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Abstract 40 

In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present 41 

during the delay period of working memory tasks and may therefore reflect the representation of 42 

information in working memory. However, these signals may instead reflect support mechanisms 43 

rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly 44 

tied to spatial attention and may not reflect location-independent memory representations per se. 45 

To determine how sustained and oscillating EEG signals are related to attention and working 46 

memory, we attempted to decode which of 16 orientations was being held in working memory by 47 

human observers (both women and men). We found that sustained EEG activity could be used to 48 

decode the remembered orientation of a stimulus, even when the orientation of the stimulus 49 

varied independently of its location. Alpha-band oscillations also carried clear information about 50 

the location of the stimulus, but they provided little or no information about orientation 51 

independently of location. Thus, sustained potentials contain information about the object 52 

properties being maintained in working memory, consistent with previous evidence of a tight 53 

link between these potentials and working memory capacity. In contrast, alpha-band oscillations 54 

primarily carry location information, consistent with their link to spatial attention. 55 

 56 

Keywords: Alpha, EEG, ERP, Orientation, Working Memory, Decoding 57 
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Significance Statement 59 
 60 

Working memory plays a key role in cognition, and working memory is impaired in several 61 

neurological and psychiatric disorders. Previous research has suggested that human scalp EEG 62 

recordings contain signals that reflect the neural representation of information in working 63 

memory. However, to conclude that a neural signal actually represents the object being 64 

remembered, it is necessary to show that the signal contains fine-grained information about that 65 

object. Here, we show that sustained voltages in human EEG recordings contain fine-grained 66 

information about the orientation of an object being held in memory, consistent with a memory 67 

storage signal. 68 

 69 

 70 

 71 

  72 
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Introduction 73 

Working memory (WM) is fundamentally important in cognitive processing, and 74 

substantial effort has been devoted to understanding the neural coding of WM representations. 75 

Most research has focused on the persisting neural activity that is present during the delay period 76 

of WM tasks (Miller and Desimone, 1991; Todd and Marois, 2004; Fukuda et al., 2015) (but see 77 

Stokes, 2015; Rose et al., 2016). However, this delay-period activity could reflect support 78 

processes rather than the actual memory representations, and showing that the content of the 79 

memory can be decoded from a neural signal provides much stronger evidence that the signal 80 

represents the memory itself (Postle, 2016). 81 

New EEG-based decoding methods show promise for studying the neural coding of 82 

human WM (LaRocque et al., 2013; Foster et al., 2016; Rose et al., 2016; Wolff et al., 2017). 83 

These studies used the scalp distribution of EEG signals to decode or track the information being 84 

held in WM. However, it is quite plausible that they were actually tracking the direction of 85 

spatial attention. For example, the scalp distribution of alpha-band EEG activity during the delay 86 

period of a spatial WM task was found to track which of eight locations was being remembered 87 

(Foster et al., 2016), but alpha oscillations are closely linked with spatial attention (Worden et 88 

al., 2000), and observers often maintain spatial attention on the to-be-remembered location in 89 

spatial WM tasks (Awh et al., 1998; Awh et al., 2000). Indeed, Rihs et al. (2007) showed that the 90 

scalp distribution of alpha-band activity varies systematically according to which of eight 91 

different locations is being attended. Moreover, Foster et al. (in press) found that alpha-band 92 

activity tracks shifts of spatial attention, and van Ede et al. (2017) found that alpha-band activity 93 

tracks the location of the item that is currently most relevant in WM. In addition, LaRocque et al. 94 

(2013) and Rose et al. (2016) used EEG oscillations to decode the attended stimulus dimension 95 
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in a WM task, but they did not attempt to decode the specific feature value being maintained in 96 

WM. It is possible that sustained attention is actually the mechanism of WM maintenance (Awh 97 

and Jonides, 2001), but this is currently an open question (Woodman et al., 2001; Johnson et al., 98 

2008; Chun et al., 2011; Ester et al., 2012; Gazzaley and Nobre, 2012; Tas et al., 2016). 99 

Sustained potentials are also present in averaged ERP waveforms during the delay period 100 

of visual WM tasks (Perez and Vogel, 2012). These sustained potentials are strongly tied to 101 

individual and group differences in WM storage capacity (Vogel and Machizawa, 2004; Leonard 102 

et al., 2012), but no prior research has determined whether these potentials represent the features 103 

of the remembered objects. 104 

Both ERPs and fMRI have been used to decode the contents of WM in orientation 105 

memory tasks (Harrison and Tong, 2009; Serences et al., 2009; Ester et al., 2013; Wolff et al., 106 

2015; Wolff et al., 2017), but these tasks may have encouraged participants to focus attention on 107 

the end of the oriented grating (see Fig. 1a), and it is possible that the direction of spatial 108 

attention was being decoded rather than orientation per se (Fahrenfort et al., 2017). Thus, it is not 109 

yet known whether EEG signals contain information about nonspatial features being maintained 110 

in WM. 111 

In the present study, we conducted two EEG decoding experiments, one using a simple 112 

orientation task that could potentially be performed by means of either spatial attention or 113 

location-independent orientation representations (or both), and one that can dissociate between 114 

orientation and location. Given the close association between sustained ERP responses and WM 115 

capacity (Vogel and Machizawa, 2004), we predicted that these responses would reflect the 116 

specific feature value being maintained in WM. By contrast, given the close association between 117 
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alpha-band oscillations and attention (Worden et al., 2000; Rihs et al., 2007), we predicted that 118 

these oscillations would reflect the location of the to-be-remembered object rather its features. 119 

Materials and Methods 120 

Participants 121 

Sixteen college students between the ages of 18 and 30 with normal or corrected-to-122 

normal visual acuity participated in each experiment for monetary compensation (Experiment 1: 123 

10 female, 6 male; Experiment 2: 9 female, 7 male). All participants had experience with at least 124 

one prior WM task. The study was approved by the UC Davis Institutional Review Board. 125 

Stimuli & Apparatus 126 

Stimuli were generated in Matlab (The Mathworks, Inc.) using PsychToolbox (Brainard, 127 

1997; Pelli, 1997) and were presented on an LCD monitor (Dell U2412M) with a gray 128 

background (31.2 cd/m2) at viewing distance of 100 cm. A black fixation dot was continuously 129 

present in the center of the display except during the intertrial interval, and participants were 130 

instructed to maintain fixation on this dot except during the response period and intertrial 131 

interval. 132 

Experiment 1 Behavioral Task 133 

We conducted two experiments using different behavioral tasks. Experiment 1 was 134 

designed to establish our ability to decode the feature value being remembered using both alpha-135 

band and sustained ERPs in a simple task that could be performed either by means of spatial 136 

attention or orientation memory (or both). Experiment 2 was designed to dissociate spatial 137 

attention from orientation.  138 
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Experiment 1 used a standard delayed estimation task (Fig. 1b). Each trial started with a 139 

500-ms presentation of the fixation dot followed by a 200-ms presentation of a black, teardrop-140 

shaped sample stimulus (2.17º long, 0.8° maximum width) that was centered on the fixation dot. 141 

Sixteen discrete teardrop orientations were used (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 142 

180°, 202.5°, 225°, 247.5°, 270°, 292.5°, 315°, and 337.5°), tested in random order with equal 143 

probability. Participants were instructed to remember the orientation of this teardrop as precisely 144 

as possible over a 1300-ms delay period during which only the fixation dot was visible. A 145 

response ring (radius 2.17°) was then presented to indicate that a response should be made; once 146 

the participant started moving the mouse to respond, a test teardrop appeared at the center of the 147 

response ring. Participants were instructed to adjust the orientation of the test teardrop so that it 148 

matched the remembered orientation of the sample teardrop. The test was identical to the sample, 149 

except that its initial orientation was determined by the mouse pointer position when the 150 

participant began to respond (and was therefore unrelated to the orientation of the sample 151 

teardrop). The orientation of the test teardrop was continuously updated while the mouse moved 152 

so that the tip of teardrop always pointed toward the current mouse pointer position. This made 153 

the tip of the teardrop highly salient. Once participants were satisfied with the orientation, they 154 

finalized the report by clicking a mouse button. The display then blanked completely, and the 155 

next trial started after a 1000-ms delay. Note that participants could potentially perform this task 156 

by focusing spatial attention onto the location of the sample teardrop’s tip during the delay 157 

period and then adjusting the test teardrop until it’s tip was at the attended location, without 158 

remembering the orientation of the teardrop per se. Even if they did not use this as the sole 159 

memory strategy, they may have focused attention on the remembered location of the teardrop 160 

during the delay period as they prepared to make their response. 161 
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Each participant completed a total of 640 trials (40 trials for each of the 16 orientations, 162 

in random order). Each participant received at least 16 practice trials before beginning the task. 163 

Note that the teardrop-shaped stimuli used in this study provide 360° of distinct 164 

orientations, whereas other classes of commonly used orientation stimuli (e.g., Gabor patches) 165 

can produce only 180° of distinct orientations. In mathematical terms, the present stimuli can be 166 

described in terms of the orientation of a ray, whereas stimuli such as Gabor patches can be 167 

described in terms of the orientation of a line (of infinite length).  168 

Experiment 2 Behavioral Task 169 

The task in Experiment 2 (Fig. 4) was designed to completely dissociate the orientation 170 

of the teardrop from its location, making it possible to determine whether a given neural signal 171 

contains information about location or about orientation (or both). It was identical to the delayed 172 

estimation task used in Experiment 1, except that the location of the sample and test teardrops 173 

varied independently from trial to trial. Thus, the location of the tip of the sample teardrop 174 

provided no information about the orientation of the teardrop. 175 

We assumed that attention would be directed to the location of the sample teardrop when 176 

it was being perceived and encoded, but the stimuli were designed so that maintaining attention 177 

on this location would not allow participants to report the teardrop orientation at the time of test. 178 

In addition, this procedure allowed us to independently decode both the location and the 179 

orientation of the sample teardrop. We predicted that alpha-band activity could be used to decode 180 

the location but not the orientation of the teardrop, indicating that this signal primarily reflects 181 

spatial attention. By contrast, we predicted that sustained EEG voltages could be used to decode 182 

the orientation of the teardrop, indicating that this signal reflects a location-independent WM 183 

representation. There are multiple ERP components that track the location being attended (N2pc 184 
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and sustained posterior contralateral negativity — Jolicoeur et al., 2008; Luck, 2012; Fahrenfort 185 

et al., 2017), so we assumed that we would be able to decode the location of the teardrop as well 186 

as its orientation from the ERP signals. 187 

The orientation of a given teardrop was defined by the angular position of the tip relative 188 

to the center of the object itself (Fig. 4b, θO). As in Experiment 1, 16 discrete orientations were 189 

possible (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°, 202.5°, 225°, 247.5°, 270°, 190 

292.5°, 315°, and 337.5°). The tip of the sample teardrop was always located at one of 16 191 

discrete locations (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°, 202.5°, 225°, 247.5°, 192 

270°, 292.5°, 315°, and 337.5°) on an invisible circle with a radius of 2.17° that was centered on 193 

the fixation dot. Its location was defined by the angular position of the tip relative to the center of 194 

this invisible circle (Fig. 4b, θL). The location and orientation of the sample teardrop on a given 195 

trial were chosen at random from the 256 possible combinations of the 16 orientations and 16 tip 196 

locations so that the orientation and location were completely independent (Fig. 4c). For 197 

example, the tip of a teardrop with a 45° orientation could be placed at any of the 16 locations. 198 

Similarly, a teardrop with a tip located at 292.5° could have any of the 16 orientations. The only 199 

constraint was that each of the 16 orientations and each of the 16 locations occurred on the same 200 

number of trials (but selected independently of each other). Consequently, remembering the 201 

location of the teardrop would not help in reporting its orientation. Participants were told nothing 202 

about the constraints on the orientation and location of the teardrop; they were simply told that 203 

the locations of the sample and test teardrops would differ and that they should adjust the 204 

orientation of the test teardrop so that it matched the orientation of the sample. 205 

Orientation cannot be completely dissociated from location because orientation is defined 206 

by a pattern of change over space. In the present experiment, teardrop orientation can therefore 207 
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be defined as the location of the tip of the teardrop relative to the center or thick end of the 208 

teardrop. Thus, the contrast between stimulus orientation and stimulus location can be 209 

equivalently framed as a difference between an object-centered spatial representation 210 

(orientation) and an environment-centered (or retinotopic) spatial representation (which is a 211 

fundamental issue in visual coding — Bisiach, 1996). For the sake of simplicity, however, the 212 

present paper uses the term orientation to mean an object-centered representation and the terms 213 

location and space to refer to an environment-centered or retinotopic representation. 214 

In orthogonalizing the location and orientation of the teardrop, we focused on the 215 

teardrop’s tip because it was the part of the teardrop that provided the most precise location 216 

information and because the tip always pointed toward the location of the mouse pointer while 217 

the participant was attempting to reproduce the sample orientation, making it highly salient. In 218 

theory, the location of the thick end of the teardrop could provide some information about the 219 

teardrop’s orientation in this task, but a later section will provide evidence that this could not 220 

have influenced our orientation decoding results. 221 

The location of the test teardrop was determined by a new random combination of 222 

orientation and location, selected at random on each trial, independently of the orientation and 223 

the location of the sample teardrop on that trial. In other words, the test teardrop was selected at 224 

random from among the same set of 256 possibilities as the sample teardrop. However, when the 225 

observer rotated the teardrop, its tip was no longer constrained to fall on the invisible circle used 226 

to define the sample teardrop locations. Consequently, participants could not use the location of 227 

the test teardrop to guess the orientation of the sample teardrop. In addition, this task makes it 228 

possible to determine whether a decoder that is trained with orientations at one set of locations 229 

can decode orientations presented at a different set of locations. 230 
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After at least 16 practice trials, each participant completed a total of 640 trials (40 for 231 

each of the 16 orientations, collapsed across location, which was also 40 for each of the 16 232 

locations, collapsed across orientation). 233 

EEG Recording & Preprocessing 234 

The continuous EEG was recorded using a Brain Products actiCHamp recording system 235 

(Brain Products GmbH). Recordings were obtained from a broad set of scalp sites (FP1, FP2, F3, 236 

F4, F7, F8, C3, C4, P3, P4, P5, P6, P7, P8, P9, P10, PO3, PO4, PO7, PO8, O1, O2, Fz, Cz, Pz, 237 

POz, and Oz), which was similar to the montage used in the spatial WM study of Foster et al. 238 

(2016). Electrodes on the left and right mastoids were recorded for use as reference sites. The 239 

horizontal electrooculogram (EOG) was recorded from electrodes placed lateral to the external 240 

canthi and was used to detect horizontal eye movements; the vertical EOG was recorded from an 241 

electrode placed below the right eye and was used to detect eyeblinks and vertical eye 242 

movements. Electrode impedances were maintained below 50 KΩ. All signals were recorded 243 

single-ended and then referenced offline. The EEG was filtered online with a cascaded 244 

integrator-comb antialiasing filter (half-power cutoff at 130 Hz) and digitized at 500 Hz. 245 

Signal processing and analysis was performed in Matlab using EEGLAB Toolbox 246 

(Delorme and Makeig, 2004) and ERPLAB Toolbox (Lopez-Calderon and Luck, 2014). The 247 

scalp EEG was referenced offline to the average of the left and right mastoids. A bipolar 248 

horizontal EOG derivation was computed as the difference between the two horizontal EOG 249 

electrodes, and a vertical EOG derivation was computed as the difference between Fp2 and the 250 

electrode below the right eye. All the signals were band-pass filtered (non-causal Butterworth 251 

impulse response function, half-amplitude cut-offs at 0.1 and 80 Hz, 12 dB/oct roll-off) and 252 

resampled at 250 Hz. Portions of EEG containing large muscle artifacts or extreme voltage 253 
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offsets (identified by visual inspection) were removed. Independent component analysis (ICA) 254 

was then performed on the scalp EEG for each subject to identify and remove components that 255 

were associated with blinks (Jung et al., 2000) and eye movements (Drisdelle et al., 2017). The 256 

ICA-corrected EEG data were segmented for each trial from -500 to +1500 ms relative to the 257 

onset of the sample teardrop. To verify that eye movements did not impact the decoding results, 258 

we also conducted a set of decoding analyses in which trials with eye movements were excluded 259 

and ICA-based correction was not applied (see below).  260 

Decoding Overview 261 

We attempted to decode the orientation of the sample stimulus based on the scalp 262 

distribution of two different signals, the phase-independent alpha-band EEG power and the 263 

phase-locked ERP voltage. To ensure that we were decoding non-overlapping signals in these 264 

two analyses, the ERP decoding procedure was limited to frequencies below 6 Hz, and the alpha-265 

band decoding procedure was limited to frequencies between 8 and 12 Hz. Thus, we could be 266 

certain that the ERP decoding was not contaminated by alpha-band oscillations, which can 267 

masquerade as sustained ERPs under some conditions (Mazaheri and Jensen, 2008; van Dijk et 268 

al., 2010), and we could also be certain that the alpha-band decoding was not contaminated by 269 

low-frequency sustained potentials. Decoding was performed independently at each time point, 270 

but the statistical analysis focused on temporally contiguous clusters of above-chance decoding 271 

performance.   272 

There are many ways to assess the relationship between a stimulus parameter such as 273 

orientation and a neural signal, but the most common approaches are forward encoding models 274 

and decoding procedures (Serences et al., 2009; Brouwer and Heeger, 2011; Foster et al., 2016; 275 

Fahrenfort et al., 2017). Here, we chose to focus on decoding because the goal was to determine 276 
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whether the signals contain information about the orientation of the sample stimulus, and above-277 

chance decoding accuracy provides the most straightforward evidence that such information is 278 

present. Forward encoding models can be very valuable, but they make assumptions about the 279 

nature of the underlying representation that may not be justified for a given feature dimension 280 

and are not relevant to the questions being asked in the present study. Although we report only 281 

the decoding approach here, we have also applied the forward encoding approach (using the 282 

method of Foster et al., 2016), which yielded a comparable pattern of results.  283 

As in other EEG decoding/encoding studies (Foster et al., 2016, in press), the data from a 284 

given orientation were averaged across multiple trials to improve the signal-to-noise ratio (after 285 

extracting the phase-independent alpha power or the low-frequency EEG signals), and decoding 286 

was performed on these averages rather than on single-trial data. A separate classifier was 287 

trained to discriminate between each orientation (after averaging across trials) and all the other 288 

orientations. Decoding accuracy was then computed for the average of a set of trials for each 289 

orientation that was left out of the training data. Decoding was considered correct only if the 290 

classifier correctly determined which one of the 16 orientations was being held in WM. Chance 291 

performance was therefore 6.25% (1/16). 292 

We focused our oscillatory power analyses on the alpha band, which is the frequency that 293 

exhibited the most consistent relationship with WM in previous EEG research (Foster et al., 294 

2016). We also conducted exploratory analyses of a broad range of frequencies (4 Hz bands 295 

between 4 and 48 Hz). Some weak decoding was observed in the low beta range (12-16 Hz), but 296 

no clear decoding was present beyond the initial stimulus encoding period in any other band, so 297 

the present paper will focus only on the alpha band. 298 
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Experiment 1 Decoding Analysis 299 

The decoding procedure for Experiment 1 was the same for the alpha-band signals and 300 

the low-frequency ERP signals, except for the initial steps used to isolate the signal of interest. 301 

For the alpha-band decoding, the segmented EEG was bandpass filtered at 8-12 Hz using the 302 

EEGLAB eegfilt() routine, which implements a two-way least-squares finite impulse response 303 

filter with maximally steep rolloffs and an extremely narrow transition band. The bandpass 304 

filtered EEG segments were then submitted to a Hilbert transform to compute the magnitude of 305 

the complex analytic signal, and this magnitude was then squared to compute total power in the 306 

8-12 Hz band at each time point. For the ERP decoding, the segmented EEG was simply low-307 

pass filtered at 6 Hz, again using the EEGLAB eegfilt() routine. In both cases, the data were then 308 

resampled at 50 Hz (one data point per 20 ms) to increase the efficiency of the analyses. For each 309 

of the two signals, this gave us a 4-dimensional data matrix for each participant, with dimensions 310 

of time (100 time points), orientation (16 different values), trial (40 individual trials for each 311 

orientation), and electrode site (the 27 scalp sites).  312 

We used the combination of a support vector machine (SVM) and error-correcting output 313 

codes (ECOC — Dietterich and Bakiri, 1995) to classify the orientation of the sample teardrop 314 

on the basis of the spatial distribution of the signal over the 27 scalp electrodes. The ECOC 315 

model solves multiclass categorization problems by combining results from multiple binary 316 

classifiers. This model was implemented through the Matlab fitcecoc() function. The data were 317 

decoded separately for each of the 100 time points from -500 ms to +1480 ms (relative to sample 318 

array onset). However, our statistical analyses focused only on the delay interval (the 1300-ms 319 

period beginning at the offset of the sample teardrop and continuing through the last sample 320 

before the onset of the test teardrop). 321 
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The decoding for a given time point had separate training and test phases. In the training 322 

phase, 16 different SVMs were trained, one for each orientation. A one-versus-all approach was 323 

taken, in which each SVM was trained to distinguish between one specific orientation and all the 324 

other orientations. In the test phase, new data from each of the 16 orientations was fed into all 16 325 

SVMs, and the set of orientation assignments that minimized the average binary loss across the 326 

set of 16 SVMs was selected (see below). This procedure was used to classify the test data for 327 

each of the 16 orientations. 328 

Separate trials were used for training and testing. Specifically, the decoding for each time 329 

point used a 3-fold cross-validation procedure in which the data from 2/3 of the trials (selected at 330 

random) were used to train the classifier, and then the performance of the classifier was assessed 331 

with the data from the remaining 1/3 of trials. As a first step, we organized the data with respect 332 

to teardrop orientation and then divided the trials into three equal sized groups of trials (three 333 

groups of 13 trials for each of the 16 orientations). One random trial from each of the 16 334 

orientations was omitted because 40 is not evenly divisible by 3. The trials for a given 335 

orientation in each group were averaged together, producing a scalp distribution for the time 336 

point being analyzed (a matrix of 3 groups x 16 orientations x 27 electrodes). The data from two 337 

of the three groups served as a training dataset, and the remaining group served as a testing 338 

dataset. The two training datasets were simultaneously submitted to the ECOC model with 339 

known orientation labels to train the 16 SVMs. Each SVM learned to perform a binary 340 

classification that separated one of the 16 orientations from the other 15 orientations at the 341 

current time point.  342 

Next, the set of 16 trained ECOC models was used to predict which of the 16 orientations 343 

was present for each of the unlabeled orientations in the group of data that were reserved for 344 
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testing. This was done with the Matlab predict() function. This function assigns a class label for 345 

each observation in the testing dataset by minimizing the average binary loss over the 16 SVMs. 346 

The output of this function provides one predicted orientation for each of the 16 orientations in 347 

the testing dataset. Decoding accuracy was then computed by comparing the true orientation 348 

labels with the predicted labels. To be considered correct, we required that the predicted 349 

orientation exactly match the true orientation, providing a very stringent assessment of decoding. 350 

We have conducted additional analyses examining “near misses”, but those analyses are beyond 351 

the scope of this paper. 352 

This procedure was repeated three times, once with each group of data serving as the 353 

testing dataset. To minimize idiosyncrasies associated with the assignment of trials to groups, we 354 

iterated the entire procedure 10 times with new random assignments of trials to the three groups. 355 

After completing all the iterations of the cross-validation procedure, decoding accuracy was 356 

collapsed across the 16 orientations, across the three cross-validations, and across the 10 357 

iterations, producing a decoding percentage for a given time point that was based on 480 358 

decoding attempts (16 orientations x 3 cross validations x 10 iterations). After this procedure was 359 

applied to each time point, the averaged decoding accuracy values were smoothed across time 360 

points to minimize noise using a 5-point moving window (equivalent to a time window of ±40 361 

ms).  362 

The temporal precision resulting from the entire EEG processing and decoding pipeline 363 

was approximately ±50 ms. This was determined by running a 600-ms boxcar function through 364 

the portions of the pipeline that produced low-pass filtering (including the final smoothing step), 365 

which produced a temporally smeared version of the boxcar function. The point at which this 366 

function reached 10% of the maximum voltage was approximately 50 ms before the beginning 367 
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and 50 ms after the end of the original boxcar function. Small ripples extended further in time 368 

but were less than 10% of the original signal size. 369 

Statistical analysis of decoding accuracy 370 

If the pattern of voltage over the 27 electrodes contains information about the stimulus 371 

orientation, then decoding accuracy should be greater than chance, which was 1/16 because we 372 

used 16 teardrop orientations. To compare decoding accuracy to chance at each time point while 373 

controlling for multiple comparisons, we used a nonparametric cluster-based Monte Carlo 374 

simulation technique that is analogous to the cluster-based mass univariate approach that is 375 

commonly used in EEG research (Maris and Oostenveld, 2007; Groppe et al., 2011). This 376 

method is useful here both because it provides an intelligent correction for multiple comparisons 377 

and because decoding accuracy may not be normally distributed. This method involved three 378 

main steps. 379 

In Step 1, we tested whether the obtained decoding accuracy at each individual time point 380 

during the 1300-ms delay interval was greater than chance using one-sample t-tests comparing 381 

the mean accuracy across participants to chance (1/16). We used one-tailed tests because the 382 

SVM approach could not produce meaningful below-chance decoding. Note that this excluded 383 

the first 200 ms following stimulus onset to minimize the contribution of sensory activity to the 384 

decoding and focus on signals related to working memory. We then found clusters of contiguous 385 

time points for which the single-point t tests were significant (p < .05), and the t scores within 386 

each such cluster were then summed together to produce a cluster-level t mass. Each cluster-387 

level t mass was then compared against a null distribution for the cluster-level t mass that was 388 

determined via Monte Carlo simulations in Step 3. In other words, we asked whether the mass of 389 

a cluster of contiguous, individually significant t values was greater than the mass that would be 390 
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expected by chance. This controls the Type I error rate at the cluster level, yielding a probability 391 

of .05 that one or more clusters would be significant if true decoding accuracy were at chance 392 

during the entire delay period (Groppe et al., 2011). 393 

In Step 2, we constructed a Monte Carlo null distribution of cluster-level t mass values.  394 

To accomplish this, we first simulated the decoding accuracy that would be obtained if the 395 

decoder randomly guessed the orientation of the stimulus with no knowledge of the actual 396 

orientation. On each simulated trial, we randomly sampled an integer between 1 and 16 as the 397 

response of the decoder for a given target orientation. The response was scored as correct if it 398 

was the same as the target value. This was repeated 480 times (16 target orientations x 3 cross-399 

validations x 10 iterations), and the 480 scores were aggregated to compute the mean simulated 400 

decoding accuracy at a given time point. This procedure was repeated independently for each of 401 

the 100 time points, just as we independently decoded the EEG data at each time point. The 402 

resulting series of decoding accuracy values was then smoothed with a 5-point running average 403 

filter. This is the same procedure that was used to quantify the actual SVM decoding accuracy 404 

for a given participant, but using a random decoder instead of the SVM-based decoder. This 405 

procedure was then repeated 16 times to represent each of our 16 participants.  406 

We then used these simulated decoding accuracy values to compute the cluster-level t 407 

mass using the same procedure described in Step 1 (limited to the time points during the 1300-408 

ms delay period). If there were no significant t values, the cluster mass was zero. If there was 409 

more than one cluster of individually significant t values, we took the mass of the largest cluster. 410 

This simulated the maximum t mass from a single experiment in which decoding was at chance. 411 

In Step 3, we obtained a null distribution for the cluster mass. This involved simulating a 412 

large number of experiments in which the null hypothesis is true (i.e., decoding is at chance) and 413 
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examining the probability of getting a given maximum cluster mass across these simulated 414 

experiments. Specifically, we conducted 10,000 iterations of the procedure from Step 2, making 415 

it possible to construct the null distribution of the maximum cluster-level t mass (with a 416 

resolution of p = 10-4). We then computed the p value corresponding to each cluster in the actual 417 

data set by examining where each observed t mass fell within the null distribution. The p value 418 

for a given cluster was set based on the nearest percentiles of the null distribution (using linear 419 

interpolation). If the obtained cluster-level t mass is larger than the maximum of simulated 420 

cluster-level t mass, then we reported p < 10-4. We rejected the null hypothesis and concluded 421 

that the decoding was above chance for any observed cluster-level t mass that was in the top 95% 422 

of the null distribution (critical t mass = 12.0717, one-tailed, alpha = .05). Note that this analysis 423 

was limited to the 1300-ms delay period because the goal was to test decoding accuracy during 424 

working memory maintenance. 425 

Experiment 2 Decoding Analysis 426 

The decoding procedure for Experiment 2 was identical to that for Experiment 1, with the 427 

following exceptions. First, we independently decoded the orientation of the teardrop and the 428 

location of the teardrop’s tip. We collapsed across tip locations when we decoded the orientation, 429 

and we collapsed across orientations when we decoded the tip location. Because orientation and 430 

tip location were completely counterbalanced, the decoding of orientation could not have been 431 

influenced by information about tip location, and vice versa. 432 

In addition to the main statistical testing, we also compared decoding accuracy for 433 

location versus orientation. We used the same cluster mass approach, but with two differences. 434 

First, we used two-tailed t tests because either feature could conceivably produce more accurate 435 

decoding. Second, the Monte Carlo null distribution was constructed by randomly swapping 436 
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labels for the two conditions being compared, matching the procedure used to compare cluster 437 

masses for two waveforms in EEG experiments (Groppe et al., 2011). The null distribution 438 

constructed by this method represents the probability distribution of the t mass under the 439 

assumption that the obtained decoding accuracy for the two conditions are just different 440 

instances sampled from the same distribution. We computed the p value corresponding to each 441 

cluster in the actual data set by examining where each observed t mass fell within this null 442 

distribution, and we rejected the null hypothesis if the observed t mass fell within the top or 443 

bottom 2.5% of values from the null distribution (critical t mass = [-1.88, 2.73], two-tailed, alpha 444 

= .05). 445 

As noted earlier, we used the tip of the orientation for the counterbalancing because the 446 

tip was the most informative part of the teardrop and was directly controlled by the mouse 447 

pointer. However, one might be concerned that participants paid attention to some other part of 448 

the teardrop, such as the thick end, causing a small but nonzero association between the 449 

orientation of the teardrop and the location of some part of the teardrop. For example, the thick 450 

end of the rightward-pointing teardrops was farther to the left, on average, than the thick end of 451 

the leftward pointing teardrops (see Figure 4c). However, both the behavioral task and the 452 

decoding algorithm required discriminating between one orientation and all other possible 453 

orientations (i.e., not just leftward-vs-rightward). In addition, almost every location of the thick 454 

end of the teardrop was associated with multiple orientations (with all possible combinations of 455 

orientations across the possible locations). As a result, attending to the thick end of the teardrop 456 

did not provide unique information about the orientation of the teardrop. 457 

For these reasons, it is extremely unlikely that this location information could impact our 458 

orientation decoding. To provide support for this assumption, we conducted both an additional 459 
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analysis and a simulation. In the additional analysis (described in the cross-feature decoding 460 

section below), we trained the orientation decoder using teardrops presented at one set of 461 

locations and then tested the decoder with data from teardrops that were presented at a different 462 

set of locations. Above-chance level decoding in this analysis provides evidence that orientation 463 

of teardrop can be decoded completely independently of location. 464 

In addition, we conducted a simulation in which we attempted to decode teardrop 465 

orientation on the basis of the location of the thick end of each teardrop using the exact X,Y 466 

coordinates of this location (as if we had two electrodes, one that perfectly represented the X 467 

value and one that perfectly represented the Y value corresponding to the thick end of the 468 

teardrop). Note that the same thick end location can be occupied by multiple orientations and an 469 

area of thick end locations of one orientation was occupied by thick end locations of other 470 

orientations. As a result, the thick end locations for one orientation were not linearly separable 471 

from the thick end locations of the other orientations in the two-dimensional space. 472 

Consequently, to provide a stronger test of decodability, we used a non-linear SVMs with a 473 

Gaussian kernel function, which optimizes the effective dimensionality of the input space 474 

(Burges, 1998). We found that our one-versus-all decoding algorithm with the kernel function 475 

could not decode orientation above chance when provide with this location information, even 476 

though it was given perfect, noise-free information. As a check on the validity of this simulation 477 

approach, we also attempted to decode the location of the tip of the teardrop (rather than its 478 

orientation) from the X,Y coordinate of the tip, and we found that decoding accuracy was 479 

perfect. These simulations show that our decoding algorithm cannot readily decode orientation 480 

on the basis of the location information even with noise-free data (although it can perfectly 481 

decode location when given noise-free X,Y coordinates). Consequently, any above-chance 482 
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decoding of teardrop orientation from the actual EEG data was unlikely to have been based on 483 

the location of the thick end of the teardrop. 484 

Cross-Feature Decoding Analyses in Experiment 2 485 

To further demonstrate that orientation can be independently decoded from location, we 486 

conducted a cross-feature decoding analysis in which we trained an orientation decoder using 487 

trials where the stimulus was presented in the three of the four quadrants of the display and then 488 

tested the ability of this decoder to classify orientation in trials were the stimulus was presented 489 

in the remaining quadrant (see Fig. 7a). Similarly, we trained a location decoder using trials 490 

where the stimulus orientation was in the three of the four quadrants of orientation space and 491 

then tested the ability of this decoder to classify location in trials were the stimulus was 492 

presented in the remaining set of orientations (see Fig. 7b). 493 

For both orientation and location, this decoding was repeated four times (4-fold-cross 494 

validation), with each quadrant of the irrelevant feature space serving once as the testing data. As 495 

in the main decoding procedure, this procedure was applied to each time point independently. 496 

Because the quadrants were fixed rather than random, this procedure was not iterated multiple 497 

times (as opposed to the cross-validation procedure used in the main decoding analysis, which 498 

was based on random subsets of trials). All other aspects of this procedure were identical to the 499 

main decoding procedure. 500 

Although the experiment was designed to have equal numbers of trials at each orientation 501 

and equal numbers of trials at each tip location, we did not control the number of trials with each 502 

orientation-location combination. As a result, the number of trials available for decoding each 503 

feature value in the cross-feature decoding procedure varied randomly across iterations, which 504 

will tend to reduce the maximum accuracy and reliability of the decoding. Moreover, the cross-505 
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feature decoding procedure involved testing the decoder with stimuli that were never used in 506 

training, requiring generalization beyond the training set. Thus, if the cross-feature decoding 507 

accuracy is above chance, this provides a very stringent test of the ability to decode one 508 

dimension with no contribution from the other dimension. 509 

Because this was a more stringent test, we performed a statistical analysis that averaged 510 

the decoding over all the points during the 1300-ms delay period. We compared the average 511 

accuracy during this window to chance using a one-sample t test. For the sake of completeness, 512 

we also report the accuracy for each individual time point using the same cluster-mass Monte 513 

Carlo statistical test used for the main decoding analysis. 514 

Decoding After Excluding Trials with Eye Movements 515 

In our main analyses, we used ICA-based artifact correction to remove the voltage 516 

fluctuations produced directly by the eye movements, but this procedure may not correct for 517 

other differences in neural activity that may result from sustained changes in eye position. To 518 

ensure that the decoding was not based on signals related to eye position, we conducted an 519 

additional set of decoding analyses using uncorrected data and excluding trials that could 520 

potentially involve systematic shifts in eye position during the delay interval.  521 

We first computed the mean HEOG (Right EOG – Left EOG) and VEOG (Lower EOG – 522 

Upper EOG) voltages over the delay period, and we subtracted the mean pre-stimulus voltage to 523 

correct for the baseline voltage offset. Because systematic eye movements could occur in any 524 

direction in this paradigm, it was not sufficient to rely on the individual HEOG and VEOG 525 

values. We therefore converted the HEOG and VEOG voltages into a vector (in units of degrees 526 

rather than units of μV) representing the angle and amplitude of the eye position relative to the 527 

fixation point, using normative scaling values for HEOG (16 μV/°) and VEOG (12 μV/°) (Lins 528 
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et al., 1993). We then excluded trials from decoding analyses if the amplitude of the eye 529 

movement was greater than 0.5425° in any direction (because 0.5425° was half the distance from 530 

the fixation dot to the tip location). This very conservative procedure excluded approximately 55% 531 

of the trials in Experiment 1 (but many or most of these trials were likely rejected because of 532 

noise in the single-trial HEOG and VEOG data, not because of task-related eye movements). The 533 

amplitude of the average eye position for a given orientation in the remaining trials was 534 

extremely small (0.08°, SEM = 0.01°), indicating that our rejection procedure was successful. 535 

We used the same procedure to remove trials with eye movements in Experiment 2, but 536 

we used a rejection threshold of 1.085° (because this was half of the distance to the invisible 537 

circle that defined the possible locations of the teardrop tip). The exclusion procedure removed 538 

approximately 25% of the trials in Experiment 2. The amplitude of the average eye position for a 539 

given orientation or location in the remaining trials was again extremely small (0.13°, SEM = 540 

0.01°). 541 

Excluding trials with eye movements led both to a smaller number of trials and an 542 

unequal number of trials for each location and orientation, which would be expected to decrease 543 

the reliability of the decoding. Consequently, we focused on average decoding accuracy over the 544 

delay period for these analyses. 545 

Code and Data Availability 546 

Both the data and the Matlab analysis scripts are available upon request from G.B. 547 



Decoding of Working Memory  25  

 25 

Results 548 

Experiment 1 Behavior 549 

Figure 1c summarizes the behavioral data from Experiment 1. On each trial, accuracy was 550 

quantified as the angular difference between the orientation of the sample teardrop and the 551 

orientation reproduced by the participant. The mean absolute error was quite small (5.40°, SEM 552 

= 0.24). We also fit a standard mixture model to characterize the distribution of response errors 553 

in terms of response precision and guess rate (Zhang and Luck, 2008). The vast majority of 554 

response errors were clustered around 0°, and the mean guess rate was extremely low (0.7%, 555 

SEM = 0.2). Mean precision was quite high (kappa = 77.94, SEM = 5.26).  556 

Experiment 1 Scalp Distributions 557 

Our decoding methods rely on differences in the scalp distribution of alpha-band power 558 

and sustained ERPs across teardrop orientations, and Figure 2 shows the grand average scalp 559 

maps (averaged across the entire delay interval) for each orientation. The alpha-band maps 560 

indicate that alpha power over occipital scalp sites was suppressed (relative to the prestimulus 561 

period), consistent with prior research demonstrating that alpha-band activity is suppressed over 562 

visual cortex during the delay period of working memory tasks (Fukuda et al., 2015; Erickson et 563 

al., 2017). The ERP maps show a positive voltage over posterior scalp sites and a negative 564 

voltage over anterior scalp sites. This may reflect a combination of posterior P3-like activity and 565 

the negative slow wave that is often observed in WM tasks (Ruchkin et al., 1990; Ruchkin et al., 566 

1992). 567 

For both the alpha-band activity and the sustained ERPs, subtle differences in scalp 568 

distribution can be seen across the 16 teardrop orientations. However, there is no simple pattern 569 
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in the changes. This may reflect the fact that multiple brain regions exhibit orientation-specific 570 

delay activity (Harrison and Tong, 2009), which could produce a complex pattern of activity on 571 

the scalp. However, the lack of a simple pattern is not problematic for decoding methods, which 572 

can discover regularities in the scalp distributions even if they are complex and subtle. Also, the 573 

maps shown in Figure 2 were averaged across participants and time points, potentially obscuring 574 

information in the single-participant and single-time point scalp distributions that were used by 575 

our decoding procedure. 576 

Experiment 1 Decoding 577 

Figure 3 shows decoding accuracy for Experiment 1, which used a task that could 578 

potentially be performed by means of either spatial attention or orientation memory. Decoding 579 

accuracy for alpha-band activity began to rise above chance (0.0625 = 1/16) approximately 200 580 

ms after the onset of the sample stimulus, peaked around 600 ms, and remained high until just 581 

before the end of the delay period. The cluster mass test indicated that the decoding was 582 

significantly greater than chance (1 cluster, p < 10-4) for the entire 1300-ms delay period (see 583 

shaded region in Fig. 3a). When we excluded trials with eye movements (eye-movement 584 

rejection) rather than using ICA to subtract the electro-oculogram signals (eye-movement 585 

correction), the decoding was still significantly greater than chance when averaged across the 586 

delay period (t(15) = 2.8870, p = .0113, one-sample t-test).   587 

ERP-based decoding was also significantly above chance during most of the delay period 588 

(2 clusters, p < 10-4, p = .015), even when we used eye-movement rejection instead of correction 589 

(t(15) = 3.6601, p = .0022, one-sample t-test). However, the time course was somewhat different 590 

than that for alpha-based decoding. Decoding accuracy was quite high (more than twice the 591 

chance level) from approximately 150-400 ms after the onset of the sample teardrop, which 592 
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likely reflects the N2pc component during the initial processing of the teardrop (Fahrenfort et al., 593 

2017). Decoding then fell, but remained significantly above chance until the final 200-300 ms of 594 

the retention interval. It should be noted that sustained ERP activity (but not alpha-band activity) 595 

becomes less reliable as time progresses away from the prestimulus baseline period because of 596 

slow drifts in the EEG offset (Luck, 2014), and this may explain why the decoding accuracy fell 597 

to non-significant levels by the end of the delay period. Alternatively, if the late ERP activity 598 

primarily reflects the content of WM rather than spatial attention, then the decline in ERP-based 599 

decoding may reflect reliance on spatial attention rather than true orientation memory to perform 600 

the task. 601 

In either case, the present results demonstrate that our methods can be used to both alpha-602 

band oscillations and sustained ERPs to successfully decode the orientation being held in WM 603 

for most of the delay interval. However, this decoding could reflect either sustained spatial 604 

attention on the location of the teardrop’s tip or bona fide representations of the teardrop’s 605 

orientation (or a combination of both). Experiment 2 will distinguish between these possibilities. 606 

Experiment 2 Behavior 607 

In Experiment 2, participants performed the same basic task used in Experiment 1, except 608 

that the locations of the sample and test teardrops were independently varied (see Fig. 4a). Thus, 609 

maintaining attention on the location of the sample teardrop during the delay period could not be 610 

used to remember its orientation. 611 

Figure 4d summarizes the behavioral data from Experiment 2. The mean absolute error 612 

was again quite low (5.40°, SEM = 0.79). When a mixture model was applied, the mean guess 613 

rate was extremely low (0.3%, SEM = 0.01) and the mean precision was quite high (kappa = 614 

57.82, SEM = 7.05). However, the precision was significantly lower in this experiment than in 615 
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Experiment 1 (t(30)=2.29, p = .029, two-sample t-test). This difference could indicate that 616 

location-specific information is useful in maintaining precise orientation representations, leading 617 

to poorer memory when this information cannot be used (i.e., when the sample and test stimuli 618 

are at different locations). However, it could also reflect other factors, such as poorer sensory 619 

acuity at the peripheral locations used in the present experiment. 620 

Experiment 2 Scalp Distributions 621 

Figure 5 shows the grand average scalp topography for each teardrop orientation 622 

(averaged across the location of the teardrop) and each teardrop location (averaged across the 623 

orientation of the teardrop). As in Experiment 1, the alpha band maps show a suppression of 624 

alpha power over posterior scalp sites (relative to the prestimulus period), whereas the ERP maps 625 

show a positive voltage over posterior scalp sites and a negative voltage over anterior scalp sites. 626 

Experiment 2 Decoding 627 

We decoded the orientation of the sample teardrop (collapsed across tip locations) using 628 

alpha-band activity in one analysis and ERP activity in another analysis. We also decoded the tip 629 

location (collapsed across orientations) in a separate pair of analyses. Figure 6 shows decoding 630 

accuracy for each of these analyses. Alpha-based decoding for orientation was extremely weak, 631 

remaining within .01 of chance accuracy at all time points, and the accuracy did not exceed 632 

chance except for a small cluster of significant time points (1 cluster, p = .026) at approximately 633 

700 ms (see shaded region in Fig. 6a). By contrast, alpha-based decoding of location was well 634 

above chance (1 cluster, p < 10-4) from the beginning of the delay interval until approximately 635 

1000 ms but then fell to chance by the end of the delay interval. Location decoding was 636 

significantly more accurate than orientation decoding (1 cluster, p < 10-4) from the beginning of 637 
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the delay period until approximately 1250 ms (see red horizontal bar in Fig. 6c). The same 638 

pattern of results was obtained when we used eye-movement rejection instead of correction. 639 

Specifically, alpha-based decoding of orientation was near chance (t(15) = 1.2225, p = .2404, 640 

one-sample t-test), but alpha-based decoding of location was greater than chance (t(15) = 3.2954, 641 

p = .0049, one-sample t-test). 642 

 In contrast to the alpha-based decoding, the ERP-based decoding of orientation was 643 

robust and significantly greater than chance (1 cluster, p < 10-4) for almost the entire delay 644 

period. ERP-based location was also significantly above-chance (1 cluster, p < 10-4) for most of 645 

the delay period. The ERP-based decoding was significantly more accurate (1 cluster, p < 10-4) 646 

for location than for orientation for the first ~600 ms of the delay period, but decoding accuracy 647 

for location and orientation was similar for the last ~500 ms of the delay period (see Fig. 6d). 648 

The same pattern of results was observed when we used eye-movement rejection instead of 649 

correction. Specifically, ERP-based decoding was significantly greater than chance for both 650 

orientation (t(15) = 4.03, p = .001, one-sample t-test) and location (t(15) = 5.4763, p < 10-4, one-651 

sample t-test). These results demonstrate that sustained ERPs contain information about the 652 

specific orientation being maintained in WM, but alpha-band oscillations do not. 653 

Experiment 2 Cross-Feature Decoding 654 

As described in the Materials and Methods section, it is unlikely that the above-chance 655 

decoding of orientation we observed in this experiment was based on the location of the tip of 656 

the teardrop or any other part of the teardrop. To provide a further test of this claim, we 657 

conducted an even more stringent test of the location-independence of the orientation decoding, 658 

in which the decoder was trained with the data from three of the four quadrants of the display 659 

and then tested on the data from the remaining quadrant (see Fig. 7a). In this analysis, the 660 
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decoder had no opportunity to learn the spatial properties of the orientations used in the test set, 661 

providing an even more rigorous test of the location independence of the decoding. Given that 662 

this was a more stringent test with decreased statistical power, our main statistical analyses 663 

examined decoding accuracy averaged across the entire 1300-ms delay period. 664 

As shown in Figure 7c, alpha-based cross-location decoding of orientation was almost 665 

exactly at chance (t(15) = 0.25, p = .60, one-sample t-test). We computed the corresponding 666 

Bayes factor (Rouder et al., 2009) using the default JZS scaling factor of .707, and we found that 667 

the data were 3.8 times more likely to arise from chance decoding than from above-chance 668 

decoding. This provides positive support for the hypothesis that orientation cannot be decoded 669 

from alpha-band oscillations when a stringent test is used. In contrast, ERP-based cross-location 670 

decoding of orientation (Fig. 7d) was significantly above chance (t(15) = 2.99, p = .0046, one-671 

sample t-test). This decoding was greater than chance for all but two of the participants, and the 672 

Bayes factor indicated that the data were 5.9 times more likely to arise from above-chance 673 

decoding than to arise from chance decoding. Thus, although it may be impossible to completely 674 

dissociate location and orientation information, the present analyses provide strong evidence that 675 

the sustained ERPs contained location-independent information about orientation. 676 

Figure 8 shows decoding accuracy at each individual time point. There was no sign of 677 

above-chance alpha-based decoding of orientation at any point during the delay period, whereas 678 

ERP-based decoding of orientation was significantly greater than chance for much of the delay 679 

period (3 clusters, p = .011, p = .035, p < 10-4). These results provide even stronger evidence that 680 

sustained ERP activity contains information about the orientation being held in WM, 681 

independent of object location, with no evidence of true orientation information in the alpha-682 

band oscillations. 683 
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For the sake of completeness, we conducted a parallel cross-orientation decoding analysis 684 

for location, in which the decoder was trained using three quarters of the orientations and then 685 

tested on the other quarter (see Fig. 7b). When averaged over the entire delay period, cross-686 

orientation decoding of location was significantly greater than chance for both alpha-based 687 

decoding (t(15) = 3.09, p = .0037, one-sample t-test) and ERP-based decoding (t(15) = 5.01, p = 688 

.00008, one-sample t-test) (see Fig. 7c and 7d). Analyses of each individual time point (Fig. 8) 689 

provided evidence of above-chance location decoding across most of the delay period for both 690 

ERP-based decoding (1 cluster, p < 10-4) and alpha-based decoding (2 clusters, p < 10-4, p = 691 

.026). Thus, as in the previous analyses, the location of the teardrop could be decoded 692 

independently of its orientation from both alpha-band activity and sustained ERP activity.  693 

Note that the cross-feature decoding was somewhat less accurate than the original 694 

decoding for both orientation and location, which presumably reflects the fact that cross-feature 695 

decoding requires explicit generalization to stimuli that were not used for training. In addition, 696 

the reliability of the decoding may have been decreased by the fact that, unlike the main 697 

decoding analyses, we could not iterate over multiple random assignments of stimuli for these 698 

analyses. Thus, the lower accuracy in the cross-feature decoding analyses does not imply that the 699 

main analyses were contaminated by information from the other dimension. 700 

Confusion Matrices for Experiment 1 and Experiment 2 701 

The main decoding analyses focused on accuracy for exact decoding of location and orientation, 702 

averaged across different stimulus values. Here, we provide the confusion matrix for each 703 

combination of stimulus value and classification response to provide a more detailed description 704 

of the results. Figure 9 shows the probability of a each possible classification response for each 705 

possible stimulus value, averaged over the delay interval and over participants. Separate panels 706 
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are shown for each combination of signal type (alpha or sustained ERP) and decoded feature 707 

(orientation in Experiment 1, location in Experiment 2, and orientation in Experiment 2).  708 

In Experiment 1, most of the classification responses were clustered around the true target 709 

value (the central diagonal) for both the alpha and ERP signals. Interestingly, a given target 710 

value in Experiment 1 was occasionally decoded as being 180° away from the true value 711 

(indicated by the white diagonal lines). This could reflect the fact that the orientation of an 712 

infinite-length line (as opposed to a ray) cannot be distinguished from an orientation that is 180° 713 

away. However, this result could also indicate that observers paid attention to the opposite end of 714 

the teardrop on some proportion of trials. In addition, these 180° decoding confusions were rare, 715 

and participants exhibited no evidence of 180° confusions in their behavioral responses (see Fig. 716 

4). In Experiment 2, both the alpha-based and ERP-based decoding of location exhibited a high 717 

probability of classification responses at or near the true value, with no obvious evidence of 718 

opposite-direction classification responses.  719 

The ERP-based decoding of orientation in Experiment 2 showed a broader range of 720 

classification responses around the true value than was observed for orientation in Experiment 1 721 

or for location in Experiment 2. However, there was still a clear cluster of classification 722 

responses around the true orientation value, and no obvious cluster of responses around the 723 

opposite orientation. This indicates that the decoding was primarily sensitive to ray orientation 724 

(with 360° of unique values) rather than line orientation (with only 180° of unique values). The 725 

confusion matrix for alpha-based decoding of orientation in Experiment 2 showed very little 726 

structure, consistent with the near-chance orientation decoding accuracy that was obtained for 727 

alpha-band activity in the main analyses. 728 
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Discussion 729 

Human scalp EEG activity contains both sustained and oscillating activity during the 730 

delay period of WM tasks (van Dijk et al., 2010; Perez and Vogel, 2012; Fukuda et al., 2015), 731 

possibly reflecting the representation of information across the delay period. However, these 732 

signals might instead reflect support processes, such as attentional mechanisms that prevent 733 

interference, rather than the actual WM representations (Sauseng et al., 2009; Bonnefond and 734 

Jensen, 2012). The ability to decode the feature value being held in WM from a given neural 735 

signal provides much stronger evidence that the signal reflects the WM representation (Postle, 736 

2016), and the present study therefore sought to determine whether orientation representations in 737 

WM could be decoded from scalp EEG activity. Given the close link between sustained ERP 738 

activity and WM capacity for objects (Vogel and Machizawa, 2004; Vogel et al., 2005), we 739 

predicted that the sustained ERP activity would reflect the features of the objects being 740 

maintained in WM. In contrast, given the close relationship between alpha-band activity and 741 

spatial attention (Worden et al., 2000; Rihs et al., 2007), we predicted that alpha-band 742 

oscillations would primarily reflect the location of the attended object. The results were 743 

consistent with these predictions. 744 

Experiment 1 demonstrated that orientation information in a WM task could be decoded 745 

from the scalp distribution of both alpha-band oscillations and sustained ERP responses. 746 

Previous research has found that alpha-band activity can decode the location being maintained in 747 

spatial WM (Foster et al., 2016), but this is the first demonstration that sustained ERPs can 748 

decode delay-period activity in a WM task. However, it is quite plausible that participants 749 

focused their spatial attention on location of the teardrop’s tip throughout the delay period as 750 

they prepared to reproduce the teardrop’s orientation at the end of the trial. As a result, we may 751 
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have been decoding the direction of spatial attention rather than a WM representation of 752 

orientation per se. This is especially plausible for the alpha-band activity, which has a scalp 753 

distribution that changes in a fine-grained manner as the location being attended varies (Rihs et 754 

al., 2007). 755 

Distinguishing Between Spatial Attention and the Contents of WM 756 

To distinguish between spatial attention and the contents of WM, the task used in 757 

Experiment 2 independently varied the location and orientation of the teardrop, and participants 758 

were instructed to remember the teardrop’s orientation independently of its location. We found 759 

that the orientation being held in WM could be decoded from sustained ERP activity throughout 760 

the delay period, even though the orientation of the teardrop could not be predicted from its 761 

location. In an even more stringent test of location-independent orientation decoding, we found 762 

that orientation could be decoded when the decoder was trained with stimuli from one set of 763 

locations and tested with stimuli from a different set of locations. Thus, sustained ERP activity 764 

contains information about the feature value being held in WM beyond the location of the object. 765 

These results dovetail with previous studies showing that sustained ERP activity is closely tied to 766 

individual and group differences in WM capacity (Vogel and Machizawa, 2004; Leonard et al., 767 

2012). However, additional research will be needed to determine whether the sustained activity 768 

that was responsible for the decoding in the present study is the same as the sustained activity 769 

that has been linked to WM capacity in previous research. 770 

We also found that ERP activity could be used to decode the location of the teardrop, 771 

especially early in the delay interval. This likely reflects, at least in part, the N2pc component 772 

(Luck, 2012), which precisely tracks the location of attended objects (Fahrenfort et al., 2017). 773 
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The location of the teardrop could also be decoded from the scalp distribution of the 774 

alpha-band activity, but there was little or no evidence that alpha-band activity could be used to 775 

decode the orientation of the stimulus consistently throughout the delay period. Indeed, when we 776 

applied the stricter cross-location test of orientation decoding, alpha-based decoding of 777 

orientation was very close to chance throughout the delay period. Moreover, the Bayes factor for 778 

this analysis provided positive evidence that the data were more consistent with chance-level 779 

decoding than with above-chance decoding. These results are consistent with prior evidence that 780 

alpha-band activity is closely tied to attention in perceptual tasks (Adrian and Matthews, 1934; 781 

Worden et al., 2000; Sauseng et al., 2005) and serves to prevent interference in nonspatial WM 782 

tasks (Sauseng et al., 2009; Bonnefond and Jensen, 2012). The decoding methods used here go 783 

beyond the previous research, however, providing evidence that the scalp distribution of alpha-784 

band activity contains decodable information about the location of an object but little or no 785 

decodable information about the other features of this object. However, it remains quite plausible 786 

that alpha-band activity is used to store object locations in WM, even when the task does not 787 

explicitly require location memory (Foster et al., 2017). 788 

Although we found little or no evidence of orientation information in alpha-band 789 

oscillations (or in any other frequency band), this should not be taken to indicate that neural 790 

oscillations have no role in object-based WM representations. The present decoding was based 791 

on differences in scalp distribution across feature values, and it is possible that scalp EEG 792 

oscillations (and LFP oscillations) contain information about feature values in a non-topographic 793 

manner (e.g., by means of phase-amplitude coupling – see Sauseng et al., 2009). Because 794 

decoding provides important evidence that a neural signal actually reflects WM representations 795 

rather than support processes (Postle, 2016), it will be important for future research to determine 796 
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whether these non-topographic features of scalp EEG oscillations contain information about the 797 

feature value being maintained in WM. 798 

Orientation, Space, and Shape 799 

As mentioned earlier, our task required perceiving ray orientation (360° of unique values) 800 

rather than line orientation (180° of unique values). Both behavioral performance and location-801 

independent orientation decoding yielded no evidence of 180° confusions, which may indicate 802 

that participants were representing shape rather than orientation per se (Zhang and Luck, 2008). 803 

However, populations of end-stopped cells in early areas of visual cortex may be able to code ray 804 

orientation (Würtz and Lourens, 2000), so it is also possible that the present results reflect 805 

relatively low-level representations of orientation. 806 

Note that the orientation representations in the present study may actually be conceived 807 

as object-centered spatial representations. Interestingly, fMRI-based decoding of orientation in 808 

primary visual cortex is not location-specific, and the orientation of a grating presented in one 809 

hemifield can be decoded from the pattern of activity in either hemisphere (Ester et al., 2009). 810 

This suggests that object-centered representations may involve early visual cortex and not just 811 

high-level areas. 812 

Underlying neural activity 813 

Although the present study found that sustained scalp-recorded ERP activity contained 814 

information about the orientation value being stored in WM, it is important to ask whether this 815 

could be the result of brief bursts of activity that create the appearance of a sustained response 816 

when averaged across neurons and/or trials. Our ERP-based decoding was based on data in 817 

which activity above 6 Hz was filtered out, so oscillations in the alpha, beta, and gamma bands 818 

could not have contributed significantly to the decoding. This includes both the asymmetric 819 
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alpha oscillations reported by Mazaheri and Jensen (2008) and van Dijk et al. (2010) and the 820 

gamma-band LFP bursts observed in monkeys by Lundqvist et al. (2016). However, the gamma 821 

bursts were accompanied by single-unit activity that carried information about the stimulus being 822 

represented; if these bursts of activity were accompanied by non-oscillating LFPs, the summed 823 

activity across a large population of neurons could have created sustained delay-period activity at 824 

the scalp. In this way, the sustained ERP-based decoding observed in the present study could 825 

reflect infrequent bursts of activity in individual neurons that produced sustained potentials when 826 

averaged across cells. In addition, it is possible that WM-related EEG signals were present 827 

during some portions of the delay period on some trials and other portions of the delay period on 828 

other trials rather than being sustained across the entire delay period on every trial (as has been 829 

observed in single-unit activity by Shafi et al., 2007). 830 

Nonetheless, the present results put significant constraints on the neural signals that 831 

underlie decoding of WM content from scalp EEG signals. For example, the present results 832 

unambiguously demonstrate that the EEG contains decodable information about the remembered 833 

stimulus value that cannot be directly explained by oscillating LFPs, and they provide no 834 

evidence that the scalp distribution of alpha-band oscillations carries information about the 835 

contents of WM. Moreover, the present results imply that neural representation of orientation in 836 

WM is spatiotopically mapped at a sufficiently coarse cortical scale that it can be decoded even 837 

after the substantial spatial filtering that occurs when electrical potentials travel from the neurons 838 

that generate them through the brain and skull to the surface of the scalp. However, additional 839 

empirical research and modeling will be needed to determine the precise nature of the cellular 840 

activity that produces the scalp ERP signals that were decoded in the present study. 841 
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Figure 1. (a) Possible attention-based strategy for remembering an orientation. Maintaining 996 
attention on one or both of the extreme ends of the grating over a delay interval could help an 997 
observer reproduce the orientation or detect changes in orientation at the end of the interval. 998 
Even if this was not the sole mechanism being used for the task, it would likely be useful for 999 
performing the task, and neural signals related to spatial attention could potentially be sufficient 1000 
to produce above-chance decoding of the orientation. (b) Delayed estimation task used in 1001 
Experiment 1. On each trial, participants fixated at the central dot for 500 ms (not shown here) 1002 
and then saw a 200-ms teardrop. After a 1300-ms delay period, a response ring appeared, 1003 
followed by a test teardrop as soon as the participant began moving the mouse. Participants used 1004 
the mouse to adjust the orientation of the test teardrop until it matched the remembered 1005 
orientation of the sample teardrop. The tip of the test teardrop pointed toward the mouse cursor, 1006 
and participants clicked the mouse button to finalize their report. (c) Probability distribution of 1007 
response errors in Experiment 1, collapsed across all participants.  1008 
 1009 
 1010 
Figure 2. Topography of (a) instantaneous alpha power and (b) ERP activity for each of 16 1011 
sample orientations, averaged across the delay interval and participants in Experiment 1. Both 1012 
alpha power and ERP amplitude were computed relative to the prestimulus baseline period. The 1013 
position of each scalp map corresponds to the orientation of the sample teardrop.  1014 

 1015 
 1016 
Figure 3. Mean accuracy of (a) alpha-based decoding and (b) ERP-based decoding in Experiment 1017 
1. Chance-level performance (0.0625 = 1/16) is indicated by the black horizontal lines. Gray 1018 
areas indicate clusters of time points in which the decoding was significantly greater than chance 1019 
after correction for multiple comparisons. Note that the first 200 ms following stimulus onset 1020 
were excluded from the statistical analysis to minimize any contributions of sensory activity to 1021 
the decoding. The orange shading indicates ±1 SEM.  1022 

 1023 
 1024 
Figure 4. (a) Two example trials of the delayed estimation used in Experiment 2: On each trial, 1025 
participants fixated the central dot for 500 ms (not shown here) and then saw a 200-ms teardrop. 1026 
After a 1300-ms delay period, a second teardrop was presented at a different random location, 1027 
and the participant used a mouse to adjust this second teardrop’s orientation so that it matched 1028 
the remembered orientation of the first teardrop. (b) Definition of θL (the angular location of the 1029 
teardrop tip) and θO (the orientation of the teardrop): θL was defined by the location (in polar 1030 
coordinates) of the tip of the teardrop object relative to an invisible circle with a radius of 2.17°, 1031 
centered on the fixation dot. θO was defined by the orientation of the tip of the teardrop relative 1032 
to the center of the teardrop. (c) Independence of θL and θO. The tip of a teardrop with a given θO 1033 
could be presented at any of the 16 θL values, and a teardrop with a given θL could have any of 1034 
the 16 θO values. (d) Probability distribution of response errors collapsed across all participants. 1035 
 1036 
 1037 
Figure 5. Scalp topography of (a) instantaneous alpha power and (b) ERP activity relative to 1038 
prestimulus baseline for each of the 16 orientations of the sample teardrop, averaged across the 1039 
delay interval and participants. The position of each scalp map corresponds to the orientation of 1040 
the sample teardrop. Topography of (c) alpha power and (d) ERP activity for each of the 16 1041 
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locations of the sample teardrop tip, averaged across the delay interval and participants. The 1042 
position of each scalp map corresponds to the location of the tip of the sample teardrop. Both 1043 
alpha power and ERP amplitude were computed relative to the prestimulus baseline period. 1044 
Figure 6. Alpha-based decoding accuracy for (a) the orientation of the sample teardrop and (c) 1045 
the location of the sample teardrop tip. ERP-based decoding accuracy for (b) the orientation of 1046 
the sample teardrop and (d) the location of the sample teardrop tip. Each gray area shows a 1047 
cluster of time points for which the decoding was greater than chance after correction for 1048 
multiple comparisons. The red lines in (c) and (d) indicates clusters of time points in which the 1049 
decoding was significantly greater for location than for orientation. The orange shading indicates 1050 
±1 SEM. Note that the first 200 ms following stimulus onset were excluded from the statistical 1051 
analysis to minimize any contributions of sensory activity to the decoding. 1052 
 1053 
 1054 
Figure 7. Cross-feature decoding. (a) To completely remove the impact of the tip location on the 1055 
decoding of orientation, we trained the decoders using data from teardrops presented in 3 of the 4 1056 
quadrants (indicated by pink locations) and then tested the decoding on trials from the remaining 1057 
quadrant (indicated by green locations). This was repeated four times, using each quadrant as the 1058 
test quadrant once. (b) The analogous procedure was used for location decoding. The decoders 1059 
were trained to decode location using ¾ of the orientations (indicated by pink teardrops), and 1060 
then tested with the other ¼ (indicated by green teardrops). (c) Alpha-based cross-feature 1061 
decoding accuracy for orientation and location, averaged over the entire delay period (d) ERP-1062 
based cross-feature decoding accuracy for orientation and location, averaged over the entire 1063 
delay period for orientation and location. Each participant is represented by a dot, and the mean 1064 
and ±1 SEM are indicated by the line and box. ** = p < .01, *** = p < .001 1065 
 1066 
 1067 
Figure 8. Average cross-feature decoding accuracy at each time point. (a) Average accuracy of 1068 
alpha-based cross-location decoding of orientation. (b) Average accuracy of ERP-based cross-1069 
location decoding of orientation. (c) Average accuracy of alpha-based cross-orientation decoding 1070 
of location. (d) Average accuracy of ERP-based cross-orientation decoding of location. The 1071 
orange shading indicates ±1 SEM. Gray areas represent clusters of points with significantly 1072 
above-chance decoding accuracy after correction for multiple comparisons. Note that the first 1073 
200 ms following stimulus onset were excluded from the statistical analysis to minimize any 1074 
contributions of sensory activity to the decoding. 1075 
 1076 
 1077 
Figure 9. Confusion matrices for alpha-based (top row) and ERP-based (bottom row) decoding 1078 
for Experiment 1 (left column), Experiment 2 location (middle column), and Experiment 2 1079 
orientation (right column). Each cell shows the probability of a given classification response (X 1080 
axis) for given a stimulus value (Y axis), averaged over the entire delay interval and across 1081 
observers. The white diagonal lines indicate classification responses that are 180° from the 1082 
stimulus value. Note that the values in the upper left and lower right corners of each matrix 1083 
represent stimulus-response combinations that are actually adjacent to the stimulus-response 1084 
combinations in the lower left and upper right corners (because these matrices provide a linear 1085 
representation of a circular stimulus space). 1086 




















