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SUMMARY

The human primary visual cortex (V1) is not only acti-
vated by incoming visual information but is also
engaged by top-down cognitive processes, such as
visual workingmemory, even in the absence of visual
input [1–3]. This feedback may be critical to our
ability to visualize specific visual features, as
higher-order regions lack the selectivity to represent
such information [4]. Clearly, such internally gener-
ated signals do not trigger genuine perception of
the remembered stimulus, meaning they must be
organized in a manner that is different to bottom-
up-driven signals. Internally generated signals may
be kept separate from incoming sensory data by vir-
tue of the laminar organization of inter-area cortical
connections. Namely, bottom-up driving connec-
tions target layer 4, located in the middle of the
cortical column, and feedback connections target
deep and superficial layers and avoid layer 4 [5–7].
Using lamina-resolved fMRI, we simultaneously
measured the activity in three early visual cortical
areas (V1–V3) that are recruited to represent stimulus
information during visual working memory [8]. We
observed item-specific working memory signals in
early visual cortex. In V1, this item-specific activity
was selectively present at deep and superficial
cortical depths, avoiding the middle layers, and
working-memory-related activity was present at all
depths in V2 and V3. These results show for the first
time the laminar organization of internally generated
signals during visual working memory in the human
visual system and provide new insights into how
bottom-up and top-down signals in visual cortex
are deployed.

RESULTS

We measured the laminar organization of internally generated

signals in V1 formed during visual working memory. To this

end, we employed a laminar fMRI analysis method [9] (van

Mourik et al., 2015, ISMRM, abstract; see STAR Methods for
further details) to measure depth-specific blood-oxygen-level-

dependent (BOLD) responses from primary (V1) and extrastriate

(V2 and V3) visual cortex of twenty-one subjects during a visual

working memory task in which subjects had to keep in mind a

specific orientation (see Figure 1).

To examine stimulus-specific activity across visual cortex

during visual working memory, we divided visually responsive

cortical regions into sub-populations depending on their orienta-

tion preference and measured response differences between

sub-populations during working memory [10]. Specifically, we

measured the orientation preference of each voxel (0.8 mm

isotropic) in visual cortex, using an orientation localizer scan in

which subjects viewed clockwise- (45�) and counter-clockwise

(135�)-oriented gratings, isolating a total of 1,000 voxels that

most strongly preferred the clockwise (500 voxels) or counter-

clockwise (500 voxels) stimulus in V1–V3 separately (also see

Figure S1). By separately analyzing subsets of voxels that were

selective for opposite orientations, we were able to examine

activity time courses in voxels preferring the maintained and dis-

carded stimulus during visual working memory.

Laminar Organization of Internally Generated Signals
in V1–V3
On each trial of the working memory task (Figure 1), subjects

were presented with two sample oriented gratings and cued to

hold one of the sample orientations in memory. Following an

11.5-s working memory interval, subjects judged whether a

probe stimulus was oriented slightly clockwise or counter-clock-

wise relative to the cued stimulus orientation. The mean discrim-

ination threshold was 7.0� (SD = 3.3) at an average performance

level of 77.6% correct (SD = 6.3%; task difficulty was staircased

to target 75% correct performance), indicating subjects were

able to maintain the cued orientation in working memory with

high precision. Figure 2A shows the average single trial BOLD

time course from voxels that preferred the orientation held in

memory and voxels that preferred the discarded orientation,

averaged across gray matter layers. Voxels that preferred the

orientation held in memory exhibited a significantly larger

sustained response during the working memory interval (high-

lighted by the shaded region in Figure 2A) compared to voxels

that preferred the orthogonal orientation (V1: F [1, 20] = 12.47,

p = 0.002; V2: F [1, 19] = 5.23, p = 0.034; V3: F [1, 19] = 5.49,

p = 0.030).

We next examined how this sustained item-selective activity,

a known signal of working memory [10, 11], was organized
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Figure 1. Stimulus Presentation Scheme for

the Visual Working Memory Task

On each trial, subjects were presented with two

sample orientations—one clockwise and one

counter-clockwise—and subsequently provided

with a retro-cue that instructed them which of the

two orientations to maintain in memory. A probe

stimulus followed the 11.5-s working memory in-

terval. Subjects judged whether the probe was

oriented clockwise or counter-clockwise with

respect to the stimulus they held in working

memory. They were provided with feedback at the

end of each trial.
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across cortical depth. In effect, this described which cortical

depths contained item-specific information that described the

orientation being maintained in working memory.

Figure 2B shows how the average response difference

between voxels that preferred the remembered item and voxels

that preferred the discarded item during visual working memory

was organized across cortical depth in V1–V3. The laminar orga-

nization of this item-specific activity varied across the visual

areas we examined (F [3.23, 61.28] = 3.78; p = 0.013). Specif-

ically, item-specific working memory activity varied across

depths in V1 (F [2, 40] = 4.46; p = 0.018), being larger at superfi-

cial (t [20] = 3.61; p = 0.002) and deep (t [20] = 2.40; p = 0.027)

cortical depths compared to middle depths. Conversely, the

same laminar activity profiles were uniform in V2 (F [2, 38] =

1.93; p = 0.160) and V3 (F [2, 38] = 1.61; p = 0.213), not showing

any differences across depth. Internally generated information

about the orientation held in working memory, therefore, was se-

lective to deep and superficial cortical depths in V1, while item-

specific working memory activity was equally strong across all

depths in V2 and V3.

Laminar Organization of Bottom-Up Signals in V1–V3
As a point of comparison, we quantified the laminar organization

of stimulus selectivity evoked by externally generated signals

(i.e., visual stimulation). Although feedforward connections

largely target layer 4, bottom-up signals quickly propagate to

other cortical depths within �20 ms [12, 13]. Given that fMRI

provides an aggregate of activity accrued over multiple seconds,

we predicted that stimulus selectivity during visual stimulation

should be relatively uniform across depth compared to item-

specific visual working memory activity, similar to the depth

profiles of bottom-up responses reported in other laminar fMRI

studies [9, 14–16]. To address this question, we inspected the

laminar profile of activity during our orientation localizer, in which

clockwise and counter-clockwise orientations were presented in

a block design (Figure S1). The average response during a block

of visual stimulation is shown in Figure 3A separately for voxels

that preferred the presented orientation (preferred) and voxels

that preferred the orthogonal orientation (non-preferred). Note

that these are shown only to aid visualization and were not

interrogated statistically, as the amplitude of the response

difference between preferred and non-preferred is potentially

artificially enhanced by our voxel selection procedure derived

from the same data. How this response differencewas organized

across cortical depths, however, is orthogonal to its overall

amplitude and as such not affected by any inflation from the
2 Current Biology 28, 1–6, November 5, 2018
voxel selection procedure. We therefore interrogated the laminar

organization of bottom-up signals, but not their amplitude,

statistically.

We found differences in laminar selectivity profiles between

regions (F [4, 76] = 2.75; p = 0.034): although there were no dif-

ferences in selectivity across depth in V1 (F [2, 40] = 0.44; p =

0.648) and V2 (F [2, 38] = 2.20; p = 0.125), there was a trend of

increasing selectivity from deep to superficial depths in V3

(F [2, 38] = 4.70; p = 0.015), resulting in a significant difference

between deep and superficial selectivity (t [19] = 3.05; p =

0.007) in this area. Themonotonic increase in stimulus selectivity

from deep to superficial cortical depths in V3 shares a similar

laminar profile with a known bias in BOLD signal strength, which

gets stronger toward the cortical surface due to venous blood

draining [17–20], which we also observed in this study (see Fig-

ure S2). Within V1, the laminar profile of stimulus-specific activity

during visual stimulation was distinct from the profile of

item-specific activity during visual working memory (F [2, 38] =

4.33; p = 0.020). This indicates that the laminar organization of

stimulus information in V1 was dependent on whether it was

induced by internally or externally generated signals.

DISCUSSION

We investigated the laminar organization of internally generated

neural signals during visual working memory in human early

visual cortex. We observed strong item-specific activity in V1–

V3, corroborating earlier research [8, 21]. Interestingly, this

working memory activity was selectively present at deep and su-

perficial, but not middle, cortical depths within V1, while it was

equally strong across all depths in V2 and V3. Additionally, this

activity profile was specific to the internal generation of images:

we observed no such variation across depth in V1 when visual

cortex was stimulated by external stimuli.

These results are consistent with the notion that visual working

memory is supported by feedback from higher order brain areas

that specifically targets the agranular layers of V1. It is now well

established from multivariate decoding studies that patterns of

activity in V1 during maintenance of a particular orientation are

similar to those elicited by perception of the same orientation

[8, 21]. This has been interpreted as evidence that orientation

columns in V1 are recruited to represent detailed information

about a remembered or imagined stimulus [8, 22], presumably

because higher order brain areas involved in memory lack the

receptive field properties to represent such local visual informa-

tion [4]. While we similarly observe a strong neural overlap



Figure 2. Laminar Organization of Internally

Generated Signals in V1–V3

(A) Average BOLD response for a single trial of

the visual working memory task in voxels that

preferred the orientation held in memory (colored

line) and voxels that preferred the orthogonal

orientation (black line), averaged across gray

matter layers for V1–V3 (top, middle, and

bottom, respectively). The working memory delay

stretched over themeasurements taken at 3.4, 6.8,

and 10.2 s; however, we only include the high-

lighted measurements at 6.8 and 10.2 s in our

estimation of working memory activity, as the

response at 3.4 s was likely to include activity

relating to the sample stimuli presented at the

beginning of the trial. Data in (A) are baselined to

the average response across preferred and non-

preferred voxels at the end of the trial (23.8 s).

(B) Depth-specific breakdown of stimulus selec-

tivity during working memory, calculated by taking

the difference between the preferred and non-

preferred responses during interval highlighted in

(A). Asterisks denote significant paired-samples t

tests (*p < 0.05; **p < 0.01).

In all panels, error bars show within-subject SE.

See also Figure S1 for more on the selection and

properties of functional masks, Figure S2 for

overall BOLD activation across cortical depth, and

Figure S3 for individual subject data.
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between perception and working memory in visual circuits, our

results point to a possibly important marker that can differentiate

between these processes: bottom-up stimulation activates the

entire cortical column, whereas working memory selectively ac-

tivates the agranular layers of V1.

Our results provide two important novel findings. First, we

show that the maintained representation of specific visual fea-

tures (i.e., orientation) during working memory selectively en-

gages the agranular layers of V1. Similarly, a recent study

showed that the active maintenance of a targets’ spatial location

is associated with spiking activity and current sinks in agranular

layers of monkey V1 [12]. We therefore show the laminar profile

of spatial working memory activity [12] can be generalized to

both the human visual cortex and to working memory for visual

features as opposed to spatial location. Second, we add that

the laminar profile of working memory activity is not uniform

across visual areas. Namely, we find that, in contrast to V1, work-

ingmemory signals were equally strong across cortical depths in

extrastriate areas V2 and V3. Although this may seem surprising

at first, this behavior may naturally follow from the increased

spiking activity in superficial layers of V1 during working memory

[12]. That is, neurons in the superficial layers of V1 that project to

layer 4 of V2 [23, 24] could activate the middle layer of down-

stream cortical areas. This interpretation suggests that, during

our task, orientation columns in V1 were recruited through top-

down feedback to store the to-be-maintained stimulus, and

this stimulus informationwas subsequently fed up through the vi-

sual hierarchy to inform a decision. Consistent with this notion,

modulations from spatial attention in monkey V4 engage the

entire cortical column and are in fact largest in input layer 4
[25]. This could be caused by top-down attentional modulations

that amplify visually evoked signals earlier in the system, for

example, V1 (or even the lateral geniculate nucleus [26]), which

in turn amplifies the feedforward signal that targets the input

layer 4 of V4. Similarly, feedback modulations related to contour

grouping are selectively present in deep and superficial layers of

V1 but affect the entire cortical column in V2 [27].

It is possible that feedback specifically targeted V1 in our

study because the visual feature subjects had to maintain was

orientation—a feature that V1 neurons are exquisitely tuned to

[28]. This leaves an intriguing avenue for future research whereby

one might devise a visual working memory task designed to

target extrastriate cortex. A task involving the retrieval of more

complex visual features, such as angles, curves, or whole ob-

jects, might result in feedback that targets extrastriate visual

areas with receptive fields more suited to representing these

more complex features. In line with this notion, Koyano et al.

[29] trained monkeys to perform a visual working memory task

on object identity and found an accompanying increase in

activity selective to deep layers of temporal cortex, which is

known to be selective for such objects [30, 31]. This suggests

that, when monkeys were required to maintain the identity of

an object, temporal neurons with complex receptive fields

capable of representing whole objects were recruited through

top-down feedback.

The laminar profile of internally generated activity is relevant

for neurocomputational models of perceptual inference, such

as predictive coding [32–35]. Predictive coding posits that the

brain constructs an internal model of the world, encoding the

possible causes of sensory inputs as parameters of a generative
Current Biology 28, 1–6, November 5, 2018 3



Figure 3. Laminar Organization of Bottom-

Up Signals in V1–V3

(A) Average block BOLD response for the orienta-

tion localizer in voxels that preferred the presented

orientation (colored line) and voxels that preferred

the orthogonal orientation (black line), averaged

across gray matter layers for V1–V3 (top, middle,

and bottom, respectively). Responses during

visual presentation are highlighted by the shaded

region. Data are baselined to the average response

at the end of a trial (23.8 s), averaged across

preferred and non-preferred.

(B) Depth-specific breakdown of stimulus selec-

tivity during visual presentation, calculated by

taking the difference between the preferred and

non-preferred responses during the interval high-

lighted in (A). Asterisks denote significant paired-

samples t tests (**p < 0.01).

In all panels, error bars show within-subject SE.

See also Figure S1 for more on the selection and

properties of functional masks, Figure S2 for

overall BOLD activation across cortical depth, and

Figure S3 for individual subject data.
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model. Feedback connections carry predictions of expected

neural activity in the lower cortical area (or ‘‘virtual input’’), which

can be compared to bottom-up input, resulting in optimal

perceptual inference. Our findings suggest that the virtual input

created by the generative model resides in the deep and super-

ficial layers of the cortical column and avoids the middle layer.

These observations appear in line with a recent detailed analysis

of the canonical microcircuits for predictive coding [36].

Our results demonstrate the feasibility of measuring depth-

dependent BOLD responses using high-resolution fMRI. Never-

theless, it should be noted that several methodological

challenges remain [19, 24], such as BOLD activity biases toward

the pial veins and the mixing of signals across depth bins due to

laminar partial voluming. Although the depth-specific responses

we report should be interpreted within the influence of spatial

vascular dynamics, we believe that our results are less likely to

be tainted by these issues for several reasons. First, our depen-

dent variable was the response difference between two condi-

tions (rather than overall BOLD activity, which was indeed biased

toward superficial layers; see Figure S2), which revealed a

V-shaped laminar activity profile that is distinct from the pattern

exhibited by venous draining artifacts. Second, we employed a

spatial generalized linear model (GLM) method that helps to

separate responses across cortical bins and estimate depth-

specific responses (van Mourik et al., 2015, ISMRM, abstract).

This approach has been shown to result in responses that are

less correlated across cortical depths compared to interpolation

approaches [9] and correct for laminar partial voluming [37].

Third, we show a dissociation between the laminar profiles of

top-down, internally generated activity and bottom-up, stim-
4 Current Biology 28, 1–6, November 5, 2018
ulus-evoked activity, which precludes a

simple explanation based on biases in

signal or sequence. Finally, the laminar

profiles we report for working memory

and visual stimulation using BOLD are

highly consistent with those reported us-
ing electrophysiological techniques [12]. It therefore seems

more likely that our results reflect the laminar organization of

neural processing during working memory as opposed to spatial

hemodynamics.

In conclusion, using high-resolution laminar fMRI, we identi-

fied a working memory signal that was selectively present at

deep and superficial, but not middle, cortical depths in V1. Our

results indicate that internally generated information about spe-

cific visual features is formed by feedback to the agranular layers

of V1. These findings provide new insights in the laminar circuits

involved in internally generated signals in the early visual system.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-one healthy participants (one left-handed, eleven females, mean age 26.1, age range 19-46) with normal or corrected-to-

normal vision completed the experiment. All gave written informed consent and the study was approved by the local ethics

committees (CMO region Arnhem-Nijmegen, the Netherlands, and ethics committee of the University Duisburg-Essen, Germany).

All participants (excluding one, who was an employed research assistant within the laboratory and volunteered to take part), were

reimbursed for their time at the rate of V10 per hour. All participants completed a 1-hour retinotopic mapping session, a 1-hour psy-

chophysics session, and a 1.5-hour working memory fMRI session.

METHOD DETAILS

Retinotopic Mapping
Retinotopic mapping data were acquired in a separate session using a Siemens 3T Trio MRI system (Siemens, Erlangen, Germany)

using a 32-channel head coil and a T2*-weighted gradient-echo EPI sequence (TR 1500 ms, TE 40ms, 68 slices, 2 mm isotropic

voxels, multi-band acceleration factor 4). One high resolution anatomical image was also acquired with a T1-weighted MP-RAGE

sequence (TR 2300 ms, TE 3.03ms, 1 mm isotropic voxels, GRAPPA acceleration factor 2). Stimuli were programmed in MATLAB

(MathWorks, Natick, MA) and presented using PsychToolbox [38] projected with a luminance-calibrated EIKI projector (resolution

10243 768, refresh rate 60 Hz) onto a rear-projection screen and viewed via a mirror (viewing distance �90 cm). During the session

subjects viewed high contrast, contrast-reversing (6 Hz) 90� rotating wedge and expanding ring stimuli that mapped responses to the

central region of the visual field (radius 11 degrees of visual angle). Stimulus runs lasted 297 s (198 volumes), including eight full

stimulus cycles and six starting dummy volumes that were discarded prior to analyses. Participants completed 3-5 runs of wedge

stimuli and 1-2 runs of rings. During stimulus runs subjects were instructed to fixate on a small central fixation cross (10 pixels across)

and press a button every time in changed color from red to green or green to red (30 switches per run). Anatomical data were

automatically segmented into whitematter, graymatter and CSF using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) andmanually

corrected. Functional data were analyzed using the phase encoded approach in MrVista (http://white.stanford.edu/software/). Polar

angle and eccentricity data were visualized on an inflated cortical surface and the boundaries of V1, V2 and V3 were drawn manually

using established criteria [39–41].

Psychophysical procedure
During the psychophysics session subjects completed the same visual working memory task (Figure 1) that was used in the working

memory fMRI session. Sinusoidal grating stimuli were programmed in MATLAB (MathWorks, Natick, MA) and presented using
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PsychToolbox [38] on a 24 inch BenQ XL2420T monitor (http://www.benq.eu/product/monitor/, resolution 19203 1080, refresh rate

120 Hz). Subjects viewed the stimuli from a chin rest mounted 60 cm from the display and were instructed to fixate on a central, black

fixation dot (4 pixels across) at all times. Grating stimuli were presented centrally at 50% contrast on a mid-gray background behind

an annulus mask (inner radius 1 degree, outer radius 8 degrees), and had a spatial frequency of 1 cycle/degree and random phase.

Stimulus edges were softened with a linear ramp that started 0.5 degrees from the edge of the mask. On each trial, two sample

gratings were presented with near-orthogonal orientations (45� ± 3� and 135� ± 3�), each presented for 0.2 s and separated by a

0.45 s interstimulus interval (ISI). Following another 0.45 s ISI, a cue (either a ‘1’ or a ‘20) was presented centrally for 0.8 s to indicate

which of the two sample orientations should bemaintained in memory. An 11.5 s working memory interval followed, during which the

subject had to maintain the cued orientation in memory. A probe was then presented for 0.5 s with an orientation that was slightly

clockwise or counter-clockwise to the cued sample orientation. The relative orientation difference to the sample was controlled

with a staircase function using QUEST [42] that targeted 75% correct performance. There was then a fixed-length 2 s response

window for the subject to indicate whether the probe was clockwise or counter-clockwise to the cued sample with a button press.

Feedback (‘Correct’ or ‘Incorrect’) was then presented centrally for 0.3 s. Missed responses were marked and reported as incorrect.

The next trial then followed a 2 s intertrial interval. Subjects completed 120 trials, at which point the orientation discrimination

threshold was recorded and used as a starting point for the staircase function in the fMRI task.

fMRI data acquisition
fMRI data for the working memory experiment were acquired using a Siemens Magnetom 7T MRI system (Siemens, Erlangen,

Germany) using a commercial RF head coil (Nova Medical, Inc., Wilmington, MA, USA) with one transmit (TX) and 32 receive (RX)

channels and a gradient coil (Type AS095, Siemens Healthcare, Erlangen, Germany) with 38 mT/m gradient strength and

200 mT/m/ms slew rate. Functional data were acquired with a T2*-weighted 3D gradient-echo EPI sequence [43] (TR 3408 ms,

TE 28 ms, 0.8 mm isotropic voxels, 16� flip angle, 192 3 192 3 38.4 mm FOV, GRAPPA acceleration factor 4). Shimming was per-

formed using the standard Siemens shimming procedure for 7T. Anatomical data were acquired with an MP2RAGE sequence [44]

(TR 5000 ms, TE 2.04 ms, voxel size 0.8 mm isotropic, 240 3 240 mm FOV, GRAPPA acceleration factor 2) yielding two inversion

contrasts (TI 900 ms, 4� flip angle and TI 3200 ms, 6� flip angle), which were combined to produce a T1-weighted image. We also

acquired a T2-weighted HASTE scan that was used to identify the calcarine sulcus to aid functional slice positioning

(TR 3230 ms, TE 67 ms, 7 coronal slices, 0.625 3 0.625 3 5.10 mm voxels). Stimuli were programmed and displayed using the

same methods described for the psychophysics session onto a rear-projection screen using an EIKI (EIKI, Rancho Santa Margarita,

CA) LC-X71 projector (1024 3 768 resolution, refresh rate 60 Hz), viewed via a mirror (view distance �130 cm).

Each subject completed 3-4 runs of the working memory task. The task was identical to the psychophysics session, except the

intertrial interval was extended to 10.8 s to allow time for the BOLD response to return to baseline between trials and align the

beginning of the next trial with volume acquisition. Task difficulty was adjusted using a QUEST [38] staircase, which was given a

starting estimate equal to the discrimination threshold measured from the subject’s psychophysics session plus a 20% increment.

8 volumes were acquired per trial, with 20 trials in a single 555.5 s run. The first three volumes of each run were discarded to allow for

signal stabilization.

After the working memory task, a high resolution anatomical image was acquired using the MP2RAGE sequence. Finally, subjects

completed an orientation localizer scan that was used tomeasure voxel-wise orientation preference. Oriented gratings (same param-

eters as working memory stimuli, except the contrast was increased to 100%) were presented in an AoBo block design. Stimulus

blocks were 13.6 s long (4 TR) and separated by rest blocks of the same length. During a stimulus block gratings were repeatedly

presented with the same orientation at a rate of 2 Hz (250 ms on, 250 ms off). Phase was randomized for each stimulus presentation.

Stimulus blocks alternated between blocks of clockwise gratings (45�) and blocks of counter-clockwise gratings (135�). A total

of 30 stimulus blocks were presented in an 828.1 s run; the first 3 volumeswere again discarded. During the scan subjectsmaintained

fixation and pressed a button every time the fixation dot flashed white for 0.25 s (1 to 4 flashes per block).

Preprocessing of fMRI data
Functional volumes were cropped so that only the occipital lobe remained. This was to remove distortions in other brain areas further

away from the shimming volume that was positioned in the occipital lobe, so that they could not affect coregistrations down the line.

Cropped functional volumes were then spatially realigned within and then between runs using SPM8 (http://www.fil.ion.ucl.ac.uk/

spm). Finally, data were highpass filtered using FEAT (fMRI Expert Analysis Tool) v6.00 (https://fsl.fmrib.ox.ac.uk/fsl) with a cut off

of 28 s to remove low frequency scanner drift.

Coregistration of anatomical and functional data
7T anatomical data were segmented into white matter, gray matter and CSF using FreeSurfer’s (http://surfer.nmr.mgh.harvard.edu/)

automated procedure, the results of whichweremanually inspected and, if necessary, manually corrected. Thewhite and graymatter

surfaces were then aligned to the mean functional volume in two steps. First we computed a standard rigid body boundary based

registration [45] between the cortical surface and the mean functional volume. Second, we fine-tuned the registration using a

recursive registration algorithm that corrects for distortions in the phase encoding direction [46]. In brief, this algorithm applies a

boundary based registration over multiple recursive iterations. With each iteration the mesh is split into two and each segment

is registered to the functional volume independently. Each mesh segment is then split again and registered on the next iteration,
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recursively fine-tuning the registration to correct for local distortions. In this case we used a total of 6 iterations for the recursive

registration.

QUANTIFICATION AND STATISTICAL ANALYSIS

Definition of functional masks
We constrained our retinotopic regions of interest (ROIs), V1, V2 and V3, so that only themost selective voxels for our oriented grating

stimuli were included in analyses. This comprised two steps. First, we constrained ROIs to only include voxels that responded to our

visual stimuli. This was done by applying a temporal GLM to the preprocessed data from the orientation localizer scan using FEAT

v6.00 (https://fsl.fmrib.ox.ac.uk/fsl). Blocks of clockwise and counter-clockwise stimuli were modeled separately as regressors of

interest. Both stimulus regressors were contrasted against baseline to identify voxels that exhibited a significant response to our

stimuli. Our retinotopic ROIs were then constrained to only include voxels that survived an uncorrected cluster correction (z > 2.3,

p < 0.05).

The second step was to identify the orientation preference for each voxel within our constrained ROIs and generate separate

masks for voxels that preferred clockwise and counter-clockwise orientations. The clockwise and counter-clockwise regressors

were contrasted against each other to provide a t statistic for each voxel that described its orientation preference. From our

constrained ROIs, we then took the 500 voxels with the most positive t values (prefer clockwise) and the 500 voxels with the most

negative t values (prefer counter-clockwise) and used them to form separate masks. For each subject, therefore, we analyzed six

functional masks, each containing 500 voxels, which included clockwise and counter-clockwise preference masks for V1, V2 and

V3 (in a control analysis, we show that our results were not dependent on the number of voxels included in our masks; Figure S1).

For one subject, there was an insufficient number of voxels in the constrained V2 and V3 ROIs for this process to be completed

(i.e., < 1000 voxels), so we only analyzed V1 for this subject. As such, 20 of the 21 subjects contributed to analyses for V2 and V3.

Univariate approach to measuring working memory activity
Previous fMRI studies of visual working memory have used a multivariate approach that utilizes small but systematic biases in voxel

orientation preference across visual cortex to decode themaintained orientation from brain activity during working memory [8]. Here,

we used a univariate approach described by Albers et al. [10]. This approach monitors the response to the maintained and discarded

items over time by measuring the response in voxels that prefer the maintained and discarded item separately. This results in a

response difference between voxels populations during working memory, the size of which closely follows decoding accuracy

over time [10]. An additional advantage of this univariate approach is that it was compatible with the spatial regression we used

to estimate depth-specific responses (described in next section). This regression collapses across voxels within a region of interest,

meaning in could only be followed by a univariate, but not a multivariate, analysis.

In order to make maximal use of the subtle voxel-wise orientation biases that support multivariate [8] and univariate [10] methods

for assessing working memory fMRI activity, we designed a filter to weight functional data from each voxel by their orientation

preference. This filter comprised a matrix of t values that described each voxel’s orientation preference, derived from contrasting

responses to clockwise and counter-clockwise gratings in the orientation localizer scan as described above. Data from voxels

that preferred clockwise orientations were multiplied by their t values resulting from the clockwise > counter-clockwise contrast,

while data from voxels that preferred counter-clockwise were multiplied by the t values from the counter-clockwise > clockwise

contrast. This filter was applied to functional data from working memory scans by z scoring the data from each voxel and then multi-

plying the data with the matrix of stimulus selectivity t values. This filter maximized our sensitivity to small but reliable differences

between voxels that preferred the maintained and discarded items during working memory [10] so that we might then examine

how this difference is organized across cortical depths.

Estimation of laminar working memory activity
Depth-specific time courses were estimated for each functional mask using the spatial regression approach proposed by Van

Mourik, Van Der Eerden and Norris (vanMourik et al., 2015, ISMRM, abstract) that has been described previously [9]. The segmented

cortical mesh from FreeSurfer was divided into five depth bins: one white matter bin, three gray matter bins, and one CSF bin. Gray

matter bins were computed using the level set method [47] and the procedures described by Waehnert et al. [48] to define three

equivolume bins between the gray-white matter and gray matter-CSF boundaries. The gradient and curvature of the cortex were

calculated using a Laplacian-equivolumic model [49] that accounts for the effect of local cortical curvatures on cortical depth

bins. For each functional mask, we then calculated the proportion overlap of each voxel with the five bins we had defined. These

depth weights were then used in a spatial GLM to estimate depth-specific BOLD responses.

Weighted functional data from each run of the working memory task were regressed against the depth weights for each voxel

within the functional mask. This gave us the average time course across all voxels within the mask, separated into five depth bins

(white matter, deep, middle and superficial gray matter, CSF), of which we further analyzed the three gray matter bins. For each

functional mask we split the depth-specific time courses into separate segments comprising 8 volumes each, corresponding to a

single trial. We then applied the following procedure to the data from each cortical depth bin to calculate depth-specific average

‘preferred’ and ‘non-preferred’ trial time courses. For a given trial, we used the average time course from the voxel population

that preferred the cued orientation (i.e., prefer 45� voxels for a trial in which 45� was cued, prefer 135� voxels for a trial in which
Current Biology 28, 1–6.e1–e4, November 5, 2018 e3

https://fsl.fmrib.ox.ac.uk/fsl


Please cite this article in press as: Lawrence et al., Laminar Organization of Working Memory Signals in Human Visual Cortex, Current Biology (2018),
https://doi.org/10.1016/j.cub.2018.08.043
135� was cued) as the preferred population time course. We then took the average time course for the same trial from the voxel

population that preferred the other, non-cued orientation (i.e., prefer 135� voxels for a cue 45� trial, prefer 45� voxels for a cue

135� trial) as the non-preferred population time course. We completed this process for every trial, creating a preferred and non-

preferred time course for every trial, and averaged across trials to calculate an average preferred trial time course and an average

non-preferred trial time course. Average time courses collapsed across cortical depth are plotted in Figure 2A. We then examined

the differential responses between preferred and non-preferred time courses specifically during the working memory delay period

(highlighted in Figure 2A) and how it was organized across cortical depth (Figure 2B).

Finally, we conducted a control analysis to determine the laminar organization of a preferential response to visual presentation of a

preferred orientation (i.e., externally generated signals) so that we could compare it to our working memory result. For this we turned

to data from our orientation localizer, in which clockwise and counter-clockwise orientations were presented in a block design. Using

the same methods just described, we computed average block time courses for blocks where the preferred orientation was

presented, and blocks where the non-preferred orientation was presented (Figure 3A). Given that orientation preference weights

were estimated using data from the orientation localizer scan, we did not contaminate this analysis by applying a weighted matrix

derived from the same data. Instead, we chose to only examine how stimulus-selective bottom-up responses were organized across

cortical depths, without applying the stimulus selectivity filter that was applied to working memory data.

Statistical testing
We quantified item-specific activity during visual working memory by examining the difference between preferred and non-preferred

time courses during the working memory interval (6.8 and 10.2 s into the trial; see Figure 2A). We determined whether this effect was

significant using a 2 3 2 repeated-measures ANOVA (factors: preferred/non-preferred and time point). We then examined how this

difference was distributed across cortical depth (Figure 2B). We used a hierarchical statistical approach [50] to assess the laminar

profile of working memory signals across ROIs. In this approach, a significant omnibus effect is required to assess difference

between conditions. For example, a significant interaction between cortical depth and visual area would be required to justify exam-

ining how responses varied across depthswithin individual visual areas. Then, a significantmain effect of cortical depthwithin an area

would be required to justify examining differences between depths within that area. This approach controls the false alarm rate in

hierarchical manner, by ensuring that one only examines comparisons that are statistically justifiable, rather than examining all

possible comparisons.

We determined whether the laminar profile of working memory signals varied across visual areas using a 33 3 repeated-measures

ANOVA (factors: visual area and depth). This revealed a significant interaction (see Results), so we further examined each visual area

independently using one-way repeated-measures ANOVAs (factor: depth). In caseswhere there was a significant main effect of layer,

we examined specific differences between layers using paired-samples t tests (this was the case only for V1). For all ANOVAs, if the

assumption of sphericity was violated the degrees of freedomwere adjusted using a Huynh-Feldt correction. To examine the laminar

organization of bottom-up signals, we used the same statistical approach on time courses from the orientation localizer (Figure 3A).

Again there was a significant interaction between cortical depth and visual area (see Results), so we interrogated each area indepen-

dently with a one-way ANOVA. We then examined differences between cortical depths again only in visual areas where the was a

significant main effect of depth; in this case only V3. Finally, we quantified whether the laminar organization of item-specific working

memory activity (internally generated) was different from that of stimulus-selective activity during visual stimulation (externally

generated) in V1. This was done by assessing the interaction in a 23 3 repeated-measures ANOVA (factors: working memory/visual

stimulation and depth).

DATA AND SOFTWARE AVAILABILITY

The accession number for the data reported in this paper is Donders Research Data Repository: http://hdl.handle.net/11633/di.dccn.

DSC_3018028.02_957
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