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Ensemble representations reveal distinct neural
coding of visual working memory
Byung-Il Oh 1, Yee-Joon Kim 2 & Min-Suk Kang 1,3*

We characterized the population-level neural coding of ensemble representations in visual

working memory from human electroencephalography. Ensemble representations provide a

unique opportunity to investigate structured representations of working memory because the

visual system encodes high-order summary statistics as well as noisy sensory inputs in a

hierarchical manner. Here, we consistently observe stable coding of simple features as well as

the ensemble mean in frontocentral electrodes, which even correlated with behavioral indices

of the ensemble across individuals. In occipitoparietal electrodes, however, we find that

remembered features are dynamically coded over time, whereas neural coding of the

ensemble mean is absent in the old/new judgment task. In contrast, both dynamic and stable

coding are found in the continuous estimation task. Our findings suggest that the prefrontal

cortex holds behaviorally relevant abstract representations while visual representations in

posterior and visual areas are modulated by the task demands.
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V isual working memory is a capacity-limited, temporary
buffer that maintains and manipulates visual information
for a short period1,2. Growing evidence indicates that

visual working memory is distributed over multiple brain
regions3–7. In particular, the prefrontal cortex (PFC) and pos-
terior parietal cortex (PPC) have been the focus of recent research
efforts. One model proposes a posterior-to-frontal axis gradient
such that behaviorally relevant information is gradually abstrac-
ted from sensory areas to the PFC3,4,8,9. This model is appealing
considering the fact that other types of information are similarly
organized; abstract information about an object is represented in
the anterior region of the temporal cortex10 and the hippo-
campus11, and complex control of information occurs in the
anterior region of the PFC12. However, other studies have also
shown that the neuronal selectivity within the PFC and PPC
change similarly according to the goal 13–17, such that they both
hold stimulus-specific mnemonic representations of simple fea-
tures18 as well as abstract representations of category19,20.

Here, we investigate how visual working memory representa-
tions are structured in distributed brain regions by ensemble,
which provides a unique opportunity for studying the structured
representation of working memory. Specifically, when we have to
hold more than one item, we do not store them independently.
Instead, our visual system builds a hierarchical structure of visual
working memory by grouping similar items together through a
series of cognitive operations21,22, and utilizes the ensemble to
better remember the items in visual working memory23–26. This
means that while participants perform a single task, the visual
system encodes high-order information such as ensemble mean
and its variance, in addition to noisy sensory inputs23–25. This
feature makes the ensemble unique for studying structured
representations of visual working memory, and distinct from
previous studies that used stimuli in which abstract and sensory
information are nearly indistinguishable3,18, or that adopted
different tasks for multi-featured stimuli, requiring participants to
select a particular dimension by which to identify different types
of representations19.

To capture the neural representations of ensemble in work-
ing memory, we develop an experimental procedure with two
advancements. First, to utilize an inverted encoding model
(IEM)27,28 that can reconstruct single as well as multiple items
in their feature space29,30, we specially devise a set of stimuli. In
one condition, participants are presented with 20 objects which
are the same in their orientation (same orientation, SO). From a
subset of these trials, we train an orientation decoder and then
generalize it to the remaining trials to reconstruct mental
representations of the SO condition. In the second condition,
we present the participants with 20 objects whose orientations
are varied around the predetermined mean orientation (varied
orientation, VO). We then generalize the decoder of the SO
condition to the trials of the VO condition. This generalization
reconstructs the hierarchically encoded ensemble as well as
item representations from the VO condition.

Second, we evaluate the spatiotemporal dynamics of visual
working memory. Recent advances applying multivariate
decoding algorithms in conjunction with high-temporal resolu-
tion electroencephalography (EEG) have enabled us to examine
the distinctive temporal dynamics of neural representation,
especially whether its coding is stable or dynamic31. Stable coding
refers to a situation where a content-specific representation is
coded by stable neural patterns over time, so that the pattern at
one time can also reconstruct the same representation at another
time. On the other hand, dynamic coding refers to a situation
whereby dynamically changing neural patterns code content-
specific representations which can only be reconstructed at the
time point when the decoder is built. Theoretical roles of the

temporal profile of working memory have been extensively
discussed7,15,32,33, and we question whether neural representa-
tions in different hierarchies rely on the same coding scheme.
Further, to investigate the spatiotemporal dynamics, we apply this
method to frontocentral and occipitoparietal electrodes separately
and quantify the dynamics with a newly developed stable/
dynamic index.

Our results show that a set of similar items is stored in a
structured manner in different brain areas. We first confirm that
we can reconstruct neural representations of simple features as
well as ensemble statistics, and identify their temporal dynamics
in visual working memory. We then investigate their spatio-
temporal organization using two tasks with different demands.
We find that the frontocentral areas stably coded simple features
as well as mean orientations, and the neural representation of
ensembles even correlated with behavior. In contrast, task
demand modulates the neural coding of ensembles at the occi-
pitoparietal areas, which does not correlate with behavior. Taken
together, these results suggest that the frontocentral areas store
behaviorally relevant abstract working memory representations,
whereas the occipitoparietal areas store visual representations
modulated by top-down task demands.

Results
Stimuli, tasks, and behavioral results. We asked participants to
remember 20 orientations, which were carefully designed to
decode their neural correlates (Fig. 1a). Specifically, we first
determined a mean orientation from the predefined set of
orientations from −78.75°, −56.25°, −33.75°, −11.25°, 11.25°,
33.75°, 56.25°, 78.75°. We then determined a set of orientations
for the same-orientation (SO) condition and for the varied-
orientation (VO) condition. In the SO condition, all 20 orienta-
tions were the same as the mean orientation. In the VO condition,
orientations were varied from the mean orientation by −30°,
−10°, +10°, and +30° (Experiment 1) or −22.5°, −7.5°, +7.5°,
and +22.5° (Experiment 2), with five repetitions of each orien-
tation. Note that in the VO condition, the mean orientation was
not presented. These two conditions were presented to the par-
ticipants in a blocked manner in both experiments.

In Experiment 1, 20 participants performed an old/new
judgment task. Specifically, the participants were presented with
the 20 oriented bars for 100 ms, followed by the blank retention
interval for 1500 ms in both the SO and VO conditions (Fig. 1b).
The participants were then asked to judge whether the orientation
of the probe bar was old or new. In the SO condition, the probe
orientation and the stimuli were the same (i.e. old) in 50% of the
trials, and different from the selected stimulus by ±4°, ±8°, ±12°,
±16°, ±20°, ±24°, ±28°, or ±32° in the remaining 50% (i.e. new).
In the VO condition, the orientation of the probe was 0°, ±10°,
±20°, ±30°, ±40°, ±50°, ±60°, ±70°, ±80°, or −90° from the mean
orientation, all with equal probability. After entering the
response, auditory feedback was given to the participants for
500 ms only in the SO condition.

In Experiment 2, 24 participants performed a continuous
estimation task. Specifically, they were presented with the
20 oriented bars for 100 ms, followed by a blank retention
interval for 900 ms, and then presented with a location cue
for 600 ms (Fig. 1c). This cue was randomly placed in one of
the 20 stimulus locations, and indicated the orientation to be
remembered. The participants were then presented with the
probe bar in the center of the screen, and instructed to adjust its
orientation to be as close they could get to the cued orientation.
After entering the response, the correct orientation of the cued
stimulus was presented for 500 ms for both SO and VO
conditions as feedback.
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The results of the SO condition in Experiment 1 showed sharp
tuning of “old” responses around the target orientation (Fig. 2a).
This contrasts with the results of the VO condition which showed
broader tuning with “old” responses (Fig. 2b), indicating more
precise representation of the orientation in the SO condition than
in the VO condition. Importantly, the results of the VO condition
showed that the participants reported more “old” responses as the
probe orientation approached its mean (i.e., 0°), despite the fact
that the mean orientation was not presented in the display of the
VO condition. The proportion of “old” responses at the mean
orientation was even higher than the proportion combined across
all stimulus orientations [i.e., 10° and 30°; t(19)= 3.74, p= .001,
paired t-test]. This result implies that the participant did
represent the mean orientation. This result was also replicated
in Experiment 2. Specifically, the precision of participants’
responses was higher in the SO condition than in the VO
condition (Fig. 2c), indicating that the participants represented
the target orientation more precisely in the SO condition. On the
other hand, we found that the participants’ responses were
systematically biased towards the mean orientation in the VO
condition (all p < .001, one-sample t-tests; Fig. 2d). This result
shows that the participants represented an ensemble representa-
tion that is distinct from the representations of individual items in
a hierarchical manner21.

Reconstructing mnemonic representations. To reconstruct
mnemonic representations from EEG signals, we utilized an IEM.
The IEM assumes that when we represent orientations, our brain
is activated as a weighted sum of orientation-tuning functions;
therefore, these orientation-tuning functions can be reconstructed

with EEG signals and appropriate weights. Specifically, we set a
hypothetical orientation-tuning function for each orientation
(Fig. 3a). This function was then convolved to orientations in all
trials of the SO condition such that the orientation of a given trial
corresponds to the peak response of the function (Fig. 3b). The
orientation responses of a given trial and the corresponding EEG
signals were then fed into the estimation of the weights (Fig. 3c).
We termed the weights the “SO decoder” to emphasize that it is
the orientation decoder trained in the SO condition. The SO
decoder was then used to predict the mnemonic representation of
an orientation in the SO condition (SO–SO prediction) and the
VO condition (SO–VO prediction; Fig. 3d). The reconstructed
responses are represented as a sum of channel responses in the
feature space (Fig. 3e). For the SO–SO prediction, specifically, the
reconstructed channel response should produce a single tuning
function with its center at the orientation of the SO condition. On
the other hand, the SO–VO prediction should reconstruct the
representations of all items29,30 as well as the ensemble because
there was a single orientation in the SO condition which was
identical to each mean orientation of the VO condition. Note that
the channel responses in the VO condition should be more
broadly tuned than in SO condition, and the tuning of the
ensemble should be more sharply tuned than a of a set of four
similar items. After we finished describing the procedures, we
provided evidence that the orientation tuning reflects the
ensemble rather than a set of four similar items.

We devised a statistical test to summarize the reconstructed
orientation responses (Fig. 3f). We first reversed the sign of the
offset by converting 22.5°, 45° and 67.5° into −22.5°, −45° and
−67.5°, respectively. We then calculated the slope of the
orientation responses to build a summary index, orientation

Old/New judgment task (Experiment 1) Continuous estimation task (Experiment 2)
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Fig. 1 Illustrations of stimuli, conditions, and task sequences. a Illustrations of how stimuli and conditions were created. First, one orientation was
sampled from eight orientations and then used as a mean orientation in each trial of two conditions. In the same-orientation (SO) condition, the sampled
orientation was identical to the orientation of 20 bars. In the varied-orientation (VO) condition, four orientations were varied around the sampled
orientation, with 5 bars in each orientation, producing 20 orientations. b Trial sequence of the old/new judgment task in Experiment 1. Participants viewed
the stimuli of the SO or VO condition for 100ms. After a 1500ms retention interval, the participants were asked to judge whether the probe was of a new
orientation, or whether it was present in the old stimulus display. c Trial sequence of the continuous estimation task in Experiment 2. Participants viewed
the stimuli of the SO or VO condition for 100ms. After a 900ms retention interval, the location cue indicated which stimulus the participants should
estimate. Participants were then asked to adjust the probe orientation to the target orientation in the cued location.
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sensitivity. A higher, negative, or zero sensitivity corresponds to
sharper, reversed, or no tuning for any orientations, respectively.
Statistical significance was judged using a non-parametric Monte
Carlo randomization test with a significance level of 0.05. The test
was uncorrected to maximize statistical sensitivity, and one-tailed
to focus on non-reversed tuning functions, similar to previous
studies34,35. We found that the sensitivities of the SO–SO
predictions showed a significant increase after the stimulus onset
in both Experiment 1 (Fig. 3g) and Experiment 2 (Fig. 3h). These
results indicate that the SO decoder was successfully trained to
decode a target orientation. Critically, we also found that the
sensitivities of the SO–VO prediction significantly increased after
the stimulus onset in both Experiment 1 (Fig. 3i) and Experiment
2 (Fig. 3j). These results indicate that the SO decoder successfully
reconstructed the four similar orientations, as well as the mean in
the VO condition.

Temporal dynamics of mnemonic representations. Next, we
explained the temporal dynamics of mnemonic representations
using a temporal generalization (TG) method. Specifically, we

trained the SO decoder at a particular time point and then gen-
eralized it to the EEG signals over the entire period. We iterated
this procedure until the SO decoder trained at every time point
was generalized to the EEG signals also obtained at every time
point, to make a two-dimensional TG matrix of orientation
sensitivities. The sensitivities of the TG matrices were then con-
verted into a map of t-statistics using the same non-parametric
Monte Carlo randomization test.

TG methods can reveal whether the representations are coded
stably or dynamically over time. Stable coding refers to a pattern
of neural responses over a period that stably generates the same
representation over a different period. In this case, the SO
decoder trained at a particular time point can reconstruct the
representations of orientation over a different period, resulting in
the rectangular shape sensitivity modulations in the TG matrix.
Dynamic coding refers to a situation where different patterns of
neural populations dynamically generate the representation over
one specific period. In this case, the SO decoder trained at a
particular time point can reconstruct the representation only at
the matched time point, resulting in the significant sensitivity
modulations along with the diagonal axis in the TG matrix. For a
quantitative comparison, we developed a time-resolved stable/
dynamic index36,37. Specifically, the stable index is the proportion
of the off-diagonal elements that were significantly greater than
zero and not significantly smaller than the corresponding on-
diagonal elements. The dynamic index is the proportion of the
off-diagonal elements that were significantly smaller than the
corresponding on-diagonal elements.

We constructed TG matrices for SO–SO and SO–VO
predictions from all electrodes to ensure that we could reconstruct
the orientation of the SO condition and the ensemble mean/a set
of four orientations for the VO condition, and to confirm whether
the stable/dynamic index effectively summarizes the patterns of
two-dimensional modulations in the TG matrix. In Experiment 1,
the SO–SO TG showed significant sensitivities mostly along
the diagonal axis from 0 to 1,000ms after the stimulus onset
(Fig. 4a). Visual features of the SO–SO TG matrix were mirrored
by the stable/dynamic index, which showed dynamic coding
during an early period from 100 to 600ms, and stable coding
during a late period from 500 to 800ms after the stimulus onset.
This suggests that working memory representations of simple
orientations were both dynamically and stably processed. In
contrast, the SO–VO TG showed significant sensitivities over the
off-diagonal areas from 300 to 800ms after the stimulus onset,
and brief dynamic coding which was dominant at an earlier period
from 200 to 400ms (Fig. 4b). In Experiment 2, we also found that
both stable and dynamic coding were present in the results of
both the SO–SO and SO–VO TG (Fig. 4c, d, respectively).
However, compared to the results of Experiment 1, stable coding
was more dominant than dynamic coding, and its above-chance
sensitivities persisted. While Experiment 1 and 2 are different
in several aspects, this difference at least cannot be explained
by different electrode montages (see Methods and Supplementary
materials). In addition, when we performed the same analysis
for different frequency bands (theta- and alpha-band), spectral
power appeared to hold orientation-specific representations.
However, these results were spurious at best (see Supplementary
materials).

Trial-wise reconstruction of mean orientations. One might be
concerned that the SO–VO prediction reconstructs a set of four
similar orientations instead of the ensemble mean. To address
this issue, we conducted a trial-wise median-split analysis. Spe-
cifically, the continuous estimation task in Experiment 2 offers a
rich behavioral measure than the old/new judgment. We obtained
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the circular median from individual participants, which lies
between the mean and the target orientations (i.e., ±7.5º or ±22.5º
of the VO condition). Based on the median, we separated parti-
cipants’ responses that were close to the cued target orientation in
some trials (“target” response trials, colored blue in Fig. 5a) and
to the mean orientation in the other trials (“mean” response trials,
colored red in Fig. 5a). We then generalized the SO decoder to the
“mean” and “target” response trials separately. If the sensitivity is
higher in the “target” response trials than the “mean” response
trials, we can conclude that the reconstructed orientations
reflected the cued target orientation. If the reconstructed orien-
tation sensitivity is higher in the “mean” response trials than the
“target” response trials, we can conclude that the reconstructed
orientations reflected the ensemble mean. Or, if the reconstructed
orientation represents the four similar orientations, the variability
in the reported orientations is uninformative to the ensemble or
target representations; thus, we should see comparable sensitiv-
ities between the “mean” and “target” response trials.

We concluded that the SO–VO prediction did reconstruct the
ensemble mean. We found that the mean orientation was stably

reconstructed only from the “mean” response trials (Fig. 5b). On
the other hand, orientation-specific responses were nearly absent
in the “target” response trials (Fig. 5c), validating that the SO–VO
prediction did reconstruct the ensemble mean rather than a set of
four orientations or the cued target orientation. The different
results between “target” and “mean” trials also ruled out an
alternative in which participants remembered just one of the four
orientations in each trial, because remembering one orientation
incidentally results in a significant tuning at the mean orientation
if we averaged all tunings at four orientations across all trials. The
lack of “target” responses is subject to a concern that the decoder
was not sensitive enough to uncover underlying representations
such that participants could have held the “target” representation
in a weaker strength in relative to the “mean” representation.
However, this does not change the interpretation that the IEM
decoded mainly the ensemble representations. Furthermore,
it is unlikely that participants could have hold the cued,
target orientation throughout the experiments despite the fact
only one out of 20 locations, or one of four orientations was
randomly selected for the report. Taken together, we concluded
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from our results that SO–VO prediction did reconstruct the
ensemble mean.

Distinct coding of frontocentral and occipitoparietal areas. To
investigate the structured representations of visual working
memory distributed over different brain areas, we separated the
28 electrodes into two sets of 14 electrodes covering frontocentral
and occipitoparietal areas, respectively. We then trained the SO
decoder and generalized it to the SO and VO conditions from
each set of electrodes. Our first observation was that the results of
the frontocentral electrodes consistently showed that the stable
coding was dominant in the SO–SO as well as SO–VO predic-
tions in both experiments, while dynamic coding was nearly
absent (Fig. 6a–d). On the other hand, the results of the occipi-
toparietal areas showed distinct patterns of results in SO–SO and
SO–VO TGs and in the two experiments. Specifically, in
Experiment 1, we found that the SO–SO TG showed dominant
dynamic coding with modest stable coding (Fig. 6e), whereas the
SO–VO TG showed modest dynamic coding but without stable
coding (Fig. 6f). In contrast, in Experiment 2, we found that the
SO–SO TG showed early dynamic coding and late stable coding
(Fig. 6g), whereas the SO–VO TG showed a similar early dynamic
coding, but the stable coding occurred at an early time period of
approximately 300 ms, and persisted (Fig. 6h). These results
suggest that while the working memory representations in the
frontocentral areas are similar regardless of the stimulus condi-
tions (SO vs. VO) or task specifics, the working memory repre-
sentations at the occipitoparietal areas are highly task dependent,
whether storing simple or abstract visual representations. These
results could not be explained by either different electrode
montages between the two experiments nor by eye movements
(See Supplementary materials). Searchlight-based analyses also
confirmed consistent patterns of results (See Supplementary
materials).

Across-participant correlation with an ensemble tendency. In
the hierarchical model of visual working memory, the degree to
which a memory is biased towards an ensemble mean results
from the ensemble tendency, the degree to which items are
grouped in visual working memory38. We utilized an individual-
difference approach to identify neural correlates of the ensemble
tendency because it can provide another means to identify neural
representation of ensembles in addition to ensemble mean. Spe-
cifically, if the SO–VO prediction does also reflect the ensemble
tendency, the reconstruction from the SO–VO prediction should
correlate with the degree to which responses are biased towards
the mean. In the old/new judgment task of Experiment 1, the
function of “old” response proportions should be narrower
around the mean orientation if the participants bias their mem-
ories to an ensemble mean38. We thus modeled the “old”
response ratios with a cumulative Weibull function in each par-
ticipant and defined its threshold of reaching specific ratios as the
ensemble tendency. In the continuous estimation task of
Experiment 2, a stronger ensemble tendency should bias
responses towards the mean to a greater extent38–40. We thus
defined the response biases towards the mean orientation col-
lapsed across all targets as the ensemble tendency. Finally, we
summarized the neural representations of mean orientations by
averaging the sensitivities within the 200–1000 ms × 200–1000 ms
window in each participant.

We found that the frontocentral areas were positively
correlated with the ensemble tendency in both Experiment 1
(R2= 0.24, p= 0.03; Fig. 7a) and Experiment 2 (R2= 0.27, p=
0.01; Fig. 7b). However, the occipitoparietal areas did not show
any correlations in either Experiment 1 (R2= 0.001, p= 0.91;
Fig. 7c) nor in Experiment 2 (R2= 0.02, p= 0.56; Fig. 7d). These
patterns were consistent even when we computed the non-
parametric Spearman rank-order correlation or when we defined
the temporal window based on the significant sensitivities in each
experiment (see Supplementary materials). These results imply
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that the frontocentral areas, but not the occipitoparietal areas,
dominantly contribute to the ensemble tendency.

Discussion
We investigated the neural coding of structured working memory
representations. Our results showed the differences in the types of
representations and coding formats over the frontocentral and
occipitoparietal areas. First, we reconstructed orientations of the
SO condition as well as ensemble mean of the VO condition from
frontocentral electrodes. This neural representation of the
ensemble mean also correlated with a behavioral measure of
ensemble tendency only from the frontocentral electrodes, indi-
cating that frontocentral areas represent the abstract, ensemble
mean. On the other hand, while we were able to reconstruct
ensemble mean from occipitoparietal electrodes across the two
experiments, they did not correlate with behaviors. Second, we
consistently found stable coding in both orientations and
ensemble means from the frontocentral areas, but the coding
format differed over the two experiments and two conditions (i.e.,
SO vs. VO) in the occipitoparietal areas.

Although IEM is suitable for assessing population-level mental
representations41, IEM is methodologically limited in that it
reconstructs any arbitrary, modeled channel responses42 and the
noise and population-level of neural tuning conflate the channel

responses43. As a result, our ability to infer tuning properties (e.g.
tuning width) of the neural representations from the recon-
structed channel responses is limited. Nevertheless, our results
remain tenable for the following reasons. We used the permu-
tation approach to avoid the possibility that the choice of the
basis function for IEM introduced any systematic bias because we
used the same basis function for generating the “null distribu-
tion.”We also used the slope of the tuning function as an index of
the channel sensitivity. Because the slope is an outcome of both
the amplitude and width of the channel responses, our measure of
sensitivity should be less sensitive to noise as well as hypothesized
channel responses in contrast to the noise sensitive tuning
width43. The fact that the reconstructed channel responses can
reflect the relative likelihood of each channel makes IEM still
useful in inferring relative channel responses rather than channel
tuning per se. Most importantly, we built the decoder from the
SO condition and applied it to different trial types of the VO
condition (“mean” and “target” response trials shown in Fig. 5) to
establish the ensemble representation. Together, our results
remain tenable, despite the methodological limitations of IEM.

Our study contributed to literature by providing evidence that
working memory representations are gradually refined such that
behaviorally relevant information is abstracted over series of
processing stages across the posterior-to-frontal axis3,4,8,9.
Although we also found the ensemble mean from occipitoparietal
areas, their representations should have been less refined, con-
sidering the lack of behavioral correlation. We emphasized that
our experiment was different from previous studies that explicitly
required participants to compute the mean of a set of stimuli24.
Our experiment is also different from previous studies where
participants were required to master category information from
extensive training, which leads to similar selectivity between the
PFC and the PPC17,20. Instead, we only asked participants to
remember a set of stimuli and to determine the membership of a
probe item or adjust a single cued item. The working memory
should therefore have been more structured with the ensemble
and individual items than in the results of previous studies38,39.

We are nevertheless unable to rule out an alternative model
focusing on what the PFC is more specialized in relative to the
PPC. Xu (2018) proposed that the PFC controls and stores
working memory representations and the PPC stores visual
representations modulated by top-down task demands, based on
the fact that the PFC also represents action44 as well as top-down
control variables45, while the PPC represents diverse types of
representations including category19,20. We are unable to rule out
this model because we cannot evaluate action and control vari-
ables within our behavioral paradigm.

Instead, our results fit the view that the PPC stores visual
representations modulated by top-down control variables, possi-
bly guided by the PFC46–48. Specifically, participants were
required to judge whether a probe was present or absent in
Experiment 1, but the demands were different between the two
conditions. In the SO condition, the probe orientation was more
similar to the target orientation than in the VO condition, and
feedback was given for the SO condition, but not for the VO
condition. This means that participants needed to remember the
orientation more precisely in the SO condition than the VO
condition, even though the orientation of all 20 items was iden-
tical. In contrast, the demand for holding individual orientations
should be high in Experiment 2 because participants were
required to report one of them. The difference in task require-
ments can explain why the orientation-selective responses at the
occipitoparietal areas were modest in Experiment 1 but present in
Experiment 2 of the VO conditions.

Another advancement of our study is the distinguishable
coding formats that we identified from TG, which would
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coding. Green lines show stable coding. Red dotted lines show dynamic
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orientation; VO varied orientation.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13592-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5665 | https://doi.org/10.1038/s41467-019-13592-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


contribute to the literature in shaping the functional roles of
different coding formats. Studying what information is held in
different coding formats identified from EEG/MEG signals is an
active research area. We found stable coding from frontocentral
areas in all conditions and experiments, and this stable coding
also correlated with a behavioral measure of ensemble tendency.
We also found stable coding at the occipitoparietal areas in
Experiment 2, where attention could have been important for
reporting the cued orientation.

These results are consistent with those of recent studies, sug-
gesting that stable coding is important in guiding our behaviors in
relation to the sustained attention. Target stimulus in rapid serial
visual presentation elicited category-specific stable coding only
when it was subsequently reported49. When participants needed
to determine a briefly presented target (face or house) sandwiched
by masks, the participants’ confidence modulated the stable
coding both at the frontocentral and occipitoparietal areas50. In
working memory literature, stable coding was modulated by
selection rules at ventrolateral prefrontal regions51 and by
attentional priority at the occipitoparietal electrodes52. Together,
these results suggest that stable coding holds task-relevant
information that guides our behavior through attention or

metacognition. On the other hand, functional roles of dynamic
coding remain elusive in the literature. However, considering that
dynamic coding at the occipitoparietal areas represents both
targets as well as distractors49 and multiple features prior to the
selection51, it reflects a “perceptual buffer”49,53.

We have mainly discussed the idea that the neural repre-
sentations obtained from occipitoparietal electrodes originate
predominantly from the PPC, since the PPC is known to store
various visual representations such as orientations and categories,
and it can be activated when a task requires a strong visual
processing load46,54. Note, however, that the exact sources in the
brain remain an open question due to the poor spatial resolution
of EEG. In particular, we are unable to distinguish the con-
tribution of sensory areas from the PPC obtained from the
occipitoparietal electrodes, considering that mounting evidence
has shown that early sensory areas including the primary visual
cortex do show stimulus-specific responses over the retention
interval of visual working memory tasks55,56. Nevertheless, EEG
signals might be more suitable for providing a macroscopic view
by identifying populations of neural activities originating from
multiple brain networks that serve for building working memory
representations and eventually guiding our behaviors, as shown
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by the consistent stable coding from the frontocentral areas and
its behavioral correlation, despite the fact that neurophysiological
studies have shown varied coding formats32.

Methods
Twenty-seven participants including the third author (12 females; mean age ± SD
= 24 ± 4.15 years) and 35 participants (20 females; mean age ± SD= 23.03 ± 2.5
years) were recruited for Experiment 1 and 2, respectively. All participants reported
normal or corrected-to-normal vision and gave informed consent, approved by the
Sungkyunkwan University Institutional Review Board. Seven participants were
excluded from the analysis of Experiment 1 (one participant did not complete the
experiment, and six participants had <80% of trials artifact-free trials). Eleven
participants were excluded from the analysis of Experiment 2. Six participants had
<80% artifact-free trials, and five participants could not complete the experiments
due to problems with the recording system (four participants due to excessive noise
in the EEG signal and 1 due to a recording failure). For 1 participant in Experiment
2, the O1 electrode was interpolated in EEGLAB due to noise in the recording. Out
of the participants included in the results, only two participants completed both
experiments. The sample size was closely matched to previous studies that used
similar methods52,57.

Behavioral protocols. We conducted an old/new judgment task in Experiment 1
and a continuous estimation task in Experiment 2. The numbers of trials in the SO
and VO conditions were 1024 and 288 (Experiment 1) and 512 and 512
(Experiment 2), respectively.

Experiment 1. Stimuli were generated and controlled using a Mac Mini, MATLAB,
and the Psychophysics Toolbox58,59. The stimuli were presented on a CRT monitor
with a refresh rate of 100 Hz and a resolution of 1,024 × 768 pixels at a viewing

distance of ~85 cm. A gray background and a black fixation point with a white
outline (0.256°) were maintained throughout the experiment. Twenty oriented bars
(1.07° × 0.256°) were displayed for the memory items. We prepared two bar types
in opposite polarity to equate their mean luminance to the background and dis-
played them in equal numbers. In each trial, the mean orientation of the 20
oriented bars was randomly determined out of −78.75°, −56.25°, −33.75°,
−11.25°, 11.25°, 33.75°, 56.25°, and 78.75°. The distribution of the orientations was
chosen according to two conditions: SO and VO. In the SO condition, the
orientations of the 20 bars were all the same as the mean orientation; in the VO
condition, the orientation of the 20 bars were varied between −30°, −10°, +10°,
and +30° from the mean orientation, with 5 repetitions of each. The 20 bars were
placed around the circumference of two invisible circles. Specifically, seven and
thirteen oriented bars were placed around an inner circle (radius of 2.2°) and an
outer circle (radius of 4.09°), respectively. Thus, any three bars in the closest
neighborhood were placed at an approximately equal distance. To add location
randomness, the phase of each circle was randomized, and jitter was added to each
location with a distance of 0–0.41° randomly for all directions.

The probe bar was identical to the oriented bars in shape and located at the
center of the screen. In the SO condition, the orientation of the probe was identical
to the orientation of the memory items in 50% of trials. In the remaining 50% of
trials, the orientation of the probe was ±4°, ±8°, ±12°, ±16°, ±20°, ±24°, ±28°, or
±32° from the orientation of the memory items. In the VO condition, the
orientation of the probe was 0°, ±10°, ±20°, ±30°, ±40°, ±50°, ±60°, ±70°, ±80°, or
−90° from the mean orientation of the memory items, with equal probabilities. We
made the range of probe orientations of the SO condition narrower than that of the
VO condition so that participants remembered the orientations precisely. The
polarity of the probe was randomly determined for each trial.

Each trial began with a fixation point. After 700–1000 ms, 20 oriented bars were
displayed for 100 ms, after which they disappeared. After 1500 ms, a probe bar was
displayed, and the participants judged whether the probe had been presented
before (old/new judgment). Only in the SO condition, a low or high frequency
feedback sound was played to indicate that the response was correct or incorrect,
respectively. The next trial began 1000 ms after the response. Participants
completed 32 blocks of the SO condition and 32 blocks of the VO condition, and
they completed 32 trials (1024 trials in total) in each block of the SO condition and
nine trials per block (288 trials in total) in the VO condition. The blocks of the SO
and VO conditions were presented alternately. All participants completed a
practice block of 24 trials in advance. The condition practiced in the initial block
was counterbalanced across participants. The experiment consisted of 1312 trials,
and took participants approximately 3.5 h to complete from electrophysiology
preparation to hair cleaning.

We quantified the degree of ensemble representation from the behavioral
responses in the VO condition. We obtained a measure of how similar a probe was
to the mean orientation in the following way:

sim θð Þ ¼ 1� θj j
π=2

;

where θ is the probe orientation relative to the mean orientation of the stimulus in
radians, and sim is the orientation similarity to the mean orientation. We then
fitted a cumulative Weibull function:

W sim; α; β; γ; δð Þ ¼ γ� γ� δð Þ � e� sim=αð Þβ ;

where sim is the orientation similarity, α is the threshold at which a response
function reaches 63.2% of its full amplitude, β is the slope, γ is the upper horizontal
asymptote, and δ is the lower horizontal asymptote of a response function. We used
a maximum likelihood estimation (MLE) with the joint probability mass function
for the fitting procedure:

f kjn; sim; α; β; γ; δð Þ ¼
Y

i 2 sim

ni!
ni � kið Þ!ki!

W sim; α; β; γ; δð Þki 1�W sim; α; β; γ; δð Þð Þni�ki ;

where n and k are the number of trials and “old” responses in similarity i,
respectively. The goal of the MLE was to find the set of parameters that minimizes
the negative log-likelihood function:

� ln L α; β; γ; δjn; k; simð Þ
¼ �

X
i 2 sim

ki � lnWðsim; α; β; γ; δÞ þ ni � kið Þ � ln 1�Wðsim; α; β; γ; δÞf g½ �:

The fitting was completed using the fmincon function in MATLAB with
boundaries of α (0, 1), β (0, ∞), γ (0, 1), and δ (0, 1) to constrain the parameters. To
maximize the probability of finding a global minimum, the initial seeds were
randomly selected in α (0, 1), β (0, 10), γ (0, 1), and δ (0, 1). Finally, after 30
repetitions, the parameters showing the minimum negative log-likelihood were
used for selecting the parameters. Of the four parameters, the threshold parameter
α was used for further analyses because the threshold is closely related to the
narrowness of a response function, and thus the degree of ensemble representation.

Experiment 2. All aspects were identical to Experiment 1 except the following
changes. The four orientations of the VO condition were −22.5°, −7.5°, +7.5°, and
+22.5° from the mean orientation. The diameter of a location cue was 1.07°.
Participants viewed a location cue for 600 ms after a 900 ms retention interval and
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Fig. 7 Frontocentral areas showed significant correlations between
reconstructions and ensemble behavior, while occipitoparietal areas
showed no correlations. a–b Orientation sensitivities of SO–VO predictions
in frontocentral areas showed correlation with ensemble behavior. a Results
of Experiment 1. Behavioral index of Experiment 1 was calculated by fitting
a cumulative Weibull model to the results of the VO condition and
getting a threshold parameter. b Results of Experiment 2. Behavioral
index of Experiment 2 was the average biases of four target orientations.
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**p < 0.01. SO same orientation, VO varied orientation.
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adjusted a bar in the test phase to the cued orientation. We reduced the retention
interval from 1500 ms in Experiment 1 to 900 ms in Experiment 2 so that parti-
cipants could finish the entire experiment within a reasonable time, as the
adjustment took longer than the old/new judgment. The orientation of the probe
bar was randomly selected for each trial. The actual orientation of the cued bar was
given immediately after the response and remained on the screen as feedback for
500 ms in all trials. There were 512 trials in both the SO and VO conditions with 16
in each block. The 4 orientations used in the VO condition were probed equally as
often. Participants completed 1024 trials in approximately 3.5 h from electro-
physiology preparation to hair cleaning.

EEG acquisition. The EEG signal was recorded at a sampling rate of 500 Hz using
32 Ag/AgCI electrodes mounted in an elastic cap and amplified using an Acti-
CHamp amplifier (BrainVision). The signal was low-pass filtered (140 Hz) online.
The 28 electrode sites consisted of Fz, F3, F4, FC1, FC2, FC5, FC6, Cz, C3, C4, T7,
T8, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, POz, PO3, PO4, PO7, PO8, O1, and
O2 (Experiment 1), or Fp1, Fp2, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4,
T7, T8, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, Oz, O1, and O2 (Experiment 2).
All electrodes were recorded using the left mastoid as a reference online and re-
referenced by the average of the left and right mastoids offline. To detect blinks and
eye movements, we recorded vertical electrooculography (EOG) from below the left
eye and horizontal EOG from the external right ocular canthus. The impedance of
all electrodes was kept below 10 kΩ throughout the experiment.

EEG preprocessing. EEG signals were preprocessed using MATLAB with the
EEGLAB60 and ERPLAB61 toolboxes. A non-causal infinite impulse response (IIR)
Butterworth high-pass filter (−6 dB half-amplitude cutoff frequency of 0.1 Hz and
12 dB/oct roll-off) was applied to the continuous EEG signals using pop_basicfilter.
m in ERPLAB. Epochs of the signals were taken from −200 ms to 1600 ms
(Experiment 1) and from −200 ms to 1000 ms (Experiment 2) relative to the onset
of the memory items. Each epoch was checked by visual inspection for blinks, eye
movements, and nonstereotyped artifacts. Trials with artifacts were excluded from
the analysis. The EEG data were then smoothed using a 51-point moving-average
filter (i.e., 100 ms sliding window) and down-sampled to 100 Hz to enhance the
signal-to-noise ratio and for computational efficiency, similar to previous
studies52,62.

Inverted encoding model. We applied an IEM with three-fold cross-validation
using 100 iterations. When we separately analyzed frontocentral and occipitopar-
ietal areas, the frontocentral electrodes consisted of Fz, F3, F4, FC1, FC2, FC5, FC6,
Cz, C3, C4, T7, T8, CP5, and CP6 in Experiment 1 and Fp1, Fp2, Fz, F3, F4, F7, F7,
FC1, FC2, FC5, FC6, Cz, C3, and C4 in Experiment 2. The occipitoparietal elec-
trodes consisted of CP5, CP6, Pz, P3, P4, P7, P8, Poz, PO3, PO4, PO7, PO8, O1,
and O2 in Experiment 1 and T7, T8, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, Oz,
O1, and O2 in Experiment 2.

The IEM was used to reconstruct the remembered orientation. The IEM
assumes that the brain signal of each electrode is the weighted sum of an
orientation-selective tuning function. This is characterized by a general linear
model of the following form:

Bðm ´ nÞ ¼ Wðm ´ kÞCðk ´ nÞ:

Specifically, B (m electrodes × n trials) is an obtained brain signal and W (m
electrodes × k orientations) is an arbitrary weight matrix, mapping from the
orientation-selective tuning function to the EEG signal. Lastly, C (k orientations × n
trials) is a channel tuning function (CTF) matrix, reflecting an orientation-selective
tuning function in each trial.

We first modeled the basis function of the orientation response profiles. We
assumed that the orientation-selective tuning function should have the following
form:

R ¼ cos7 θ;

where R is the response of orientation channels in arbitrary units, and θ is an
orientation angle (i.e., −90°, −67.5°, −45°, −22.5°, 0°, 22.5°, 45°, 67.5°) in
radians. With this basis function, we constructed the CTF matrix for each target
orientation that corresponded to the presented orientation of a given trial of the
SO condition.

Next, we applied three-fold cross-validation with 100 iterations. Specifically,
we partitioned each participant’s artifact-free trials into three subsets
without replacement. The partition was random with the constraint that the
number of trials in each target orientation and each subset was the same (any
trials exceeding the number were discarded). In each subset, the trials of each target
orientation were averaged. We then treated two subsets as a training set (B1 and C1)
and the remained subsets as a test set (B2 and C2). We then obtained the estimate
of the weight matrix (Ŵ) with the training set using the least squares
method:

Ŵ ¼ B1C
T
1 C1C

T
1

� ��1
:

The CTF matrix of the test set (cC2) was then obtained with the estimated weight
matrix using the following formula

cC2 ¼ ŴTŴ
� ��1

ŴTB2:

This procedure was repeated until all three sets were tested, and the whole
procedure was iterated 100 times with a new random partition. The CTF matrix
was averaged across all folds and iterations. We corrected the baseline CTF of each
target orientation and time by subtracting the mean of channel responses of all
orientations from the channel response of each orientation. The CTFs in each
target orientation were then circularly shifted to a common center and all eight
aligned CTFs were averaged.

To summarize the decoding sensitivity, we calculated the linear slope of the
CTFs. Specifically, we reversed the signs of the orientation channels 22.5°, 45°, and
67.5° to become −22.5°, −45°, and −67.5°, respectively. We then fitted the linear
regression with an intercept across the eight channel responses (i.e., −90°, −67.5°,
−67.5°, −45°, −45°, −22.5°, −22.5°, 0°) and obtained the linear slope of the CTFs.
When doing so, zero decoding sensitivity corresponds to no orientation sensitivity,
while higher decoding sensitivity corresponds to greater orientation sensitivity.

TG of the IEM. To assess the temporal generalizability of the CTFs, we imple-
mented the TG of the IEM. Specifically, we trained a weight matrix from the
training set at time t and applied the estimated weight matrix to the test set at time
t′. This procedure was repeated so that the weight matrices at every time point had
been used to calculate the slope of the CTFs (decoding sensitivity) at every time
point, thereby creating a two-dimensional TG matrix of the CTF slopes. All other
aspects (e.g., three-fold cross-validation with 100 iterations) were identical to the
IEM procedure explained above.

Stable/dynamic index. To quantify the magnitude of stable and dynamic coding,
we devised a stable/dynamic index36,37. We first sought to test whether there was
significant dynamic or stable coding at a particular time point. For the dynamic
coding, we tested whether the off-diagonal element of the matrix TG(t1,t2) was
significantly smaller than the corresponding on-diagonal elements of the matrix
TG(t1,t1) and TG(t1,t2)

H1 t1; t2ð Þ ¼ TG t1; t2ð Þ < TG t1; t1ð Þ
H2 t1; t2ð Þ ¼ TG t1; t2ð Þ < TG t2; t2ð Þ

dynamic t1; t2ð Þ ¼ H1 t1; t2ð Þ ^H2 t1; t2ð Þ:
For the stable coding, we tested whether the off-diagonal element of the matrix TG
(t1,t2) was significantly higher than zero and, at the same time, not significantly
smaller than the corresponding on-diagonal elements of the matrix TG(t1,t1) and
TG(t2,t2):

H3 t1; t2ð Þ ¼ TG t1; t2ð Þ>0
stable t1; t2ð Þ ¼ :H1ðt1; t2Þ ^ :H2ðt1; t2Þ ^ H3ðt1; t2Þ:

We applied these tests to all off-diagonal elements of the matrix by using
permutation tests.

We then summarized temporal dynamics over time. We gained the indices of
stable or dynamic coding at a time point t by calculating the proportion of
significant stable or dynamic coding elements over a 310 ms square window
centered around time point t. We simultaneously controlled the temporal smearing
effect caused by a 100 ms moving-average filter by excluding the elements within
±50 ms of the diagonal axis from the analysis. A stable or dynamic index of 1
indicates that the TG is completely stable or completely dynamic, whereas 0
indicates that the TG is not at all stable or dynamic.

Cross-conditional generalization of the IEM. To find the neural correlates of
ensemble representation, we examined the cross-conditional generalization from
the SO condition to the VO condition. Specifically, we implemented the TG to the
SO condition as the training set and the VO condition as the test set. When
applying the three-fold cross-validation with 100 iterations, we randomly parti-
tioned the SO condition into three subsets, trained the weight matrix with two
subsets, and applied the weight matrix to all trials of the VO condition. We
repeated this procedure until all subsets of the SO condition were equally used for
training and iterated 100 times with a new random partition. All other aspects (e.g.,
TG) were identical to the previously explained IEM procedures.

Permutation test. To investigate whether the decoding sensitivity was significantly
above that which could be expected by chance, we tested whether it was greater
than zero using one-sample t-tests. Furthermore, because the decoding sensitivity
could not have been normally distributed, we utilized a permutation test to
approximate the null distribution of the t-statistics57. Specifically, we first randomly
shuffled the orientation label of all trials in the SO and VO conditions and then
fitted the IEM. With 1000 iterations, we obtained a null distribution and then
calculated the t-statistic probabilities. Our permutation test was one-tailed, and p <
0.05 was considered statistically significant.
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Bootstrapping method. For visualizing the standard error of the decoding sen-
sitivity and stable/dynamic index, we implemented a bootstrapping method. From
the whole dataset including all participants, we produced 10,000 bootstrapped
samples by drawing the number of participants with replacement, and then cal-
culated the 10,000 means of the bootstrapped samples. We obtained the standard
errors by calculating the standard deviation of those 10,000 means. Note that when
bootstrapping the stably/dynamic indices and calculating standard errors, we uti-
lized significance maps (i.e., H1, H2, and H3) that are obtained by parametric t-
tests, instead of by Monte Carlo randomization tests, for computational efficiency.
The stable/dynamic indices of parametric t-tests were only slightly different from
that of randomization tests (less than 0.01 on average).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data used in this study are available in [https://doi.org/10.17605/OSF.IO/NVAZ3]. A
reporting summary for this Article is available as a Supplementary Information file.

Code availability
The code used in this study are available in [https://doi.org/10.17605/OSF.IO/NVAZ3]
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