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ulus location is not always informative during visual short-term
memory (VSTM) for nonspatial features. Nevertheless, there is con-
siderable evidence for the automatic encoding and retention of loca-
tion information, regardless of its task relevance. To explore the
functional and neural bases of the representation of spatial context in
VSTM for nonspatial information, functional magnetic resonance
imaging was performed while subjects performed delayed recall for
the orientation of individual stimuli. Stimulus location varied across
trials, and although this information was irrelevant for task perfor-
mance, multivariate pattern analysis decoding of stimulus location
sustained across trials, and also the decoding strength, predicted the
precision of the recall of orientation. The influence of spatial context
on the representation of orientation was operationalized by comparing
the orientation reconstructions with multivariate inverted encoding
models (IEM) trained in location context-dependent vs. -independent
data. Although orientation reconstructions were robust for both loca-
tion-dependent and location-independent IEMs, they were markedly
stronger for the former. Furthermore, the functional relevance of
location context was demonstrated by the fact that only the location-
dependent neural representations of stimulus orientation predicted
recall precision.

NEW & NOTEWORTHY Neural representation strength of stimu-
lus location predicts the precision of visual short-term memory
(VSTM) recall of nonspatial stimulus, even when this information is
task irrelevant. Neural representations of nonspatial stimuli that in-
corporate location context are stronger than those that do not, and only
the former representations are strongly linked to behavior. The con-
tributions to nonspatial VSTM performance of the representation of
location context are at least partly distinct from those of the repre-
sentation of stimulus content.

inverted encoding model; location context; visual short-term memory

INTRODUCTION

In the physical world, every object that we perceive and
interact with occupies a location in space. Sometimes this
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spatial context is critical for stimulus individuation and/or for
guiding our behavior, and sometimes it is irrelevant. However,
the evidence has been mixed about whether, when spatial
context is not needed to the task, this information is nonethe-
less encoded and retained in visual short-term memory
(VSTM). Consistent with the idea that spatial context may be
obligatorily encoded into VSTM is the finding from delayed
recognition of a single item that response time (RT) is shorter
when the location of the probe is congruent vs. incongruent
with that of the sample (Olson and Marshuetz 2005). Similarly,
subjects respond more quickly to a color probe when it appears
at the same location as had the critical item from the sample
array (Theeuwes et al. 2011). Other studies, however, suggest
that the sensitivity of VSTM to spatial context may vary with
testing conditions. One study demonstrated that spatial congru-
ity effects were apparent only when the sample-to-probe inter-
val was less than 1 s (Logie et al. 2011). A second study argued
the spatial context only influenced VSTM performance on
tasks in which it was implicitly emphasized by the experimen-
tal procedure, such as when a cue box surrounded one of the
items in the test array, indicating the item that might have
changed (Woodman et al. 2012). Finally, a third study reported
spatial congruity effects were only seen for the most recently
presented item in a serially presented memory array (Postle et
al. 2013).

At the theoretical level, two recent computational models
have posited that context at encoding may be obligatorily
incorporated into mnemonic representations. One is a connec-
tionist model in which stimuli are represented in each of two
layers, a feature layer that represents object identity and a
context layer that represents spatial and/or temporal context. It
is the strength of the bindings between the two layers that
determines how strongly the stimulus is held in VSTM (Ober-
auer and Lin 2017). A second is a neural field model in which
different populations of neurons represent the conjunctions of
one object feature and that feature’s location. This model
generalizes beyond VSTM by positing that the core object-
representation function of feature binding is accomplished via
these mappings of discrete features to a common set of location
coordinates (Schneegans and Bays 2017).

Recent advances in the application of “information-based”
multivariate data analysis methods have made it possible to
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evaluate multiple dimensions of stimulus representation. For
example, one study applying multivariate pattern analysis
(MVPA) to functional magnetic resonance imaging (fMRI)
data has provided evidence for the spontaneous neural repre-
sentation of visually presented objects with visual, phonolog-
ical, and semantic codes (Lewis-Peacock et al. 2015), consis-
tent with theoretical models of “multiple encoding” in human
memory (Wickens 1973). For the neural representation of
object location, two sets of studies are particularly germane.
First, Ester et al. (2009) have demonstrated that, with MVPA
of fMRI data, the orientation of an attended object could be
decoded from primary visual cortex in the hemisphere ipsilat-
eral to the visual field in which it had been presented, thereby
revealing the representation of object information independent
of that object’s spatial context. Second, Foster et al. (2017)
used inverted encoding models (IEM) to reconstruct, from
electroencephalography (EEG) data, persistent representation
of stimulus location during a VSTM task in which location was
task irrelevant. However, the functional role of this “irrelevant”
location context information is still unclear.

In the present study, we investigated ways in which the
VSTM representation of a nonspatial feature is influenced by
the representation of its (task irrelevant) spatial context. fMRI
data were acquired while subjects performed delayed recall of
the orientation of a bar, in which the stimulus location was task
irrelevant. The strength of the neural representation of location
context was estimated with MVPA, and the location-dependent
and location-independent neural representations of orientations
were estimated separately by reconstructions of the sample
orientation with IEMs.

MATERIALS AND METHODS
Subjects

Sixteen right-handed volunteers, 8 women, aged 18-25 yr [mean
(SD) = 20.50 (1.78)], from the University of Wisconsin—Madison
community participated in the study for remuneration ($20/h). All
subjects provided written informed consent according to the proce-
dures approved by the Health Sciences Institutional Review Board at
the University of Wisconsin-Madison. Subjects had normal or cor-
rected-to-normal vision, no contraindications for MRI, and no re-
ported history of neurological or psychiatric disease.

Behavioral Procedures

Task. Each trial of the delayed-recall task began with the presen-
tation of a black bar (duration 4 s, length 4°, width 0.08°; rendered as
the diameter of a white circular patch), equiprobably and unpredict-
ably at one of four possible locations, each in one quadrant of the
screen, and each with horizontal and vertical eccentricities from
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fixation of =5°. Also equiprobable and unpredictable, and varying
independently of location, was the orientation of the sample bar,
which could appear in one of nine orientations (ranging from 0 to 160°
in 20° increments, with jitter of =1-5°, determined randomly on each
trial). The 8-s delay period began with a mask (200 ms:18 black
0.08° X 4° bars, intersecting at their midpoints and each differing in
orientation from its neighbors by 10°) presented at the same location
as the sample. Recall was prompted with the onset of a display
comprising a circular patch (reappearing in the same location as the
sample) and a response wheel (also centered on fixation, with a radius
to the outer edge of 9.2° and a width of 2°) that contained 20 equally
spaced black bars (0.05° X 1.8°), ranging in orientation from 0 to
171° in 9° increments. The location on the wheel of the 0° bar varied
unpredictably from trial to trial, to prevent action planning during the
delay. Subjects were instructed to treat the ring as a continuous
orientation space, and to indicate recall of the sample orientation by
selection of the appropriate point along the response wheel with an
MR-compatible trackball, within a 4-s response window. As soon as
the trackball began to move, a bar appeared within the circular patch
with an orientation, updating in real time, matching the orientation on
the wheel that was highlighted by the cursor. RT was computed as the
latency between response wheel onset and mouse click. Feedback
indicating the error between the response and the sample orientation
(in degrees) was presented immediately after the response until the
end of the 4-s response window. The intertrial interval lasted for 8 s.
Throughout the trial, a black fixation cross appeared in the center of
the screen, and subjects were instructed to maintain fixation through-
out each trial (Fig. 1).

Trials were blocked into 18-trial blocks (each orientation appearing
twice per block; 7 min 12 s), and subjects performed 20 scanned
blocks across two separate fMRI scanning sessions, each scanning
session lasting ~1.5 h and the two were separated by 2-28 days. The
data reported herein were collected as part of a larger experiment in
which subjects also performed load-of-3 trials in one of two condi-
tions: “homogeneous” trials, in which three orientation stimuli were
presented simultaneously as samples, and “heterogeneous” trials, in
which one orientation, one color, and one luminance stimulus were
presented simultaneously as samples. On load-of-3 trials, a stimulus
occupied three of the four possible sample-presentation locations.
Recall was prompted by a recall display comparable to that illustrated
in Fig. 1, with the identity of the stimulus to be recalled indicated both
by the appearance of a circular patch in the location that had been
occupied by the critical item and, for heterogeneous trials, also by the
stimulus domain presented in the response wheel. During the first
scanning session, subjects were first scanned while performing 4
blocks of 3-item trials and then 8 blocks of 1-item trials. In the second
fMRI scanning session, they performed an additional 12 blocks of
1-item trials. Although the results from 3-item trials will be presented
elsewhere, the relevance for this report is that because they preceded
scanning of 1-item trials, they may have influenced strategy on 1-item
trials.

All the experimental stimuli were controlled by the Psychophysics
Toolbox (http://psychtoolbox.org; Brainard 1997) running in MATLAB
(MathWorks), presented using a 60-Hz projector (Silent Vision 6011;

Fig. 1. Schematic illustration of the behavioral task.
Dotted circles indicate the other possible stimulus
presentation locations, but they were not presented
during the experiment. TR, repetition time.
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Avotec), and viewed through a coil-mounted mirror. The viewing dis-
tance was 68.58 cm and screen width was 33.02 cm.

Data analysis. Behavioral performance was assessed using a two-
factor mixture model that estimated the proportion of responses made
to the sample [i.e., the probability of a target response (Pr); the
balance classified as “guess” responses] and the precision of these
target responses (the variability of recall error) (Zhang and Luck
2008). Parameter estimates were obtained using maximum-likelihood
estimation (expectation maximization) using MATLAB routines
available at https://www.bayslab.com. Responses were entered for
each trial, and separate estimates were obtained for each subject.
Trials lacking a response, and those with raw error distances larger
than 3 SD from the mean were excluded from the model-fitting
process. On average, 4.62 trials (SD 2.07), out of the 360 trials
performed, were excluded per subject.

Overview of hypothesis tests. To investigate the role of location
context in VSTM, we carried out several analyses. First, to address
whether stimulus location might influence nonspatial VSTM perfor-
mance, we estimated the strength of the neural representation of
sample location with MVPA and, for time points with successful
decoding, regressed location MVPA performance against the preci-
sion of the behavioral response. This first analysis was also planned as
a hypothesis-generating analysis, the results of which we would use to
identify a priori time points at which to carry out the analyses that
directly assessed location context binding. Second, we investigated
the neural representation of orientations and the role of location
context in these representations. IEM reconstructions were used for all
these analyses to quantify the strength of neural representations of
orientation in different brain areas and in different conditions. The
first step was to establish that IEM reconstructions of stimulus
orientation were related to the recall of stimulus orientation. Assum-
ing success, the next step would be to compare the reconstruction of
sample orientation by IEMs that were trained with stimuli presented in
the same location on the screen (“location dependent”) vs. IEMs that
were trained with stimuli presented at different locations on the screen
(“location independent”). The logic of this approach was that the
mapping between high-dimensional patterns of blood oxygen level-
dependent (BOLD) activity and the span of orientations varying from
0° to 179° that is learned by a location-dependent model may
implicitly reflect the location context that was common to each of the
trials in that model’s training set. That is, the location-dependent
models would be expected to be biased by stimulus location. A
location-independent model, however, could not contain such infor-
mation, because it would only be able to successfully reconstruct test
orientations if, during training, it had learned to ignore any structure
in the data that was location specific. To train location-independent
IEMs, we randomly divided all trials into four groups and then trained
IEMs on the data from just one of the four groups, to equate the
number of trials used to train location-independent and location-
dependent IEMs, and averaged the reconstruction results across the
four sub-IEMs. Additionally, we addressed whether neural represen-
tations that contained congruent or no location context were differ-
ently predictive of behavioral performance. All of these analyses were
carried out separately in occipital, parietal, and frontal regions of
interest (ROIs).

JMRI Methods

Data acquisition. Whole brain images were acquired with a 3-T
MRI scanner (Discovery MR750; GE Healthcare) at the Lane Neu-
roimaging Laboratory at the University of Wisconsin—-Madison. For
all subjects, a high-resolution T1-weighted image was acquired with
a fast spoiled gradient-recalled echo sequence [repetition time
(TR) = 8.2 ms, echo time (TE) = 3.2 ms, flip angle = 12°, 160 axial
slices, 256 X 256 in-plane, 1.0 mm isotropic]. A T2*-weighted
gradient echo pulse sequence was used to acquire data sensitive to the
BOLD signal while subjects performed the VSTM task (TR = 2,000
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ms, TE = 25 ms, flip angle = 60°, within a 64 X 64 matrix, 39
sagittal slices, 3.5 mm isotropic). Each of the 20 fMRI scans generated
213 volumes.

Preprocessing. tMRI data were preprocessed using the Analysis of
Functional Neuroimages (AFNI) software package (https://atni.nimh.
nih.gov; Cox 1996). All tasks runs were preceded by 4 s of dummy
pulses to achieve a steady state of tissue magnetization. All volumes
were spatially aligned to the first volume of the first run using a
rigid-body realignment and were then aligned to the T1 volume.
Volumes were corrected for slice-time acquisition, and linear, qua-
dratic, and cubic trends were removed from each run to reduce the
influence of scanner drift. For univariate analyses, data were spatially
smoothed with a 4-mm full-width at half-maximum Gaussian and
z-scored separately within run for each voxel. For MVPA and IEM
analyses, data were z-scored separately within run for each voxel, but
were not smoothed. All analyses were carried out in each subject’s
native space.

ROI generation. To operationalize the construct of location context
dependence, we generated functionally defined ROIs from voxels that
were specifically responsive to sample stimuli presented in each of the
four locations and from voxels that were not. First, we solved a
modified general linear model (GLM; implemented in AFNI) with
regressors modeling the sample-presentation and delay epochs as 4-
and 8-s boxcars, respectively, convolved with the canonical hemody-
namic response function supplied with AFNI. “Location-responsive”
voxels were then defined with the contrasts [Sample,,, e, jor, — base-
line], [Sample,,,,e; righe — baseline], [Sample, ., jore — baseline], and
[Sample, e, rigne — baseline]. “Location-general” voxels (needed for
spatial MVPA analyses) were identified with the contrast [(Sample, e, jer
Sampleuppcr right + Samplelowcr left + Samp]elowcr righl) - base]ine]' In
parallel, the standard anatomical masks for occipital, parietal, and
frontal cortex were obtained from the MNI152_T1_Imm template,
transformed to each subject’s individual structural image via affine
transformations (Jenkinson and Smith 2001), and further refined via
nonlinear interpolation (Andersson et al. 2007). Finally, anatomically
constrained functional ROIs were generated for each subject by
selecting the 400 voxels with the highest # values for the relevant
contrast that were located within each of the anatomical masks (Fig.
2A). The number of voxels per ROI was determined after [Sample —
baseline] contrasts from the GLMs, when thresholded at z > 2.58 and
P < 0.01, and yielded averages of 459, 361, and 328 voxels per
subject in occipital, parietal, and frontal cortex, respectively. The
pattern of results reported did not change appreciably when the
MVPA and IEM analyses were repeated with ROIs of 600 and 2,000
voxels. The number of voxels overlapping between location-respon-
sive and location-general ROIs was 150 (79), 287 (50), and 231 (69)
[mean (SD)] in occipital, parietal, and frontal cortex, respectively.

Pattern classification analysis for locations. To examine the neural
representation of sample location within the location-general ROIs,
which can also be construed as covert spatial attention, we trained
MVPA classifiers to discriminate among the four locations and
examined classifier sensitivity for each location using a leave-one-
run-out cross-validation approach. Classification was performed
within the location-general ROIs in occipital, parietal, and frontal
cortex using L2-regularized logistic regression with a lambda penalty
term of 25, implemented with the Princeton Multi-Voxel Pattern
Analysis toolbox (www.pni.princeton.edu/mvpa/) and custom rou-
tines in MATLAB.

MVPA cross-validation was achieved by training a classifier on
data from all runs but one, testing on the trials from the held-out run,
and rotating through all possible permutations. For each TR of fMRI
data, the classifier produced a probability estimate (from O to 1) of the
extent to which the observed pattern on the tested trial matched the
trained pattern for each of the trained locations. Significance of
classifier performance was determined using one-tailed, one-sample
t-tests, testing against chance performance of 0.25. To examine the
dynamical nature of the neural representation of location, each clas-
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Fig. 2. A: location-responsive regions of interest (ROIs), displayed on smaller images and labeled by sample location. Location-general ROIs, displayed on larger
images (middle), were generated by collapsing across these 4 trial types. LH, left hemisphere; RH, right hemisphere. B: blood oxygen level-dependent (BOLD)

signal intensity changes in 3 ROIs across the trial. TR, repetition time.

sifier trained on data from one time point in the trial was tested on all
time points across the trial, thereby generating a “temporal general-
ization matrix” (Cichy et al. 2014; Riggall and Postle 2012).

Finally, we explored whether variation in strength of this neural
index of covert spatial attention related to (nonspatial) orientation
recall performance. This was carried out, at each cell in the temporal
generalization matrix at which location decoding accuracy was sta-
tistically reliable at the group level, by regressing location MVPA
decoding accuracy against the behavioral precision of recall. These
analyses were planned as a hypothesis-generating step, to define a
priori the TRs at which we would perform direct tests of location
context binding (i.e., for analyses carried with IEM reconstructions of
orientation; described below).

Inverted encoding model analysis for orientations. Inverted encod-
ing modeling (Serences and Saproo 2012) allowed us to reconstruct
response profiles (termed channel tuning functions, or CTFs) that
tracked the perceived and remembered orientations from multivoxel
patterns of activity in each of the three ROIs. First, we extracted the
normalized responses of each voxel in each ROI for each time point.
Trials were sorted into one of nine bins based on stimulus orientation.
We next divided the data into “training” and “test” sets, using an
iterative leave-one-run-out approach, and modeled the measured re-
sponses of each voxel in the training set as a linear sum of nine
orientation ‘“‘channels,” each with an idealized response function.
Following the terminology of Brouwer and Heeger (2009), we esti-
mated the weight matrix mapping each voxel’s response to each
orientation channel from the training data set and then inverted this
matrix to estimate channel responses on each test trial. The average
response output for each channel across trials was obtained by
circularly shifting each response to a common center of 0°. To
generate smooth, 180-point CTFs, we repeated the encoding model
analysis 180 times and shifted the centers of the orientation channels
by 1° on each iteration (Brouwer and Heeger 2009). The CTFs were
averaged across permutations.

To quantify the neural reconstructions, we used linear regression to
estimate CTF slope, with slope values >0 interpreted as evidence for

an active neural representation (Foster 2017). Within each ROI,
statistical significance of CTF slope was assessed with a bootstrapping
method (Ester et al. 2015, 2016). For CTF slope estimates, within
each ROI, we randomly selected (with replacement) and averaged the
reconstructions across our 16 participants. This step was repeated
2,500 times, yielding 2,500 unique stimulus reconstructions. We then
estimated the CTF slope of each reconstruction, and a P value was
computed as the proportion of permutations for which the slope
estimates less than (or equal to) O were obtained, and P values
reported in RESULTS were false discovery rate (FDR)-corrected across
TRs and ROIs. In a manner comparable to our procedure with the spatial
MVPA analyses, IEMs were trained on data from each time point in the
trial, and then reconstructions were attempted at the same time point
(“diagonal reconstruction”) as well as all the other time points of the trial
(“off-diagonal reconstruction”).

Location-dependent vs. -independent IEM reconstructions of
orientations. To test whether location context modulated the neural
representation of orientation, we compared the neural reconstructions
of orientation with location-dependent vs. with location-independent
IEMs. More specifically, location-dependent reconstructions were
carried out within location-responsive ROIs and generated with data
from trials with the same sample location as that with which the [IEM
was trained (90 trials in each location, results collapsed across the 4
sample locations). Location-independent reconstructions, in contrast,
were carried out within location-general ROIs and generated with
IEMs trained on trials drawn from all four locations. To match the
number of trials used to train and test for each location-dependent
IEM, this procedure was carried out four times, each time with an
IEM trained on a different set of 90 trials (with an average of 22.5
trials drawn from each of the 4 stimulus locations), and reconstruc-
tions were carried out on data drawn from just a single stimulus
location, with the results then collapsed across the reconstructions of
data from the four locations. This operationalization of location
congruency allowed us to adjudicate among three possible outcomes.
First, orientation reconstructions might not differ between location-
dependent and location-independent IEMs. This would be consistent
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with the idea that VSTM representations of orientation are indepen-
dent of location context. Second, stimulus reconstruction might only
be successful for location-dependent IEMs. This would be consistent
with the idea that location context is integral to the VSTM represen-
tations of orientation. The third possibility is the intermediate out-
come, that location-independent reconstructions might be successful,
but quantitatively shallower in slope (and therefore of lower strength
and/or precision), than location-dependent reconstructions. This
would suggest an interactive influence of location context on the
working memory representation of orientation (see Fig. 4A). The
location-dependency analyses were conducted on diagonal recon-
structions.

We approached the statistical assessment of the influence of loca-
tion context on the representation of stimulus orientation by comput-
ing both frequentist and Bayesian statistics (Dienes and McLatchie
2017; Ziori and Dienes 2015). P values were generated with a
bootstrapping procedure whereby 2,500 permutations were applied to
CTF slope estimates for location-dependent and location-independent
reconstructions separately, and the results from each permutation were
subtracted. For these comparisons, because values were invariably
higher for location-dependent than location-independent reconstruc-
tions, one-tailed tests were conducted and P refers to the proportion of
the 2,500 subtractions for which the parameter of the location-
dependent reconstruction was greater than that of the location-inde-
pendent reconstruction. All the P values reported in RESULTS were
FDR-corrected across TRs and ROIs. Bayes factors (BF), which can
be understood as the ratio of the likelihood of the alternative hypoth-
esis compared with the null hypothesis, were computed to facilitate
the TR-by-TR comparison of spatial congruency across IEM param-
eters, for each brain region. For these analyses, BFs with values >1
would indicate greater evidence in favor of the parameter in question
differing between the two conditions, and values <1 would indicate
greater evidence in favor of the two values not differing. BFs were
computed using the calculator described by Dienes (2014), assuming
a uniform distribution of the difference between location-dependent
and location-independent reconstructions, and ranges for slope differ-
ence based on estimates from the model fitting (see RESULTS for
details).

If any differences in slope estimates were observed across the
location-dependent and location-independent IEMs, we further tested
whether these were due to differences in the strength and/or the precision
of the CTF. To estimate the reconstruction strength and precision, the
CTF for each subject in each ROI was fit with an exponentiated cosine
function of the following form: f{x) = a{e " ~» = 11} + B where «
and f3 control the vertical scaling (i.e., signal over baseline) and baseline
of the function, respectively, and k and w control the concentration (the
inverse of dispersion) and center of the function, respectively. No biases
in reconstruction centers were expected or observed, so we fixed u at 0.
Fitting was performed by combining a GLM with a grid search proce-
dure. We first defined a range of plausible  values (from 1 to 30 in 0.1
increments). For each possible value of k, we generated a response
function using the fitting equation after setting « to 1 and 3 to 0. Next, we
generated a design matrix containing the predicted response function and
a constant term (i.e., a vector of 1 s) and used ordinary least-squares
regression to obtain estimates of « and 8 (defined by the regression
coefficients for the response function and constant term, respec-
tively). We then selected the combination of k, o, and B that
minimized the sum of squared errors between the observed and
predicted reconstructions. We approached the statistical assess-
ment of the influence of location context on the reconstruction
strength and precision by using a bootstrapping procedure similar
to that used to test the slope difference. We also calculated BFs to
facilitate interpretation of differences in the strength and precision
of IEM reconstructions in different conditions.

Finally, the functional relevance of location context in the neural
representation of orientation was assessed with across-subject regres-
sion of IEM reconstruction slope measure (for location-dependent and
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for location-independent reconstructions) against behavioral recall
precision, at the time periods identified by the MVPA analyses of
spatial selective attention. All the P values reported in RESULTS reflect
FDR correction across regressions.

RESULTS
Behavioral Results

The RT was 2.825 (0.247) s, and the mean raw error distance
for orientation recall was 7.76° (4.22°). The mixture model
analysis revealed the mean P was 0.946 (0.00089) (P > 0.99
for 10 of 16 subjects), and the mean precision estimate was
13.749 (6.881) rad ™.

fMRI Results

BOLD signal intensity. Within the occipital ROI, the trial-
averaged time course from the top 400 location-general sam-
ple-responsive voxels showed a sample-related increase in
BOLD signal that returned to baseline before the end of the
delay period and then increased again during the response
epoch. In the frontal and parietal ROIs, this task-related activ-
ity remained elevated across the delay period. The BOLD
signal intensity patterns were quite similar in location-respon-
sive and location-general ROIs, except in occipital cortex,
where BOLD signal intensity in location-responsive ROIs was
significantly larger than that in location-general ROIs (TRs 3
and 4, P values <0.001; Fig. 2B).

Neural representation of location. In occipital and parietal
cortex, MVPA decoding of sample location was robust across
the trial, and there was also considerable evidence for temporal
generalization, suggesting temporally stable neural representa-
tions of stimulus location (Fig. 3, A and B). In the frontal ROI,
MVPA decoding of location was much less reliable across the
trial (Fig. 3C). Across-subject correlations of MVPA decoding
of sample location against the precision of behavioral recall of
orientations (i.e., nonspatial VSTM performance) revealed sig-
nificant positive relations between these measures, in the oc-
cipital ROI, at TRs 8 and 9, corresponding to the late delay/
early response period of the trial, along the diagonal of the
matrix [TR 8: r(15) = 0.589, P = 0.012; TR 9: r(15) = 0.531,
P = 0.034; averaged across TRs 8 and 9, r = 0.583, P =
0.018]. Additionally, at an off-diagonal location of the tempo-
ral generalization matrix, the accuracy of MVPA decoding at
TR 9 with a classifier that had been trained on data from TR 3
was positively related to recall precision [#(15) = 0.519, P =
0.039; this can be understood as behavioral performance relat-
ing to the fidelity with which the neural representation of
location at recall (i.e., TR 9) reinstated the neural representa-
tion of location during stimulus encoding (i.e., TR 3)]. No
correlations were found between MVPA decoding of location
in the parietal or frontal ROIs and behavioral performance
(P values >0.15). (Note that because these correlations were to
be used to identify time points at which to test hypotheses
about location context, correction for multiple comparisons
was not applied here.)

Neural representation of sample orientation. For location-
dependent IEMs, reconstruction of the sample orientation was
significant across the entire duration of the trial, in all three
anatomical regions. Furthermore, training IEMs on data from
one time point and testing on others revealed considerable
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temporal stability in the neural representation of orientation
(Fig. 3, D-F).

Sensitivity of the Neural Representation of Orientation to
Location Context

The analyses presented up to this point have considered the
factors of stimulus location and stimulus identity in isolation.
To directly examine the influence of location context on the
neural representation of orientation, we carried out TR-by-TR
comparisons of location-dependent IEM reconstructions of
sample orientation vs. location-independent IEM reconstruc-
tions of sample orientation.

In occipital cortex, although both the location-dependent and
location-independent reconstructions were significant across
the trial, the slope of the reconstructions was reliably larger for
location-dependent than for location-independent reconstruc-
tions during both the sample (at TRs 3 and 4) and probe (TR
10) epochs (Fig. 4B; Table 1). At each of these three TRs, the
follow-up fits with an exponentiated cosine function suggested
that this difference was due to the location-dependent recon-
structions being greater in magnitude than the location-inde-
pendent reconstructions (P values < 0.05, BFs > 3.582) and
that there was no compelling evidence for differences in
precision (BFs < 0.098).

In parietal and frontal cortex, although reconstructions
across the trial appeared to be less robust for location-indepen-
dent analyses, there was little compelling statistical evidence
for a reliable influence of spatial context on the representation

of orientation in these regions. Although the bootstrapping
analyses suggested differences at one TR in parietal cortex and
at two TRs in frontal cortex, the corresponding BFs suggested
only very weak evidence in favor of the alternative hypothesis
(Fig. 4, C and D; Table 1).

Brain-behavior relations. Correlations of IEM reconstruc-
tion with behavioral precision were carried out for the portion
of the trial spanning TRs 8 and 9, as identified in the MVPA of
stimulus location. This correlation was significant and positive
for location-dependent IEM reconstructions [#(15) = 0.567,
P = 0.050; Fig. 5A] but not significant for location-indepen-
dent reconstructions [#(15) = 0.139, P = 0.608; Fig. 5B].
However, these effects did not differ statistically from each
other (z = 1.190; not significant).

Although our analyses operationalized the neural represen-
tation of stimulus location and the influence of location context
on the neural representation of stimulus orientation in very
different ways, it is possible that these two measures tapped
into the same underlying mechanism. To address this question,
we first correlated spatial MVPA performance against the CTF
slope of location-dependent IEM reconstruction of stimulus
orientation (our operationalization of location context) and
found no evidence of a link between these two measures
[7(15) = 0.245; not significant]. Next, we entered these two
neural measures, together with behavioral precision, into a
stepwise regression model, which indicated that although the
neural representations of stimulus location and of location
context jointly explained 11.9% of the variance in behavioral
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performance, the representation of stimulus location uniquely
explained an additional 22.0% of the behavioral variance, and
the representation of location context uniquely explained an
additional 15.5% of the behavioral variance.

The preceding analyses were carried out in the TRs of the
hypothesis-generating MVPA analyses. We were additionally
prompted by carrying out post hoc analyses on TRs 3 and 4 of
the sample epoch, and on TR 10 of the probe epoch, after

Table 1. Bayes factors for CTF slope difference across IEMs

discovering the effects of location context at these TRs (Table
1). Analyses at the sample-epoch TRs also address the intuition
that the initial encoding of location context must necessarily be
constructed from information only present during that portion
of the trial. The analyses of the sample-epoch TRs indicated
that the precision of behavioral performance is correlated with
CTF slope of location-dependent IEM reconstructions [r(15) =
0.543, P = 0.050; Fig. 5C], but not with the CTF slope of

TR 1 TR 2 TR 3 TR 4 TR 5 TR 6 TR 7 TR 8 TR 9 TR 10 TR 11 TR 12
Location-dependent reconstruction within location-responsive ROIs vs.
location-independent reconstruction within location-general ROIs
Occipital 0.035 0.066 5.199 24.412 0.087 0.253 0.05 0.081 0.087 3.856 0.495 0.042
Parietal 0.039 0.046 0.753 0.396 0.084 0.026 0.031 0.028 0.049 0.286 0.046 0.103
Frontal 0.037 0.041 0.375 0.097 0.043 0.03 0.035 0.046 0.086 2.06 0.642 0.091
Location-dependent reconstruction within location-responsive ROIs vs.
location-dependent reconstruction within location-general ROIs
Occipital 0.013 0.019 0.248 0.122 0.015 0.074 0.017 0.018 0.014 0.03 0.012 0.008
Parietal 0.009 0.013 0.017 0.008 0.038 0.01 0.007 0.013 0.087 0.005 0.015 0.048
Frontal 0.011 0.034 0.047 0.013 0.041 0.007 0.016 0.011 0.016 0.031 0.01 0.006
Location-dependent reconstruction within location-general ROIs vs.
location-independent reconstruction within location-general ROIs
Occipital 0.039 0.053 0.384 3.239 0.116 1.374 0.075 0.139 0.1 3.921 0.346 0.038
Parietal 0.04 0.05 1.334 0.497 0.142 0.028 0.03 0.028 0.029 0.334 0.123 0.048
Frontal 0.042 0.049 0.838 0.124 0.053 0.032 0.055 0.04 0.055 0.318 1.818 0.186

Values are Bayes factors (BFs) for channel tuning function (CTF) slope differences across the inverted encoding models (IEMs). To calculate the BF values,
change limitations for slope differences were set at —1 to 1 [slope changes ranged from —0.376 to 0.428 across all 3 sets of comparisons, repetition times (TRs),

regions of interest (ROIs), and individuals; SD = 0.113].
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location-independent IEM reconstructions [r(15) = 0.189, P =
0.604; Fig. 5D]. Furthermore, although these correlations did
not differ from each other (z = 1.06; P = 0.145), the differ-
ence between the CTFs slopes from context-dependent vs.
context-independent reconstructions of stimulus orientation
did correlate with the precision of behavioral performance
(r=0.554, P = 0.050; Fig. SE). The same analyses, when
carried out on TR 10, failed to show any significant correla-
tions (P values >0.646).

Location dependency estimates not confounded by system-
atic differences in BOLD signal intensity. In occipital cortex,
the BOLD signal intensity was significantly higher in location-
responsive ROIs than in location-general ROIs during the
encoding epoch (Fig. 2B). This raises a potential concern for
interpretation of the location-dependency comparisons be-
tween IEM reconstructions for TRs 3 and 4 in occipital cortex,
because differences in BOLD signal intensity have been
shown, in some conditions, to explain differences in IEM
reconstruction (Liu et al. 2018). We were able to rule out this
possibility, however, by demonstrating that when location-
dependent reconstructions were performed with the lower sig-
nal intensity BOLD data (i.e., in location-general ROIs), the
slopes of these reconstructions were comparable to those of the
reconstructions with the higher amplitude data (i.e., in loca-
tion-responsive ROIs). That is, when IEMs were trained in a
location-dependent manner (train IEMs with stimuli presented
at just one location), the reconstructions obtained from loca-
tion-responsive ROIs did not differ from the reconstructions
obtained from location-general ROIs (P values >0.652; Fig. 6,

A-C). This conclusion was reinforced when BFs were com-
puted (Table 1).

Additionally, we replicated the main results of the location-
dependency analyses by repeating the procedures for generat-
ing location-specific vs. location-independent reconstructions
but carrying them out within location-general ROIs. In occip-
ital cortex, CTF slopes were higher for location-dependent than
for location-independent reconstructions during both the sam-
ple (TR 4) and probe (TR 10) epochs. These results further
excluded the potential concern that the adaption of different
sets of ROIs lead to the differences between location-depen-
dent and location-independent IEMs. The sample period in
parietal cortex (TR 3) and probe period in frontal cortex (TR
11) revealed reconstruction differences, but not as reliable
as those in occipital cortex (P values <0.05; BF results in
Table 1).

DISCUSSION

In this study of VSTM for line orientation, only one sample
item was presented as a memorandum, in one of four possible
locations, and the recall dial always appeared in the same
location, making the encoding and retention of stimulus-loca-
tion information unnecessary for successful performance.
Nonetheless, our analyses suggest important roles for spatial
processing on this task. First, the efficacy of maintaining
stimulus location (as operationalized by MVPA performance),
particularly during recall, was positively related to the preci-
sion of recall of stimulus orientation. Second, the neural
representation of orientation was higher in amplitude, and
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more closely related to the precision of recall of stimulus
orientation, when it included information about location con-
text. Finally, the mechanisms underlying neural representation
of stimulus location and location-context binding are at least
partly dissociable.

Strongest Effects in Occipital Cortex

Although IEM analyses indicated that neural representation
of the remembered orientation was retained throughout the trial
in all three regions that we examined (sample-responsive ROIs
in occipital, parietal, and frontal cortex), evidence for location
processing was strongest in occipital cortex. With regard to the
representation of stimulus location, which can be construed as
spatial covert attention (Awh et al. 1998), the effects were most
robust in the occipital ROI, and only in the occipital ROI (and
only during probe TRs) did individual differences in the
MVPA decoding performance, a proxy for the efficacy of
spatial covert attention, predict individual differences in the
behavioral precision of VSTM for line orientation. Future
research will be required to determine the extent to which
probe-epoch MVPA may be indexing the efficacy of spatial
attention, per se, or some more general factor such as effort or
arousal.

The influence of location context on the representation of
orientation was also strongest in occipital cortex, where the
IEM reconstructions from sample- and probe-epoch data were
stronger with location-dependent data. It was also at these TRs
that the slope estimates of the orientation reconstructions
correlated with the precision of VSTM. This result is compat-
ible with computational models of VSTM, suggesting that the
binding of context to stimulus features (Oberauer and Lin
2017; Schneegans and Bays 2017) may occur in the overlap-
ping occipital circuits that represent line orientation and that
represent retinotopic space. In contrast, the lack of evidence for
an influence of location context on stimulus representations in
parietal and frontal cortex suggests that these may be more
abstract. Future work will need to explore this possibility,
together with the possibility that the strength of parietal and
frontal representations of the stimulus per se may be less
important for guiding behavior. Additionally, a future study in
which the probe does not always appear in the same location as
the sample will also be needed to assess the extent to which the
present results may have been influenced by strategies afforded
by this within-trial congruity.

Nature of the Neural Implementation of Location Context

In occipital and parietal cortex, MVPA decoding indicated
that a representation of the location of the sample was actively
maintained throughout the trial, including across the delay
period. Neural evidence for an influence of location context on
the representation of stimulus orientation diverged from this
pattern along two dimensions: it was only observed in occipital
cortex, and it was not observed during the delay period. This
indicates that the neural implementation of location context
consists of more than “just” the modulation of an object
representation with spatial attention, or some other spatial
signal. Further evidence for a difference between these two
constructs comes from the individual-differences analyses.
Spatial MVPA performance was not correlated with location-
dependent IEM reconstruction, and these two measures each
accounted for unique variance when being related to VSTM
performance.

One noteworthy aspect of our results was that the influence
of location context, as operationalized in our analyses, was
only expressed when a stimulus was on the screen. This is
consistent with results from a previous study in which a neural
correlate of the spatial congruity effect was only observed in
the probe-evoked response. This fMRI finding, together with
behavioral results from a series of related experiments, led the
authors to propose that, for working memory for nonspatial
information, “position-related information is not actively
stored in VSTM, but may be retained in a passive tag that
marks the most recent site of selection” (Postle et al. 2013).
Along these lines, it will be interesting to assess, in future
work, whether, and if so, how, location context is actively
represented during the retention period, when no stimulus-
related information is visible. Furthermore, although we have
noted the conceptual overlap between the question studied here
and computational models (Oberauer and Lin 2017; Schnee-
gans and Bays 2017), our understanding of these models is that
they would predict sustained representation of location context
across the delay period. Might the delay-period representation
of context, like the working-memory representation of infor-
mation that is temporarily outside the focus of attention (La-
Rocque et al. 2017; Rose et al. 2016), be maintained in a
format that is different from the information that is of principal
relevance for the impending memory probe?
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