to the retention of information

tion and retention have been confounded

AMI) or outside the focus of attention (unattended memory item, UMI)

Peacock and Postle, 2012)

ing to UMI to which fMRI is insensitive

• The EEG data was filtered and cleaned with ICA to remove electrical, ocular and muscular artifacts wavelets (1-50Hz) with .5 second windows the classifier guessed correctly58.85

Decoding attended vs. unattended information from working memory Joshua J. LaRocque and Bradley R. Postle Neuroscience Training Program, Departments of Psychology and Psychiatry, University of Wisconsin - Madison

11 ┣ ◀ endure → ◀ endure 11 target (2 s)

jlarocque@wisc.edu

 Statistical tests performed for the indicated category vs. baseline (***p<.001*)

• Before the cue, evidence for both items is initially above baseline

• After the first cue, evidence for the cued category (AMI) rises and evidence for the uncued category (UMI) falls to baseline

• On cue switch trials, after the second cue evidence for the initially uncued item reappears

No evidence was found for items retained outside the focus of attention. This supports the view that a sustained, active trace is not necessary for working memory retention.

0 sec

References

Lewis-Peacock, J.A. and Postle, B.R. (2012) Decoding the Internal Focus of Attention. Neuropsychologia, 50: 470-478. Curtis, C.E. and D'Esposito, M. (2003) Persistent Activity in the Prefrontal Cortex During Working Memory. *Trends in Cognitive Sciences*, 7(9) 415-423.

NIH MH064498 (B. R. P.), Wisconsin Distinguished Rath Graduate Fellowship (J.J.L.)

We gratefully acknowledge the contributions of Jarrod Lewis-Peacock to the design of this experiment.

20

15