents
of VSTM (i.e., direction of motion) was not significantly above
chance at any load (p 	 0.05; Fig. 4B). Therefore, although BOLD
activity in these regions (including IPS) is sensitive to VSTM load,
we failed to find evidence that these areas are involved in the
representation of the contents of VSTM per se. In the Discussion
section, we consider other aspects of task performance to which
this activity may correspond.

Relating classification performance to response precision
Does the decrease in classifier performance as a function of mem-
ory load reflect the associated decline in mnemonic precision? To
examine this question, we specifically focused on within-subject
changes across load (see Materials and Methods), because there
may be sources of error that affect between-subject classification
performance that are unrelated to differences in behavior (e.g.,
differences in encoding strategies, Linke et al., 2011b, Vicente-
Grabovetsky et al., 2012; or individual differences in signal-to-
noise ratio of BOLD signal, Tong et al., 2012). This analysis
revealed that, across loads, the observed decrease in peak classi-
fier sensitivity was significantly correlated with an individual’s
change in mnemonic precision (r � 0.58, p � 0.006; Fig. 5A).
This was also true when the analysis was restricted to the individ-
ual TRs corresponding most closely to the encoding (TR 4; r �
0.45, p � 0.04) or delay activity (TR 6; r � 0.53, p � 0.01).

It is possible, however, that the decrease in classifier perfor-
mance reflects the decreased probability that the probed (target)
direction was stored in memory at higher loads; that is, given that
both the proportion of correctly recalled targets, and the preci-
sion of those responses, decreased as a function of load, the de-
cline in classifier sensitivity could reflect the proportionally fewer
trials on which the target direction was successfully encoded and
maintained. Contrary to this alternative account, however, PT

was uncorrelated with peak classifier sensitivity (r � 0.21, p �
0.35; Fig. 5B). In other words, the change in classifier sensitivity
across memory loads cannot be predicted by a decrease in the
percentage of trials on which the critical direction of motion was
stored in VSTM. Therefore, the decrease in classification perfor-
mance appears to reflect the decline in mnemonic resolution,
rather than decreases in other aspects of behavior or random
decreases that are independent of the internal representations
that guide behavior (i.e., noise).

Discussion
In the present study, we sought to investigate how the neural
patterns associated with the contents of VSTM change as a func-
tion of load. Consistent with several recent studies, we observed
that stimulus-specific properties of information maintained in
VSTM could be decoded from the patterns of activity in sensory
cortex (Ester et al., 2009; Harrison and Tong, 2009; Serences et al.,
2009; Riggall and Postle, 2012). We have extended these previous
findings by demonstrating that the successful classification of the
contents of VSTM is not an all-or-none phenomenon; instead,
classification sensitivity varies as a function of VSTM load.
Therefore, these findings reveal the presence of load sensitivity in
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the patterns of activity in sensory cortex, providing strong evi-
dence that these patterns may represent a neural correlate of
VSTM maintenance.

We also observed a significant within-subject correlation be-
tween classifier sensitivity and mnemonic precision. This finding
provides some of the first evidence that variation in mnemonic
precision can be extracted from the neural patterns associated
with the storage of information in VSTM. A number of recent
psychophysical models have established that the quality of
VSTM representations decreases as a function of memory load
(Palmer, 1990; Wilken and Ma, 2004; Bays and Husain, 2008;
Zhang and Luck, 2008; Bays et al., 2009; van den Berg et al., 2012).
Although the models that explain these data differ in their stance
on whether VSTM performance is limited primarily by a finite
pool of resources or if it also contains a fixed capacity of a limited
number of slots, these models all emphasize that the precision of
maintained representations varies with load, particularly at low
set sizes (i.e., when the number of items is below any putative
capacity limits). Therefore, “slots � resource” (Alvarez and Ca-
vanagh, 2004; Buschman et al., 2011) and “slots � averaging”
(Zhang and Luck, 2008, 2011; Anderson et al., 2011;) hybrid
models and pure resource models (Wilken and Ma, 2004; Bays
and Husain, 2008; van den Berg et al., 2012) can accommodate
the findings reported here, in that all hold that the precision of
maintained representations will vary with load at small set sizes.
Specifically, our results are consistent with the prediction that, as
the amount of to-be-remembered motion information increases,
fewer resources will be dedicated toward representing a given
item, resulting in less signal present in the patterns of neural
activity that reflect this representation. Critically, this relation-
ship between VSTM precision and classification performance
provides evidence consistent with the idea that sensory visual
cortex may play a critical role in supporting the representation of
information in VSTM (Postle, 2006). These findings take the
important step of linking the neural patterns associated with
content-specific VSTM encoding and maintenance with the in-
ternal representations associated with behavior.

One possible concern with these results is that a decrease in
decoding accuracy with increasing load, such as we present here,
could also result from decoding noise that is unrelated to the
mnemonic representation. For example, the neural response to
multiple objects has been shown to be similar to the weighted
sum (MacEvoy and Epstein, 2009) or average (Reddy et al., 2009)
of individual responses. This alternative seems unlikely, however,
for a number of reasons. First, each condition contained the same

number of stimuli, but varied only in how
many of the dot patterns contained mo-
tion. Therefore, this control reduces the
stimulus differences between condi-
tions that might affect the weighted av-
eraging or summation of neural signal.
Second, classification training was per-
formed over all three tested loads. Ac-
cordingly, classification performance was
based on patterns of activity that included
the increased noise present on load 2 and
3 trials. Third, classification performance
was unaffected by load when training and
testing to the patterns of activity tran-
siently evoked by the sample stimuli, indi-
cating that classification performance did
not decrease obligatorily due to a decrease
in the signal-to-noise ratio at higher set

sizes. Finally, a recent study examining the response patterns of
single neurons in monkeys has shown that the neural informa-
tion present about an item encoded and stored in VSTM de-
creases when multiple items are presented within the same
hemifield (Buschman et al., 2011), providing evidence that this
effect is not idiosyncratic to the classification technique used
here. Together, these facts support our conclusion that classifica-
tion performance can be accounted for by a decrease in the rela-
tive amount of information about the target stimulus present in
the patterns of activity in sensory cortex.

Although our findings are consistent with studies that have
failed to observe evidence for the contents of VSTM in the IPS
(Linden et al., 2012; Riggall and Postle, 2012), one previous study
did observe above-chance classification in posterior parietal cor-
tex (Christophel et al., 2012). A possible explanation for these
discrepant findings may be that the study by Christophel et al.
(2012) used artificial stimuli that required significant training to
differentiate. Therefore, decoding accuracy in posterior parietal
cortex in this task may reflect processes that are not specific to
VSTM maintenance per se. In addition, although the use of the
data-driven MVPA approach in the current study has its advan-
tages, there are limitations to this methodology. For example,
evidence indicates there is a coarse-scale topographic map of ori-
entation preference in human V1 that is strongly correlated with
the retinotopic map (Freeman et al., 2011). Therefore, it is pos-
sible that multivariate classification methods could exploit these
biases, thereby driving up classification sensitivity only in those
areas that have strong topographic organization (e.g., V1 and
V2). However, other studies have demonstrated that classifica-
tion performance of orientation-selective activity is predicted by
the average BOLD amplitude in a given region (Tong et al., 2012).
Therefore, given that we observed greater BOLD amplitude dur-
ing the delay period in the IPS than in sensory visual cortex, it is
unlikely that our findings can be explained by differences in clas-
sification sensitivity across different regions. Nevertheless, future
studies should examine load-dependent VSTM classification
sensitivity on a range of stimuli (e.g., colors, faces) to determine
the reliability of this effect across different features and cortical
regions.

If the maintenance and precision of VSTM representations is
mediated by patterns of activity in sensory cortex, what is the role
of sustained, elevated, delay-period activity? Previous studies
have provided evidence that delay-period activity may reflect
general cognitive or attentional demands of the task (Mitchell
and Cusack, 2008; Magen et al., 2009), as well as goal- or action-
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related information (Curtis and Lee, 2010; Riggall and Postle,
2012), rather than reflecting VSTM maintenance. One possibility
is that whereas VSTM representations may be supported by pat-
terns of activity in sensory cortex, sustained, elevated, delay-
period activity (particularly in IPS) may reflect the directed
attention toward a limited number of representations (Anderson
et al., 2011). This mechanism could potentially account for both
apparent capacity limits (i.e., those within the focus of attention),
as well as a larger capacity for lower-resolution representations
(Sligte et al., 2008, 2009, 2010).

The finding that the precision of VSTM representations is
predicted by areas that mediate perceptual encoding is largely
consistent with the evidence that VSTM performance is likely
limited by encoding processes (Buschman et al., 2011; Linke et
al., 2011b; Emrich and Ferber, 2012; Mazyar et al., 2012; van den
Berg et al., 2012); that is, the continued recruitment of the same
populations of neurons that mediate encoding and perception
for VSTM will limit the precision of memory representations to
that of encoding. In addition, when attention is allocated across
two different memory categories and then retroactively cued to a
single item, classifier evidence for the uncued item dropped to
chance, suggesting that the allocation of resources in VSTM may
be dynamic (Lewis-Peacock and Postle, 2012; Larocque et al.,
2013). Therefore, while it is possible that the fidelity of VSTM
may be further affected by subsequent processes, such as by fluc-
tuations in attention (Van den Berg et al., 2012) or stochastic
degradation (Fougnie et al., 2012), the correlation between clas-
sifier performance and VSTM precision during early stages of
encoding rule out the possibility that all variation in precision
reflects limitations in later stages of processing (Awh et al., 2007;
Barton et al., 2009; e.g., during recall or comparison).

At the neural level, the successful classification of multiple
items in VSTM from sensory cortex, as well as its relationship
with mnemonic precision, further calls into question the widely
held assumption that VWM maintenance of multiple items oc-
curs in a network of frontoparietal regions (Courtney et al., 1997;
Linden et al., 2003; Todd and Marois, 2004; Vogel and
Machizawa, 2004; Xu and Chun, 2006; Reinhart et al., 2012). In
particular, it calls into question the role of elevated, sustained,
load-sensitive delay-period activity in IPS as a hallmark of VSTM
maintenance (but see Christophel et al., 2012). Instead, our find-
ings support the view that VSTM maintenance is accomplished
by actively maintaining representations in “lower level” sensory
cortex (Postle, 2006; Ester et al., 2009; Harrison and Tong, 2009;
Serences et al., 2009; Linke et al., 2011a; Riggall and Postle, 2012).
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