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Visual working memory refers to the ability to hold information in an accessible state – in the 
absence of relevant sensory input – to transform it when necessary, and to use it to guide 
behavior in a flexible, context-dependent manner. Success on tests of visual working memory 
depends on attention to and control of representations of information needed to guide 
performance. The state of these representations – active,  transformed,   “silent” – varies as a 
function of priority.  In addition to the representation of  perceived information,  working 
memory also entails the recruitment of  prior knowledge, a phenomenon which can be 
modeled with attractor dynamics.
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1. Definition The ability to hold information in an accessible state – in the 

absence of relevant sensory input – to transform it when necessary, 
and to use it to guide behavior in a flexible, context-dependent 
manner 

2. Methods Behavior; fMRI; EEG; TMS; computational modeling 
3. Unitary/Nonunitary Nonunitary, but that’s because vision, attention, semantics, and 

motor control are not “unitary” 
4. Attention & Control Working memory refers to the exercise of attention and control on 

information that is not available for sensory processing 
5. Storage Storage, via sustained activity and transient “activity silent” 

network configurations, in the systems that represent content and 
context  

6. LTM Because visual object recognition, depends on long-term memory 
(LTM), so too does visual working memory. 

7. Inconsistent 
evidence 

Evidence for working-memory storage-related functions in circuits 
that are not involved in visual perception and/or the representation 
of visual knowledge (e.g., prefrontal cortex). 
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Preamble. 
Memory refers to the influence of past experience on current thought and behavior. Although 
all sentient humans have an intuition about what memory is, and what it feels like to remember 
something, understanding how memory relates to other aspects of cognition requires careful 
definition of constructs, and explicit articulation of assumptions. For example, although 
memory is often thought of as a (or many) cognitive system(s), the word memory can also be 
used to refer to a property of a system whose primary function is not mnemonic. For example, 
the gill withdrawal reflex of the Aplysia demonstrates habituation when the tenth instance of 
touching it with a probe produces a slower and smaller withdrawal motion than had the 
otherwise-identical first instance of touching it. The molecular events and physiological 
processes that underlie this experience-dependent change in the functioning of the 
sensorimotor circuitry that innervates the gill and its musculature are understood in exquisite 
detail. Importantly, however, these are best construed as elements of the gill-withdrawal 
system that endow it with mnemonic properties, not as the mechanisms of a memory system 
per se. This chapter will be guided by the perspective that behavior on visual working memory 
tasks arises from intrinsic properties of the visual system, of the oculomotor and skeletomotor 
systems, and of frontoparietal control systems, including those that function as sources of 
attentional control.  That is, working memory may not involve any discrete systems, whether 
considered from a cognitive or a neural perspective, whose primary function is working 
memory. Rather, it may be a functionality resulting from the control of sensorimotor and 
representational systems. 
 
1 Definition of Working Memory  

Working memory is the ability to hold information in an accessible state – in the 
absence of relevant sensory input – to transform it when necessary, and to use it to guide 
behavior in a flexible, context-dependent manner.  
  
2 Describe and explain the methods you use  

I am interested in the neural bases of human cognition – how does the brain give rise to 
the mind? One important development in cognitive neuroscience over the past two decades 
has been the development of methods for applying multivariate information-based analyses to 
neuroimaging data. This has allowed for assessment of the neural representation of 
information in ways that simply weren’t possible previously, and has resulted in reevaluation of 
several earlier findings.  
2.1 Multivariate analyses of neural data 

Fundamentally, what multivariate methods make possible is the assessment of 
distributed representations, an important advance beyond the assumption implicit in most 
univariate analyses, which is that fluctuations in regional aggregations of signal intensity 
correspond to varying levels of engagement of a single mechanism or process. For example, in 
the first decade-and-a-half following the earliest studies of human working memory with 
neuroimaging (Jonides et al. 1993, Cohen et al. 1994), memory load-related changes in delay-
period signal intensity pooled across tens -- if not hundreds or more – of voxels were assumed 
to index varying demands on information storage (e.g., Braver et al. 1997, Todd and Marois 
2004, Postle 2006). More recently, however, studies using multivariate pattern analysis (MVPA) 
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have demonstrated that stimulus-specific information cannot always be decoded from regions 
whose activity shows load sensitivity and, conversely, stimulus-specific information can be 
decoded from regions that show neither load sensitivity nor, indeed, elevated levels of activity 
during the delay (Harrison and Tong 2009, Serences et al. 2009, Riggall and Postle 2012, Emrich 
et al. 2013, Gosseries et al. 2018). Such findings have provided important evidence for 
sensorimotor-recruitment models of visual working memory (e.g., D'Esposito and Postle 2015, 
Postle 2015, Serences 2016).  
2.1.1 Multivariate inverted encoding modeling (IEM) 

Although most readers of this volume will be familiar with MVPA (e.g., Norman et al. 
2006, Pereira et al. 2009), a summary of a second type of multivariate analysis method, 
inverted encoding modeling (IEM), will be useful, both because much of the work to be 
described here relies on this method, and because there exist misconceptions about how 
results generated with IEM are typically interpreted. IEM is a forward modeling approach that 
implements a dimensionality reduction on neural data to track population-level representation 
of stimulus characteristics. In the case of line orientation, for example, one can hypothesize 
that any given angular value can be represented in a unique pattern of weightings across 
several hypothetical broadly tuned informational channels. These channels are represented in 
the analysis with a basis set of overlapping broadly tuned functions, typically half-wave rectified 
sinusoids, each centered at a different angular value such that they span the full possible range 
of 180° of rotation. The model is then trained by regressing against it neural data (in our case, 
fMRI or EEG) acquired while a subject was performing visual working memory for line 
orientation. For fMRI, for example, the basis set’s representation of the angular value of each 
stimulus presented to the subject is entered as a regressor into a general linear model that 
estimates the orientation tuning function of each voxel (sometimes referred to as the 
“population receptive field (pRF),” Dumoulin and Wandell 2008) in a region of interest (ROI). 
Testing of the model is carried out by inverting the matrix that maps from channel space to 
voxel space, then determining whether data from trials that the model has never seen generate 
reconstructions, in channel space, of the stimulus values used for these test trials. Successful 
reconstructions of test stimulus values are interpreted as reconstructions of population-level 
representations of these stimuli. Importantly, because the shape of the basis functions was 
determined a priori and used in the training of the model, quantitative values from stimulus 
reconstruction can be interpreted as indices of, for example, the magnitude and the precision 
of a neural representation (indexed by the amplitude and width of the reconstruction, 
respectively, Brouwer and Heeger 2009, Serences and Saproo 2012).  

Recently, some critiques of the IEM approach have appeared in the literature, and 
although these contain mistaken assumptions and, indeed, outright misconceptions about the 
assumptions underlying IEM and how IEM reconstructions are interpreted, addressing some of 
these will be helpful for clarifying some of the useful features of this approach. One point raised 
by Gardner and Liu across two papers (Liu et al. 2018, Gardner and Liu 2019) is that the results 
from IEM cannot be used to draw inferences about the tuning properties of individual neurons. 
Although this assertion is true, it has no bearing on the results that will be described here, 
because our experiments with fMRI and EEG are simply not intended to address this level of 
neural functioning, a point made with more elaboration elsewhere (Sprague et al. 2018, 
Sprague et al. in press). A second concern raised by Gardner and Liu (2019) gets to a 
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fundamental issue of studying the neural representation of information. They frame this 
concern with the observation that IEM differs from more direct reporting of neurophysiological 
measures in that “the ordinate of the graph [produced by testing an IEM] is no longer a direct 
measure of neural activity” (p. 3). Examples of direct measures that the authors raise include 
firing rate, membrane potentials, reflectance changes from intrinsic signals, and fluorescence 
changes from voltage sensitive dyes. “Even for BOLD activity averaged across a visual area,” 
they note, “parametric sensitivity to the strength of a visual stimulus can be assessed by 
plotting response magnitude as a function of stimulus properties like contrast … or motion 
coherence …” (p. 3). Although these statements are true, what they don’t acknowledge is that 
to limit oneself to analyses of data formatted such that they can be expressed as a direct 
measure of neural activity is to preclude the ability to study much of cognition, because the 
neural coding of most kinds of information that one would want to study is high dimensional. 
That is, firing rate, membrane potential, and other first-order summaries of neural activity are 
inherently univariate measures, and analyses that are limited to such measures are blind to 
information that is represented in high-dimensional patterns of activity distributed across 
multiple processing units. To be concrete, if one were to average BOLD signals across a 500-
voxel region of interest (ROI) that included the foveal representation of V1, it is true that one 
would expect to observe a monotonic increase in BOLD signal intensity in conjunction with 
parametric increases in contrast of a sinusoidal grating of a particular orientation – let’s say 0°. 
The limitation of this approach, however, is clear as soon as one considers that the same 
pattern of monotonically increasing BOLD signal intensity would also be observed from this 
500-voxel ROI for a sinusoidal grating of 30°, for one of 60°, and so on. That is, univariate 
measures are rarely informative about the neural representation of stimulus-specific 
information. Indeed, we have already considered the fact that cognitive neuroscience research 
on working memory has established that univariate measures can lack sensitivity (e.g., they fail 
to detect delay-period stimulus representation in early visual cortex) and they can lack 
specificity (e.g., load-sensitive activity need not contain stimulus-related information). IEM, like 
any other dimension-reducing approach to data analysis (e.g., principal component analysis 
[PCA], independent component analysis [ICA]), necessarily cannot retain the units in which 
levels of activity measured at individual sensors are acquired. 

The goal of measuring stimulus information also motivates the choice of IEM over 
multivariate decoding approaches, such as MVPA. Although MVPA can provide important 
information about where in the brain stimulus- or category-level information is represented, its 
results are typically evaluated in terms of decoder performance, not with reference to the 
stimulus representation, per se. Thus, for example, when varying memory load from 1 to 2 to 3 
items is seen to result in a decrease in delay-period stimulus decodability from roughly 80% to 
70% to 65%, as is the case for subject #6 from Figure 5 of Emrich, Riggall, et al. (2013), one can’t 
know what aspect of the neural representation of the stimulus is changing to produce this 
pattern. (Is it a decline in precision? in the strength of the representation? in both? or in some 
other factor?) IEM, in v contrast, provides quantification of parameters that can be interpreted 
in terms of the properties of a stimulus representation. An instructive example comes from 
Sprague and Serences (2013), who explored the effects of attention on the representation of 
locations in retinotopic space by flashing a flickering checkerboard stimulus at each of 36 
distinct locations while subjects either attended to the fixation point or to the flickering 
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checkerboard (while maintaining central fixation). Two “sanity checks” indicated that IEM 
reproduced known facts about the visual representation of space: the size of neural 
representations of space increased as location of the checkerboard moved further from central 
fixation; and the size of the representation of any given retinotopic location was larger (i.e., 
coarser) in higher-level areas such as V4, MT+, IPS, and superior frontal sulcus (SFS), than in 
early visual areas. Importantly, with regard to the effects of attention, IEM revealed that 
univariate and population-level measures diverged. When attention was allocated to a region 
away from central fixation, the size of the pRFs of voxels in higher-level brain areas that 
represented the attended region increased. This trend, alone, would be difficult to reconcile 
with the fact that allocating attention to a location in the periphery is known to improve the 
precision of visual perception at that location, for the simple reason that larger receptive fields 
are less spatially precise. In contrast to the univariate effects at the level of individual voxels, 
however, IEM indicated that allocating spatial attention to a region in space resulted in an 
increase in the amplitude of the population-level representation of that location, but not in a 
change in the precision of these representations. Thus, at a population level – the level that we 
assume to be most important for guiding behavior and for determining subjective experience -- 
the effect of covert attention to a region in space is to strengthen the neural representation of 
that location. 
2.2. Neural network modeling 
One point highlighted by the recent debate about the assumptions underlying the IEM 
approach (Section 2.1, Liu et al. 2018, Sprague et al. 2018, Gardner and Liu 2019, Sprague et al. 
in press) is that IEM reconstructions are models of neural representations, but not direct 
measurements of representations themselves. As can be the case in many other domains of 
science, unexpected or atypical behavior of model can lead one to address the same question 
with a different method that does not make the same assumptions as the model. Of particular 
relevance here, this chapter will consider studies in which the manipulation of priority between 
two items concurrently held in working memory has produced a systematic, but heretofore 
rarely reported, change in the IEM reconstruction of the unprioritized item. To better 
understand the factors that underlie this effect, we have turned to neural network models. 

Masse and colleagues (2019) have recently noted that “recurrent neural network (RNN) 
models have opened a new avenue to study the putative neural mechanisms underlying various 
cognitive functions. Crucially, RNNs have successfully reproduced the patterns of neural activity 
and behavioral output that are observed in vivo, generating insights into circuit function that 
would otherwise be unattainable through direct experimental measurement” (p. 1159). In our 
case, it is not circuit-level function, but the dynamics of population-level stimulus 
representation for which we seek insights. Important details of implementation will be 
described in section x, but the general logic is to train a RNN to perform a working memory 
task, then examine how the hidden layer of the RNN represents stimulus information during 
the delay period of the task. Although such an exercise cannot, alone, provide “proof” about 
how the human brain accomplishes working memory performance, it can reveal candidate 
processes whose biological reality can then be tested with human data.    
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3.Unitary vs. non-unitary nature of working memory  

This strikes me as an ill-posed question, because it presupposes that working memory is a system, 
and the question to be sorted is what kind of system. To elaborate on the perspective laid out in 
the Preamble, consider this example of a parent spectating at a gymnastics competition. His 
challenge is to track the activity of his daughter and her teammates among the churning melee 
of adolescent girls, all sporting similar-looking ponytail hair styles and spangly leotards. This is 
not a behavior that makes overt demands on memory, although it certainly does require 
guidance from a priority map, believed to be instantiated in recurrent activity between the 
intraparietal sulcus (IPS) and the frontal eye fields (FEF; located in the superior frontal cortex 
(SFC) in humans), as well as the superior colliculus (e.g., Bisley and Mirpour 2019). In this scenario, 
if the spectator’s priority map can temporarily retain information about the locations of the 
athletes of interest while he briefly averts his eyes to read a text message on his mobile phone, 
there is no need to assert that an additional system, nor that a qualitatively different neural 
computation, needs to be engaged for him to successfully return his gaze to the targets of 
interest gathered around the uneven parallel bars, halfway across the crowded gymnasium. Luck 
and Vogel (2013) have made a similar argument, noting that “visual working memory may not be 
a memory system per se, but may instead be a general-purpose visual representation system that 
can, when necessary, maintain information over short delays” (p. 394). (At the risk of sounding 
churlish, though, I would insist that there does not exist a “general-purpose visual representation 
system” that’s different from the visual system and the oculomotor system that are also engaged 
in tasks not considered to require working memory.) 

Neural data are also consistent with this perspective. Neurons in the FEF of nonhuman 
primates encode information about recent saccade targets during free viewing behavior 
(Mirpour et al. 2019), and MVPA of fMRI activity from SFC and from IPS in humans indicates 
that the neural encoding of egocentric location is highly similar whether subjects are engaged in 
planning a delayed saccade to a visible stimulus (“intention”), covertly attending to this 
stimulus in order to detect a change in its luminance (“attention”), or preparing a delayed 
response to the same location when it must be remembered across a delay (“retention,” Jerde 
et al. 2012). Damage to (Mackey et al. 2016) and rTMS of (Hamidi et al. 2008) PFC in humans 
only disrupts spatial working memory performance when the FEF are affected. 

 
4. The role of attention and control  
4.1 Spatial attention and spatial working memory 

Top-down control of mental activity arises from the dynamic interplay between dorsal 
(endogenous) and ventral (exogenous) attentional circuits. The strong overlap between neural 
systems that support oculomotor control, spatial attention, and visuospatial working memory 
has been thoroughly documented in several previous studies and reviews (one recent 
authoritative review being Jonikaitis and Moore 2019), and provides a compelling basis for the 
longstanding idea that working memory performance may reflect “‘nothing more’ than the 
preparation to perform an action, whether it be oculomotor, manual, verbal, or otherwise” 
(Theeuwes et al. 2005) (pp. 198–199). This perspective receives further support from the fMRI 
study of Jerde et al. (2012), as reviewed above, as well as from demonstrations that eye 
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movements executed in the dark selectively disrupt visual working memory for locations (e.g., 
Postle et al. 2006).  
4.2 Feature- and object-based attention and visual working memory for features and objects 

Real-time visual object recognition requires interactive signaling between neural circuits 
at multiple levels of the visual hierarchy, from primary visual cortex to high-level distributed 
representations that underlie categorization and semantic memory. Importantly, feedback from 
higher levels to primary cortex, and even to sensory thalamus, is critical for visual perception 
and its attentional control (e.g., Sillito et al. 1994`, Cudeiro and Sillito 2006, Sillito et al. 2006), 
and this has also been shown to be important for visual working memory (van Kerkoerle et al. 
2017). Because one can see the effects of object-based attention at all levels of processing 
involved in object perception and categorization (e.g., Çukur et al. 2013, Ester et al. 2016), the 
sensorimotor-recruitment framework predicts that working memory for objects and features of 
objects would also entail the top-down modulation of these circuits. (The constructs of feature-
based attention and object-based attention are closely linked and, indeed, it’s unclear if the 
two differ other than in the grain of detail at which elements in the visual scene must be 
analyzed in any given task or situation (e.g., Scolari et al. 2014). Therefore, for simplicity, this 
chapter will use “object-based attention” to refer generally to the two constructs, and similarly 
it will use “object working memory” to refer in general to working memory for visually 
presented objects and to working memory for the features of visually presented objects.)  

Although object-based attention is ostensibly “nonspatial,” the fact that visual 
perception is inherently grounded in spatial reference frames provides a rationale for why there 
may be important links between the workings of frontoparietal gaze control circuitry and 
feature-based attention (e.g., Moore and Zirnsak 2017, Bisley and Mirpour 2019). A compelling 
empirical example comes from the fact that subthreshold microstimulation of the FEF (i.e., at 
an amplitude that does not generate a saccade) produces an attention-like enhancement of the 
visually driven response of V4 neurons with receptive fields overlapping with the stimulated FEF 
motor field, enhancements that are greater for stimuli for which the V4 neuron is optimally 
tuned and/or when a distractor is present elsewhere in the visual field  (Moore and Armstrong 
2003). Saccade planning has also been shown to influence object working memory. For 
example, preparing a saccade to a stimulus location improves the subsequent recognition of 
the shape that had been presented at that location, even if the planned saccade is never 
performed (Hanning et al. 2016). Furthermore, within this same experimental context, an 
intervening saccade can negate the attentional benefits that are otherwise produced by a 
retrocue: When sample offset is followed by a retrocue indicating which of two sample stimuli 
will be tested, this retrocue does not benefit recognition performance on trials for which 
subjects know that they will first need to make a saccade to the location that had been 
occupied by the uncued sample (Hanning et al. 2016).  

The linkage between oculomotor control and object working memory may help explain 
the results from a recent fMRI study of delayed recall of orientations, which showed evidence 
that individual differences in the precision of behavioral performance were predicted, in part, 
by the representation of stimulus location, even though this contextual information was not 
needed to perform the task (Cai et al. 2019). One-item trials on this task began with the 
presentation of a sample at one of four locations, followed by a delay, followed by a recall dial 
that appeared at the same location as had the sample. Across subjects, the strength of the 
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representation of sample location (indexed by MVPA) at encoding and at recall was positively 
related to the behavioral precision of recall. Furthermore, IEM estimates of the neural 
representation of orientation in occipital cortex were higher in amplitude, and more closely 
related to recall precision, when the IEM models that generated them included information 
about location context. 
4.2.1 The role of microsaccades in visual attention and visual working memory 

An additional factor that has recently been gaining prominence in the literature is the 
linkage between object-based attention, object working memory, and microsaccades. 
Microsaccades are small saccadic deviations from the point of fixation, typically smaller in 
amplitude than 1° of visual angle, that occur during fixation of a stable target. Although there 
are many proposed functions for microsaccades relating to possible roles in optimizing foveal 
vision, they have received relatively little consideration in attention research. Recently, 
however, it has been reported that the attentional effects of cuing are strongly tied to 
microsaccades, with the neurophysiological enhancement of the representation of the cued 
stimulus only observed when preceded by a microsaccade in the direction of the cued stimulus. 
Furthermore, the precise timing of the onset of this attentional enhancement was more closely 
tied to the execution of this microsaccade than to the onset of the attentional cue (Lowet et al. 
2018). Interestingly, the periodicity of the attention-related microsaccadic activity described by 
Lowet and colleges (2018) is in the same 3-4 Hz range that is associated with the periodic 
attentional sampling of the visual scene that is characteristic of the behavior and the 
neurophysiology of NHP and human visual cognition (e.g., Fiebelkorn and Kastner 2019). The 
importance of understanding the relation of microsaccades to object working memory has 
recently been highlighted by the demonstration that subtle but systematic differences in 
location of gaze can be used to decode the delay-period representation of line orientation 
(Mostert et al., 2018). In Section 7 we will return to the question of whether such effects in eye-
tracking data -- and, indeed, whether microsaccade-related signals in neural data -- are best 
treated as a potential empirical confounds in studies of working memory, or, alternatively, as 
factors reflecting an inherently functional role that microsaccades may play in encoding the 
contents of nonspatial visual working memory (Dotson, Hoffman, Goodell, & Gray, 2018).  
4.3. The top-down control of attention and working memory   

Several explicit computational models can produce controlled attention without 
resorting to a homunculus. One model that accounts in considerable detail for the empirical 
findings that motivated the biased competition model of visual attention (Chelazzi et al. 1993, 
Chelazzi et al. 1998), and that’s also relevant to considerations of the overlap between gaze 
control and attention (e.g., Moore and Zirnsak 2017, Bisley and Mirpour 2019), is Hamker’s 
(2005) model of biased competition in visual search, which relies on recurrent activity between 
feature-selective neurons in IT cortex and the FEF. In this model, top-down control emerges 
from the complex interaction between the representation of the search template in IT, 
feedforward signaling by IT, and feedback signaling from the subpopulation of “movement 
neurons” in FEF. (Note that although our understanding of some specific details about FEF 
circuitry, cell types, and connectivity with other brain areas have evolved during the ensuing 
years (e.g., Merrikhi et al. 2017), the principles underlying the Hamker (2005) model continue 
to be relevant.) A second model that’s highly relevant to concerns about control without a 
homunculus was developed by Rougier and colleagues (2005), in part to address the fact that “a 
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major challenge for theories of the neural bases of cognitive control …[is] how it can be 
explained in terms of self-organizing mechanisms that develop on their own, over time, without 
recourse to unexplained sources of influence or intelligence” (p. 7338). The authors used a 
connectionist framework with many biologically inspired properties, including synaptic learning 
rules (O'Reilly and Munakata 2000), and an architecture that included a “posterior cortex” 
hidden layer, and a separate “PFC” context layer that could influence both the hidden layer and 
the “response” (i.e., output) layer. Units in the “PFC” had two unique and also biologically 
inspired properties: an “up” state of sustained, elevated activity that was robust against 
interfering signals, and a readily triggered bistability between this sustained “up” state and a 
“down” state that enabled rapid updating of patterns of activity in the PFC. The final critical 
element was a dopamine (DA)-mediated reward prediction error (RPE) signal that could trigger 
transitions in the bistable state of PFC units, a biologically inspired element (in that DA has this 
influence on PFC pyramidal neurons) that incorporated principles of reinforcement learning 
into the simulation. With this architecture, the authors used trial-and error learning to first train 
the model to perform naming and same-different comparisons of stimuli that could vary 
according to shape, size, egocentric, location, and color. This stage of training taught the 
“posterior cortex” to reliably represent the different stimulus domains and the relations 
between ordinal levels within each (e.g., small < medium small < medium large < large), and the 
“PFC” to represent rules (e.g., how to decide if a medium small-sized, yellow, vertically striped 
square located in the upper-right quadrant is the same as or different from a small, green, 
vertically striped square located in the upper-right if the matching dimension is size). Finally, 
they introduced a Wisconsin Card-Sorting Task (WCST), and the network learned to perform it 
at a high level of proficiency, staying on one sorting rule as long as that rule produced positive 
feedback, and switching rules upon receiving negative feedback (the incorrect choice 
generating a RPE signal, which transiently shunted the PFC from its up to its down state). 
Interestingly, if one considers the simulated role of the RPE signal in the Rougier et al. (2005) 
model, together with empirical evidence for the role of dopamine in controlling the influence of 
the FEF on visual attention and working memory (e.g., Noudoost and Moore 2011, Merrikhi et 
al. 2017), one can see how the Hamker (2005) model might be modified to support the flexible 
and context-sensitive selection of rules to guide oculomotor behavior. 

Whereas the Rougier et al. (2005) model illustrated the power of incorporating 
principles of reinforcement learning into neural models, more recently it has been suggested 
that PFC has a property of “meta reinforcement learning” in which dynamic adaptations of 
behavior that follow the principles of reinforcement learning can be implemented by on a trial-
by-trial basis by patterns of activity in the PFC (Wang et al. 2018). The gist is that unique 
physiological properties and anatomical connectivity of the PFC allow for dopamine-based 
reinforcement learning to train this region, over time, to be able to operate as a “learning 
system” that implements principles of reinforcement learning in patterns of activity. Although 
“conventional” reinforcement learning is slow, based, as it is, on incremental changes in 
synaptic weights, “meta reinforcement learning” can change behavior on a moment-by-
moment basis, because such constructs as reward, choice history, object value, and prediction 
error can be represented dynamically in distributed patterns of activity (rather than in patterns 
of weights that bias connection strengths between different neurons). Importantly, because 
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reinforcement learning is unsupervised, this scheme endows the PFC with the ability to control 
behavior without needing the “supervision” of a homunculus.   
4.3.1. The neural bases of the source of object-based attention (and of object working 
memory?) 

Mapping theoretical models like those summarized in the previous subsection onto 
neural systems is an important goal for cognitive neuroscience moving forward. One region that 
is emerging as an important node in the control of object-based attention is in posterior 
ventrolateral PFC, a region known as the inferior frontal junction (IFJ, at the intersection of the 
inferior frontal and precentral sulci) in the human, and the ventral prearcuate area (VPA) in the 
NHP. In humans, Baldauf and Desimone (2014) observed with magnetoencephalography (MEG) 
that alternating attention between superimposed streams of translucent images of faces and of 
houses produced the expected alternations of attention-related boosts of signal intensity in 
stimulus-related activity in posterior face- and house-sensitive regions, and these were tightly 
linked to alternations in the strength of coherence in the upper gamma band (roughly 60-100 
Hz) between IFJ and these posterior regions. In the NHP, Bichot and colleagues (2015) have 
demonstrated that, in a visual search task, neurons in VPA showed selectivity for the search 
target and showed feature-based attentional modulation earlier than did neurons in FEF. 
Furthermore, local inactivation of VPA neurons produced marked deficits in search 
performance, and abolished the feature-based attention modulation of FEF that was observed 
prior to the inactivation (Bichot et al. 2015). It remains to be determined how closely the 
feature-based attention-related functions of VPA may correspond the involvement of VPA in 
the control of visuoobject working memory, as has been described in separate research 
(Mendoza-Halliday et al. 2014).  

 
5. Storage, maintenance and loss of information in WM  
5.1. Evidence for where influences models of how 

In cognitive neuroscience, questions of how information is retained for working-memory 
task performance are often closely tied to where in the brain one can find evidence for the 
delay-period representation of trial-relevant information. Historically, evidence for stimulus-
selective delay-period activity has often been interpreted as evidence for a storage function in 
that region, and such evidence, in turn, has been influential in the development of models of 
visual working memory and visual cognition. For example, reports of stimulus-selective delay-
period activity in the dorsolateral PFC, at the level of single-unit recordings (e.g. , Funahashi et 
al. 1989, Funahashi et al. 1990, Wilson et al. 1993) or MVPA decoding from population 
recordings (Mendoza-Halliday et al. 2014), has influenced theories on a wide range of 
questions, including the role of working memory in high-level cognition (e.g., Goldman-Rakic 
1992, Davachi et al. 2004), the functional organization of cortical contributions to high-level 
cognition (Katsuki and Constantinides 2012, Leavitt et al. 2018), and principles of neural coding 
(Murray et al. 2017, Constantinidis et al. 2018). Another important example is that the 
observation of patterns of load-sensitive delay-period activity measured with fMRI in IPS (Todd 
and Marois 2004, Todd and Marois 2005, Xu and Chun 2006), and with EEG at occipitoparietal 
scalp electrodes (Vogel and Machizawa 2004, Vogel et al. 2005), has led to the codification of 
an EEG component, the contralateral delay activity (CDA), that has been an influential tool for 
developing models of individual differences in working memory abilities (a.k.a. capacity 
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limitations, e.g., Luck and Vogel 2013, Luria et al. 2016), of visual search (Woodman 2013), of 
automaticity (Servant et al. 2018), and for inferring roles for working memory in a wide variety 
of cognitive tasks that do not make overt demands on the short-term retention of information 
(Balaban and Luria 2019).  
5.1.1. Caveats about inferring function from activity 

As discussed in Section 2.1, the application of multivariate analyses to neuroimaging 
data sets has led to important advances in our understanding of the neural bases of many 
cognitive functions. The impressive sensitivity of these methods has also highlighted the 
challenge of how to go about assessing, when multiple regions can be shown to represent 
stimulus-specific information, whether these regions are all supporting the same function, or 
perhaps different functions that nonetheless all entail the active representation of the same 
information. 

Not long after the power of MVPA for working memory research was demonstrated by 
delay-period decoding of stimulus information from V1 (despite the absence of elevated 
activity, Harrison and Tong 2009, Serences et al. 2009), Christophel and colleagues (2012, 2014) 
and Bettencourt and Xu (2016) published evidence for delay-period stimulus representation in 
parietal cortex, and Ester and colleagues published IEM evidence that “Parietal and frontal 
cortex encode stimulus-specific mnemonic representations during visual working memory” for 
the orientation of square-wave gratings (Ester et al. 2015), see also (Cai et al. 2019). Similarly, 
the remembered direction of motion is decodable with MVPA from delay period signal across 
multiple subregions of the IPS (Gosseries et al. 2018). Although some have interpreted these 
and similar findings as evidence for working memory buffers operating in IPS and frontal cortex 
(e.g., Riley and Constantinidis 2016, Christophel et al. , Xu 2017, Leavitt et al. 2018), other 
interpretations are possible. In data from this author’s group, for example, the measures of 
delay-period stimulus information that we have observed in IPS and PFC differ from those 
simultaneously measured in VOT regions in several ways. IPS and PFC representations tend to 
be weaker and less robust, as indexed by lower decoding scores and the failure to decode or 
reconstruct at memory loads higher than 1 (e.g., Gosseries et al. 2018). Furthermore, in 
Gosseries, Yu, et al. (2018), we operationalized memory load with trials presenting one motion 
patch (1M) vs. 1 motion patch and 2 color patches (1M2C), and context-binding load with 1M 
vs. 3M. (On three-item trials (i.e., 1M2C and 3M ) samples were presented serially, and a digit 
indicated the item to recall, thereby requiring the binding of each sample to its ordinal context.) 
In this study, MVPA-decoded delay-period representations in IPS coexisted with patterns of 
BOLD signal whose sensitivity to context-binding load covaried with 1M-to-3M declines in 
behavioral precision, and with 1M-to-3M declines in decoding from VOT; no such relations 
were observed in comparison to analogous patterns of variation across 1M-to-1M2C. 
Therefore, it’s possible that delay-period representations in IPS had a more important role in 
the control of context binding than in stimulus representation per se. In a study by Cai et al. 
(2019), IPS and PFC representations did not show evidence for an influence of location context, 
and variation in their strength did not relate to behavior, suggesting that these representations 
may have been more abstract than those carrying information specific to the current trial. 
5.2. Dynamic representations supporting working memory function 

One argument that is made for the need for working memory buffers in non-sensory 
regions the brain is that this scheme would avoid the potential problem of working memory 
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storage interfering with ongoing perception. For example, it has been argued that “… the 
content of [visual working memory] is fairly resistant to distraction. This is at odds with an 
intuitive understanding of the sensory account, which would predict a large interference 
between VWM storage and sensory processing of the distractor as a result of shared neural 
resources” (Xu 2017) p. 799. Where intuition fails, however, information theory dynamical 
systems theory, and computational modeling offer promising ways forward. 

At a general level, one solution to intuited problem of interference between memory 
storage and ongoing perception is to re-represent the to-be-remembered information in a 
format that does not interfere with perceptual codes. One scheme that could accomplish this 
would be to encoding to-be-remembered information into an “activity-silent” state (Stokes 
2015), possibly supported by patterns of oscillatory synchrony and/or transient changes in 
synaptic weights (e.g., Mongillo et al. 2008, Erickson et al. 2010, Toda et al. 2012, Barak and 
Tsodyks 2014). Empirical evidence consistent with this idea has been generated with perturb-
and-measure studies that reveal the otherwise-subthreshold representation of information in 
the multivariate readout of response evoked by the delay-period perturbation (Wolff et al. 
2015, Rose et al. 2016, Wolff et al. 2017), as well as with computer simulations (Manohar et al. 
2019, Masse et al. 2019).  A second possibility (that is not incompatible with an activity-silent 
mechanism, c.f. Masse et al. 2019) would be to recode to-be-remembered information it into a 
format that is different, and perhaps more robust, than the perceptual code. In this scheme, 
the recoded information could later be decoded back into its original format (e.g., Koyluoglu et 
al. 2017) or used in its transformed state to influence thought and/or guide behavior (e.g., 
Myers et al. 2017, van Ede et al. 2019). Importantly, a recoding scheme does not require 
engaging circuits that were not involved in the initial encoding of the information in question. In 
the next section I’ll consider empirical and computational evidence for one candidate recoding 
mechanism: priority-based remapping. 
5.2.1. Priority-based remapping as a candidate mechanism for storage in working memory 
 Evidence for priority-based remapping was first observed in a two-item dual serial 
retrocuing study of delayed recall (Yu and Postle unpublished) but here we will focus on a 2-
back working memory task with which this phenomenon has been studied in the greatest detail 
to date. In the 2-back study of Wan et al. (in-principle accepted), subjects viewed the serial 
presentation of oriented grating stimuli, and indicated for each, with a button press, whether is 
matched or non-matched the item that had appeared two positions previously in the series. In 
this way, each item n transitions through multiple states of priority: first as a recognition probe 
for the item n-2; then as an “unprioritized memory item” (UMI) while the subject compares 
item n+1 against n-1; then as a “prioritized memory item” (PMI) in anticipation of its 
comparison with n+2. The EEG data from Wan et al. (in-principle accepted) were analyzed with 
an IEM that was trained on data from the delay period of an independent 1-item delayed-
recognition task. The principal empirical finding of interest, which replicated Yu and Postle 
(unpublished), was that the IEM estimate of the neural representation of the UMI took on a 
value that was the opposite of its true value, then returned to its true value when it 
transitioned to PMI. To make this concrete, let’s take the example of a hypothetical grating 
stimulus of orientation 30° (from a stimulus set where 0° corresponded to a horizontal 
orientation and 90° to a vertical one).  While this 30° stimulus grating was a UMI, its neural 
representation was reconstructed by the IEM as most similar to the neural representation of 
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120°, then, when a PMI, its neural representation was once again reconstructed by the IEM as 
30°.  
 There are two important points to emphasize about this finding. The first is to 
acknowledge that this pattern of IEM reconstruction of the UMI suggests an active memory 
trace, a finding at variance with previous studies that have failed to find evidence for an active 
trace of the UMI (Lewis-Peacock et al. 2012, LaRocque et al. 2013, Rose et al. 2016, LaRocque et 
al. 2017). The second is that this pattern would be more consistent with a remapping of how 
stimuli are represented within neural code than an actual recoding operation. This because an 
IEM trained to learn one code should fail when tested on data corresponding to a different 
code. A neural operation that preserved the learned neural states but changed the neural-
pattern-to-stimulus-value mapping (e.g., flipping the mappings, or rotating them), however, 
could produce the pattern similar to what we have observed with the IEM reconstruction of the 
UMI (Wan et al. in-principle accepted, Yu and Postle unpublished). 
5.2.1.1 Priority-based remapping: evidence from neural network modeling 
 To explore the mechanism that may underlie the transformation of the neural 
representation of the UMI, Wan and colleagues (unpublished) trained a fully recurrent neural 
network (RNN) with a hidden layer of 16 so-called long short-term memory (LSTM) units to 
perform the 2-back task (Figure 1, A. and B.). (For the present purposes, LSTM can be 
understood as a kind of architecture that allows artificial neural networks to process 
information during time steps when no new information is being fed to the network.) Once the 
network was trained, the representational dynamics of the network could be observed by 
tracking the shifting patterns of activity over the course of an item’s evolution from probe to 
UMI to PMI. More specifically, the dimensionality of the 16 units hidden layer was reduced 
using principal component analysis (PCA) and the trajectory of the first two principal 
components tracked. As illustrated in Figure 1.C., the network’s representation of each stimulus 
item underwent a dynamic trajectory while held in working memory: when initially  presented 
to the RNN, the RNN’s representation of item n was aligned along an axis that separated 
“match” from “nonmatch” responses; during the ensuing delay period, when its status in the 
task transitioned to UMI, its representation by the RNN rotated until, during the presentation of  
n+1, it was orthogonal to the decision axis; then, when its status in the task transitioned to PMI, 
it continued its rotation along the same high-dimensional manifold (i.e., along the same 
“plane”), re-aligning with the decision axis during the presentation of n+2. As calculated across 
multiple simulations, the average distance between the axis of alignment of the UMI versus the 
PMI was 134°. 
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Figure 1. Rotational remapping as a mechanism to represent priority in working memory. 
A. Cartoon of a sequence of stimuli from the 2-back task as administered by Wan et al. (in-

principle accepted). 
B. Correspondence between stimulus labels (left-hand column) and color codes used for 

RNN simulation by Wan et al. (Wan et al. unpublished). 
C. Multidimensional scaling of the first two principal components extracted from activation 

patterns of the hidden layer of the RNN, at multiple successive time steps of simulated 
2-back performance. The plot labeled “Item n” corresponds to the presentation of “Stim 
n” in panel A.; the plots labeled “Delay 1:1” and “Delay 1:2” correspond to the two time 
steps while item n is a UMI; and so on. Each colored dot represents a simulated trial in 
which that item progressed through the states of recognition probe (“Item n”), UMI 
(“Delay 1:1”, “Delay 1:2”, and “Item n+1”); and PMI (“Delay 1:1”, “Delay 1:2”, and “Item 
n+2”). In the “Item n” plot, trials for which n required a match response occupy the 
manifold (i.e., the “stripe”) that aligns with the value of 0.0 of the first principal 
component, and trials for which n required a nonmatch response occupy the manifolds 
that appear to the left and to the right of the “match” manifold in this plot. Note that, 
across the time that n is processed in working memory, its representation rotates 
clockwise in the image plane, such that when item n+1 is presented, n is aligned with an 
axis that is orthogonal to the decision axis, and that when n+2 is presented, n is again 
aligned with the decision axis. The rotated state of the representation of n at the time 
when the network is assessing the match between n+1 and n-1 may reduce the 
likelihood that the identity of n will interfere with the decision about n+1. 

 
5.2.1.2 Priority-based remapping: evidence from human EEG 
   The previous subsection reviewed evidence, from a neural network simulation, 
rotational remapping may be a process whereby information can be held in working memory in 
a format that doesn’t interfere with behavior. Is there, however, any evidence that a similar 
mechanism might be deployed by the human brain? To address this, Wan and colleagues 
(unpublished) applied the analysis that had been applied to the RNN to the EEG data in which 
IEM reconstructions of stimulus orientation difference as a function of the item’s priority status 
(Wan et al. in-principle accepted). Conceptually, they treated the data from the 60 channels of 
the EEG in the same way as they had the activation values of the hidden layer of the RNN. 
(Some of the processing steps were necessarily different; before performing the PCA, temporal 
covariance matrices were first computed from the EEG data, then these covariance matricies 
eigendecomposed, following Cohen (2014).) The results produced a qualitative replication of 
the results with the RNN, with the UMI rotated relative to the PMI by 177°.  

The putative priority-based mechanism described here may also account  for the 
findings of van Loon and colleagues (2018), who acquired fMRI while subjects performed a 
visual search task in which each trial began with the sequential presentation of two search 
targets, followed by the sequential presentation of two search arrays, one corresponding to 
each of the two targets. Because the order of appearance of the search arrays would not be 
known until after the offset of the second target, each trial was assumed to entail the 
sequential prioritization of the working-memory representation of the two targets. Analyses 
with MVPA revealed that although a classifier trained on epochs when a stimulus category 
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corresponded to the impending search array (i.e., when it was the prioritized item) could also 
decode evidence for that same category from epochs when it did not correspond to the 
impending search array (i.e., when it was the unprioritized item), the pattern of activity when 
this category was the unprioritized differed from when it was prioritized. This manifested in two 
ways: first, decoding of the unprioritized category with a decoder trained on information in the 
prioritized state was significantly below chance; and second, the high-dimensional 
representation of each category projected into opposite regions of multidimensional scaling 
(MDS) space during epochs when it was prioritized versus when it was unprioritized.  
5.2.1.3 Priority-based remapping in working memory: a specific case of a more general 
mechanism?  

Together, the results from IEM of neural data from two experiments using two different 
tasks (Wan et al. in-principle accepted, Yu and Postle unpublished), and the PCA-based analyses 
of 2-back data from an RNN simulation and from human EEG (Wan et al. unpublished) 
 suggest that the phenomenon of priority-based remapping may be implemented as a 
rotational remapping that is emergent from the dynamics of high-dimensional distributed 
representations. In keeping with the idea that working memory performance does not depend 
on specialized systems, a qualitatively similar phenomenon has been observed in populations of 
neurons in primary auditory cortex in mice exposed to sequences of tones. Although the 
animals were not trained on any specific task, stimuli that deviated from predictable sequences 
produced a transformation of the representation of previous stimuli from their perceptual 
codes into an orthogonal dimension. The authors propose that “This rotational dynamic may be 
a general principle, by which the cortex protects memories of prior events from interference by 
incoming stimuli (Libby and Buschman unpublished). Future research will need to assess the 
mechanism whereby rotational remapping can be triggered by top-down signals, which must be 
the case when it is observed in retrocuing tasks (Yu and Postle 2018, Sahan et al. unpublished). 

 
6. The role of LTM knowledge in WM storage and processing  

Every domain of cognition, including object recognition, depends on long-term memory 
(LTM). Without access to pre-existing representations of meaning, an individual viewing a scene 
would experience associative agnosia (Farah 1990). Indeed, it may not be possible for humans 
to perceive, nor to hold in working memory, a novel, abstract object or shape without 
associating it with prior knowledge and applying a verbal label to it (Postle et al. 2005, Postle 
and Hamidi 2007). It follows from this that visual working memory necessarily entails the 
representation of information from semantic LTM, in addition to sensory and motoric 
representations. One recent paper that makes a thorough and compelling set of arguments 
consistent with this line of thinking is from Cowan (2019).   

One recent and exciting demonstration of an influence of LTM on working memory has 
come from the application of ideas from dynamical systems theory. Panichello and colleagues 
(2019) tested 90 human subjects and two NHPs on short-term recall (a.k.a. delayed estimation) 
of color from arrays of one versus three (for humans) or two (for NHPs) colored squares. For 
both species, even though stimuli were drawn evenly from the full 360° of possible colors, 
responses were markedly biased away from some colors and toward others. Attractor dynamics 
accounted for the frequency, bias, and precision of behavior better than standard mixture 
modeling. In particular, the greater imprecision in responses on high-load trials was shown to 
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reflect both a drift of remembered stimulus representations toward stable attractor states and 
a greater influence of random diffusion (i.e., noise). The authors framed this as evidence for an 
error-correcting mechanism, whereby increased internal noise (manipulated here by varying 
load) is counteracted by drift toward stable long-term representations of color space. (From a 
Bayesian perspective, one could construe this as drawing on prior knowledge to counteract 
uncertainty about the recently presented stimuli.) Evidence that the inferred attractor 
landscape reflected knowledge acquired prior to the presentation of sample stimuli on any 
given trial of the task came from the fact that the attractor landscape could be made to shift 
systematically to reflect new environmental statistics, as implemented by changing from a flat 
distribution of sample stimuli to a  strongly biased distribution (Panichello et al. 2019). 

To investigate the neural bases of these attractor dynamics, we have reanalyzed data 
from an fMRI study in which subjects had performed delayed recall of one versus three line 
orientations (Cai et al. unpublished). Analysis of the behavioral data from Cai  et al. 
(unpublished) with the discrete attractor model developed by Panichello et al. (2019) provided 
a much better account of the data than did the classical three-factor mixture model (Bays et al. 
2009): the discrete attractor model was estimated to be 2.9*106 times more likely than the 
mixture model by cross-validated log-likelihood estimation. Furthermore, the drift and diffusion 
parameters from the discrete attractor model also related closely to load-related changes in 
IPS. We used within-subject correlation to relate individual differences in load-related changes 
in behavior to individual differences load-related changes in fMRI signal, and whereas using 
only the concentration parameter from the classical mixture model produced an adjusted r2 of 
.25, adding the parameters from the discrete attractor model increased the adjusted r2 to .69.  

The question of whether or not working memory necessarily draws on LTM is often 
approached with logical argumentation, with reasonable people disagreeing over the strength 
of various arguments (e.g., Norris 2017, Cowan 2019). The findings reviewed here, in contrast, 
provide a quantitative demonstration that a model that incorporates an influence of LTM on 
working memory performance does a far superior job of accounting for individual differences, 
both in behavior and in task-related neural activity, than does a model that does not. 
 
7. Is there evidence that is not consistent with your theoretical framework, and how does 
your framework address that inconsistency?  
 Within the domain of visual working memory, the evidence that would be most 
prominently inconsistent with my theoretical framework would be evidence for working-
memory storage-related functions in circuits that are not associated with visual perception 
and/or the representation of visual knowledge. Prominent claims of such evidence come from 
findings of stimulus-specific delay-period activity in the IPS (e.g., Bettencourt and Xu 2016, 
Christophel et al. 2017, Xu 2017, Christophel et al. 2018, Xu 2018) and the PFC (Mendoza-
Halliday et al. 2014, Riley and Constantinidis 2016, Mendoza-Halliday and Martinez-Trujillo 
2017, Riley et al. 2017, Constantinidis et al. 2018, Leavitt et al. 2018).  Importantly, I do not 
question the veracity of the data contained in these reports, but, rather, the interpretation 
often given to these data. Stated most broadly, I believe that many of the instances of delay-
period stimulus-specific activity in IPS and PFC may reflect the operation of control processes 
rather than the operation of storage buffers per se. Alternative explanations for the functions 
supported by these findings appeal to the same roles in controlling behavior that these neural 
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systems play in situations that don’t make overt demands on working memory. These include 
protection from the influence of external interference (e.g., Malmo 1942, Chao and Knight 
1995); control of perseveration and/or proactive interference (e.g., Tsujimoto and Postle 2012); 
and the need to manipulate remembered information prior to using it to guide behavior (e.g., 
D'Esposito et al. 1999, Masse et al. 2019).   
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