
Trends
Recent research has uncovered our
remarkable flexibility in prioritizing
information in WM, refining the con-
cept of multiple representational states
in WM.

Neuroimaging studies have investi-
gated the networks controlling prioriti-
zation in WM.

Prioritization activates prefrontal and
parietal brain areas associated with
the deployment of visual attention,
suggesting a parallel between atten-
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prioritization has been proposed to result from a focus of internal attention
highlighting one of several representations. Here, we suggest an updated
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and selecting a memory, and then reconfiguring its representational state in
the service of upcoming task demands. Reconfiguration sets up an optimized
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WM with task switching and action preparation.
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The Changing Concept of Priority in Working Memory
The subject of this article is the neural basis and behavioral consequence of prioritizing
information maintained in visual short-term, ‘working’ memory (WM). By WM in this context,
we refer to the ability to store and manipulate recently acquired information for a period of
seconds, independently of continuous sensory stimulation, to guide behavior over the short-
term. This ability is central to intelligent behavior [1,2] and, therefore, touches on nearly all
domains of cognitive neuroscience (such as fluid intelligence, perceptual decision-making, or
model-based learning; e.g., [3–5]). The severe limits to how much can be encoded in WM
(conceived as a small number of quantized representations [6–8] or as a limited pool of
mnemonic resources [9]) hamper our ability to act optimally when there is too much information
to be considered at once. As a consequence of this bottleneck, attention is of central
importance to WM [10–15]: Those who cannot select the most important information and
keep out irrelevant distraction unnecessarily clutter their WM store [16,17].

Early studies exploring the role of attention in WM manipulated selective encoding (i.e.,
prioritizing a subset of items during encoding). Later, studies revealed that focusing on the
relevant pieces of information even after they have already been encoded also improves
memory [18–20]. Such retrospective cueing cannot influence basic sensory processing of
the memory items, or their encoding, but rather operates at a pure mnemonic level, prioritizing
the contents maintained in WM.

Neurodevelopmental (e.g., [21]) and psychiatric disorders (e.g., [22]), as well as healthy aging
[23,24], severely affect WM capacity, making it imperative that we better understand how
prioritization within WM can help us make the most of a preciously limited cognitive resource.
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Glossary
Focus of attention: specialized
state within WM. As opposed to
items that are merely maintained, the
single item in the focus of attention
[20] is selected and elevated to a
separate representational state so
that it can be updated, manipulated,
or recalled. Representations in the
focus of attention are recalled more
quickly and with greater accuracy
than other WM representations.
Internal attention: goal-directed
selection of information that is not
currently presented in the
environment, such as long- or short-
term memory or goals. Internal
attention is thought to draw on the
same selection mechanism that is
deployed to attend to information
arriving from the environment.
Latent storage: proposed
neurophysiological mechanism for
the neural storage of WM
memoranda by reconfiguring the
state of a memory network through
short-term changes in its pattern of
connections. After reconfiguration,
persistent spiking is no longer
necessary because the memory is
stored in a latent state, for example
in temporarily changed synaptic
weights.
Output gating: some computational
models of WM emphasize the
importance of an input gate that
determines which pieces of sensory
information are allowed into the
limited-capacity WM store. Similarly,
more recent computational models
propose a second gate determining
which of the items that are stored in
WM are permitted to drive behavior,
or ‘output’. ‘Output-gating’ an item
could correspond to moving it into
the focus of attention, although the
exact relationship is unclear.
Retrocue: a cue presented
retrospectively, during the retention
interval of a WM task, indicating that
a subset of all items already held in
memory is most relevant to behavior,
for example because it is most likely
to be probed.
Task switching: switching tasks
(rule-guided responses to a limited
set of stimuli) incurs costs in terms of
slower reaction times and increased
error rates. Switch costs occur
because of the sudden need to
reconfigure a task set in response-
guiding brain networks. Cueing a
task switch in advance reduces but
does not eliminate switching costs.
Here, we focus on new empirical and theoretical advances that shed light on the role of
prioritization in WM, and how this may relate to task preparation. In synthesizing this literature,
we suggest that both attentional selection and task preparation have critical roles in prioritizing
information in WM to guide optimal performance.

We begin by drawing parallels with the better-understood mechanisms of selective attention for
perception. We then build on this model with the aim of explaining more fully how prioritization
may operate in WM, and within internal information stores more generally. We propose that, in
addition to any benefits brought about by attentional selection of individual items, behavioral
benefits also arise in large part because of preparation of the right behavioral policy (for
instance, by setting up appropriate contingencies between upcoming stimuli and behavior).
Our proposal can account for several otherwise odd findings in the behavioral literature.
Moreover, it may help pin down the dual roles of selection and preparation in prioritizing
information in mind. Furthermore, our model makes predictions about the possible neural basis
of the architecture of WM.

Attention in Perception and Working Memory
WM is famously burdened with severe capacity limits. As in many other domains of cognition
that contain a bottleneck [25,26], the preferential selection of pertinent information appears
crucial if we are to make the best use of our limited resource. In the domain of perception, the
term ‘selective attention’ is invoked to describe such preferential biases towards behaviorally
relevant stimuli. In extending this literature, attention has been shown to be influential for
selecting information for encoding into WM [27–29], and for preventing distracting information
from gaining access to it [30]. The benefits of attention are generally assumed to follow the
biased competition principle [31]: gains in processing (e.g., [32–34]) for an attended location or
feature are achieved by biasing the receptive fields of neurons in their favor, at the expense of
unattended locations or features.

Without question, attention before or during encoding has high utility for behavior. However, the
relevance of stimuli is not always obvious while they are still present; sometimes, we need to
prioritize information that has already been encoded in WM. For example, you may be looking
around your apartment for your car keys and your phone simultaneously, holding templates of
both in your WM as you scan your surroundings. Suddenly the phone starts ringing, so you
prioritize finding the phone first to get to it in time. This ability had already been noted by William
James in his endlessly cited definition of attention as the ‘taking possession by the mind [ . . . ]
of one out of what seem several simultaneously possible objects or trains of thought’ ([35], pp.
403–404). The ability to manipulate WM content flexibly is also a hallmark of classic definitions
of WM [1]. As with selective prioritization before and during encoding, prioritizing important
items in WM during the retention interval has been shown to lead to a substantial memory boost
[18–20]. Experimentally, prioritization within WM is generally induced by presenting a cue during
the retention interval that directs focus to one of the items already held in mind. Cues can
refresh a previously presented item [36,37], bring a subset of items currently in WM into the
focus of attention (see Glossary) for immediate recall [38], or retroactively indicate that one
item is most likely to be probed at the end of the delay interval. The latter is often referred to as a
‘retrocue’ (as opposed to a precue presented before WM encoding, see [19], or a postcue
presented together with the probe).

At first glance, the benefit of retrocueing appears paradoxical: memory is seemingly improved
out of thin air. After all, the relevant information has already been stored in the brain, so how
could providing an orienting cue possibly improve the strength of this information after the fact?
Indeed, over 10 years of investigation into the behavioral correlates and neural mechanisms of
prioritization in WM have not yielded a conclusive explanation. Most proposals draw parallels
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between the effects of retrocueing and selective attention to external stimuli [9,13–15,39]. The
same cognitive and neural mechanisms (selective attention) are deployed in each case, with the
main difference being the substrate on which they operate, yielding a distinction between
external and internal attention. In sum, these models emphasize that retrocueing benefits
depend on a sustained bias of selective attention toward cued locations or features during a
memory delay.

Overlap between External and Internal Attention
At a basic level, the behavioral effects of retrocues indeed appear to be similar to the effects of
external attention. Responses when probing cued items are faster and more accurate
[18,19,40–42]. On invalid cue trials, responses are often slower and less accurate ([40,43–
45], although invalidity costs are not consistent across studies, as discussed in the next
section). When cue validity is manipulated, more reliable cues lead to a larger benefit [46–48].

At the neural level, similar top-down attention networks are engaged for internal and external
attention shifts (such as the frontal eye fields and the superior parietal lobe, [49–59]).
Neurophysiological markers of attention shifts, such as desynchronization of alpha-band
oscillations in the hemisphere contralateral to where the cued item was presented, appear
also to be roughly comparable between external attention [60] and retrocueing [59,61–64]. In
parallel, retrocues appear to reduce load-dependent signals, such as the contralateral delay
activity [65–67], as if they allowed the removal of uncued items from the memory store. This
removal mechanism is reminiscent of the filtering of distractors during encoding [16]. In
tandem with the top-down control signals, activity is also modulated in sensory brain regions
corresponding to the cued location or feature [57,68–73], which likely contribute to WM
representations or their manipulation through sensory recruitment [74–79]. For example,
when a visual stimulus category (e.g., faces) is cued, BOLD activity in the corresponding brain
area (fusiform gyrus) increases [68,80,81]. This has been interpreted as increased processing
of, or focused attention towards, the cued category. However, in many cases, this increase
may also reflect anticipation of a probe stimulus from that category at the end of the delay
[57].

Open Questions for the Internal Attention Framework
For external information, attentional selection comes with a clear trade-off: attention to one
object entails withdrawal from others. Selective attention is, to some extent, a zero-sum
operation. By contrast, selecting an internal representation need not have this same constraint.
Arguably, the successful encoding and maintenance of individual items within WM already
entails a high degree of individuation and orthogonalization of their representations, thus
decreasing the amount of potential interference among memoranda relative to what can occur
during the encoding phase. Therefore, while selective biasing may still be in operation, the
nature of the substrate is such that its consequences may be different. In principle, at least, they
could still be selected later, at low or no cost. From a functional perspective, it would be
desirable to maintain memories for as long as they are potentially relevant to behavior, and only
delete them once they are unlikely to be useful. Therefore, while the biased-competition
principle is a good starting point for proposing a mechanism of internally guided attention,
its most basic component (selection via biased competition) may operate in crucially different
ways on external versus internal information.

The need for a distinction between external and internal attention has been highlighted before
[13]: ‘Attention is not unitary’ ([13], p. 76). We welcome such a careful differentiation between
attention to perception and attention to WM. We further propose that, while both perception
and WM have limited capacity, the nature of the limit may differ considerably between the two.
In perception, the challenge is to form cohesive and individuated item representations by
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bringing together their various attributes and separating these from competing sources of
stimulation. In WM, the challenge is to select and use appropriate items to guide behavior.

Nominally, selection of one piece of information from among several in WM must occur to
prioritize it (via a retrocue, for example). However, we propose that this process differs at both
the mechanistic and implementational levels from selection during perception. Our elaboration
of the proposed mechanism follows in the next section.

Prioritizing Information in Working Memory
We propose that, instead of invoking ‘internal attention,’ the prioritization of WM contents is
better described as the attentional selection and, importantly, the reformatting of one out of
several currently held memories to guide the next action. We speculate that this is a multistep
process. After a cue indicates the increased relevance of a particular item within WM, the first
step is to orient toward and select the cued item in the WM store. Orienting and selection can be
thought of as the targeting of those neurons (for example, in visual cortex) that are tuned to the
location where the cued item was encountered and to the stimulus dimensions that are relevant
to the memory (i.e., in a color WM task, activation might increase in color-sensitive visual areas,
such as V4). This allows for the effective grouping of all features belonging to the cued object
[82], which in turn may reduce noise in the neural population representing it ([39], see also
Box 1), potentially leading to increases in the precision of recalling cued items (e.g.,
[46,59,83,84]). Orienting attention in WM may be almost identical, at the neural level, to the
effects of preparatory orienting of attention for perception, and could explain the activation of
canonical attention control circuits after a retrocue, as summarized above. Critically, prioritiza-
tion in WM allows for the immediate selection of memoranda. Selection of the cued represen-
tation can be thought of as an increased activation of the neurons coding for the relevant
features of the cued object, possibly via reactivation of an ensemble that has encoded the item
in its latent state (see Box 2 and [73]). Importantly, selection acts on one out of several objects in
memory that have already been individuated and stored separately. Therefore, this selection
step differs in terms of prioritization in WM versus in perception: in WM, the relevant information
Box 1. Working Memory As Internal Attention

Undoubtedly, we have gained much from drawing parallels between internal and external attention. Much like selective
attention towards perceptual representations is thought to bias competitive processing in favor of one representation
over another, internal attention is argued to bias processing towards one mnemonic representation over others in a
shared memory store [9,14,15,39]. The shift of resources improves retention of the cued item or the behavior guided by
it. An influential review [13] argued that attention shares common principles across the substrates it acts on. What is
shared are the purpose of attention (overcoming limited capacity via selection), and its consequence (modulation of the
selected information). The core of this process is that ‘multiple stimuli [ . . . ] compete for selection, and the goal of
attention is to bias competition in favor of a target object’ ([13], p. 75). Therefore, ‘selecting a memory from competing
memories should be viewed as an attentional operation. The cost is that unattended information may be missed’.

An extension of the internal attention account is that prioritizing a WM representation may equate to transforming it from
a latent to an activated neural state [15,73,109,134,135], rather than transforming it to an output-oriented representa-
tion (Box 2, main text). Thus, active versus latent storage corresponds at the neural level with attended versus
unattended WM states at the cognitive level. In a recent study [73], retrocues improved decoding of the cued item
in retinotopic visual areas. The authors argued that this finding was consistent with the reactivation of a latent code in
sensory brain regions (the activated population permitting improved decoding, as noted elsewhere, [136]). However, the
sluggishness of the fMRI signal may have precluded them from testing whether the reactivation reflects a temporary
process. Most importantly, it is unclear how moving from latent to active representation alone could account for
improved recall accuracy without simultaneously decreasing memory for uncued representations. For example,
increasing the activity of a neural ensemble might give it greater influence over a downstream readout population,
compared with a competing ensemble encoding an uncued representation (i.e., biased competition [31]). Alternatively,
activation might suppress activity of competing ensembles via lateral inhibition [39]. Either way, the increased activity
confers a benefit only by virtue of its suppression of competitors.
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Box 2. Latent versus Active Neural States Supporting Working Memory

Our framework predicts two functional states in WM: maintenance of information without a specific action plan, and of a
prioritized item in an action-oriented format. We propose that the latter depends on flexible changes in the tuning of an
action-oriented network that includes lateral PFC [124,125]. WM has been proposed to rely on changes in the
underlying state of a neural ensemble [126], permitting latent storage without requiring sustained activity [127].
The latent state change could rely on many physiological mechanisms. What they have in common is that they do not
depend on an unbroken chain of sustained spiking. One candidate is short-term synaptic plasticity: the connectivity
within a neural ensemble changes such that its response to subsequent input reflects the WM content [128].
Alternatively, memory-specific ensembles could emerge by synchronizing to a common oscillatory rhythm [125].

The concept of latent storage has been applied to maintenance of WM items per se, but latent storage may also be of
particular relevance for representing prioritized WM items. Prioritization may lead to the task-specific transfer of a latent
code stored in visual cortex to a lateral prefrontal network, possibly through temporary changes in the synaptic weights
in PFC. Alternatively, unprioritized items could already be represented in PFC activity, in patterns that do not drive
downstream motor regions [129] until they are prioritized.

After reconfiguration, sustained firing is unnecessary; thus, both prioritized and unprioritized representations are
maintained using latent storage. Crucially, only the former may be represented in a format that is optimized for
behavior. By contrast, unprioritized representations might be stored without immediately influencing behavior [130].

Latent storage of WM in changed connection weights invokes comparisons to long-term memory (LTM), which may
operate along similar lines. Prominent WM theories propose activated LTM as the basis of WM [8,20,131]. While latent
WM and LTM storage may both depend on changing synaptic weights instead of persistent firing, the specifics of how
and for how long synaptic weights are changed may differ considerably between WM and LTM [132,133]. For example,
any synaptic weight changes subserving WM must be short-lived to avoid interference from traces of recent WM
contents. This is not a constraint for LTM. Furthermore, WM prioritization may reconfigure the action-oriented network in
PFC so that it can immediately produce a context-appropriate response to the probe, without first needing to recall
information from LTM (as proposed by some WM models, e.g., [131]).
is already stored and can be selected immediately. By contrast, during attention to external
events, selection cannot take place until the cued event occurs, and selection requires the
identification of cued objects and their associated features among all perceptual input. While
orienting and selection can be clearly delineated from one another in WM, for succinctness we
use ‘selection’ instead of ‘orienting and selection’ throughout the rest of this article.

Selection in memory appears to be a key element to successful prioritization in WM. Most
accounts of retrocueing assume that this selection step is sufficient to account for the full range
of experimental data. The essential novel aspect of our proposal is the speculation that the
behavioral benefit additionally accrues in a further step. Following selection, the cued sensory
representation can be transformed into a prospective, action-oriented representation, the
better to influence behavior. By contrast, this step cannot take place in preparatory attention
because the relevant information has not yet been presented. This transformation allows the
current task set to become more specific. For instance, in a typical visual WM change-detection
experiment, the task set on a trial without a retrocue might reflect the following rule: ‘press
button A if the probe stimulus matches the WM stimulus that was presented at the same
location, and button B otherwise’. Now imagine a retrocue trial, where one of the WM stimuli is
cued (say it happens to be a green bar; Figure 1). In our framework, the reformatted represen-
tation of the cued WM stimulus is now part of the task set. Therefore, the task set has become
more specific and much simpler: ‘press button A if the probe stimulus is green, and button B
otherwise’. This process can be thought of as a form of cued task-set switching. When a task
set is cued, responses are typically more efficient than when the task is not cued [85–88].
Therefore, the improved preparation for the task of responding accurately to the probe may, in
part, contribute to the observed reaction time and accuracy benefits. Crucially, once reformat-
ting is complete, it is no longer necessary to sustain selective attention to the sensory
representation that initially stored the cued information [89].
Trends in Cognitive Sciences, June 2017, Vol. 21, No. 6 453
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Figure 1. Proposed Sequence of Prioritization in Working Memory (WM). (A) During encoding, sensory brain areas (in
yellow) are recruited and modified to reflect the relevant features of a WM array. In the task illustrated here, sensory brain
areas are the most likely substrate of memory maintenance because the latter requires memory for fine sensory details.
However, the same mechanism could act on other brain areas if WM contents are stored elsewhere. (B) A cue indicating
that one WM item is of particular relevance (the green oriented bar, in this case) leads to orientation toward, and selection
of, the relevant representation. This operation recruits the top-down attention network that is also involved in external
attention shifts (red circles). (C) In a second step, the identified information is prioritized. This step recruits a prefrontal
network (in blue) comprising the anterior insula or ventrolateral prefrontal cortex and frontal operculum (vlPFC/fO), and
possibly presupplementary motor area or anterior cingulate cortex (pre-SMA/ACC). (D) Finally, the selected representation
is now reformatted to bring the network into an optimal state to respond to the recall demands of the probe stimulus.
Multiple States of Representation in Working Memory
Our framework helps explain findings that are harder to reconcile with the prevailing account.
For instance, in apparent contradiction of the sustained attention model, maintaining a constant
attentional focus on cued representations is not necessary for retrocues to benefit behavior:
after a retrocue has been fully processed, attention can be withdrawn from the cued item
towards another task [90,91] or another WM representation [44] without impacting the retrocue
benefit. These findings can be readily explained in our framework since, after prioritization and
reformatting are complete, a sustained selective bias is no longer strictly necessary.

As we argue, retrocueing benefits arise in large part due to the prospective reformatting of the
cued representation for use at the time of the probe. Reformatting appears to be a flexible
process, meaning that other stored items could be prioritized at minimal cost. This is consistent
454 Trends in Cognitive Sciences, June 2017, Vol. 21, No. 6



with the finding that benefits can occur without costs to uncued items under some circum-
stances [18,46–48,92]. At least in principle, resource trade-offs are not a necessity for benefits.
Arguably, our framework is also consistent with the intuition that items held simultaneously in
WM are individually prioritized at different points in time as they become relevant to behavior
[93]. For example, previously uncued items can be subsequently refocused by a second
retrocue [44,45] or an internally generated change in expectation [94]. In each case, the
retrocue effectively increases net WM capacity. In contrast to our proposal, a sustained internal
attention mechanism that enhances the target representation and suppresses distractors
should entail a trade-off in memory and, therefore, cannot explain such findings as easily.

As mentioned above, invalid trials do appear to create costs in some studies. In our framework,
such costs could still occur for a variety of reasons. First, there are scenarios in which the initial
selection step could create costs to uncued representations. For example, high cue validity (e.
g., when cues correctly predict the probe item on almost 100% of trials) may encourage a
strategy of focusing all resources solely on the cued item by dropping uncued items from
memory [83]. Such a strategy would be less successful when cues have lower validity, where it
pays off to maintain uncued items in case of an invalid trial [46–48,95,96]. Additionally, high-
validity cues might be used on a relatively higher proportion of trials, further increasing the
retrocueing benefit (see Outstanding Questions).

The selection step might also account for effects of retrocueing on the precision of memory in
some studies. Memory errors can be decomposed into errors due to Gaussian noise in the
representation of the probed memory (i.e., its precision), errors due to forgetting, and errors due
to misreporting the feature of an incorrect item [97,98]. The selection step, by strengthening the
association between a cued location and the features of the object presented at that location,
and by suppressing some of the residual interference from other items stored in WM, could lead
to reductions in noise in the representation, leading to the occasional observation of small
increases in memory precision [46,59,83,84]. However, the neural basis of this effect is
unknown and difficult to fully explain, even within the sustained attention account. Finally,
the selection step may also be used to select an ensemble of multiple items from WM when
multi-item cues are used [99]. In this case, it appears that the entire set of cued items may be
prioritized as an ensemble, rather than all cued items individually [100], possibly drawing on the
representation of WM contents by the visual system at multiple, hierarchical organized spatial
levels (from features bound to objects to ensembles of objects [82,101,102]).

Furthermore, invalidity costs may also arise during the second step of reformatting the cued
item. When a cued item is reformatted into an action-oriented format and a corresponding
probe is anticipated, invalid trials may produce costs because of errors in probe anticipation
and task preparation instead of, or in addition to, any memory errors. This appears to fit the
general pattern of the data: in single-cue studies, an invalid trial will occur when the incorrect
task set is prepared and, therefore, generates switch costs or response conflict (e.g.,
[19,40,62]), which appear to have a particularly consistent influence on reaction time in addition
to reducing memory accuracy somewhat [96]. This would be likely when an incorrect probe is
expected, while uncued items are still partially retained in memory. By contrast, studies using a
second cue in the delay that can redirect prioritization to a previously uncued item tend to find
smaller or no costs on those trials [18,103–105]. Similarly, unanticipated task switches are
known to incur behavioral costs [88,106,107]. In our framework, probing an uncued item
amounts to an unanticipated task switch because the response must now be based on
different information. Given that the task-set representation is necessarily limited (since only
one given set of rules should determine actions at any one time, especially if other rules would
produce conflicting behavior), this could incur costs. Therefore, task-switching costs induced
by setting up an inappropriate task set, over and above impaired memory alone, may explain
Trends in Cognitive Sciences, June 2017, Vol. 21, No. 6 455



performance decreases for uncued items. Importantly, this need not indicate a competition
between the memory representations themselves. As a result, we expect cueing costs to be
minimal when probe anticipation is controlled (for example, when a second cue cancels a prior
retrocue).

In sum, our framework is consistent with several behavioral findings that are difficult to reconcile
with a purely attentional account. Our framework, based on representational reformatting,
relates to previous proposals [19,95] arguing that retrocues modulate the representation of a
cued stimulus via attentional strengthening without necessarily requiring that other stimuli are
deleted to provide more resources. Importantly, our framework makes several testable pre-
dictions about the nature of the cueing benefit. First, knowing the form of recall will affect the
magnitude of the retrocue benefit because it will allow for more specific task-set preparation.
Second, several studies have shown that visual attention is drawn to items in the environment
that match an item held in WM (in at least one of its features, e.g., location [12], color [108], etc.).
It has been shown that this effect occurs only for items in the focus of attention [109]. Therefore,
retrocued items should guide attention more than defocused items. However, this effect of
attentional capture should also depend on the format in which they are about to be recalled.
This appears to be the case [108], but has not yet been explicitly tested. For example, visual
stimuli resembling a retrocued item should show increased attentional capture compared with
stimuli resembling unprioritized WM contents. However, our framework predicts that this
capture effect should be larger if the WM task requires precise visual information, compared
with when prioritized items can be maintained via a verbal strategy.

Neural Evidence for Multiple States in Working Memory
Neuroimaging studies support the existence of a second stage in the prioritization of informa-
tion in WM. Overall, these studies suggest that cueing a memory leads to reorganization of an
output-oriented circuit that can then drive behavior faster and more accurately. These findings
fall into two categories. The first is that output-related brain regions respond to retrocues and
correlate with behavior, and the second is the additional activation of regions previously
associated with task-set switching. We discuss these sets of results in turn.

First, in addition to the well-documented activation of the top-down attention network (Figure 2),
numerous studies have found additional activation in (primarily ventrolateral) prefrontal cortex
(PFC) [53–57,80,81] and striatum, which are less reliably related to external attention shifts. In
one recent fMRI study involving retrocues and precues [110], retrocues led to correlations
between the response strength of the caudate (as well as premotor cortex) and improvements
in memory (as measured by reaction time). The authors [110] argued that this finding was
consistent with the existence of output gating in WM. The ‘output gate’ here can be thought of
as a bottleneck forcing the selection of one item from all items currently held in WM, so that it
alone can guide the next action. The ‘output gate’ concept may be analogous to the behavior-
guiding representational state proposed here. Other studies have also found striatal activation
in response to retrocues on occasion [51], but this structure has generally been overlooked in
discussions of the topic.

Second, the ventrolateral PFC, stretching into the frontal operculum or anterior insula [111], is
consistently activated in response to retrocues [49,53–57,59,80,81], and has been shown to
be uniquely activated during retrocueing compared with external attention shifts (Figure 2) [54].
The role of these areas is still unclear. Several studies have indicated that ventrolateral PFC is
involved in the top-down access to, and selection from, sensory cortex of the cued information
[80,81]. Consequently, disrupting activity in this area via transcranial magnetic stimulation
reduces the benefits of retrocueing [81]. In addition, retrocueing tasks recruit task-switching-
related brain circuits in lateral and medial PFC [112]. This is consistent with our interpretation
456 Trends in Cognitive Sciences, June 2017, Vol. 21, No. 6
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Figure 2. Shared and Unique Networks for Attentional Selection and Prioritization in Working Memory (WM). (A) Spatial
cues directing attention to external stimuli or to content in WM activate a network spanning frontal eye fields, the
presupplementary motor cortex (pre-SMA) and anterior cingulate cortex (ACC), the intraparietal sulcus, and the superior
parietal lobule [49]. (B) This overlap has been confirmed in multiple neuroimaging studies [54] and a meta-analysis [59]. (C)
Additional areas respond only to prioritization within WM, including ventrolateral prefrontal cortex stretching into the frontal
operculum and anterior insula. In the pre-SMA and ACC, either activation is stronger than during external attention shifts, or
additional subregions are recruited [52]. (D) A recent meta-analysis [59] found several, mostly prefrontal, areas responding
to retrocues (internal prioritization, red) but not to precues (external prioritization, blue).
that transferring a retrocued item into the behavior-optimized state is akin to implementing a
new task set.

These studies imply that additional prefrontal circuits are responsible for the top-down prioriti-
zation of items in WM. However, fMRI lacks the temporal resolution to determine whether these
additional areas and more traditional attention-related areas co-activate simultaneously, or
whether they activate sequentially (as proposed in our framework). We predict that using
selection to reactivate a memory representation is a transient process (step 1: selection) that
leads to a reconfiguration of the stimulus-response mappings of an action-selection network
(step 2: reformatting). After reformatting, sustained attention is no longer necessary (Figure 1).
One possibility is that cued information has been transferred to the PFC [2,41,113] via
temporary synchronization of the cued region [114] and that, after this process is completed,
the attention-related modulation subsides. Studies investigating the neural basis of the focus of
attention have found evidence that the lateral parietal cortex, rather than just PFC, is critical for
the deployment of this function [115–118]. The extent of network interactions between these
areas during prioritization remains to be fully investigated, but a recent study found evidence
that frontal and parietal areas are both important for switching a working-memory representa-
tion into the focus of attention [119]. Behavioral data suggest that the benefits of retrocues
Trends in Cognitive Sciences, June 2017, Vol. 21, No. 6 457



Outstanding Questions
What is the representational format
and neural substrate of a prioritized
WM item? How does this format relate
to the representation of task sets or
task rules?

What is the relationship between cue
validity and the size of the retrocueing
effect?

Are similar prioritization mechanisms
also important in preparing for more
classic forms of WM manipulation (e.
g., mental arithmetic)?

In reality, we experience a continuous
stream of thoughts passing through
WM. How do we extend the concept
of flexible prioritization to continuous,
temporally extended cognition?

How do we switch between an internal
and an external focus?

Do long-term memory and WM share
selection and prioritization mecha-
nisms? Furthermore, how does long-
term memory influence the interplay
between perception and WM?

Retrieval from long-term memory can
induce forgetting of associated mem-
ories. Does a similar phenomenon
exist in WM?

Can we dissociate the short-term
representation of task goals or rules
from the representation of other kinds
of content in WM? Does the neural
dissociability of goals and content
depend on the task context?

WM is sustained by several represen-
tational states. Which of these corre-
sponds to the traditional notion of the
attention-guiding template? What
other sources of attentional guidance
exist, and what can the fractionation of
WM tell us about the fractionation of
the control of attention?
emerge after 300–500 ms [120–122]; that is, the entire process of selection is completed within
less than a second, making it difficult to use methods with low temporal resolution (such as
BOLD fMRI) to settle the question of whether sustained attention to a cued feature is necessary
for prioritized read-out.

Neuroimaging methods with the requisite temporal resolution, such as electroencephalography
or magnetoencephalography (MEG), have suggested that orienting and selection are time
limited [59,63,123]. A recent MEG study [59] used lateralization of 10-Hz oscillations as a
marker of internal attention shifts. The relative power of 10-Hz oscillations in sensory brain areas
contralateral to where attention is directed, compared with power in ipsilateral areas, is a
reliable indicator of covert attention shifts to external stimuli [60]. Similarly, cueing a location
where a current WM item had previously appeared led to reliable lateralization. However, the
lateralization of 10-Hz oscillations was transient after a retrocue, subsiding in less than a
second. Given that the lateralization was only temporary, it seems unlikely that sustained
attention or sustained active processing in a retinotopic representational format is necessary for
retrocueing benefits to occur. Instead, this benefit could be conferred by a representational
state change. Interestingly, additional activation in the insula that was specific to retrocues
appeared only after the top-down attentional signal had peaked, supporting the idea of a two-
step process of attentional selection, followed by representational reformatting [59]. The neural
basis of representations after prioritization is still being investigated (Box 1). A second study
testing the efficacy of retrocues in older participants [63] confirmed the same temporary
lateralization. Interestingly, the strength of the retrocueing benefit (the increase in accuracy
compared to a neutral cue) correlated negatively with the duration of the 10-Hz lateralization.
Participants with the largest benefit showed the most transient lateralization: therefore, faster
prioritization may indicate a more accurate reconfiguration of the network. While this is
consistent with our hypothesis that selection is only a temporary process, it seems to contradict
the idea that sustained internal attention is crucial to improving behavior, because this should
result in the exact opposite pattern: improved memory in those participants with more
sustained 10-Hz lateralization.

Concluding Remarks
In summarizing the behavioral and neural literature on prioritization of WM contents, we
have argued that prioritizing an item arises in multiple stages and across multiple repre-
sentational states. When the behavioral relevance of one out of several items in memory
increases, top-down selection activates the neural subpopulation coding the cued infor-
mation. Importantly, in a second step, the cued information undergoes a transformation in
its representational state, from a task-agnostic mnemonic representation to a task-specific
representation that is best suited to guide behavior. This transformation may coincide with a
transfer of information from sensory to action-guiding areas of the brain. However, whether
it also coincides with a temporary switch from latent to active representation (i.e., involving
sustained spiking of memory-encoding neurons) is still unresolved. With recent advances in
modeling memory-guided behavior and in multivariate analysis of high-dimensional neural
recordings, we are confident that the predictions arising from our framework can be put to
the test soon.
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