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Ongoing neural dynamics comprise both frequency-specific oscillations and broadband-features, such as long-range dependence (LRD).
Despite both being behaviorally relevant, little is known about their potential interactions. In humans, 8 –12 Hz � oscillations constitute
the strongest deviation from 1/f power-law scaling, the signature of LRD. We postulated that � oscillations, believed to exert active
inhibitory gating, downmodulate the temporal width of LRD in slower ongoing brain activity. In two independent “resting-state” datasets
(electroencephalography surface recordings and magnetoencephalography source reconstructions), both across space and dynamically
over time, power of � activity covaried with the power slope �5 Hz (i.e., greater � activity shortened LRD). Causality of � activity
dynamics was implied by its temporal precedence over changes of slope. A model where power-law fluctuations of the � envelope inhibit
baseline activity closely replicated our results. Thus, � oscillations may provide an active control mechanism to adaptively regulate LRD
of brain activity at slow temporal scales, thereby shaping internal states and cognitive processes.
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Introduction
Temporal long-range dependence (LRD), a hallmark of complex
dynamical systems, is found in physical, biological, and social sys-
tems in the form of scale-free behavior of spatiotemporal measures
(Bak et al., 1987). Power-law scaling of spectral power density of
time-series is a signature of LRD and a carrier mechanism of “mem-

ory” in representing and processing information. Given the ubiqui-
tous nature of LRD, it is not surprising that brain activity across
species and scales also shows this property, as does behavioral per-
formance (Bak et al., 1987; Gilden et al., 1995; Linkenkaer-Hansen et
al., 2001; He et al., 2010; Van de Ville et al., 2010).

Further evidence linking neural LRD to function comes from
findings of a flattening of 1/f brain activity during aging (Bak et
al., 1987; Voytek et al., 2015), of slope-modulations during sleep
versus awake states (Gilden et al., 1995; Linkenkaer-Hansen et al.,
2001; He et al., 2010; Van de Ville et al., 2010; Zempel et al., 2012),
of slope-modulations during task activation in humans (He et al.,
2010), and from the fact that neuronal and behavioral power-law
scaling are correlated (Palva et al., 2013).

A different intrinsic property of ongoing neural dynamics is
periodic activity that is the focus of far more studies than the
scale-free broadband phenomenon of LRD. Neural oscillations
have been linked to multiple cognitive functions and behavior
(for review, see Wang, 2010). The most salient frequency band in
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Significance Statement

The two prominent features of ongoing brain activity are oscillations and temporal long-range dependence. Both shape behavioral
performance, but little is known about their interaction. Here, we demonstrate such an interaction in EEG and MEG recordings of
task-free human brain activity. Specifically, we show that spontaneous dynamics in alpha activity explain ensuing variations of
dependence in the low and ultra-low-frequency range. In modeling, two features of alpha oscillations are critical to account for the
observed effects on long-range dependence, scale-free properties of alpha oscillations themselves, and a modulation of baseline
levels, presumably inhibitory. Both these properties have been observed empirically, and our study hence establishes alpha
oscillations as a regulatory mechanism governing long-range dependence or “memory” in slow ongoing brain activity.
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ongoing brain activity is the 8 –12 Hz range, where oscillations
have been reported since the first EEG recordings, accordingly
termed the “alpha rhythm” (Berger, 1929).

Early evidence linking alpha oscillations to sensory and cog-
nitive function came from observations that stimulation de-
creases alpha oscillations (“alpha blocking”; e.g., during eyes
opening or mental calculation) (Berger, 1929; Aranibar and
Pfurtscheller, 1978; Pfurtscheller, 1989). Since then, alpha oscil-
lations have been tied to numerous cognitive functions involving
attention, anticipation (Thut et al., 2006; Rihs et al., 2009), per-
ception (Varela et al., 1981; Mathewson et al., 2009; Busch and
VanRullen, 2010), and working memory (Berger, 1929; Kli-
mesch, 1997). Both amplitude and phase of alpha activity have
been shown to impact evoked neural activity and likely the cog-
nitive processes driven by them (Berger, 1929; Nikulin et al.,
2007; Becker et al., 2008, 2011; Mazaheri and Jensen, 2008;
Scheeringa et al., 2011).

While the behavioral relevance of alpha oscillations spans multi-
ple functional domains, the basic underlying mechanism appears to
be a cyclic inhibition. Numerous EEG-fMRI studies report less met-
abolic demand during alpha activity (Goldman et al., 2002; Laufs et
al., 2003; Moosmann et al., 2003; de Munck et al., 2007; Becker et al.,
2011; Scheeringa et al., 2011), an observation seemingly compatible
with the classical view of alpha activity being a passive, idling brain
state. More recent theories, specifically, “gating-by-inhibition” (Jen-
sen and Mazaheri, 2010), however, propose that alpha oscillations
actively exert pulsed inhibition and that alpha desynchronization
releases from this inhibition, thereby facilitating neural processing.
In a similar vein, we have suggested the metaphor of a “windshield

wiper” proposing not only a suppressive, but also updating, mecha-
nism that emphasizes current over accumulated earlier information
(Sadaghiani and Kleinschmidt, 2016).

Evidence for these views comes from studies on task-related
neural signals (Haegens et al., 2011), but a putatively generic
inhibitory mechanism should equally impact spontaneous activ-
ity. Addressing this question by studying cross-frequency rela-
tionships as phase-amplitude coupling (Osipova et al., 2008) in
recordings of ongoing brain dynamics by EEG, MEG, or even
electrocorticography is hampered by the difficulty of identifying
clear periodicities outside the alpha range. Therefore, we here
tested the theory of gating by inhibition by studying the effect of
alpha oscillations on temporal LRD, the dominant feature in such
recordings. Specifically, we postulated that increased alpha activ-
ity should by way of repetitive inhibition shorten scale-free be-
havior of slower neural activity and thus reduce LRD. This would
constitute an interesting fundamental brain mechanism where
oscillations govern the level of LRD and “memory” in ongoing
neural processing.

The two datasets we used to test our hypotheses were selected
on the grounds of maximizing robustness and generalizability of
our results. They were obtained in different laboratories, under
different conditions (eyes closed vs eyes open), with different
acquisition techniques (EEG/MEG), and different preprocessing
steps, EEG being analyzed at sensor level and MEG after source
reconstruction. To better understand the underlying mecha-
nisms of the observed effects, we complemented this by com-
putational modeling of interactions between oscillations and
temporal LRD.

Figure 1. Illustration of a time- and frequency-resolved approach to data analysis. Time-frequency presentation from one sensor of a typical dataset using log-scaled wavelet analysis. The time
course of alpha activity as estimated by continuous wavelet analysis is extracted (inset, bottom right) and, with the same temporal resolution and zero time lag, the time course of the slope of spectral
activity �5 Hz is estimated (inset, bottom left). A linear correlation between these two time-series is then performed at zero-lag to examine the link between the two features (see Materials and
Methods; see Fig. 4). For analysis of a potential temporal precedence of one of the two signals, time lag was varied (see Fig. 6).
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Materials and Methods
Participants and experimental setting: EEG. Eleven healthy volunteers (7
male, 4 female, mean age 26.8 � 5.5 years, written informed consent)
participated in the EEG resting state study in the Brain Behavioral Lab-
oratory, Geneva, Switzerland. They were instructed to keep their eyes
closed. The session was a “resting state” recording preceding a task par-
adigm and lasted �5 min.

MEG. Twelve participants were recorded during the MEG resting state
study (8 male, 4 female, mean age 21.8 � 2.1 years, written informed
consent) at NeuroSpin, CEA Saclay, France. They were instructed to
fixate a black screen. Recordings lasted for �5 min. Both studies received
approval by the respective local ethics committees and have been con-
ducted according to the Declaration of Helsinki.

Data acquisition: EEG. EEG was acquired by
using a high-density geodesic electrode cap
with 256 AgCl electrodes (HCGSN, Electrical
Geodesics) and a corresponding high-impe-
dance EEG system (Electrical Geodesics), Cz
referenced. Impedances were kept �30 kOhm.
Sample rate was 1 khZ.

MEG. Data were recorded in a magnetically
shielded room using a 306 channel MEG sys-
tem (Neuromag Elekta); a detailed description
of data acquisition and preprocessing can be
found elsewhere (Zilber et al., 2014). In sum-
mary, sampling rate was 2 kHz and a bandpass
filter with a range of 0.03, 600 Hz was applied.
Four head position coils measured the head posi-
tion of participants before each block; three fidu-
cial markers (nasion and preauricular points)
were used for digitization and alignment with the
ensuing anatomical MRI acquisition, permitting
later source reconstruction. Simultaneously, elect-
rooculogram (EOG for horizontal and vertical
eye movements) and ECG was acquired.

Data preprocessing: EEG. For EEG-DC data,
mean trend was removed and bad electrodes
were interpolated. A total of 204 channels were
kept, removing electrodes located on the chin
and cheek as well as the outmost posterior layer
of electrodes at the back of the head. No other
filtering was performed.

MEG. MEG data were source reconstructed
by aligning the subject specific anatomical MRI
to the predefined fiducials in the MEG record-
ing. Details of the source reconstruction ap-
proach are provided in Zilber et al. (2014).
During source reconstruction, ocular and car-
diac artifacts were removed by generation of
signal space projections based on average
event-locked responses to the QRS cardiac
components as recorded with ECG and to eye
blinks as recorded with EOG. Finally, recon-
structed sources were clustered into 138 neu-
roanatomically labeled regions, covering the
whole brain. Subsequently, both MEG and
EEG data were downsampled to 200 Hz, and
z-scored sensor/source-wise.

Time-frequency analysis. We estimated the
fluctuations of spontaneous activity in MEG
and EEG by wavelet time-frequency analysis.
The continuous wavelet analysis (CWT) was
applied using the Cross Wavelet and Wavelet
Coherence toolbox (Grinsted et al., 2004), us-
ing a Morlet mother wavelet (6 cycles, logarith-
mic scales of 1/6 octaves with in total 58 scales).

In general, the CWT of a time-series x is
equivalent to a convolution of x with the
mother wavelet � (dt kept constant) as follows:

Wx�S� �
1

�s�
��

�

x�t����t

s� dt (1)

For computational and storage reasons, the wave let envelope activity was
further downsampled to 50 Hz. The envelope was calculated as the log-
arithm of the modulus of the complex-valued wavelet coefficients log
�Wx(s)�. Data outside the “cone of influence” of the boundaries were
excluded to avoid artifacts.

Based on this time-frequency representation, we estimated activity in
the alpha-band and changes of the 1/f slope across a lower frequency
range (0.12– 4.8 Hz). Subsequently, we related these dynamics to the

Figure 2. A, Grand average resting state broadband spectra of EEG and MEG data (rescaled for normalization). Plots are log-log
transformed along both axes and show mean values across subjects along with their SEM, as indicated by the inset. B, Relative
topography of 10 Hz activity in the EEG sensor data (above) and the MEG source-reconstructed data (below). The 30 sensors (EEG)
or sources (MEG) with the highest average alpha activity (see color bar) are outlined by black lines. These positions were selected
for dynamic analysis of the relation between alpha activity and the slope in the spectrum of low-frequency activity (range indicated
by a line in A).

Figure 3. Both in EEG (top left) and MEG recordings (top right), average alpha power at different electrodes (EEG, r 	 0.86, n 	
203) and sources (MEG, r 	 0.91, n 	 138) correlates positively with slope coefficients estimated in the frequency range �4.8 Hz.
As slopes are negative, this means that higher alpha activity is associated with less steep power decline at the higher frequencies
in the sub-alpha range, a sign of reduced self-similarity and LRD. This is not only consistent across electrodes or sources, but also
across subjects: there is a significant difference in slope when comparing the 30 strongest alpha power sources (compare topog-
raphy in Fig. 2) versus the 30 weakest power sensors or sources within subjects (pairwise t test, p � 6e-3 and p � 6e-5 for EEG and
MEG, respectively).
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changes in estimated alpha activity. To infer
causality from temporal precedence, we esti-
mated the temporal relationship of alpha activ-
ity and slope changes. Surrogate data (see
below) were used for all analyses to control for
trivial and non-neuronal effects.

Surrogate data generation. For both EEG and
MEG, surrogate datasets were generated
subject-wise and sensor-wise by performing an
FFT over the entire time series of each sensor
(nfft parameter was set to length of time series).
After obtaining the complex-valued FFT,
phase was scrambled and subsequently an in-
verse FFT was applied to project these data
back into the time domain, thus preserving the
spectral average of the real data while removing
any cross-frequency coupling (Theiler et al.,
1992; Ivanov et al., 1999).

After generating the surrogate data, average
CWT-based spectra were recalibrated for each
subject and sensor (real data vs surrogate data).
This was necessary due to a nontrivial relation-
ship between FFT-based spectrum (which was
identical) and the averaged CWT-based spec-
trum (i.e., while per definition the surrogate data
have the identical FFT spectra as the real data,
CWT based spectra are slightly different).

Estimation of fluctuating alpha activity. To
extract fluctuations of alpha activity, the enve-
lope of each scale within the frequency band of
8 –12 Hz was calculated and subsequently aver-
aged across this frequency range. For subse-
quent analyses, we determined, for both EEG
and MEG data, the 30 sensors and sources, re-
spectively, with the highest alpha amplitude (as
averaged across subjects) and collapsed results
in further analyses (see below) into a single
value.

Validation of frequency range for 1/f power-
law fitting. Because wavelet analysis (like all time-
frequency representations) shows a tradeoff
between frequency and time resolution, we
wanted to further validate the lower-frequency
range chosen for subsequent estimation of 1/f
slope. Thus, we performed a calculation of cross-
frequency coupling in each sensor or channel,
respectively, and subject. This enabled us to esti-
mate the inherent frequency resolution of the
chosen wavelet approach. We verified that�5 Hz
no spectral leakage from alpha activity occurred.

Estimation of 1/f slope. By performing linear
regression across the log-scaled envelope activity
in the spectral range of 0.12 Hz (lower boundary) up to 4.8 Hz, we obtained
an estimation of slope and intercept within this low-frequency range.

Relation of (average) alpha amplitude to 1/f slope. After averaging across
all subjects, we performed a correlation analysis where, on a per-sensor/
source basis, average alpha amplitude was related to average slope coef-
ficients. Complimentary to this more exploratory analysis, we also
averaged slope coefficients for the 30 highest alpha power sensors/
sources and for the 30 lowest alpha-power sensors/ sources before sub-
jecting them to a pairwise t test across subjects to examine.

Relation of alpha fluctuations to 1/f slope changes. Using the Pearson
product-moment correlation coefficient, the slope fluctuations were
then related to fluctuations of the alpha envelope. This analysis and all
subsequent ones were performed locally (i.e., within each channel/
source) and then collapsed within the previously defined cluster. For
this analysis, slope and envelope estimation were related to each other

at zero-time lag. Data were then split into quartiles of the 25% highest
and 25% lowest alpha periods and subsequently estimated slopes were
averaged. Finally, differences were determined between periods of
high and low alpha activity and compared with the correspondingly
analyzed surrogate data as explained below.

Figure 1 summarizes and illustrates the mentioned steps in estimating
alpha activity and slope in the low-frequency range and correlating them
at zero-time lag.

Additionally, we performed a second correlation analysis, where we
correlated average alpha amplitude (per sensor/source) and average ef-
fect (i.e., alpha-to slope-change correlation coefficients) to determine
whether the impact of alpha dynamics on slope dynamics scales with
alpha amplitude across brain areas.

Cross-frequency amplitude-to-amplitude coupling. To obtain the ca-
nonical cross-frequency coupling, we correlated all possible cross-
frequency relationships across the available frequency spectrum.

Figure 4. Alpha activity modulates the slope of low-frequency activity. A, As visualized by grand averages (across subjects and
sensors/sources) for both EEG (A) and MEG (B), alpha fluctuations correlate with the slope of lower frequency activity (0.12– 4.8
Hz). Higher alpha activity is related to a less negative slope. C, EEG results for alpha-dependent slope changes in all subjects.
D, Corresponding MEG results. E, Across-subject analysis of slope differences between high and low alpha activity in EEG and MEG
data, real data indicated by the light red boxes indicating the 95% CIs (with mean indicated by horizontal black line in the middle).
C–E, Boxplot inlets with whiskers represent median (red line), minima and maxima (red crosses indicate values deemed outliers)
for the surrogate data, with a first-order error probability �5%.
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Temporal asymmetry of alpha versus slope comodulations. For assessing
a temporal precedence of alpha activity versus slope changes or vice versa
(i.e., a non-zero time lag), we performed cross-correlation in the tempo-
ral range from �1.5 to 1.5 s. Subsequently, a Gaussian plus a linear term
(i.e., of the type a 
 exp(�(x � �) 2/(2 
 � 2)) � b 
 x � c) was fit to
the mean cross-correlation result in each channel or source to esti-
mate the temporal precedence of one parameter over the other. Of
interest are especially the lag parameter � and the width parameter � plus the
linear drift term b. We further estimated subject-wise lags by fitting the
linear-Gaussian term to each subject’s individual cross-correlogram (in a
window from �0.5 to 0.5 s) and tested whether the estimated lag was con-
sistent across subjects by performing a Student’s t test.

To compare with surrogate data, we furthermore accumulated cross-
correlation values from �0.5 s to 0 s and from 0 s to 0.5 s (further referred
to as accumulated correlation asymmetry [ACA]). Under the null hy-
pothesis (i.e., the correlation peak being centered at zero lag), these two
accumulated correlation coefficients should be equal; thus, their differ-

ence (i.e., the ACA) is on average zero. To test
this, this difference was compared with the cor-
responding difference for surrogate data, thus
providing a statistical threshold with an alpha
error of � �5% (see below).

Additionally, we calculated a grand average
of the ACA index and related it to the average
alpha amplitude per channel (noncollapsed
sensor/source data) to test whether this effect
also scaled with the average power of alpha.

Statistical analysis. For all main analyses, a
threshold criterion was generated by perform-
ing the identical analyses in the surrogate data,
for each subject and sensor/channel repeatedly
(using maximum statistics with n 	 19). Re-
sults were then averaged across subjects; subse-
quently, the maximum of the maxima yielded
(across channels/sensors) during each analysis
was maintained as a final threshold, providing
a way of controlling the alpha error to remain
�5%, corrected for multiple comparisons. Re-
sults from real EEG or MEG passing these thresh-
olds were considered significant (i.e., p � 0.05,
corrected).

For the performed slope change analysis and
analysis of temporal precedence, we comple-
mented the surrogate-data approach by esti-
mating CIs (at 95% level) across subjects to
further corroborate the robustness and gener-
alizability of observed effects.

Correlation analyses over electrodes/sources
were either tested against the surrogate data or
complemented by other tests that ruled out
spurious correlations due to spatial smooth-
ness of the M/EEG data (as described in Rela-
tion of alpha fluctuations to 1/f slope changes).

Modeling. To investigate the potential
mechanisms underlying the observed empir-
ical findings, we examined a number of dif-
ferent scenarios regarding the dynamics of
alpha oscillations. Five models were com-
pared with each other. In all of them, 300 s
time courses, at 200 Hz sampling rate, con-
taining alpha oscillations on top of 1/f noise
were generated. We first produced the envelope
of alpha oscillations and then convolved it with a
Morlet-like alpha wavelet (center frequency of 9
Hz). Depending on the model, we also included a
low-frequency baseline component that repre-
sented the alpha envelope.

After generation of synthetic signals, they
were subjected to the same analyses as the ex-
perimental data, and the model outcomes were

compared. In Model 1, we assumed systematically repeated 1 s bursts of
alpha oscillations every 4 s. Bursts alternate in high and low amplitudes
(see Fig. 8). In Model 2, the envelope of alpha activity fluctuations is not
rhythmic, but generated by a random fractal process, integrating findings
from previous reports about the fractality of the human alpha rhythm
(Linkenkaer-Hansen et al., 2001). Fractal alpha envelope dynamics were
implemented by using pink noise filtered in the sub-alpha frequency
range to serve as modulation of the alpha envelope (instead of the rhyth-
mic pulsing in Model 1). Model 3 uses the rhythmic alpha pattern from
Model 1 but includes instantaneous negative baseline shifts during peri-
ods of alpha activity. This component was driven by reports about asym-
metric alpha fluctuations (Nikulin et al., 2007; Mazaheri and Jensen,
2008). The baseline shift (BL) was implemented by subtracting voltage
equal to the envelope of currently active alpha from the data
(BLasymm(t) 	 �ENV�(t)). This causes activity to be at zero at the peak of

Figure 5. Correlation of alpha activity with spectral activity across the available range (left: EEG; right: MEG). Red line indicates
real data. Blue line indicates surrogate data that are devoid of any cross-frequency couplings. The effect �10 Hz reflects the
frequency resolution of the chosen continuous wavelet approach. In the spectral range outside a frequency window of 6 –11 Hz, no
trivial cross-frequency correlation with alpha activity is to be expected. Also of interest is the remarkable linear decay of the
correlation between alpha envelope and lower frequency envelope dynamics (especially for the cleaner MEG data) without en-
forcing any slope-like behavior.

Figure 6. A, B, Grand-average cross-correlograms of alpha amplitude and slope changes and their corresponding fit for EEG and
MEG clusters, respectively. This analysis is a lagged version of the zero-lag correlation analysis shown in Figure 4 (for illustration,
see also Fig. 2). The time-series entering the cross-correlation are the alpha amplitudes on the one hand and the concurrent slope
changes on the other (Fig. 4A, B shows the lag of maximum correlation). C, D, Detailed analysis of a potential time lag across
individuals in the time window of �0.5 s reveals a significant lag in both EEG and MEG clusters, with the 95% CI ranging in the
negative time window. E, F, Complementary to this analysis, the ACA (see Materials and Methods) shows a significant leftward
correlation asymmetry (compared against surrogate data; gray boxplots). These results show that alpha activity precedes the
correlated slope effects in the �5 Hz frequency range.
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each alpha oscillation (without added noise)
and negative at its current amplitude during
the trough.

Model 4 shares the fractal alpha envelope
dynamics of Model 3 and includes negative
baseline shifts according to the degree of alpha
activity, as in Model 2. Model 5 is equal to
Model 4; the only difference is that it integrates
a systematic shift or delay of the alpha-induced
baseline shifts by 100 ms. In all models, 1/f
noise (slope 	 �0.75) is added on top to make
results more comparable with empirical data
(for implementation, see Zhivomirov, 2015).

Results
Both datasets we analyzed show clear 1/f
behavior in the low-frequency range be-
low the alpha band. Figure 2 displays the
normalized mean wavelet-based spectra
for the two modalities (EEG and MEG).
Both also show marked deviation from 1/f
behavior in the near 10 Hz range indicat-
ing alpha oscillations. Figure 2 (right pan-
els) depicts the topographic distribution
of alpha oscillations with the well-known
occipital dominance that is more pro-
nounced in EEG (eyes closed) than MEG
(eyes open).

Given this topographical variability of al-
pha oscillations, we first tested across differ-
ent spatial positions whether strength of
alpha activity averaged over time is associ-
ated with less LRD in the low-frequency
range (�5 Hz). Figure 3 shows that, at posi-
tions with more alpha activity (averaged
across subjects), the negative slope of low-
frequency activity in the power spectrum is
less steep (i.e., less negative). This positive
correlation was very strong both in the EEG
data (r 	 0.86, n 	 203) and the MEG data
(r 	 0.91, n 	 138) across all sensors and
sources, respectively, and reflects an alpha-
dependent decrease in LRD. Although being
informative, this analysis might overesti-
mate the actual relationship between alpha
and slope due to the spatial smoothness
of the M/EEG data. Thus, we performed another, pairwise test
of average alpha amplitude versus slope in the 30 highest
(compare Fig. 2) versus the 30 lowest sensors or sources which
yielded significant differences across subjects for both condi-
tions ( p � 6e-3 and p � 6e-5 for EEG and MEG, respectively).

Next, we probed whether what held true on average across
different positions (sensors or sources) could also be confirmed
dynamically at given positions. A first test was conducted by split-
ting time series into periods of high and low alpha power. We
then tested whether the spectra during the quartile of the time
series with the highest level of alpha activity showed a different
low-frequency slope than the quartile with the lowest level (Fig.
4). These analyses were confined to the 30 sensors or sources,
respectively, with the highest alpha power (Fig. 2, outlined in
black). In addition to the alpha peak, spectra from these clusters
showed strong power-law scaling with a negative slope in the
low-frequency range (�5 Hz, average across n 	 30 sensors, EEG
�0.68 � 0.03, MEG, �0.56 � 0.02, [mean � SEM, respec-

tively]). Testing our hypothesis of interest, we found that this
slope was significantly less negative during high than during low
alpha activity (EEG �0.66 vs �0.70 and MEG �0.53 vs �0.58 for
high and low alpha activity, respectively; Fig. 4C,D). This effect
was highly consistent across subjects (Fig. 4E shows a 95% CI). To
rule out trivial effects (e.g., due to spectral leakage), our null
hypothesis used phase-randomized surrogate data derived from
the experimental EEG and MEG data; that is, the average power
spectrum and thus temporal correlation structure of the data
were preserved under the null hypothesis, but all cross-frequency
coupling was destroyed. No effect of high versus low alpha activ-
ity on power-law scaling was observed in these surrogate data
(Fig. 4C–E, box plots).

Quartile splitting and slope fitting on the average spectra from
the related parts of the time series cannot provide a time- and
frequency-resolved representation of ongoing dynamics. There-
fore, we moved to a more fine-grained approach sequentially
quantifying amplitude in the entire frequency range. Figure 1

Figure 7. Both the reported slope shift analysis (top; see also Fig. 3) and the analysis of temporal precedence, that is, the
accumulated correlation asymmetry (middle panels; compare also Fig. 6), show not only significant effects in the selected sensor
or source cluster averages but are also systematically linked to the amount of average alpha activity in each individual sensor or
source (left panels: EEG, n 	 203; right panels: MEG, n 	 138). A stronger prevalence of alpha activity entails stronger effects. To
rule out potential spurious correlations, we tested this against the surrogate data obtaining significant ( p � 0.05) effects (bottom
row). Maximum statistics from surrogate runs (n	19) did not reach the level of correlation of real data (summarized in blue), with
the correlation coefficients of the surrogate runs indicated by the boxplots (in red). Whiskers indicate minima and maxima; �,
outliers.
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illustrates our approach for time-frequency extraction using the
continuous Morlet-wavelet transform. Scales were chosen to
cover the 0.12–97.1 Hz band in 58 logarithmic scales. Based on
this approach, we determined the amplitude-amplitude coupling
of alpha oscillations to all other frequencies from 0.1 to 100 Hz
in both EEG and MEG recordings (Fig. 5). The analysis of
amplitude-amplitude coupling further confirms that the rela-
tionship of alpha activity to low-frequency activity is best de-
scribed by a slope change across this frequency range rather than
a selective amplitude-amplitude coupling occurring between al-
pha oscillations and other specific low-frequency bands. This in-
terpretation holds when, instead of a single line read-out as in
Figure 5, amplitude-amplitude couplings are analyzed over the
full frequency range in our recordings (Fig. 6). The change in
slope was driven by positive correlation in frequencies neighbor-
ing the alpha band that decayed with decreasing frequency, but
only in the EEG data flipped into negative correlations at very
low-frequency values. Our findings in the experimental data were
validated against surrogate data (Fig. 5, blue curves). These con-
trol results are particularly important because they establish that
the positive coupling of alpha oscillations with power in the im-
mediately adjacent lower frequency band of theta is not due to

“spectral leakage” or other potential shortcomings of our analyt-
ical tools.

Our time-resolved approach permitted analyzing the correla-
tion between alpha oscillations and the level of low-frequency
LRD not only at zero-lag but also at variable time lags between the
two time series. We tested whether shifting time courses of alpha
power fluctuations relative to slope values emphasized the corre-
lation effects, suggesting that one follows from the other and
thereby identifying temporal precedence as a proxy of causality.
We calculated the grand average cross-correlogram for both EEG
and MEG data and fitted a Gaussian function plus a linear term.
We found that alpha fluctuations preceded slope fluctuations by
137 ms in EEG data (lag parameter of Gaussian, goodness of fit
r 2 	 0.9978), and by 81 ms in MEG data (goodness of fit r 2 	
0.9951) (Fig. 6A–D).

To test whether the estimated temporal lags are significantly
different from zero, we used two approaches. Subject-wise fitting
resulted in a mean � SEM lag of 159 � 47 ms for the EEG
electrode cluster and of 79 � 16 ms for the MEG source cluster
(Fig. 6C,D). For comparison with the surrogate data where no
good fit by Gaussian functions can be achieved, we also estimated
temporal asymmetry by accumulating (summing up) all correla-

Figure 8. Modeling the effect of varying temporal dynamics of alpha oscillations and associated baseline shifts on slope estimations (for details, see Materials and Methods). First row, Model 1,
represents rhythmic alpha pulsing, that is every 4 s with alpha oscillating (strong burst always followed by a weak burst) and no baseline shift. A zoom-in visualizes the symmetry of modeled alpha
oscillations. The next panel represents the broadband power for high versus low alpha amplitudes. The fourth panel represents the same data for the analyzed frequency range �5 Hz. The last panel
in each row represents the estimated correlations as a function of lag time in the correlogram. Second row, Model 2, represents rhythmic alpha with associated baseline shifts. Models 3 and 4 use
fractally distributed alpha fluctuations. Model 3 involves no baseline shift during alpha oscillations, whereas Model 4 does. Model 4 shows similar alpha-dependent slope changes as the real data,
distributed smoothly across frequencies �5 Hz. Model 5 in the lowest row is identical to Model 4, but with a 100 ms delay of alpha-dependent baseline shifts. Only this model shares a temporal
precedence of alpha versus slope shift with the empirical data.
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tion coefficients from 0.5 s before and
0.5 s after the time-point zero of the cor-
relogram and subtracting these from each
other. These ACAs show a significant
rightward asymmetry both in the experi-
mental EEG and MEG data (0.42 and 0.35,
respectively) but not in the related surro-
gate data (Fig. 6E,F).

Our previous testing had been con-
ducted mostly on time series data col-
lapsed over the 30 sensors (EEG) or
sources (MEG) with the strongest alpha
activity. As a final control of the generality
of our observations, we therefore probed
whether the influence of alpha oscillations
on low-frequency slope changes and its
precedence varies as a function of alpha power differences be-
tween all sensors and sources, respectively. We found both effects
to scale with increasing average alpha activity (Fig. 7, top row),
compared with the surrogate data that did not show this behavior
(Fig. 7, bottom row).

In summary, these empirical findings converge to suggest that
alpha activity modulates LRD in the low-frequency range of brain
activity. We therefore went on to examine which requirements a
simple computational model would need to generate similar be-
havior as observed in our experimental data (Fig. 8). We simu-
lated several different properties of alpha oscillations (embedded
in stochastic 1/f noise) and analyzed ensuing slope changes in the
low-frequency range. We found that replicating our findings re-
quired a model with fractal envelope dynamics of alpha oscilla-
tions that in turn induce baseline shifts with an �100 ms delay,
thereby introducing apparent asymmetry (Mazaheri and Jensen,
2008). Neither regular (oscillatory with rhythmic alpha bursts)
nor irregular (monofractal) modulations of alpha power alone
introduced changes into the observed low-frequency spectrum
(Fig. 8, first and second rows).

Our simulation was motivated by previous observations of 1/f
behavior of alpha amplitude fluctuations (Linkenkaer-Hansen et
al., 2001), a behavior also present in our own experimental data
(Fig. 9). When simulating asymmetry by associating the alpha
envelope with a concurrent baseline shift, we found that this
alone did induce low-frequency power changes. This is not sur-
prising but means that the first property tested (regularity vs
irregularity that has no effect in itself on low-frequency activity)
now becomes critical in determining the type of alpha-induced
power change in the low-frequency range. When assuming a
rhythmic modulation of the alpha power envelope, the effect was
confined to the frequency of this modulation (Fig. 8, third row).
In contrast, when assuming a fractal modulation of alpha power,
the simulated data very closely approached the results from our
analyses of the experimental data (Fig. 8, fourth row). However,
these two assumptions (i.e., irregularity of alpha oscillations and
asymmetry of baseline) were still insufficient to simulate the tem-
poral precedence of alpha power fluctuations over associated
slope changes in the low-frequency range. Only when assuming
fractal power fluctuations of alpha together with a delayed sup-
pression of a baseline (by 100 ms), were we able to closely repli-
cate our results in the experimental data (Fig. 8, bottom row). In
summary, assuming a fractal behavior of alpha oscillations that in
turn induce delayed baseline shifts is sufficient in our model to
account for the observations in empirical EEG and MEG data.

Discussion
Background neural activity has long been discarded from models
of brain function. One reason is that many neurophysiological
techniques suffer from poor temporal stability and contamina-
tion by technical sources of noise, another that in the dominant
behaviorist stance in the neurosciences, there was little concep-
tual room for conceiving ongoing activity other than as biological
noise. These views have changed more recently; and especially
with respect to oscillations, it has been established that they play
an important functional role in neural processing that transpires
into cognition and behavior (Wang, 2010). The other prominent
feature of background brain activity (i.e., powerful slow varia-
tions) has now also been shown to be functionally relevant in that
they influence stimulus processing and behavior (Boly et al.,
2007; Fox et al., 2007; Hesselmann et al., 2008; Sadaghiani et al.,
2009). Importantly, such studies have also found that the relation
between ongoing and evoked activity is nonlinear (Hesselmann
et al., 2008; He, 2013), thereby inevitably rendering models in-
sufficient that do not account for ongoing brain processes on a
trial-by-trial basis.

Slow fluctuations in brain activity display power-law scaling, a
commonly observed property of many measures of physical, bi-
ological, and sociological systems (Bak et al., 1987; Turcotte et al.,
2002). Although such 1/f behavior can also be seen, for instance,
in human behavior (Gilden et al., 1995), it is not very clear to
which extent it is merely an epiphenomenal trait of complex
dynamical systems and hence also present in the brain. From a
functional perspective, LRD and persistence of activity can be
considered mechanisms for preserving information at different
time scales, hence providing a form of memory that serves stabil-
ity without locking into stationarity (Sadaghiani et al., 2010; Deco
et al., 2011; Harmelech and Malach, 2013). However, one impor-
tant requirement for optimizing brain function is adaptiveness
and malleability, thereby introducing a need for context-dependent
modulation. An ensuing question is how such context-dependent
modulation of LRD could be mechanistically implemented.

The findings presented here illustrate, both empirically and com-
putationally, how alpha oscillations change the low-frequency LRD
signature of brain activity. The presence of alpha oscillations de-
creases LRD (i.e., shortens persistence), thereby reducing the tem-
poral width of “memory” contained in self-similar activity time
series. The empirical findings were obtained for two different types
of recording modality, EEG and MEG, and independently from re-
cording conditions: eyes closed for EEG and eyes open during MEG
recordings. The effects did not depend on the type of preprocessing,
being present both in EEG surface and MEG source data, and were

Figure 9. In correspondence with previous reports (Linkenkaer-Hansen et al., 2001), the spectrum of alpha envelope dynamics
(average across subjects) exhibits 1/f behavior in the examined datasets (left EEG, right MEG, grand averages across subjects).
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not constrained to different brain sites, but only scaled with the
strength of average alpha activity across different sensors or sources,
respectively. We generated surrogate data from the experimental
data themselves to ensure that these effects were not trivial or spuri-
ous. Finally, we found that the effect was maximal when assuming a
precedence of alpha activity variations by about one alpha cycle rel-
ative to their impact on persistence in slow activity, thereby suggest-
ing a causal relationship. Our analyses were motivated by the interest
in temporal LRD in the low-frequency range but may reach beyond.
However, techniques other than EEG and MEG would be more
appropriate to address such potential effects.

Together, our findings indicate a ubiquitous and likely generic
mechanism in brain function. By providing a model to explain
our findings, we found two ingredients to be key. One is a fractal
behavior of alpha amplitude variations themselves and the other
that alpha oscillations induce delayed baseline shifts. Both have
been observed empirically previously (Linkenkaer-Hansen et al.,
2001; Nikulin et al., 2007; Mazaheri and Jensen, 2008), and our
observations point at the importance of also considering the de-
lay between alpha oscillations and baseline. The combined effect
of two key ingredients in our computational simulations is to
result in power changes at the slow modulation frequencies of
alpha oscillations. The effects of the baseline shifts on the power
spectrum are blind to the sign of these shifts, but there is sufficient
empirical evidence to assume them to be inhibitory (Haegens et
al., 2011). Furthermore, the fractal pattern of alpha oscillations
makes the effects spread out across the entire frequency range
below the alpha band instead of a single modulation frequency.

We were able to observe a direct inhibitory effect of alpha
oscillations on power in very low frequencies only in the EEG
data (Fig. 5, zero-crossing), but this may be due to a weak high
pass filter applied to the MEG data already at the acquisition level.
The more important observation, however, is that, even in a
frequency-resolved analysis, the effects of alpha oscillations on
power in lower frequencies were best described by assessing a
slope change, rather than targeting power-power coupling be-
tween alpha oscillations and specific slower frequency bands. The
approach of analyzing slope changes differs from previous anal-
yses that were tied to classical EEG/MEG frequency bands, such
as theta or delta oscillations, which are difficult to define in the
type of neural population data we analyzed. Accordingly, the
effect of alpha oscillations on LRD that we show here actually
manifests by power increases instead of decreases in the neigh-
boring lower frequencies, which at first glance may seem coun-
terintuitive for a presumably inhibitory mechanism.

Alpha oscillations are associated with reduced cortical excit-
ability, as indexed, for instance, by spiking and gamma activity
(Osipova et al., 2008; Haegens et al., 2011) and fMRI-BOLD sig-
nal (Goldman et al., 2002; Moosmann et al., 2003; de Munck et
al., 2007; Becker et al., 2011; Scheeringa et al., 2011, 2012). Evi-
dence for cyclic inhibition during periods of strong alpha activity
has been garnered from paradigms involving a modulation of
stimulus-driven evoked neural responses by power of ongoing
alpha oscillations or phase dependence within cycles (Osipova et
al., 2008; Haegens et al., 2011). If the temporal structure of par-
adigms emphasizes higher spectral components, they will, of
course, in turn interfere with LRD in ongoing activity, as has been
shown in previous studies (Gilden, 2001). Here, however, we
have addressed the third component of this triadic relation,
namely, how two features of ongoing activity interact with each
other in the absence of confounding influences from a paradigm.
Accordingly, our results cannot be tied directly to behavioral

performance, and our interpretation of the functional signifi-
cance of these effects must remain speculative.

One possible line of speculation comes from the recent sug-
gestion that an increase of alpha oscillations in task-relevant
channels could be beneficial in settings where behavioral perfor-
mance is determined by alertness (nonselective attention) as the
key requirement (Sadaghiani et al., 2012). As “windshield wiper”
alpha oscillations could improve the relative “salience” of novel
incoming information by purging some of the accumulated in-
formation from the recent past (Sadaghiani and Kleinschmidt,
2016), this mechanism would hence be the opposite of the one
supporting selective attention. It is tempting to link this proposal
to our present observation that alpha oscillations reduce persis-
tence of slow neural activity. The functional implication of this
effect is that alpha oscillations regulate the extent to which brain
activity is focused into the “here and now.” This interpretation
emphasizes the active functional role of alpha oscillations but is
different from alternative proposals that conceptualize alpha os-
cillations as an inhibitory counterpart of selective attention that
deals with avoiding distracter interference (Jensen and Mazaheri,
2010). In a more general sense, this interpretation also permits to
think of one fundamental property of ongoing activity, regularity
in the form of oscillations, as a neural mechanism to govern
another intrinsic property, irregularity in the form of LRD. This
mechanism may be important to prevent brain activity from be-
ing enslaved by an emergent property as LRD, and to permit
regulating the degree of LRD according to changing functional
contexts.
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