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Time-invariant working memory representations in
the presence of code-morphing in the lateral
prefrontal cortex
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Maintenance of working memory is thought to involve the activity of prefrontal neuronal

populations with strong recurrent connections. However, it was recently shown that dis-

tractors evoke a morphing of the prefrontal population code, even when memories are

maintained throughout the delay. How can a morphing code maintain time-invariant memory

information? We hypothesized that dynamic prefrontal activity contains time-invariant

memory information within a subspace of neural activity. Using an optimization algorithm, we

found a low-dimensional subspace that contains time-invariant memory information. This

information was reduced in trials where the animals made errors in the task, and was also

found in periods of the trial not used to find the subspace. A bump attractor model replicated

these properties, and provided predictions that were confirmed in the neural data. Our results

suggest that the high-dimensional responses of prefrontal cortex contain subspaces where

different types of information can be simultaneously encoded with minimal interference.
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Working memory (WM) is the ability to hold and
manipulate information over a short time. It is a core
component of complex cognitive functions, such as

reasoning and language. Memory maintenance appears to involve
the sustained activity of neurons in the lateral prefrontal cortex
(LPFC)1–3; (but see4–8). Even though few neurons in the LPFC
show persistent activity throughout the delay period9–11, popu-
lations of LPFC neurons exhibit time-invariant (often referred to
as stable in the literature) codes during the memory-maintenance
period12,13. Distractors presented during WM maintenance dis-
rupt code stability in the LPFC, despite behavioral evidence of
WM stability14,15. If the LPFC plays a role in WM maintenance,
then time-invariant memory information should be present in the
morphing code.

We hypothesized that a LPFC response subspace retains time-
invariant memory information in the presence of code-morphing.
We used an optimization algorithm that minimized the subspace
distance between the Delay 1 and Delay 2 responses using a cost
function that included a penalty for information loss. Using this
optimization, we found a subspace with a time-invariant memory
code. The stability extended to the distractor presentation period,
which was not used in the optimization, and the stability was
absent in error trials. These results show that the LPFC retains
behaviorally relevant time-invariant memory information despite
exhibiting code-morphing.

Network models with strong recurrent connection between
neurons with similar tuning have been shown to replicate several
properties of LPFC activity, including code stability16–19. How-
ever, it is not known whether these models can exhibit code-
morphing while retaining a subspace with time-invariant memory
information. We found that a bump attractor model with
memory and non-memory inputs was most effective in replicat-
ing the results we observed. These results suggest that non-
memory inputs to the LPFC may be a critical component of code-
morphing.

Results
Stable subspace. Two adult monkeys were trained to perform a
delayed saccade task with an intervening distractor (Fig. 1a). We
recorded a total of 256 neurons from the LPFC and 137 neurons
from the FEF while the animals performed the task. Cross-
temporal decoding (Fig. 1b) and state-space analysis (Fig. 1c)
showed that the distractor presentation led to code-morphing in
the LPFC (quantified in Fig. 2d,e), as previously described14 (see
Supplementary Movie 1 for an illustration of the trajectories).

The presence of code-morphing presents an interesting
decoding challenge: how can downstream regions read out
time-invariant information from a morphing code? We hypothe-
sized that there may be a low-dimensional subspace embedded in
the LPFC population response that contained time-invariant
memory information (Fig. 2a) that could be used by downstream
cells. We used an optimization algorithm that minimized the
distance between Delay 1 and Delay 2 responses when projected
into a reference subspace, while simultaneously maintaining
memory information (see Methods). The result of the optimiza-
tion is shown in Fig. 2b, which shows overlapping Delay 1 and
Delay 2 projections in the subspace. As hypothesized, classifiers
trained in this subspace at one time point in either of the two
delay periods were able to decode memory information equally
well from other time points during both delay periods (Fig. 2c).
We also found that the task-relevant target information was
maintained in the subspace when compared to the full space
(mean decoding performances in LP11: full space—69.75 ± 0.08%
and subspace—68.29 ± 0.11%, P ≈ 0.95; LP22: full space—70.95 ±
0.09%, and subspace—70.41 ± 0.19%, P ≈ 0.92 (permutation

test)). In order to quantify the stability of the code in the
subspace, we calculated the difference in decoding performance
between decoders trained and tested in Delay 1 (LP11), and
decoders trained in Delay 1 and tested in Delay 2 (LP12).
Similarly, we compared the performance difference for decoders
trained and tested in Delay 2 (LP22), and decoders trained in
Delay 2 and tested in Delay 1 (LP21). In this analysis, values above
zero implied code-morphing, while values around zero implied a
time-invariant code. For decoders built using the full space, we
found significant differences, consistent with code-morphing
(Fig. 2d, light gray, P < 0.001 for LP11− LP12 and LP22− LP21).
On the other hand, for decoders built using the subspace, we
found no difference, consistent with a time-invariant code
(Fig. 2d, dark gray, P ≈ 0.17 (permutation test) for LP11− LP12
and P ≈ 0.08 (permutation test) for LP22− LP21).

We also quantified the stability of the code using state space
analysis by calculating the mean shift in cluster centers between
Delay 1 and Delay 2 (inter-delay shift), compared to the mean
intra-delay shift in Delays 1 and 2 (Fig. 2e). In this analysis, inter-
delay shifts that were larger than the intra-delay shifts implied
code-morphing, while similar shifts implied a time-invariant
code. In the full space (Fig. 2e, light gray), we found significantly
larger inter-delay shifts when compared to intra-delay shifts (P <
0.001 (permutation test), g= 7.40), consistent with code-
morphing. On the other hand, in the subspace (Fig. 2e, dark
gray), no such differences were found (P ≈ 0.84 (permutation
test)), consistent with a time-invariant code.

In order to determine the dimensionality of the full space and
the subspace, we computed the cumulative percent variance
explained by different numbers of PCA components (Fig. 2f). In
the full space, the top six components were required to explain at
least 95% of the variance, while in the subspace, only the first
component was required to explain at least 95% of the variance.
This supported the view that the subspace was clearly different
from the full space, and existed in a lower dimensional space
within the full state-space.

The optimization algorithm used in this study to identify the
time-invariant subspace used activity from the last 500 ms of
Delays 1 and 2. We selected these periods because both exhibited
internal stability. To our surprise, the subspace stability extended
to periods that were not used in the optimization, namely
distractor period (P ≈ 0.27 (permutation test) for decoding
performance difference; P ≈ 0.96 (permutation test) cluster shifts)
and the first 500 ms of Delay 2 (P ≈ 0.33 (permutation test) for
decoding performance difference; P ≈ 0.19 (permutation test) for
cluster shifts; Fig. 2c, e). We also showed that the presence of
stable subspace when the optimization algorithm was applied to
data from individual monkeys (Supplementary Fig. 1). A
subspace built using four out of seven target locations also
contained time-invariant information about the 3 locations not
included in the optimization, supporting the notion that the
identified subspace generalizes to all spatial locations (Supple-
mentary Fig. 2). The stability of the subspace, however, did not
extend to the target presentation period (P < 0.001 (permutation
test) for decoding performance difference; P < 0.001 (permutation
test), g= 6.37 for cluster shifts), nor the first 500 ms of Delay 1
(P < 0.001 (permutation test) for decoding performance differ-
ence; P < 0.001 (permutation test), g= 3.94 for cluster shifts;
Fig. 2c). This observation may reflect a shortcoming of our
method in identifying the true subspace that was used from the
moment of stimulus presentation until the response. Alterna-
tively, it may reflect a real specialization of the LPFC in encoding
memories ~800 ms after target presentation13,15,18, which may be
the time when activity in the subspace we identified started
encoding memory information (Fig. 2c). This interpretation is
consistent with our inability to find a time-invariant subspace
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when performing the optimization using target period and Delay
2 period activities (Supplementary Fig. 3).

Code-morphing depended on the activity of neurons with
mixed selectivity20, which in our task were defined as those that
exhibited simultaneous selectivity to multiple task parameters,
such as memory location and task epoch14. Of particular
relevance for code-morphing appeared to be those neurons with
non-linear mixed selectivity (NMS), which exhibited an interac-
tion between the selectivity to target location and task epoch. In
other words, NMS neurons had different selectivity before and
after the distractor14. A fraction of the neurons in LPFC were
classically selective, meaning that they were only selective to
memory location or task epoch, but not both, and did not change
their selectivity after the distractor. One possible interpretation of
the subspace could be that it was built from the activity of
classically selective neurons, which by definition would have a
time-invariant code. While this would be a simple explanation for
the existence of the subspace, it was unlikely, since classically
selective cells contained comparatively little information about
the target location, likely due to their poor selectivity

(Supplementary Fig. 4a–c). Furthermore, individual neuron
contributions to the subspace were similarly distributed across
NMS, classically selective, and linear mixed selective cells
(Supplementary Fig. 4d). A subspace could also be identified in
a population exclusively composed of NMS neurons, highlighting
that the classically selective neurons were not essential to the
formation and maintenance of time-invariant memory informa-
tion (Supplementary Fig. 5).

Parallel trajectories in the full space. The results discussed so far
showed that time-invariant memory information could be
extracted from a subspace of LPFC neurons exhibiting code
morphing. In order to understand whether this finding reflected a
coding property of LPFC neurons, or whether any random set of
state-space trajectories contain a subspace with time-invariant
memory information, we carried out the same analysis on data
where the memory locations in Delay 2 were shuffled with respect
to Delay 1 (Fig. 3a, b). Using the shuffled data, we were not able
to find a subspace that provided a time-invariant memory
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readout (Fig. 3c, d). The optimization procedure yielded a sub-
space with low information content (Fig. 3d), and which still
displayed code-morphing (Fig. 3e, f; LP11− LP12: P < 0.001
(permutation test); LP22− LP21: P < 0.001 (permutation test);
shift in cluster centers: true data versus intra-delay shift: P ≈ 0.96
(permutation test); shuffled data versus intra-delay shift: P < 0.04
(permutation test), g= 3.58). These results imply that the exis-
tence of a subspace with time-invariant memory information
reflects a non-trivial organizational property of LPFC activity. In
order to characterize this organizational property we employed a
dynamical systems approach, by analyzing the trajectory
dynamics of population activity in state space21. For the sub-
spaces created using true and shuffled data, we calculated the
average trajectory directions, which is the magnitude of the vector

obtained by averaging the trajectory vectors from Delay 1 to
Delay 2 for each target location. In this analysis, low values of
trajectory direction would be expected from trajectories that
move in non-parallel ways. We found that trajectories in the
subspace built using true data moved in significantly more par-
allel trajectories than in the subspace built using shuffled data
(Fig. 3g, P < 0.001 (permutation test), g= 1.74). This suggested
that the parallel movement of trajectories could be an important
response property of LPFC activity that facilitated the existence of
a subspace with time-invariant memory information.

Stable subspace during error trials. Although we were able
to identify a subspace in which the target information
could be stably decoded throughout Delays 1 and 2 in spite of
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code-morphing, it was not clear whether this subspace was related
to the behavioral performance of the animals in the task. We
investigated this question by comparing the responses of correct
and incorrect trials in the subspace. The cross-temporal decoding
performance for error trials showed that less information can be
decoded within the subspace (Fig. 4a). Compared to the perfor-
mance for correct trials shown in Fig. 2c, the error trials clearly
exhibited much lower performance. We found the performance
difference between correct and incorrect trials in the subspace
was not significantly different from that in the full space (Fig. 4b)
for both Delays 1 (P ≈ 0.61 (permutation test)) and 2 (P ≈ 0.14
(permutation test)). By analyzing the shift in cluster centers in the

subspace, we found that error trials began to deviate from correct
trials in Delay 1 (although the deviation did not reach statistical
significance, P ≈ 0.08 (permutation test), and become significantly
different from correct trials in Delay 2 (Fig. 4c, P < 0.001 (per-
mutation test), g= 3.16). These results show that behavioral
errors were associated with decreases of information within the
subspace.

While some errors may be driven by failures of working
memory, as reflected in the information decay within the
subspace, other factors may also lead to errors, such as failures
in motor preparation or alertness. Presumably, these other
factors would be reflected in information decay in spaces
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orthogonal to the memory subspace (i.e. the null space). In
order to test this hypothesis, we compared the changes in
decoding performance in the subspace and the null space. As
hypothesized, error trials also showed decreased target
information in the null space (Fig. 4b). While this decrease in
target information in error trials in the null space was smaller
than that seen within the memory subspace, this difference was
not significant (Fig. 4b). Thus, while these results were
consistent with the interpretation that reduced information
within the subspace can lead to behavioral errors, there was
insufficient evidence to suggest that this subspace was directly
linked to the behavior of the animal.

Bump attractor model best describes the stable subspace. A
recent study showed that time-invariant memory information
could be decoded from LPFC activity despite the complex and
heterogeneous temporal dynamics of single-neuron activity18.
They applied PCA to the time-averaged delay activity across
stimulus conditions to find a mnemonic subspace in a working
memory task that did not contain intervening distractors18.
When we applied the same method to our data, we also found a
time-invariant subspace prior to distractor presentation. How-
ever, after distractor presentation, the code also morphed in this
subspace (Supplementary Fig. 6). Another method we considered
to identify a time-invariant subspace involved using LDA. The
subspace identified using LDA could be used to read out time-
invariant memory information in both delays. However, within
the LDA subspace, there were significant shifts in clusters
between Delay 1 and Delay 2 projections (Supplementary Fig. 7),
suggesting that the apparent stability observed with decoding
would break down if the task required discrimination using finer-
grained memories.

Artificial neural network models (ANNs) have been shown to
replicate several properties observed in the LPFC during working
memory tasks16–18. However, the observation of the existence of a
time-invariant subspace in the presence of code-morphing
imposes new constraints on these models.

Here, we tested two different models to attempt to replicate
the following list of observations: (1) time-invariant memory
code within Delay 1 and within Delay 2, (2) code-morphing
after distractor presentation, (3) existence of non-linear mixed
selective neurons, and (4) existence of a time-invariant subspace.
Since the parameter space for recurrent neural networks was
very large, and as Murray et al.18 had reported that certain
trained recurrent neural networks (RNN) with chaotic activity
did not lead to stable subspace representations, we chose to
compare two other types of ANNs that were likely to display
these properties: a bump attractor model17, and a linear
subspace model18. Initially, we tested the models assuming that
the inputs received during distractor presentation were similar
or weaker than those used during target presentation (to
emulate the low behavioral relevance of the distractor in our
task). Under these input parameters, neither of the models were
able to replicate all the properties listed above (results are shown
for the bump attractor model in Supplementary Fig. 8). We
hypothesized that additional non-memory inputs during the
distractor presentation may be required to replicate these
properties. These additional inputs could be interpreted as
ascending modulatory inputs, thalamic inputs, or inputs that
encoded additional information, such as movement preparation
or reward expectation. Using this additional input, we found
that only the bump attractor model allowed us to replicate all
these properties (Fig. 5), while the linear subspace model failed
to replicate the predominance of neurons with non-linear mixed
selectivity (Supplementary Fig. 9). The connections in the bump
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attractor model consisted of strong excitation to neighboring
units, and weak inhibition to units further away (see Methods).
This architecture ensured a time-invariant code during the first
delay, but did not exhibit code-morphing after the distractor
presentation. However, with the addition of the non-memory
inputs, code-morphing occurred due to the addition of new
bumps of activity after the distractor presentation, and the
locations of these new bumps were a function of the non-
memory inputs (Fig. 5b). The optimization algorithm success-
fully identified a time-invariant subspace from the responses in
this model (Fig. 5c, d), and a state space analysis verified that the
model’s responses exhibited dynamics consistent with the neural
data in the full space and the subspace (Fig. 5e, f). A range of
non-memory input parameters led to code-morphing in the
model, suggesting that there was some degree of flexibility in the
non-memory input parameters (Supplementary Fig. 10). The
model also provided a couple of testable predictions: first, that
the initial bump would be maintained in Delay 2; and second,
that the response fields in Delay 2 would be larger than those in

Delay 1. Both predictions were corroborated in the neural data
(Supplementary Fig. 11a, b).

Although the exact nature of the non-memory input was
not clear, the model provided predictions to differentiate between
different possibilities using a task with two consecutive
distractors, separated by 1 s each (rather than the one distractor
we used in the experiment). If the non-memory input
corresponded to ascending modulatory or thalamic inputs that
were triggered after every distractor, then code-morphing would
occur after the first distractor, but not the second since the same
non-memory inputs would be activated (Supplementary Fig. 11c).
On the other hand, if the non-memory input corresponded to a
movement preparation or reward expectation signal triggered by
the stimulus that best predicted the timing of movement or
reward onset, then code-morphing would occur after the second
distractor (which was closest to the movement and reward onset),
but not after the first (Supplementary Fig. 11d). Furthermore,
target information and non-memory information were encoded
in a mixed manner in the same population in our model, which
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contrasted with a recent modelling study that showed different
types of information were spontaneously encoded by different
clusters of units19. These would be interesting predictions to test
in future experiments.

Discussion
Here we demonstrate that time-invariant memory information
can be read out from a population of neurons that morphs its
code after a distractor is presented. This readout was enabled by a
low-dimensional subspace, which was identified using an opti-
mization algorithm that minimized the distance between pro-
jections of Delay 1 and Delay 2 activities onto state-space, while
minimizing information loss. We found that an important
property of neural dynamics that allowed for the existence of this
subspace was the parallel movement of trajectories from Delay 1
to Delay 2 for different memory locations. Information in this
subspace appears to be behaviorally relevant, since the stability
breaks down in error trials. Finally, a bump attractor model
replicated code-morphing and time-invariant subspace, and
revealed that code-morphing required a non-memory input
during the distractor presentation period. Overall, our results
show that dynamic activity in LPFC, possibly driven by non-
memory inputs during distractor presentation, can be read out in
a time-invariant manner to perform a task that requires time-
invariant working memory information.

The LPFC has a high number of neurons with mixed-selective
responses, which dramatically increase the dimensionality of
representations20, and may support reliable information trans-
mission22. The existence of multiple subspaces within a single
population of neurons may be an efficient means to use the high-
dimensional activity space of brain regions21. This view is con-
sistent with our finding that a low-dimensional subspace within
LPFC can encode time-invariant memory information despite the
presence of neural dynamics caused by the addition of new
information. We used the term non-memory input because there
was no additional memory in our task, but the new information
could be the addition of a second memory item in a different task.
Additional dynamics, which may reflect activity in orthogonal
spaces, would allow simultaneous encoding of additional infor-
mation without interfering with existing memory information.
However, orthogonality of subspaces is not a necessity, since
different types of information may interfere with each other at the
cognitive and neural levels. For example, attention or movement
preparation may bias or interfere with working memory infor-
mation23–25, which would suggest their encoding in subspaces,
which are not orthogonal to the memory subspace.

We have shown here that, in principle, a region downstream
from the LPFC could readout time-invariant memory information
using the subspace. However, we have not shown that any regions
are actually using this subspace to read out time-invariant mem-
ory information. Addressing this question is particularly challen-
ging, since even if a downstream region reads out this information,
it may be immediately converted to a new task-relevant type of
information, such as direction of eye movement. In order to assess
whether downstream regions indeed use the memory subspace of
LPFC we could assess how trial-to-trial fluctuations of population
responses relate the LPFC subspace with fluctuations in down-
stream areas26. However, a more direct test would involve the
manipulation of LPFC activity, either within or outside the sub-
space, while measuring changes in activity in downstream regions.
Unfortunately, these experiments would not be feasible with sti-
mulation technologies available today. One approach to address
this question is to generate artificial neural network models that
replicate the response properties of LPFC and downstream
regions, and to generate predictions of the effect of specific

manipulations, that could be tested in biological data. Here we
tested two different types of artificial neural network models to try
to replicate the existence of a time-invariant memory subspace in
the presence of code-morphing. We found that the bump attractor
model could replicate these features, while a subspace model failed
to replicate these behaviors. The model provided predictions that
could be corroborated on the data, and other predictions that
future studies could be able to test. The approach presented here
could help reconcile the apparent incompatibility between LPFC
activity changes after behaviorally relevant distractors and
attractor network models15. These observations support this
model as a useful abstraction of the LPFC function.

Methods
Subjects and surgical procedures. We used two male adult macaques (Macaca
fascicularis), Animal A (age 4) and Animal B (age 6), in the experiments. All
animal procedures were approved by, and conducted in compliance with the
standards of the Agri-Food and Veterinary Authority of Singapore and the Sin-
gapore Health Services Institutional Animal Care and Use Committee (SingHealth
IACUC #2012/SHS/757). The procedures also conformed to the recommendations
described in Guidelines for the Care and Use of Mammals in Neuroscience and
Behavioral Research (National Academies Press, 2003). Each animal was implanted
first with a titanium head-post (Crist Instruments, MD, USA) before arrays of
intracortical microelectrodes (MicroProbes, MD, USA) were implanted in multiple
regions of the left frontal cortex (Fig. 1c). In Animal A, we implanted 6 arrays of 16
electrodes and 1 array of 32 electrodes in the LPFC, and two arrays of 32 electrodes
in the FEF, for a total of 192 electrodes. In Animal B, we implanted one array of 16
electrodes and two arrays of 32 electrodes in the LPFC, and two arrays of 16
electrodes in the FEF, for a total of 112 electrodes. The arrays consisted of
platinum-iridium wires with either 200 or 400 µm separation, 1–5.5 mm of length,
0.5 MΩ of impedance, and arranged in 4 × 4 or 8 × 4 grids. Surgical procedures
followed the following steps. Twenty-four hours prior to the surgery, the animals
received a dose of Dexamethasone to control inflammation during and after the
surgery. They also received antibiotics (amoxicillin 7–15 mg/kg and Enrofloxacin 5
mg/kg) for 8 days, starting 24 h before the surgery. During surgery, the scalp was
incised, and the muscles retracted to expose the skull. A craniotomy was performed
(~2 × 2 cm). The dura mater was cut and removed from the craniotomy site. Arrays
of electrodes were slowly lowered into the brain using a stereotaxic manipulator.
Once all the arrays were secured in place, the arrays’ connectors were secured on
top of the skull using bone cement. A head-holder was also secured using bone
cement. The piece of bone removed during the craniotomy was repositioned to its
original location and secured in place using metal plates. The skin was sutured on
top of the craniotomy site, and stitched in place, avoiding any tension to ensure
good healing of the wound. All surgeries were conducted using aseptic techniques
under general anesthesia (isofluorane 1–1.5% for maintenance). The depth of
anesthesia was assessed by monitoring the heart rate and movement of the animal,
and the level of anesthesia was adjusted as necessary. Analgesics were provided
during post-surgical recovery, including a Fentanyl patch (12.5 mg/2.5 kg 24 h
prior to surgery, and removed 48 h after surgery), and Meloxicam (0.2–0.3 mg/kg
after the removal of the Fentanyl patch). Animals were not euthanized at the end of
the study.

Recording techniques. Neural signals were initially acquired using a 128-channel
and a 256-channel Plexon OmniPlex system (Plexon Inc., TX, USA) with a sam-
pling rate of 40 kHz. The wide-band signals were band-pass filtered between 300
and 3000 Hz. Following that, spikes were detected using an automated Hidden
Markov Model based algorithm for each channel27. The eye positions were
obtained using an infrared-based eye-tracking device from SR Research Ltd.
(Eyelink 1000 Plus). The behavioral task was designed on a standalone PC (sti-
mulus PC) using the Psychophysics Toolbox in MATLAB (Mathworks, MA, USA).
In order to align the neural and behavioral activity (trial epochs and eye data) for
data analysis, we generated strobe words denoting trial epochs and performance
(rewarded or failure) during the trial. These strobe words were generated on the
stimulus PC, and were sent to the Plexon and Eyelink computers using the
parallel port.

Behavioral task. Each trial started with a mandatory period (500ms) where the
animal fixated on a white circle at the center of the screen. While continuing to fixate,
the animal was presented with a target (a red square) for 300ms at any one of eight
locations in a 3 × 3 grid. The center square of the 3 × 3 grid contained the fixation spot
and was not used. The presentation of the target was followed by a delay of 1000ms,
during which the animal was expected to maintain fixation on the white circle at the
center. At the end of this delay, a distractor (a green square) was presented for 300ms
at any one of the seven locations (other than where the target was presented). This
was again followed by a delay of 1000ms. The animal was then given a cue (the
disappearance of the fixation spot) at the end of the second delay to make a saccade
towards the target location that was presented earlier in the trial. Saccades to the target
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location within a latency of 150ms and continued fixation at the saccade location for
200ms was considered a correct trial. An illustration of the task is shown in Fig. 1a.
One of the animals was presented with only seven of the eight target locations because
of a behavior bias in the animal.

Firing rate normalization. The firing rate of each neuron (averaged across trials
with 100 ms windows with 50 ms of overlap) was converted to a z-score by nor-
malizing to the mean and standard deviation of the instantaneous firing rates from
300 ms before target onset to target onset. These z-scores were then used for the
state-space and subspace analyses. Our database initially consisted of 256 LPFC
neurons, but we excluded 12 neurons as they exhibited responses that were very
similar to other neurons, suggesting that they were the result of over-clustering
during spike sorting. All the analysis on experimental data was performed on a
pseudo-population built from data collected from two monkeys. Due to an unequal
distribution of error trials across different locations, we only analyzed the error
trials from four target locations. We only included locations in the analysis where
there were at least six error trials in every session.

Subspace identification. We used the following optimization equation to identify
the subspace:

argmin
U

��U D1 � D2ð Þ��
F
� β

2

��UDav
1

��
F
þ��UDav

2

��
F

� �� �
ð1Þ

where the ||∙||F notation referred to the Frobenius Norm. We postulated that there
was a matrix transformation, U, that would be able to transform both the Delay 1
(D1) and Delay 2 (D2) responses to a subspace where the distance between the
corresponding target responses in the two delays were minimized. Additionally, to
make sure that the information about the target location was preserved in this
subspace, we added two terms UD1

av and UD2
av, where D1

av and D2
av referred to

the mean subtracted population activity. The multiplier β was introduced to weigh
maximization of information differentially from minimization of the distance
between D1 and D2. We chose β to be 0.1 as it repeatedly yielded subspaces with
stability, as well as information about target locations. In practice, we first reduced
the normalized firing rates from 800 ms to 2500 ms after target onset (i.e. 500 ms
before the end of D1to the end of D2) of the 244 LPFC neurons to a smaller number
of Principal Components Analysis (PCA) components that accounted for 90% of
the variance, which turned out to be 58. We subsequently used these 58 dimensions
to be the full space in the remainder of this paper. We then took 50 responses for
each of the seven target locations to create D1 and D2 matrices that were 58 × 350 in
size, where each of the columns was the averaged z-score for the 244 cells over the
last 500 ms of D1 or D2 for one target location projected onto the 58 components. U
was then a udimx58 matrix (where udim was a parameter that determined the
number of dimensions in the subspace), and was initialized with random values.

The optimization was performed using the fmincon function in Matlab to
minimize the cost function shown above using the sequential quadratic
programming (sqp) algorithm. There were no additional constraints imposed on
this optimization. The results shown in Figs. 2–4 contain results from an optimized
eight-dimensional subspace (i.e. udim= 8). We also performed this optimization
using a 9- and 10-dimensional subspace, and found that the subspace was not
qualitatively different for 8, 9, or 10 dimensions. Thus, we chose the conservative
option of 8 dimensions to verify the stability of the subspace.

Figure 2b shows the projection UD1 and UD2 in the first 2 dimensions of the
subspace U. We named these dimensions SP1 and SP2. Further, we concatenated U
x D1 and U x D2 together to create a matrix that was 8 × 700, and then performed
PCA again to obtain the cumulative contribution of each dimension to variance
(dimensionality) in this subspace U and in the full space, as shown in Fig. 2f. Note
that we only show the contribution of the first eight dimensions of the full space in
Fig. 2f.

In order to compute the contribution of each neurons, we took the 8 × 58 U
matrix, and multiplied it by the 58 × 244 PCA components to obtain an 8 × 244
weight matrix. We computed the magnitude for all the weights in the matrix, and
then normalized them by the largest weight. We then computed the average weight
for each of the neurons by taking the average for each column. Neurons were
identified as non-linear mixed selective (NMS), linear mixed selective (LMS), and
classically selective (CS) based on a two-way ANOVA with independent variables
for target location and trial epoch.

Cross-temporal decoding. In order to assess the stability of the population code,
we used data at each time point to train a decoder based on Linear discriminant
analysis (LDA), built using the classify function in MATLAB, and tested the
decoder on data from other time points. One minor difference in the current work
was that instead of using normalized z-scored data to decode the target locations,
we used projections in the 58 dimensional PCA space (the data we performed the
optimization on) identified using data from Delay 1 and Delay 2 data (full space),
projections in a 49-dimensional null space (for Fig. 4), or the projections in the
optimized subspace. As we used projections to decode instead of normalized z-
scored pseudo-population data, the performance of the decoder in this paper was
higher than the results shown in Parthasarathy et al.14. For error trials, the decoder
was trained on correct trials (similar to the other analyses, but only four out of the

seven target locations were used) and tested on error trials (in full space, subspace,
and null space).

In order to compute the decoding performances in Fig. 2d, we averaged the
cross-temporal performance for classifiers trained in the last 500 ms of Delay 1
(800–1300 ms after target onset) and tested on data from Delay 1 (labelled as LP11)
and Delay 2 (1800–2300 ms after target onset, labelled as LP12). Similarly, we
averaged the cross-temporal performance for classifiers trained in Delay 2 and
tested on data from Delay 2 (LP22) and Delay 1 (LP21). This then allowed us to
quantify the change in performance when decoding across delay periods. By using
different subsets of the data for training and testing, we obtained distributions of
performance accuracies that we were able to use for testing statistical significance
(described below).

State space analysis. After projecting the responses in D1 and D2 into the 58-
component PCA space, we computed the center of each of the seven clusters
representing target locations in D1 and D2. We then computed the inter-delay
distance between the centers of corresponding target locations, and used that to
generate the values for the full space plotted in Fig. 2e. We also computed the
distance between corresponding target locations in D1 and during the presentation
of the distractor. As a control, we divided both delay periods into an early 250 ms
and a late 250 ms, and computed an equivalent intra-delay distance. In order to
account for the variability within each cluster, we computed the average intra-
cluster distances for all 14 clusters over 1000 bootstrapped samples. The intra-
cluster distances were used to normalize both the inter-delay and intra-delay
distances. By using different subsets of the data to form D1 and D2, we obtained
distributions of both inter-delay and intra-delay distances that we were able to use
for testing statistical significance (described below).

After transforming D1 and D2 into the subspace using the U matrix, we
repeated the steps described above to generate the values for the subspace plotted in
Fig. 2e.

Trajectory directions. After projecting the responses in D1 and D2 into the 58-
component PCA space, we computed the seven vectors that connected target
locations in D1 with the corresponding locations in D2. We then used a measure
known as phase locking value28 (PLV) to quantify the similarity between the
vectors. Briefly, this measure averaged the seven vectors together and computed the
magnitude of the average vector. If the vectors were very similar, the PLV will be
close to 1. If the vectors were quite dissimilar, the magnitude of the average vector
will be close to 0. For comparison, we shuffled the target locations in D2, and re-
computed the seven vectors before computing the PLV. By using different subsets
of data to form D1 and D2, we obtained distributions of PLVs that we were able to
use for testing statistical significance (described below).

Null space. The U matrix described above transformed the D1 and D2 vectors in
the full space to the SP1 and SP2 vectors in the subspace. We then identified a null
space where a basis set of vectors, v, returned U(v)= 0. This meant that the null
space consisted of responses in the full space that were not captured in the sub-
space. For this, we used the null function in MATLAB to compute the null space
given the 8 × 58 U matrix. This returned a 50 × 58 V matrix that defined the
null space.

Statistics. We considered two bootstrapped distributions to be significantly dif-
ferent if the 95th percentile range of the two distributions did not overlap. We also
computed an estimated p-value for this comparison using the following formula29,

1þ X
N þ 1

ð2Þ

where X represents the number of overlapping data points between the two dis-
tributions and N represents the number of bootstraps. With this computation, and
the N= 1000 bootstraps we used throughout the paper, two distributions with no
overlap will result in a p-value <0.001, and two distributions with x% of overlap will
result in a p-value ~x/100.

In addition to the estimated p-value, we also computed the effect size of the
comparison using a measure known as Hedges’ g, computed using the following
formula30.

1� 3
4 n1 þ n2ð Þ � 9

� �
´

x1 � x2
s0

� �
ð3Þ

where

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs21 þ n2 � 1ð Þs22

n1 þ n2 � 2

s
ð4Þ

refers to the mean of each distribution, n refers to the length of each distribution,
and s refers to the standard deviation of each distribution.

No statistical methods were used to pre-determine sample sizes, but our sample
sizes are similar to those reported in previous publications. The majority of our
analyzes made use of non-parametric permutation tests, and as such, did not make
assumptions regarding the distribution of the data. No randomization was used during
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the data collection, except in the selection of the target and distractor locations for each
trial. Randomization was used extensively in the data analyzed to test for statistical
significance. Data collection and analysis were not performed blind to the conditions
of the experiments. No animals or data points were excluded from any of the analyses.
Please see additional information in the Life Sciences Reporting Summary.

Model. In order to replicate the features we found in our neural data, we tested two
types of artificial neural network models that were typically used to model working
memory with persistent activity: (1) linear subspace model and (2) bump attractor
model. We found that only the bump attractor model was able to replicate all the
significant features found in our data. For the bump attractor model, we used N=
80 firing-rate units as the whole population, and used simplified discrete time
equations to describe the dynamics of the population:

rtþ1 ¼ φ Wrecrt þWinIt þ σð Þ ð5Þ
where rt was the population firing rate at time t; Wrec was the recurrent

connection weight between units; It was the external input at time t; Win was the
loading weight of input signal to the population; σ~ N (0,0.1) was a noise term; and
φ(x) was a piecewise nonlinear activation function adopted from Wimmer et al.17:

φ xð Þ ¼
0; x < 0

x2; 0< x < 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x � 3

p
; x > 1

8><
>:

ð6Þ

The matrix, Wrec, had a diagonal shape with stronger positive values near the
diagonal, and weaker negative values elsewhere, such that only a few neighboring
units were connected via excitatory weights to each other while being connected via
inhibitory weights to the rest. In this way, a structured input signal to adjacent
units was able to generate a local self-sustaining bump of activity. There were eight
input units, representing the eight spatial target locations in the animal’s task. For
each input unit, the loading weight matrix, Win, specified 10 adjacent units in the
population to receive the input signal, and the loading population for each input
unit were non-overlapping (Fig. 5a, different colors of stimuli). We also randomly
chose n individual units from the whole population as ‘non-memory’ units (Fig. 5a,
green circles) to simulate adding information to the population that was different
from the memory of the target location.

We tested a range of distractor activity levels relative to the target, and found that
higher distractor activity led to higher distractor decoding accuracy, as expected.
However, we reported in Parthasarathy et al.14 that the distractor decoding
performance was 1/3 of the target decoding performance. The red bar in
Supplementary Fig. 9a indicated a range of distractor activity levels that replicated
the lower distractor decoding performance compared to the target decoding
performance. Within this range, we chose 0.2 as the distractor activity level.
However, with that level of activity for the distractor on its own without any non-
memory input, we did not observe any code-morphing. We believe this was because
the weak distractor inputs alone caused only small shifts of the population activity in
state space, which did not result in the population activity crossing the boundaries of
the LDA cross-temporal decoding classifier trained with the target information in
Delay 1 alone. This resulted in no reduction in the cross-temporal decoding
performance in Delay 2, which was different from what we saw in our data. When
we added the non-memory inputs, in each simulated trial, the same n ‘non-memory’
units received inputs during the distractor period with strength, s, regardless of the
distractor position. We tested different pairs of combinations of n and s, and found
that the pairs that successfully replicated code-morphing exhibited an anti-
correlation within a range of n and s, as depicted in the red circles in Supplementary
Fig. 9b. We chose to use n= 10 and s= 5, which fell in the middle of the range of the
red circles. We believe that the addition of the much stronger non-memory input
resulted in the population activity crossing the boundaries of the classifier, resulting
in the poor decoder performance we observed in Delay 2.

For the linear subspace model, we also used N= 80 units as the whole
population, and the dynamics of the activity could be described as:

rtþ1 ¼ Wrecrt þWinIt þ σ ð7Þ
where rt was the population firing rate at time t; Wrec was the recurrent

connection weight between units; It was the external input at time t; Win was the
loading weight of the input signal to the population; and σ ~ N (0,0.1) was a noise
term. We constructed the recurrent weight matrix Wrec from eigendecomposition:

Wrec ¼ QΛQ�1 ð8Þ
where Q was a random square matrix whose columns were the eigenvectors of

Wrec, and Λ was a diagonal matrix whose diagonal elements are the corresponding
eigenvalues for each eigenvector. We specified the first nine eigenvalues in Λ to be 1
(thus there were nine stable eigenvectors), and chose the rest of the eigenvalues
randomly between 0 and 1 using a uniform distribution. For the input weight
matrixWin, we assigned eight stable eigenvectors to the eight target inputs, and one
stable eigenvector to the non-memory input. The distractor inputs had the same
input activity as did the target inputs, but with a lower magnitude (0.2 compared to
target). As all the input activity corresponded to stable eigenvectors, all target
information, distractor information, and non-memory information were
maintained stably across time.

Similar to the bump attractor model, adding a weak distractor input did not
result in code morphing in the Murray model (Supplementary Fig. 8a, b), while
adding a strong non-memory input produced code morphing (Supplementary
Fig. 8c). However, the code morphing was driven primarily by neurons with
LMS instead of neurons with NMS. We believe this was because of two factors.
First, we added a single non-memory input, which resulted in an identical
translation in state space for all target locations. This meant that for each single
neuron, the change from Delay 1 to Delay 2 would be the same for all target
locations, and thus the neuron will be classified as a neuron with LMS
(illustrated in Supplementary Fig. 8d). Second, the prevalence of neurons with
NMS in the bump attractor model was because the firing rate of the neurons
were limited by a saturating non-linear transfer function, while the Murray
model, being a linear model with no restrictions on the firing rate of the neurons,
ended up with a solution using neurons with LMS. If instead, we added two or
more different non-memory inputs, or if we used a linear transfer function in the
bump attractor model, we believe the Murray model and the bump attractor will
produce the same results.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
A code package for performing the optimization is available at https://github.com/
aishu1803/Subspace.git
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