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Persistent spiking has been thought to underlie working memory (WM). However, virtually all of the evidence for this comes from studies
that averaged spiking across time and across trials, which masks the details. On single trials, activity often occurs in sparse transient
bursts. This has important computational and functional advantages. In addition, examination of more complex tasks reveals neural
coding in WM is dynamic over the course of a trial. All this suggests that spiking is important for WM, but that its role is more complex
than simply persistent spiking.
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Introduction
Working memory (WM) refers to our ability to volitionally hold
and manipulate a limited amount of information in mind. Be-
cause of its fundamental role in goal-directed behavior and fluid
intelligence, WM has been the focus of a great deal of research
(Miller, 1956; Just and Carpenter, 1992; Engle et al., 1999; Miller
and Cohen, 2001; Vogel and Machizawa, 2004; Chatham and
Badre, 2015).

Our understanding of WM’s neural basis began with the pio-
neering work of Fuster, Goldman-Rakic, and colleagues (Fuster
and Alexander, 1971; Goldman-Rakic, 1995). They found that
neurons in higher-order cortex, including and especially the PFC,
show spiking during memory delays of WM tasks (Fuster and
Alexander, 1971; Goldman-Rakic, 1995). Everything we know
suggests that this “delay activity” is central to WM.

The question is not whether delay activity is a WM mecha-
nism. It clearly is. The question here is how, exactly, it retains
memories. The dominant model since the 1970s has been that
spiking keeps an ensemble in an active state available for process-
ing. This also seems largely true. What we and others aim to add
is a small, yet important, detail: that spiking is more sparse than

persistent and that, in between spikes, memories are carried by
temporary changes in synaptic weights, “impressions” left in the
network. In other words, the brain saves energy (spikes cost en-
ergy) by keeping ensembles in an active state with help of impres-
sions instead of continual spiking.

This is not just energy-saving. There are functional implica-
tions. Purely persistent spiking as a memory mechanism has
shortcomings. It is labile. It is easy to disrupt with additional
inputs and poor at retaining more than one memory simultane-
ously. Having synaptic weights help carry the memories is more
robust, less labile. It also adds an additional level of control. By
controlling the time spent in the active state, it can prevent a given
ensemble from taking command of behavior until needed and
allow independent control of different items held in WM (Lund-
qvist et al., 2018). To be clear, we are not throwing the baby out
with the bathwater. We can all agree spiking is an important WM
mechanism. Rather, we are doing what one does with important
models. We are offering an update.

Persistent activity: how did we get here?
A task often used, in monkeys, to argue for persistent activity is
the oculomotor delayed response (ODR) task. While the monkey
stares at a central dot, a visual cue is flashed somewhere in the
periphery. Central fixation is maintained for a few seconds, dur-
ing the so-called memory delay. Then the monkey looks in the
direction of the remembered location of the cue.

ODR typically produces robust delay activity. There is, how-
ever, an issue to consider when using ODR to argue that persis-
tent activity underlies WM. In ODR, the motor response is
known when the cue appears. Thus, an action is being planned
(and inhibited) over the memory delay. These premotor signals
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can, and do, contribute to delay interval spiking. However, many
do not consider motor preparation to be WM. At the least, it is a
special case of WM. Any proposed WM mechanism needs to be
able to hold information in the absence of motor preparation
because WM can operate in the absence of action planning.

As such, many investigators use tasks that do not specify the
motor response until after the delay, thus removing the premotor
signals. Examples are matching tasks (e.g., Fuster and Alexander,
1971; Miller et al., 1996; Romo et al., 1999). Subjects choose a
stimulus that matches one seen before the memory delay. Thus,
the action is not specified until after the memory delay, at the
moment of choice. Delay activity under these circumstances is
often less robust and less sustained (Shafi et al., 2007). Another
example is a common WM test used in humans: Change Detec-
tion (e.g., Luck and Vogel, 1997; Luria et al., 2016). A scene or
sequence of colored squares appears in different locations and
reappears in the same locations after the memory delay. The sub-
ject indicates whether a square changed color. Importantly, this
task demonstrates the defining characteristic of WM, its severely
limited capacity (approximately four squares, on average). Thus,
in our recent work, we used Change Detection (Lundqvist et al.,
2016). But we also used ODR and WM for object sequences; all
showed evidence of sparse, not persistent, activity (Lundqvist et
al., 2016, 2018; Bastos et al., 2018; see below).

This evidence resulted from a different way of looking at data.
Most prior studies of WM averaged spiking across trials. The
assumption is that spike rate is important, but timing is not. This
is a valid assumption if one studies spike rate. However, averaging
across trials can create the appearance of persistent spiking even
when, in real time (on individual trials), spiking is actually sparse
(Lundqvist et al., 2016). Therefore, we and others (Shafi et al.,
2007; Stokes and Spaak, 2016) have argued the importance of
examining activity on individual trials. As we will see, this re-
vealed sparseness, not persistence, both for single neurons and
local networks; activity occurs in sparse, synchronous bursts. We
contend that trial-averaged data cannot be used to demonstrate
persistent activity.

But there are examples of single neurons that seem to show
persistence on individual raster plots of individual trials, right?
Yes, but it is important to keep in mind that many of these exam-
ples come from the ODR task (which has a motor component; see
above) and single-electrode experiments. When one records
from one electrode at a time, one is naturally biased toward ex-
amining the neurons that seem to have the property of interest,
skewing the sampling. Plus, “example” neurons are often “best
of,” not a typical member of the population. Multiple-electrode
recoding mitigates sampling bias because it allows recording
from up to 100s of neurons simultaneously. Multiple-electrode
studies have reported that the bulk of neurons spike sparsely,
even when trial-averaging is used (Shafi et al., 2007; Hussar and
Pasternak, 2012; Schmitt et al., 2017).

In sum, previous work has provided valuable data supporting
a central role for delay activity in WM. However, much of it
cannot be considered strong evidence for persistent activity per
se. This is because of the use of tasks with a motor component,
uneven sampling of neuron populations, and, especially, because
activity was averaged across trials. Persistence versus sparseness is
an issue that can only be truly resolved on individual trials.

Issues with persistent activity for WM storage
Persistent activity has been modeled in neural attractor networks
where excitatory connections between units allow the activity
ignited by an input to linger in a stable, self-sustaining state (Amit

and Brunel, 1997; Wang, 1999; Compte et al., 2000; Renart et al.,
2007; Barbieri and Brunel, 2008; Lundqvist et al., 2010; Wimmer
et al., 2014). Models based on known PFC connectivity rely on
fixed-point (Amit and Brunel, 1997; Compte et al., 2000; Lund-
qvist et al., 2010) or line attractor (Druckmann and Chklovskii,
2012) dynamics. One of these, the bump attractor model (Compte
et al., 2000), made a number of detailed, successful predictions relat-
ing to error trials and the precise spike patterns observed (Wimmer
et al., 2014). Overall, models of persistent activity can reproduce the
irregular firing patterns observed experimentally (Renart et al., 2007;
Barbieri and Brunel, 2008; Lundqvist et al., 2010).

A central idea in these models is that spiking is asynchronous:
individual neurons may spike sparsely; but by doing so at differ-
ent times, together they fill gaps in time over which the memories
are held. There are some issues with this idea, however. First,
persistent spiking is metabolically expensive. Second, in attractor
dynamic models, the memory tends to be lost when activity is
disrupted. A distracting sensory input may knock the dynamics
out of the stable attractor state; and without any additional mech-
anisms to retain the memory, it cannot be recovered. Third, per-
sistent attractor dynamics models have difficulty storing more
than one item at a time. It is true that WM is capacity-limited and
can only hold a few items at a time, but attractor dynamic models
have difficulty, with even two items. Bump attractor models,
originally proposed for visuospatial WM, have been shown to
store multiple locations if there is no overlap in their neural rep-
resentations and thus they are held by different networks
(Almeida et al., 2015). Nearby attractors, however, tend to melt
into one. This has been proposed to explain the capacity limita-
tions of WM (Edin et al., 2009). But it is still problematic for
representations that are highly overlapping as has been seen in the
PFC, at least for nonspatial information (Warden and Miller,
2010; Rigotti et al., 2013). Any universal model of WM thus needs
to deal with overlapping representations. Otherwise, it is only a
special-case model.

Experimental observations and models of
nonpersistent activity
Two major observations argue against the idea that the brain
simply latches onto a sensory input and maintains it by persistent
spiking per se. First, the activity of neurons during WM tasks is
sparse and not asynchronous. Local networks exhibit brief coor-
dinated bursts of WM-related activity followed by extended pe-
riods of quiescence. Second, neuron populations do not maintain
whatever pattern of activity was initiated by a sensory input. The
population code evolves and changes with time, additional in-
puts, and task demands. Below, we provide experimental support
for these two ideas.

Transient activity: observations
A key question is whether neuron populations together fill the
memory delay with spikes, thus providing persistent activity on
the population level. The cortex operates in a regimen with ap-
proximate balance between excitation and inhibition, leading to
highly irregular spiking from single neurons (Compte et al.,
2003). However, cortex is thought to be organized into local re-
currently connected clusters of neurons with similar response
properties (e.g., Goldman-Rakic, 1995). Incorporating this in
models operating in a balanced regimen can lead to neurons in
each local cluster taking turns firing (i.e., asynchronously) with
the cluster, as a whole, showing persistent activity (Renart et al.,
2007; Barbieri and Brunel, 2008; Lundqvist et al., 2010). Thus, the
question at hand is whether this actually occurs in the brain,
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whether neural spiking is truly asynchronous and persistent in
local clusters of neurons.

It is therefore essential to examine activity in “real time” on
single trials (Shafi et al., 2007; Lundqvist et al., 2016). In past WM
studies, activity has been averaged with regard to external events
like a sensory input. Thus, the timing of spiking that is not time-
locked to external events has not been considered. The brain has
its own internal dynamics that are not time-locked to external
events, and varies from trial to trial, particularly in higher-order
cognition. Averaging such activity across trials can give the im-
pression of persistent activity, even when the underlying signal is
actually sparse (Lundqvist et al., 2016).

We also need to measure activity in local networks, not just single
neurons. This can reveal whether local populations of neurons spike
asynchronously or, instead, show sparse, coordinated, spiking. Local
field potentials provide a measure of local network activity (Legatt et
al., 1980; Singer and Gray, 1995). One interest is narrow band
gamma oscillations (40–100 Hz) because they have been associated
with sensory signals in sensory cortex (Gray and Singer, 1989; Fries et
al., 2008) and the encoding (Howard et al., 2003; Sederberg et al.,
2003) and maintenance (Pesaran et al., 2002; Jensen et al., 2007;
Honkanen et al., 2015; Lundqvist et al., 2016; Wutz et al., 2018) of
sensory information in WM. Importantly, these oscillations have
also been closely associated with spiking carrying information about
WM memoranda (Lundqvist et al., 2016). Thus, the gamma oscilla-
tions can be used as a measure of whether WM-related spiking is
synchronous or asynchronous at the local network level. Even when
averaged, it is clear that gamma oscillations are not stationary during
WM retention. They wax and wane, often modulated by lower-
frequency oscillations in the theta and � bands (Canolty et al., 2006;
Axmacher et al., 2010). This suggests that the associated spiking is
sparse and periodic, not asynchronous.

Single-trial analyses reveal even more sparseness (Lundqvist et
al., 2016, 2018; Kucewicz et al., 2017; Bastos et al., 2018). There
are brief bursts of elevated gamma surrounded by periods of
relative silence. The gamma bursts are narrow-band and thus not
simply a reflection of the spike waveforms. They reflect coordi-
nated activity in local networks. These gamma episodes co-occur
with increased spiking and stimulus information in spiking
(Lundqvist et al., 2016, 2018; Bastos et al., 2018). Thus, although
it may appear so with trial averaging, WM-related activity is not
asynchronous and persistent over a delay. Local networks of neu-
rons instead show coordinated bursts of activity that are transient
and sparse. Indeed, we re-created the appearance of persistent
activity by averaging across trials, even though the underlying
activity was anything but (Lundqvist et al., 2016). We have found
sparse WM-related spiking/gamma-bursting using a variety of
WM tasks: ODR (Lundqvist et al., 2016; Bastos et al., 2018),
Change Detection (Lundqvist et al., 2016), and WM for object
sequences (Lundqvist et al., 2018).

The rate of these transient gamma bursts/spikes is correlated
with WM functions, such as encoding of information, its readout,
clearing out of WM, and switching the contents of WM (Lund-
qvist et al., 2018). For example, spiking tends to “ramp up” to-
ward the end of WM delays (Chafee and Goldman-Rakic, 1998;
Shafi et al., 2007; Watanabe and Funahashi, 2007; Barak et al.,
2010; Warden and Miller, 2010). This has been interpreted as a
“turning up of the volume” of persistent activity. But others have
argued that it indicates that delay activity is more of a readout or
preparatory, rather than memory storage mechanism (Stokes,
2015). We have shown that this ramp up is mediated by an in-
crease in the rate of sparse, transient, bursts of activity on single
trials, not by a gradual increase in WM-related activity. Related

observations have been made in studies of decision-making (La-
timer et al., 2015). By measuring deviations from these burst
rates, we could predict forthcoming errors in more detail than
from spiking alone (Lundqvist et al., 2018).

Thus, WM maintenance seems to involve sparse, transient co-
ordinated activations of local neurons rather than asynchronous
persistent activity. This is consistent with models where “packets” of
information are reactivated pseudo-randomly (Mongillo et al., 2008;
Lundqvist et al., 2011). Indeed, neural information about different
items in WM phase-lock to different phases of slower oscillations
(Siegel et al., 2009; Bahramisharif et al., 2017). In other words, dif-
ferent items are multiplexed in time, as if the brain were juggling
them, at odds with persistent activity models.

We have focused on the activity of local networks. We argue
that this is the critical level because much of the brain’s compu-
tations takes place on a local level and the cortex is thought to be
organized into local clusters with shared tuning properties
(Kritzer and Goldman-Rakic, 1995; Constantinidis et al., 2001).
One might argue, however, that, even though activity is not lo-
cally persistent, it may be on a more global scale. In other words,
transient local activity could be counterbalanced by activity in
other parts of a larger network so that global activity is persistent.

This is, of course, hard to completely rule out. There is, how-
ever, evidence against this argument. Even when activity is aver-
aged over trials, it is apparent that seemingly persistent spiking is
labile and easily disrupted. Distracting animals during a memory
delay by having them attend to task-irrelevant stimuli abolished
WM-related spiking (Watanabe and Funahashi, 2014; Spaak et
al., 2017). Yet, when attention returned to the WM (i.e., during
their readout), elevated spiking returned. Noninvasive EEG re-
cordings of global activity have revealed that, for extended peri-
ods of time, information held in WM cannot be decoded.
However, when the area is “pinged” by a task-irrelevant stimulus,
the network “rings” back with the WM information (Stokes et al.,
2013; Rose et al., 2016; Sprague et al., 2016; Wolff et al., 2017),
suggesting that sustained activity is not necessary to maintain the
memories.

Thus, while delay activity spiking does seem to play a role in WM
maintenance, its inability to truly bridge gaps in time suggests that
other mechanisms of storing information are also at play.

Transient activity: models
Models of transient dynamics explain the sparseness in spiking.
WMs are maintained between sparse episodes of spiking by
spike-induced changes in synaptic plasticity (Sandberg et al.,
2003; Mongillo et al., 2008; Lundqvist et al., 2011) or cellular
mechanisms (Lisman and Idiart, 1995). In other words, in these
“synaptic attractor” models, spikes leave an “impression” in the
networks that maintains WM information between spiking.

Not only is this metabolically less expensive, these models are
better equipped to handle multiple items in WM because over-
lapping representations can be multiplexed in time (taking turns
being active or silent). The limitation in WM capacity is ex-
plained by limitations in replay time (Lundqvist et al., 2011; Mi et
al., 2017) as items need to be reactivated to “refresh” the decaying
synaptic changes. Increased rate of gamma-bursting with mem-
ory load is consistent with this (Lundqvist et al., 2016). In a model
by Lisman and Idiart (1995), instead, each WM item is held in a
different gamma cycle. The number of gamma cycles is limited by
a cycle of an underlying theta rhythm. In contrast to most WM
models, both these models account for network oscillations in
addition to spiking and thus offer explanations for why gamma-
band power increases with WM load (Howard et al., 2003).
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Synaptic attractor models offer other benefits. Because mem-
ories are not exclusively held in spiking, synaptic attractor models
are resistant to disruption by additional sensory inputs. The time
multiplexing of different WM items aids in information readout
because each ensemble is dynamically separated in time. This
avoids the problem of reading out information from mixed ac-
tivity from the superposition of multiple items, which may be
problematic when novel combinations of items are considered.
These models have not yet explicitly incorporated dynamic cod-
ing, the change in population coding of WM content.

Dynamic coding: observations
Another argument against a straightforward persistence model is
that WM-related activity evolves over time. In the strong model
of persistent activity, a sensory input is maintained by the same
ensembles that were activated by the input. However, during WM
tasks, neural population codes change over time as well as with
task demands (Barak et al., 2010; Stokes et al., 2013; Cavanagh et
al., 2017; Spaak et al., 2017).

There are two neural behaviors that have been linked to an
evolving population code. First, information is carried by a se-
quence of brief activations of single neurons so that one neuron
activates another with similar tuning properties forming a cas-
cade of activity (Shafi et al., 2007; Barak et al., 2010; Cromer et al.,
2010; Harvey et al., 2012; Hussar and Pasternak, 2012). Second,
individual neurons can change their tuning. For example, a neu-
ron that responds to a certain location or stimulus during sensory
input may instead respond more strongly in the delay to other
stimuli/locations. Experimental evidence shows that both these
mechanisms contribute to dynamic changes in population codes
(Barak et al., 2010; Cavanagh et al., 2017; Parthasarathy et al.,
2017; Spaak et al., 2017).

Changes in a population code are evaluated by training decod-
ers on population spiking. The simultaneous spiking of all neu-
rons is used as input, typically combining neurons across
multiple recording sessions (Stokes et al., 2013). If a decoder
trained on data at one time point does not perform well at an-
other time point, there has been a change in the population code.
This revealed that the population code can quickly change after
the initial sensory input is removed (Stokes et al., 2013; Cavanagh
et al., 2017; Murray et al., 2017; Parthasarathy et al., 2017; Spaak
et al., 2017). During the middle of a memory delay, the popula-
tion code tends to settle into a relatively stable state and decoders
generalize significantly across neighboring time points. However,
overall decoding performance (information) is often relatively
low. Multivariate analysis of human MEG activity revealed a sim-
ilar pattern, with a slowly, yet continuously evolving, code during
a 4 s delay (Trubutschek et al., 2017).

Despite population code changes, it is possible to find a linear
combination of neurons that will then maintain a stable code during
memory delay (Murray et al., 2017). This has been deemed a “stable
subspace.” It has been taken as evidence for line attractors congruent
with persistent activity hidden in the overall heterogeneous neural
dynamics. In other words, there can be stable readout from delay
activity from subsets of population activity.

However, as noted above, a major challenge for models of
persistent activity is its lack of compatibility with distractors or
storage of multiple items. The stable subspaces have been dem-
onstrated with “empty” memory delays without additional in-
puts. WM in the real world, in contrast, involves potential
distractions as well as encoding of additional items. These addi-
tional inputs and demands result in drastic changes in the popu-
lation code, even in the middle of a WM delay. Classifiers trained

on time points before the additional inputs or distractors do not
perform well on time points following it (Cavanagh et al., 2017;
Parthasarathy et al., 2017). This change in coding is consistent
with mixed selectivity (Warden and Miller, 2010; Rigotti et al.,
2013) where individual neurons are sensitive to the combination
of multiple behavioral conditions and items.

This means that WM needs to also be studied in richer exper-
imental paradigms. Much of the evidence for stable coding comes
from simple tasks that only require memory for a single item over
a blank delay. While simple tasks would favor the persistent ac-
tivity model, the model cannot explain all aspects of the observed
activity during richer tasks. Dynamic coding seems to dominate
during more complex tasks with multiple stimuli. A comprehen-
sive model has to account for these more complex situations
more like those encountered in the real world.

Dynamic coding: models
Models that use dynamic coding include random, recurrent net-
works relying on “chaotic” dynamics. These networks do not
maintain a fixed activity in response to inputs. Instead, activity
evolves chaotically following inputs (Barak et al., 2013). Chaotic
activity is not random but deterministic, dependent on starting con-
ditions. This allows a trace of past events that have perturbed the
system to persist, even if the initial state has vanished. This can lead to
neurons that change tuning over time, as observed experimentally
(Barak et al., 2010; Cavanagh et al., 2017; Spaak et al., 2017).

The evolution of activity in chaotic networks poses a challenge
for readout of information. Downstream decoding neurons would
have to dynamically adjust readout over time. This problem can be
mitigated for a well-defined memory task with a consistent structure
so that the decoder can adapt in a predictable fashion. But relying on
trained classifiers for WM readout may still be problematic. It would
require retraining of the decoder if novel items or new combinations
of familiar items are stored. Humans and other animals have no
problem-solving WM tasks with novel items.

In addition to models relying on chaotic activity, synfire chain
networks have been proposed (Prut et al., 1998; Goldman, 2009;
Rajan et al., 2016). In these models, activity is transferred from
different subpopulations that share tuning. This results in a chain
of activity, unique to each stimulus held in WM. Synfire chains
have been used to explain observations that neurons fire over a
small portion of a delay (Cromer et al., 2010; Hussar and Paster-
nak, 2012; Schmitt et al., 2017; Lundqvist et al., 2018) and the
occurrence of repeating, precise temporal firing patterns (Prut et
al., 1998). However, individual neurons that change preference
over time (which has been observed), or after an additional stim-
ulus, is not a straightforward prediction of these models. In short,
experimental observations of dynamic coding can be partly re-
produced but pose a challenge for many existing WM models.

Principles for further work
Several experimental observations have given support to various
competing models (Wimmer et al., 2014; Lundqvist et al., 2016;
Bahramisharif et al., 2017; Murray et al., 2017; Schmitt et al.,
2017; Trubutschek et al., 2017). In our view, no model has yet
explained all the neurophysiological observations. Clearly, more
work is needed. We here aim to suggest some guidelines for fu-
ture work on WM. They can provide the necessary data needed to
distinguish between different models and whether or not WM
depends on persistent activity.

1. Assessment of network dynamics. Different models of WM
posit either asynchronous activity (persistent activity) or
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brief, coordinated, transient bursts of activity (transient
dynamics). Other models posit shifts in population code,
including different chains of neurons activating for different
memoranda. One cannot observe these dynamics studying
one neuron at a time. Our ability to record an increasing
number of neurons simultaneously will be critical. Multielec-
trode recordings will allow this assessment, especially when
used in conjunction with recordings of local field potentials
whose activity provides an index of the dynamics of the net-
works in which the neurons are embedded.

2. Single-trial analyses. Different models make distinct claims
about the details of the dynamics of neural activity. One
cannot assess them by averaging activity across trials and
different recording sessions. This obscures the very dy-
namics needed to test the models (Stokes and Spaak, 2016).
Do not get us wrong — averaging across trials is useful and
necessary for many questions. But one cannot make
claims, for example, about whether WM-related activity is
persistent or sparse by only using trial-averaged data. Av-
eraging can create the appearance of persistent activity if
there is none. Similarly, due to cofluctuations, dynamic
coding is best evaluated on single trials from simultane-
ously recorded neurons, rather than combining neurons
across recording sessions.

3. Complex WM tasks. In the classic WM test, there is a single
memorandum and a “blank” memory delay of �1 s. This
provided us with a wealth of information about the funda-
mentals of WM physiology. The pioneers who introduced
and used these tests have been rightly lauded for their
groundbreaking work. However, inevitably, the more we
learn about any phenomenon, the more complex it turns
out to be. We know now that requiring that multiple items
be held in WM, the requirement to ignore distractions, etc.
has a big effect on neural activity. The classic tests were
never meant to approach the complexity of WM in the real
world. But they have taught us enough so that we now add
more real-world elements to our experimental efforts.

4. Taking neural rhythms into account. Some models assume
asynchronous spiking or rate coding. However, the brain
oscillates across a wide range of frequencies. A large num-
ber of experimental observations have shown that these
oscillations are modulated during WM and, in turn, mod-
ulate spiking. This poses important constraints to WM
models. Models should ideally provide a comprehensive
explanation of the neurophysiology associated with WM,
including associated oscillatory dynamics.

In conclusion, past work has revealed that spiking activity in the
absence of sensory stimuli plays a critical role in WM. Nothing we
have said here changes that. Instead, new analytical techniques, ob-
servations, and models have given us additional insights. What nat-
urally follows is an updating of our existing models.

Response From Dual Perspectives Companion Author–
Christos Constantinidis

Lundqvist et al. argue that persistent activity cannot main-
tain information and that gamma-band bursting is the crit-
ical neural correlate in the delay period of WM tasks,
instead. We present the opposing view in the companion
article but wish to respond here to four arguments that are
particularly problematic.

1. First, Lundqvist et al. (2018) claim that robust persistent activ-
ity is generated only in the ODR task, which confounds stimu-
luspresentationwithmotorpreparation.Theycherry-pickthe
literature and ignore every report of persistent activity in tasks
that dissociate the two factors, such as match-nonmatch tasks.
Studies sampling hundreds of neurons in an unbiased fashion
reveal robust persistent activity, qualitatively similar with that
generated in the ODR task (Meyer et al., 2011; Mendoza-
Halliday et al., 2014).

2. Lundqvist et al. (2018) suggest that gamma-band bursting is
advantageous because it is sparse and metabolically inexpen-
sive.First,modulationinthelocalfieldpotentialduringthede-
layperioddoesnotimplythattheunderlyingspikingactivityis
“sparse.”Evenifthatweretrue,Lundqvistetal.argueherethat
gamma-band bursting ought to be the neural correlate of WM
but offer little evidence that it actually is. The rate of gamma-
bursting in the delay period was not predictive of correct or
erroneousrecallinanyWMtasktestedbytheauthors.Inthose
instances where error data are presented, gamma-band burst-
ing in the delay period is indistinguishable in correct and error
trials (Lundqvist et al., 2018). Counterevidence exists show-
ing that gamma power is not predictive of WM perfor-
mance (Ma et al., 2018).

3. Lundqvist et al. (2018) also suggest that attractor models
that stimulate the generation of persistent activity have dif-
ficulty representing multiple items stored in memory or fil-
tering distractors. This is an argument against simple,
recurrent-network models rather than the role of persistent
activity per se, but Lundqvist et al. miss how successful such
models have been, precisely because they link persistent ac-
tivity with behavioral performance.

4. Finally, Lundqvist et al. (2018) claim that studies successfully
decoding stimulus information from delay period firing
rate are flawed because they rely on neurons recorded asyn-
chronously. Persistent activity has been documented in
multielectrode recordings, and simultaneous firing can en-
code information equally well (Leavitt et al., 2017). Lund-
qvist et al. also fail to provide evidence that information can
be decoded from gamma-bursting and that this measure is
superior to firing rate.
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