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Items held in working memory can be either attended or not, 
depending on their current behavioral relevance. It has been 
suggested that unattended contents might be solely retained 
in an activity-silent form. Instead, we demonstrate here that 
encoding unattended contents involves a division of labor. 
While visual cortex only maintains attended items, intrapari-
etal areas and the frontal eye fields represent both attended 
and unattended items.

The short-term retention of sensory stimuli in working memory 
is fundamental to human cognition1. A wide range of primate elec-
trophysiology and human imaging studies have reported content-
selective brain signals that encode working memory contents across 
brief delays2. Such persistent, stimulus-selective activity has been 
observed in multiple regions across the cortical sheet, including 
sensory, parietal and frontal regions2. Recently, however, it has been 
postulated that working memory can be retained in an ‘activity-
silent state’3–5. In this model, working memory contents are believed 
to be retained by changes in synaptic weights rather than neuro-
nal firing3,4. In line with this, several studies have recently reported 
absence of persistent stimulus-selective activity when items are 
held in memory, but are currently not behaviorally relevant6–8. Such 
currently nonprioritized items are frequently referred to as ‘unat-
tended memory items’ (UMIs), as opposed to ‘attended memory 
items’ (AMIs)5. These results suggest that attended memory items 
are retained actively while unattended memory items are retained 
in an activity-silent form.

However, the absence of content-selective signals for unattended 
items observed in prior work6–8 might reflect a lack of sensitivity in 
the experimental procedures. For example, these studies used small 
numbers of subjects, trained their classification models on attended 
items in separate one-item tasks and only analyzed limited sets of 
voxels or electrodes, leaving it possible that unattended items might 
be represented in other brain areas or using an orthogonal neural 
code9. Here we test directly whether brain regions in not only sen-
sory but also parietal and frontal cortex contain memory represen-
tations during the delay phase for unattended stimuli. We acquired 
functional MRI data from a large pool of subjects (n =  87) while 
they were memorizing orientation stimuli (Supplementary Fig. 1). 
We used a working memory design that allowed us to separately 
identify representations of attended and unattended stimuli. In each 
trial, participants first memorized the orientation of two gratings 
(Fig. 1). After presentation of these stimuli, a retrocue indicated 

which of the two gratings would be tested in an upcoming change 
discrimination task following an extended delay, which is the main 
retention interval in our design. Then, after this memory test, a sec-
ond retrocue was shown that selected either the same or the other 
orientation for a second memory test. Such a two-stage retention 
task forces participants to maintain the orientations of both gratings 
until the second retrocue, but prioritizes and thus directs attention 
to the first retrocued item (AMI) while minimizing attention on the 
other item (UMI)6,7.

We used a variant of multivariate pattern analysis (cvMANOVA; 
see Methods for details)10 to identify which brain regions encoded 
the memorized orientations for attended and unattended items. 
The experiment was designed to optimize the ability to detect mem-
ory information in the main retention interval following the first 
retrocue (Fig. 1 and see Methods for details). We analyzed stimuli 
in each hemifield separately to account for differences in retinotopic 
location. Our analysis focused on the set of regions where prior 
work indicated the presence of persistent stimulus-selective activity 
for orientations when attention was not manipulated11–13: visual cor-
tex (V1–V4), intraparietal sulcus (IPS0–IPS5) and the frontal eye 
fields (FEF; Fig. 2a).

In early visual cortex, we found reliable information about 
attended memory items (Fig. 2b; one-tailed one-sample t test; 
t86 =  3.37, P =  0.000558) whereas we found no significant informa-
tion for unattended items (one-tailed one-sample t test; t86 =  0.19, 
P =  0.423091, lower 95th percentile confidence interval, corrected 
(CI95

corrected) =  0.01). Information was also significantly higher for 
attended than for unattended items (two-tailed paired-sample  
t test; t86 =  2.65, P =  0.009467, lower CI95

corrected =  –0.012, difference 
in mean pattern distinctness (Δ D) CI95

corrected =  [0.007, 0.048]). This 
finding closely resembles previous reports that unattended memory 
items are not accompanied by delay-period information in percep-
tually driven brain regions7. Our data, as shown in Supplementary 
Fig. 2, suggests that this attention effect is primarily driven by V1. 
It is worth noting that we cannot exclude the possibility that more 
sensitive methods might reveal information for unattended items 
also in visual cortex. Furthermore, whether attended or unattended 
items can be decoded in the current study might depend on using a 
larger sample size than in prior work (Supplementary Fig. 3).

Regardless, if our analyses had focused exclusively on these visual 
brain regions, we might have concluded that working memory 
representations for unattended stimuli are silent during the delay. 
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Similarly, when we used no anatomical constraints on the voxels 
used by the classification algorithm but focused on voxels activated 
by perception of the samples (primarily found in sensory cortices, as 
in ref. 7), we found information for attended items only (one-tailed 
one-sample t test; AMI: t86 =  4.51, P =  0.00001, lower CI95 =  0.024; 
UMI: t86 =  1.55, P =  0.061992, lower CI95 =  –0.0008; two-tailed 
paired-sample t test; AMI versus UMI: t86 =  2.49, P =  0.014547, Δ D 
CI95

corrected =  [0.006, 0.049]), replicating prior work7. However, when 
we focused our analysis on anterior regions (that were not selectively 
tested in prior work) the picture changed. In the intraparietal sulcus 
and the frontal eye fields, we found that both AMIs (one-tailed one-
sample t test; IPS: t86 =  3.66, P =  0.000216, lower CI95

corrected =  0.012; 
FEF: t86 =  2.53, P =  0.006667, lower CI95

corrected =  0.002) and UMIs 
(one-tailed one-sample t test; IPS: t86 =  3.24, P =  0.000848, 
lower CI95

corrected =  0.005; FEF: t86 =  3.81, P =  0.000129, lower 
CI95

corrected =  0.005) were significantly represented by neural activ-
ity patterns (Fig. 2b). We found no significant differences between 
information about attended and unattended items in these anterior 
regions (two-tailed paired-sample t test; IPS: t86 =  1.52, P =  0.132059, 
Δ D CI95

corrected =  [–0.004, 0.033]; FEF: t86 =  0.11, P =  0.914863, Δ D 
CI95

corrected =  [–0.011, 0.014]). This pattern of results was reflected by 
significant differences in the modulation factor for attention (DAMI/
DUMI; V1–V4: 23.96; IPS: 1.98; FEF: 1.05) in early visual areas as 
compared to those for IPS and FEF (bootstrap confidence inter-
vals; (V1–V4) – IPS: CI95

corrected =  [3.1, 6.1· ×  105], (V1–V4) – FEF: 
CI95

corrected =  [4.0, 4.7· ×  105], IPS – FEF [–1.4, 6.2]).
In early visual cortex, the time-course of information closely 

resembled that found by prior work6,7, showing null results for 
unattended items 2 s after cue onset, whereas more anterior areas 
appear to represent unattended items as late as 6–10 s after the 
cue (Supplementary Fig. 4). To explore this further, we asked 
whether similar brain activity patterns represented the remem-
bered items in data recorded in the 2 s before the cue and in the 

time period 6–10 s after the cue. We found such pattern stability, 
xD (see Methods for details), across time only in the IPS and FEF 
(one-sided one-sample t test; early visual cortex: xDAMI =  0.0020, 
t86 =  1.24, P =  0.1088; xDUMI =  0.0017, t86 =  0.90, P =  0.1845; 
IPS: xDAMI =  0.0063, t86 =  3.21, P =  0.0009; xDUMI =  0.0027, 
t86 =  1.51, P =  0.0678; FEF: xDAMI =  0.0031, t86 =  2.70, P =  0.0042; 
xDUMI =  0.0050, t86 =  3.64, P =  0.0002).

Finally, we tested whether voxels in the hemisphere contralat-
eral to sample presentation carry more information about these 
memorized contents than ipsilateral voxels. In visual cortex, con-
sistent with prior work14, we found no evidence for lateralization 
(one-tailed paired-sample t test; AMI: t86 =  –1.13, P =  0.8696; UMI: 
t86 =  –1.60, P =  0.9437). The FEF showed similar results (AMI: 
t86 =  –0.11, P =  0.5447; UMI: t86 =  1.11, P =  0.1341). In intraparietal 
areas, however, we found more information regarding attended 
items in contra- versus ipsilateral voxels (AMI: t86 =  2.84, P =  0.0027; 
UMI: t86 =  –2.1, P =  0.9823), and contralateral areas carried more 
information about attended than unattended items (one-tailed 
paired-sample t test; t86 =  4.55, P =  0.000009).

Our results directly contradict the assertion that unattended 
working memory items are encoded solely in an activity-silent fash-
ion. We cannot discern whether stimulus-selective persistent activ-
ity represents an active recurrent excitation network15 or selective 
activity related to other potential forms of retention. Current com-
putational models of retention via synaptic plasticity, for example, 
either (i) require neuronal firing as a means to uphold synaptic sig-
nals over longer periods of time4 or (ii) suggest a complimentary 
role of recursive activity and synaptic plasticity16. Selective changes 
in synaptic plasticity could even lead to purely epiphenomenal 
selective firing. Thus, the presence or absence of stimulus-selective 
persistent activity2 (in spiking, local field potentials or blood-oxy-
gen-level dependent (BOLD) activity) does not rule out synaptic 
contributions to working memory.
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Fig. 1 | Two-stage orientation-change discrimination task using retrocue selection. In each trial, subjects are first presented with two sequential memory 
displays (sample 1 and sample 2; Supplementary Fig. 1). The first presents one memory item (a Gabor patch of varying orientation) on one side and a 
cross-hatched plaid mask on the opposite side. The second display presents a second memory item on the other side, again accompanied by a mask 
on the opposite side. The sequential presentation was chosen to avoid perceptual grouping of both memory items. The two memory displays were 
followed by a screen with cross-hatched backward masks in the previous locations of the stimuli. After a 5.5-s delay the first retrocue (red) indicated the 
side of the sample orientation that should be used for the first upcoming change discrimination task. This was followed by the main retention interval 
of 8 s. Following the main retention interval, participants viewed a Gabor patch presented on the cued (red) side and were required to judge whether it 
was rotated clockwise or counterclockwise compared to the cued sample. A random foil orientation was shown on the noncued (green) side. This was 
followed by a second retrocue, which indicated either the same (i.e., the previously attended) memory sample (repeat trials) or the other (previously 
unattended) memory item (switch trials). Following a short delay of 4 s, participants were again probed with a test item and had to perform the same 
orientation judgment. Thus, to solve the task, subjects had to memorize both items during the main retention interval (following retrocue 1), but one 
item was prioritized (AMI) over the other (UMI). Multivariate pattern analyses focused on the main retention period from 2 to 10 s after the retrocue to 
account for hemodynamic delays.
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Critically, our results do provide support for a different hypoth-
esis explaining how attended and unattended items differ in their 
neural representation. One possibility is that sensory cortex main-
tains a high-resolution representation of the currently attended 
memory item, whereas parietal cortex has low-resolution represen-
tations of both attended and unattended items2,9. If that were the 
case, one would expect working memory performance to be more 
accurate for previously attended items. In line with this, behav-
ioral evidence shows that retention in an unattended state can 
result in impaired change detection17, more guesses and nontarget 
responses18, stronger categorical biases19 and less precision18,19 as 
compared to attended-memory items. Behavioral data from the 
current study are consistent with these findings (Supplementary 
Fig. 5). We found selective recruitment of early visual cortex for the 
retention of attended memories, which could be the neural source 
of these behavioral benefits. In line with this, imaging evidence 
shows that the precision of neural representations in visual cortex 
during the delay period correlates with behavioral precision during 
recall20. In the current study, the amount of information we found 
in early visual cortex for attended memory items correlated with the 
individual subjects’ discrimination threshold (Pearson’s linear cor-
relation coefficient; r =  –0.3177, P =  0.0027).

We thus propose that the attentional modulation of working 
memory is not implemented by switching from an activity-based 
to an activity-silent synaptic code or by increasing the level of selec-
tive activity for one representation globally across all areas. Instead, 
attentional prioritization in working memory might be realized by 
selective recruitment of sensory representations that more precisely 
retain the information for an upcoming task.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0094-4.
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Fig. 2 | representation of attended and unattended memory items. a, Rendered representations of the human brain depicting the three main regions of 
interest (ROIs): visual areas (V1–V4; red), intraparietal areas (IPS0–IPS5; green) and FEF (blue). b, Information about AMIs (circles) and UMIs (squares) 
as indicated by mean pattern distinctness, D, within each ROI (n =  87 human subjects; error bars indicate s.e.m.; one-tailed one-sample t tests and two-
tailed paired-sample t tests; *P 0.05; **P <  0.01; ***P <  0.001; all Bonferroni-corrected for multiple comparisons).
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Methods
Participants. We recruited 89 healthy right-handed human subjects (42 female; 
mean age: 26.8, s.e.m. ±  0.4) with normal or corrected-to-normal vision for the 
current study. We based our estimate of the necessary sample size on our prior 
work on attended working memories21–24, as effect sizes for unattended memories 
are unknown. We substantially increased N value relative to these studies to 
account for putative reductions in effect size for unattended items and because of 
a generally lower trial count. Data acquisition for two subjects was aborted during 
the experiment upon the request of the participants. This was before any stage of 
data analysis. We thus analyzed data from 87 participants (41 female; mean age: 
26.8, s.e.m. ±  0.4). Subjects gave informed consent and the study was approved 
by the local ethics committee (Ethics committee, Department of Psychology, 
Humboldt University, Berlin). Data collection and analysis were not performed 
blind to the conditions of the experiment.

Procedure and design. In an MRI scanner, subjects performed a two-stage 
delayed change-discrimination task6,7 using Gabor grating stimuli. During this 
task, subjects memorized two gratings and were twice instructed, using retrocues, 
to attend to one or the other for an upcoming change-detection task. Critically, 
this experimental scheme results in a situation after the first cue in which one 
orientation sample is prioritized (the attended memory item, AMI) while the 
other sample is remembered but with lower priority (the unattended memory 
item, UMI).

In each trial, participants viewed two sine-wave sample grating stimuli shown 
consecutively left and right to the center of the screen in random order (0.8° off 
center, for 750 ms, ISI 250 ms). During grating presentation, the side opposite 
the grating was occupied by a Gabor cross-hatched stimulus and the same cross-
hatched stimuli were shown as masks after stimulus presentation (for 500 ms). 
The onset of these masks was followed, after 5,500 ms, by retrocue 1 (presented for 
1,000 ms). For this cue, one of the arms of the fixation cross turned red while the 
opposite arm turned green. Participants were instructed that the sample grating 
that had been shown on the red side of the fixation cross was to be used for the 
upcoming change detection task.

This first retrocue was followed by a prolonged delay (7,000 ms), the 
main retention interval, during which participants were expected to maintain 
orientation representations of both sample gratings with the cued orientation 
prioritized over the other. This delay is the critical time-period of interest, during 
which neural representations of prioritized contents (attended memory items, 
AMI) and nonprioritized information (unattended memory items, UMI) can 
be distinguished. During the change discrimination task that followed (task 1, 
2,000 ms), participants had to report whether a target grating presented on the 
cued side was rotated clockwise or counterclockwise relative to the cued sample 
grating previously presented on the same side. On the opposite side of the screen a 
randomly rotated foil grating was shown.

This first task was followed by a second cue (retrocue 2, 1,000 ms), an 
additional delay (3,000 ms) and a second task (task 2, 2,000 ms). The grating cued 
for the second task could be either the same as for the first task (repeat trials) or 
the other grating (switch trials). The switch probability was 50%. This second 
task ensured that an item not prioritized for the first task needed to be retained 
until the second cue was presented because subjects did not know in advance 
whether the item might be relevant later. Please note that our study was designed 
to maximize sensitivity in the first delay period. For this reason, the second delay 
was chosen to be very short. Thus, we did not perform an analysis of a potential 
reinstatement of information in the 50% switch trials when a stimulus feature 
switched from unattended to attended6,7. This was further motivated by recent 
proposals that evidence of reinstatement is not conclusive evidence of silent 
working memory25. The intertrial interval was either 2,000 ms (50% of trials), 
4,000 ms (33.3%) or 6,000 ms (16.7%). A fixation cross (width 0.2°) remained on 
screen throughout the experiment.

Prior to the main experiment in the MRI scanner (2–4 d in advance), 
participants took part in a training session outside the scanner using a 
conventional LCD display. The training comprised four experimental runs with 
shorter delays (1,500 ms and 2,500 ms for the first and the second delay periods, 
respectively) and using fully randomized sample orientations. Subjects were 
instructed not to use verbal labels for memorizing the stimuli. In the MRI scanner, 
the experimental scheme was presented on a NordicNeuroLab Monitor (70.5 cm 
wide) and subjects viewed the screen via a mirror. Stimulus presentation was 
controlled using Psychtoolbox26.

The stimuli used were sine-wave Gabor gratings (5.7° size, phase-randomized, 
spatial frequency: 1.8 cycles/degree, 3.06° from the screen center) with varying 
orientations. Notably, sample orientations presented (Supplementary Fig. 1) in the 
left visual field were drawn from a different pool (7.5°, 37.5°, 67.5°, 97.5°, 127.5°, 
157.5°) than orientations on the right (22.5°, 52.5°, 82.5°, 112.5°, 142.5°, 172.5°), 
which allowed us to decorrelate items shown in the left and right hemifield and 
thereby AMIs and UMIs27. Gabor cross-hatched plaid stimuli (5.7° size) consisting 
of two random but orthogonal orientations (phase randomized, spatial frequency: 
1.8 cycles/degree) were used as masks.

For the change-discrimination tasks, targets were rotated clockwise and 
counterclockwise on an equal number of trials. The extent of rotation of the test 

grating was initially set to 20° and adjusted using a staircase procedure to generate 
a consistently challenging task and avoid ceiling effects. For each correct response 
in a given trial (0–2), the difference between test and sample orientation was 
reduced by 0.5°, making change discrimination harder. Conversely, the difference 
was increased by 2° for each incorrect response, thus making them easier to 
differentiate. Changes to this discrimination threshold were only applied after the 
end of a given trial, and the same levels were used for task 1 and task 2, to allow for 
comparisons between the tasks. Adjustment started during training and continued 
throughout the fMRI experiment.

There were four scanning runs of 48 trials each. We used a within-subject 
2 (retrocue 1: left vs. right) ×  2 (retrocue 2: switch vs. repeat) design. Each of 
the 12 orientations (six for each side) had to be memorized in 8 trials per run. 
The pairing of orientations on the left and right was fully randomized to allow 
statistically independent analyses of attended and unattended orientations. 
The assignment of attention conditions to orientation conditions was fully 
randomized in the first 39 participants. Based on theoretical considerations28 
we then decided to slightly modify the randomization so that in the second 
set of 48 participants each attention condition was associated with exactly 
the same number of trials for each orientation. We found no differences 
between the groups in our main analyses. For the change discrimination tasks, 
the rotation of the test orientation was randomized with respect to all other 
conditions with equal frequency of clockwise and counterclockwise rotations for 
each of the two tasks. The temporal order of conditions was fully randomized 
within each run.

Overall, the experiment took 90 min per participant. In order to decrease 
effects of long-term memory, a short 5-min run was presented between the 
second and third experimental block, in which participants performed the task 
with random sample orientations while anatomical scans were acquired. After the 
experiment, participants filled out a questionnaire covering the strategies they had 
used for memorization.

Data acquisition. fMRI data were collected with a Siemens 3-Tesla TIM-
Trio MR tomograph located at the Berlin Center for Advanced Imaging 
(Charité-Universitätsmedizin). Within each of the four runs, we recorded 
663 T2*-weighted gradient-echo echoplanar images (EPI, 33 slices, 3 ×  3 ×  
3-mm resolution, 0.6-mm gap, descending order, FoV =  192 mm, TR =  2,000 ms, 
TE =  30 ms, flip angle =  80°). The onset of each trial was locked to the onset of 
image acquisition to minimize variation due to slice-acquisition onsets. Slices 
were aligned parallel to the anterior and posterior commissures and covered the 
whole neocortex. In addition, a high-resolution T1-weighted image was acquired 
(192 sagittal slices, 1 mm thickness, RT =  1,900 ms, TE =  2.52 ms, flip angle =  9°, 
FOV =  256 mm).

fMRI preprocessing. Functional imaging data was analyzed using SPM1229 
and cvMANOVA10. After conversion to NIfTI format, the functional data 
were motion corrected and the anatomical image was coregistered to the first 
image of the BOLD time-series. No normalization into standard space was 
performed and we applied no Gaussian smoothing to the data before performing 
the multivariate analyses, to preserve the fine-scaled spatial structure of the 
fMRI data. Using a similar reasoning, we abstained from using slice-time 
correction during preprocessing and avoided any other temporal filtering 
to retain the temporal precision of the stimulus-locked time-series (see the 
“Data acquisition” section).

Anatomical regions of interest (ROIs). We aimed to identify information 
about attended and unattended memory items within brain regions 
previously found to carry information about memorized gratings11–13. 
For this, anatomical probability maps of retinotopic areas30 in visual cortex 
(V1–V4), the intraparietal sulcus (IPS0–IPS5) and the frontal eye fields 
(Fig. 2a) were backward-transformed into participants’ native space using 
unified segmentation31. These maps were thresholded to exclude voxels with 
a probability of being part of a given area <  0.1. In a post hoc exploratory 
analysis, we investigated the information content of V1 to V4, separately. 
Please note that an analysis based on individual retinotopic maps might have 
had higher sensitivity to detect weak effects in areas beyond V1. For the main 
analyses, these anatomical masks were collapsed across the left and the right 
hemispheres. Separate masks for the left and right hemispheric portions of 
these areas were used to investigate the lateralization of representations in a 
post hoc exploratory analysis. Finally, we also performed a post hoc exploratory 
analysis without any anatomical preselection of voxels to compare our results 
to previous studies7.

Univariate analyses of sample-related activity. To estimate BOLD activity 
during the trial, a GLM with seven regressors was designed using hemodynamic 
response functions (HRF) time-locked to the onsets of the following events 
and adjusted by their duration: sample grating onsets (first regressor), first and 
second cue onsets (second–third), each of the delay period onsets separately 
modeled taking into account their respective durations (fourth, before the first 
cue; fifth, following the first cue; sixth, following the second cue) and both 
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discrimination task onsets merged into one regressor (seventh). To identify 
voxels that responded to our grating stimuli, we generated t-maps contrasting the 
sample grating onsets (irrespective of orientation) against the implicit baseline of 
the model. Then, individual subject-level t-maps were overlaid with each of the 
ROIs created for each participant. To avoid an arbitrary selection of n voxels for 
each ROI, we generated 25 versions of every ROI, each representing the n voxels 
with the highest sample-related activity. For this, we varied n between 20 and 
500 voxels in steps of 20 voxels. We only considered voxels that were positively 
activated (t >  0). These ROIs with varying sizes were later used in a nested cross-
validation to choose an optimal voxel number for each ROI, while at the same 
time avoiding overfitting.

Analyses of multivariate pattern distinctness using cvMANOVA. The goal of 
the multivariate pattern analyses was to test whether retinotopic areas in visual, 
parietal and frontal cortex have representations of the remembered attended 
and unattended orientations. For this, we used a recently developed technique 
for multivoxel pattern analysis, cross-validated MANOVA10. cvMANOVA 
constitutes a variant of multivariate analyses of variance32 that can be used to 
quantify differences in BOLD response patterns24,33. The method is comparable 
to more common classifier-based ‘decoding’ analyses11–14,20–24,34–43 but has a 
number of advantages: it avoids binary classification in favor of a continuous 
measure of patterned differences, performs a parameter-free analysis based 
on a probabilistic model of the data (the multivariate general linear model) 
and results in an interpretable multivariate effect size (explained variance). 
Moreover, since D is a cross-validated version of a likelihood-ratio statistic, 
it can be expected to be more sensitive than classification accuracy (cf. Fig. 3d 
in ref. 10). Please note that prior work employed data from one-item tasks 
(i.e., including only attended items) for classifier training to avoid training 
on ambiguous two-item data where the representations of two items might 
overlap6,7. This analysis potentially biases the results in favor of attended 
memory items. Prior work failed to identify information for either attended 
or unattended items when only using data from two-item tasks7, possibly due 
to a lack of power. Here, to avoid biasing our results, we only recorded data 
in two-item tasks and substantially increased the N to counteract the lowered 
power when training on such data.

Here we used cvMANOVA to ask whether activity patterns in our 
ROIs carried information about the memorized contents. As a first step, a 
multivariate general linear model (MGLM) using finite impulse–response 
(FIR) functions was used to estimate memory-related activity in each voxel. 
Two first-level models were estimated for samples presented in the left and 
the right visual fields, respectively. For each of the 6 orientations per side, we 
used 12 regressors to model the entire 24 s of each trial in 2-s time bins (i.e., 
the length of the TR) spanning the time between onset of the masks (after 
sample presentation) until 2 s after the end of the trial (only a subset of this 
time was in the actual decoding analysis time window; see below and Fig. 
1). This set of regressors was modeled for each orientation in two different 
conditions: when a particular orientation was selected by the cue and when it 
was not (24 regressors per sample grating). BOLD activity in each voxel was 
fitted with this set of FIR regressors separately for each of the four runs. Thus, 
we had 144 regressors per run for the left and the right side separately (factors: 
timepoint (12) ×  attended/unattended (2) ×  orientation (6)) collapsing across 
repeat and switch trials, as well as a constant regressor to model the run mean. 
Parameter estimates and residuals from these two models were then used in the 
region-based cvMANOVA.

Within each model, to test the effect of orientation identity, we used two 
contrast matrices, which (with respect to a single time point) had the forms
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for unattended items, where the 12 rows correspond to the 12 regressors for 
attended and unattended orientations.

The columns correspond to the five partial contrasts (comparing orientations 1 
vs. 2, 2 vs. 3, 3 vs. 4, 4 vs. 5, and 5 vs. 6) together defining the effect of orientation. 
We analyzed the four timepoints following the presentation of the first cue (i.e., 
FIR bins 5–8, when attended and unattended items were differentiated) with a shift 
of 2 s to account for hemodynamic delay. For this, the two contrast matrices were 
replicated and zero-padded. This can be exemplified for attended memory items 
(A =  1) as follows:

Here, the rows correspond to the 144 regressors per run, with FIR regressors 
for all 12 timepoints (T) of each orientation condition (O) grouped together. 
For the two contrasts per model we estimated the amount of multivariate variance 
explained by the encoded effect relative to the multivariate error variance using 
cross-validated MANOVA10.

cvMANOVA estimates the variance of the multivariate fMRI time-series that 
can be explained by a contrast between conditions (here: differences in multivariate 
responses to different orientations). The pattern distinctness is

Σ= ⋅′ − ′ − −





D trace

n
B CC X XCC B1 1

where C is the contrast matrix, B is the parameter matrix, n is the number 
of scans, X is the design matrix, and Σ  is the error covariance matrix. D is 
the amount of multivariate variance explained by the effect encoded in the 
contrast, in units of the multivariate error variance. To obtain an unbiased 
estimate of the explained variance cross-validation is used (see ref. 10 for 
details). Because the number of voxels in a region may be large in some cases, 
explained variance was computed relative to an estimate of the multivariate error 
variance, Σ , which was regularized toward the diagonal, using an optimized 
regularization parameter44.

In the present application, if different orientations elicit the same multivariate 
response, D would on average be 0, while different responses to different 
orientations would lead to an average D larger than 0. D for attended and 
unattended orientations was averaged across orientations shown in the left and 
right visual field.

This procedure was performed separately for all ROIs using varying voxel 
counts (between 20 and 500 voxels, see above). To select the optimal number 
of voxels for each area within each subject and analysis while avoiding double-
dipping, we used a nested cross-validation approach. For every subject, we 
averaged D across all other subjects for all 25 possible ROI sizes and selected the 
ROI size with maximal D. D for the left-out subject with this ROI size was kept and 
this procedure was repeated for every subject.

While the main analysis used one contrast for attended and unattended 
contents, each across timepoints, we also performed a post hoc exploratory 
analysis that used separate contrasts for the twelve time points we estimated 
in the (FIR-based) multivariate general linear model to generate time courses 
(Supplementary Fig. 4). Above-zero D for each timepoint indicates that the 
multivariate responses to different orientations are different at that timepoint, 
but not necessarily that this multivariate response difference stays the same over 
time. We thus finally wanted to assess whether the informative brain patterns were 
stable across time (akin to generalization in a cross-classification analysis), in 
particular between the timepoint directly before the onset of the cue and the two 
timepoints at 6–10 s after the cue onset. Where standard cvMANOVA quantifies 
the pattern information in the form of variance explained by a contrast (here 
between different orientations), for this purpose we used a variant that estimates 
the amount of similarly encoded pattern information in the form of explained 
variance shared between two contrasts (orientation-specific responses at two 
different timepoints), the pattern stability

Σ= ⋅′ − ′ − −





xD trace

n
B C C X XC C B1

1 1 1 2
1

where C1 and C2 are the two different contrast matrices, B is the parameter matrix, 
n is the number of scans, X is the design matrix, and Σ  is the error covariance 
matrix. Again, cross-validation is used to obtain an unbiased estimate. xD is 
on average 0 if there is no shared variance between the two contrasts, i.e., if the 
respective informative patterns are orthogonal to each other.
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Statistical testing. Group-level statistics (n =  87 human subjects) were 
performed using one-sample and paired t tests. Please note that one-sample  
t tests do not provide population inference45. The data was tested for deviation 
from normality using Kolmogorov–Smirnov tests. We applied Bonferroni 
correction to all resulting P-values to account for the number of areas tested 
in a given analysis.

To test whether the reduction of representational strength in UMI vs. AMI 
is different between regions, one would normally test for an interaction using 
an ANOVA with factors attention and region. Standard interaction analyses 
test the difference (for example, between areas) of a difference (for example, 
between the conditions, DAMI – DUMI) for significance. However, information 
measures are generally not comparable between brain areas as a result of their 
unique neural topology, vascular structure and levels of physiological noise46–48. 
In a post hoc exploratory analysis, we therefore adopted a strategy of first 
quantifying the effect of attention within region by an attentional modulation 
factor DAMI/DUMI, i.e., the ratio between the average D values under AMI and 
UMI, which should be comparable between regions. We then computed the three 
pairwise differences of attenuation factors between the three regions and assessed 
significant difference from 0 by means of bootstrap confidence intervals on these 
differences49 based on 100,000 resamples of the 87 subjects, at 95% confidence 
corrected for multiple comparisons.

For behavioral analyses, proportions of correct responses were 
calculated, treating missed responses as errors. Reaction-time analyses were 
conducted excluding missed responses. Differences in proportions of correct 
responses were tested using two-tailed Wilcoxon signed-rank tests (n =  87). 
Discrimination thresholds were averaged across all trials. Correlations 
between discrimination thresholds and measures of pattern distinctness 
for attended and unattended memory items were tested using Pearson’s linear 
correlation coefficients.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. Matlab source code for cvMANOVA is available online at 
https://github.com/allefeld/cvmanova/releases. For the analyses in this paper we 
used v2 (2015–1–12).

Data availability. The MRI and behavioral data that were used in this study are 
available to researchers from the corresponding author upon request.
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
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    Experimental design
1.   Sample size

Describe how sample size was determined. "We based our estimate of the necessary sample size on our prior work on 
attended working memories [33–36] as effect sizes for unattended memories are 
unknown. We substantially increased the N relative to these studies, to account for 
putative reductions in effect size for unattended items and because of a generally 
lowered trial count."  
 
We directly adress the question of statistical power in Supplementary Figure S3.

2.   Data exclusions

Describe any data exclusions. Two subjects were excluded because data acquisition was incomplete. Incomplete 
data is incompatible with the cross-validation procedures used in the current 
study. 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

No replication was attempted. 

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

"The pairing of orientations on the left and right was fully randomized to allow 
statistically independent analyses of attended and unattended orientations."

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Data collection and analysis were not performed blind to the conditions of the 
experiment. Blinding is not a common procedure for this type of research.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Imaging data was analyzed using SPM12 and cvMANOVA.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used. 

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used. 

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used. 

b.  Describe the method of cell line authentication used. Not applicable 

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not applicable 

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not applicable 

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used in the study.
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

89 healthy right-handed human subjects (42 female; mean age: 26.8, SEM ±0.4) 
with normal or corrected-to-normal vision were recruited for the current study. 
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MRI Studies Reporting Summary
 Form fields will expand as needed. Please do not leave fields blank.

    Experimental design
1.   Describe the experimental design. slow event-related

2.   Specify the number of blocks, trials or experimental 
units per session and/or subject, and specify the 
length of each trial or block (if trials are blocked) 
and interval between trials.

87 subjects, 4 runs per subjects, 48 trials per run. 16 704 trials overall.  
 
Duration of one trial = 24 s; average ITI = 3.33 s (jitter range = 2-6 s)

3.   Describe how behavioral performance was 
measured.

There were two tasks in each trial. For each trial, we recorded the 
proportion of correct responses and the response time, showing retro-
cuing effects consistent with prior work (Wilcoxon signed rank tests, see 
Figure S3). The difficulty was adjusted after each trial in an ongoing fashion 
using a staircase procedure. For each trial, we recorded the state of this 
staircase procedure which is referred to as the discrimination threshold. 

    Acquisition
4.   Imaging

a. Specify the type(s) of imaging. functional and structural MRI

b. Specify the field strength (in Tesla). 3 Tesla

c. Provide the essential sequence imaging parameters. Within each of the four runs, we recorded 663 T2*-weighted gradient-
echo echo-planar images (EPI, 33 slices, 3 × 3 × 3 mm resolution, 0.6 mm 
gap, descending order, FoV = 192 mm, TR = 2000 ms, TE = 30 ms, flip angle 
= 80°). In addition, a high-resolution T1-weighted image was acquired (192 
sagittal slices, 1 mm thickness, RT = 1900 ms, TE = 2.52 ms, flip angle = 9°, 
FOV = 256 mm). 

d. For diffusion MRI, provide full details of imaging 
parameters.

not applicable

5.   State area of acquisition. Slices were aligned parallel to the anterior and posterior commissures and 
covered the whole neocortex. 

    Preprocessing
6.   Describe the software used for preprocessing. Imaging data was analyzed using SPM12 and cvMANOVA.

7.   Normalization

a. If data were normalized/standardized, describe the 
approach(es).

We estimated normalization parameters using unified segmentation and 
used these parameters to warp anatomical templates from MNI into single 
subject space.

b. Describe the template used for normalization/
transformation.

ICBM152

8.   Describe your procedure for artifact and structured 
noise removal.

motion correction, run-wise constant regressors, jittering (see 2). 
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9.   Define your software and/or method and criteria 
for volume censoring, and state the extent of such 
censoring.

No volume censoring performed.

    Statistical modeling & inference
10. Define your model type and settings. Single-subject level: Multivariate GLM, FIR regressors, no temporal filtering 

 
Between-subject level: Random effects analysis (t-test), but see discussion 
in Allefeld et al. (2016)

11. Specify the precise effect tested. We tested whether - during the delay following the initial retro-cue - the 
six different stimulus conditions (six orientations per visual hemifield) 
evoked differential neural activity patterns. This hypothesis was tested 
seperately for cued and not cued items using a crossvalidated multivariate 
analysis of variance (cvMANOVA).

12. Analysis

a. Specify whether analysis is whole brain or ROI-based. ROI-based

b. If ROI-based, describe how anatomical locations were 
determined.

Anatomical locations are based on probabilistic maps of retinotopic 
regions of the human brain (Wang et al., 2015)

13. State the statistic type for inference. 
(See Eklund et al. 2016.)

ROI-wise inference

14. Describe the type of correction and how it is 
obtained for multiple comparisons.

Bonferroni correction

15. Connectivity

a. For functional and/or effective connectivity, report the 
measures of dependence used and the model details.

not applicable

b. For graph analysis, report the dependent variable and 
functional connectivity measure.

not applicable

16. For multivariate modeling and predictive analysis, 
specify independent variables, features extraction 
and dimension reduction, model, training and 
evaluation metrics.

Independent variable: Currently remembered orientation (cued or not 
cued).  
 
Feature selection: Voxels within each roi were ordered by T-values 
indicating the contrast 'sample related activity > baseline'. The number of 
voxels for each analysis was selected using nested cross-validation. 
 
Model: See above, 'Single-subject level' 
 
Evaluation: We used 4-fold cross-validation leaving data from one run out 
for each cross-validation fold. The metric was 'pattern distinctness D' (see 
Allefeld & Haynes, 2014). 
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