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Electrocorticogram (ECoG) Is Highly Informative in Primate
Visual Cortex
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Neural signals recorded at different scales contain information about environment and behavior and have been used to control Brain
Machine Interfaces with varying degrees of success. However, a direct comparison of their efficacy has not been possible due to different
recording setups, tasks, species, etc. To address this, we implanted customized arrays having both microelectrodes and electrocortico-
gram (ECoG) electrodes in the primary visual cortex of 2 female macaque monkeys, and also recorded electroencephalogram (EEG), while
they viewed a variety of naturalistic images and parametric gratings. Surprisingly, ECoG had higher information and decodability than all
other signals. Combining a few ECoG electrodes allowed more accurate decoding than combining a much larger number of microelec-
trodes. Control analyses showed that higher decoding accuracy of ECoG compared with local field potential was not because of differences
in low-level visual features captured by them but instead because of larger spatial summation of the ECoG. Information was high in the
30 – 80 Hz range and at lower frequencies. Information in different frequencies and scales was nonredundant. These results have strong
implications for Brain Machine Interface applications and for study of population representation of visual stimuli.
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Introduction
Electrical activity from the brain can be recorded at various levels
of resolution. Microelectrode arrays, typically inserted in the cor-
tex of animals, record extracellular action potentials from nearby
neurons, yielding single-unit activity (SUA) or multiunit activity
(MUA). The extracellular signal recorded by these electrodes can
be low-pass filtered to get the local field potential (LFP), thought
to mainly reflect synaptic activity of a neural population around
the microelectrode (Buzsáki et al., 2012). At the other extreme,
noninvasive scalp electrodes are used to obtain electroencepha-

logram (EEG). Between these extremes lies the electrocortico-
gram (ECoG), typically obtained by placing macroelectrodes on
the surface of the brain, widely used in epileptic patients to find
the seizure focus (Lesser et al., 2010; Morshed and Khan, 2014;
Yang et al., 2014).

These signals have been used in Brain Machine Interface
(BMI) applications, which are especially useful in case of motor
disabilities (Andersen et al., 2014; Bockbrader et al., 2018) or
speech impairment (Herff and Schultz, 2016). Apart from decod-
ing voluntary activity (active BMIs), forays have been made into
passive BMIs, used for cognitive monitoring and providing con-
textual and sensory information that can supplement active BMIs
(Zander and Kothe, 2011). In humans, EEG has been the popular
choice for BMIs because it is noninvasive, but it suffers from poor
signal-to-noise ratio (Blankertz et al., 2006; McFarland et al.,
2010; Sereshkeh et al., 2017; Padfield et al., 2019). More recently,
BMIs based on spiking activity, LFPs, and ECoG signals have also
been used (Moran, 2010; Filippini et al., 2017; Slutzky and Flint,
2017; Ibayashi et al., 2018), including human subjects with para-
plegia (Aflalo et al., 2015; Bouton et al., 2016; Milekovic et al.,
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Significance Statement

Electrophysiological signals captured across scales by different recording electrodes are regularly used for Brain Machine Inter-
faces, but the information content varies due to electrode size and location. A systematic comparison of their efficiency for Brain
Machine Interfaces is important but technically challenging. Here, we recorded simultaneous signals across four scales: spikes,
local field potential, electrocorticogram (ECoG), and EEG, and compared their information and decoding accuracy for a large
variety of naturalistic stimuli. We found that ECoGs were highly informative and outperformed other signals in information
content and decoding accuracy.
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2018, 2019). However, an objective comparison of the usefulness
of these signals is lacking because of differences in recording
setup, brain area and resolution, behavioral task, species, and
so on.

Many BMI studies have focused on recordings from the motor
cortex or associated areas, in which a motor command is gener-
ated from the signals when the subject imagines a particular
movement (Aflalo et al., 2015; Meng et al., 2016). But the quality
of motor imagery may differ among subjects (Marchesotti et al.,
2016); and since the input is internally generated, it is not possible
to directly quantify the variability in this input. An alternative
approach is to record from a sensory area, in which the input is
external and can be precisely controlled (Chechik et al., 2006;
Chang et al., 2017). However, the information content in the
signal may depend simply on the response properties of the neu-
rons, such as their stimulus preferences and receptive field (RF)
sizes, as well as the properties of the sensory stimulus. When
combining across electrodes, the total information may also de-
pend on interelectrode spacing.

Here, we addressed some of these concerns as follows. First,
we designed a hybrid electrode array that contained both a 9 � 9
microelectrode array (400 �m separation, Blackrock Microsys-
tems) and a 3 � 3 array of ECoG electrodes (2.3 mm diameter
separated by 1 cm, Ad-Tech Medical Instrument), attached to the
same connector and referenced to a single wire, allowing simul-
taneous spike, LFP, and ECoG recordings under almost identical
noise conditions. These were implanted in the primary visual
cortex (V1) of 2 female monkeys. In some sessions, EEG was also
recorded simultaneously. Second, to ensure that the stimuli did
not favor any one signal over others, we used a large variety of
naturalistic stimuli (5 categories, 16 stimuli in each) and their
grayscale and scrambled versions while the monkeys maintained
fixation. In addition, we also recorded responses to full screen-
oriented gratings. Together, this mimics a “natural” situation of
decoding the external visual world using popular and commer-
cially available electrode arrays of different types. Finally, we used
an information theoretic approach to identify the most informa-
tive features of the neural responses. To compare efficiency for
BMI applications, we calculated decoding accuracies and mea-
sured the effect of adding more electrodes as well as multiple
features.

Materials and Methods
Animal preparation and recording. Two adult awake female monkeys
(Macaca radiata) weighing 3.3 and 4 kg (M1 and M2) were used. Details
of the surgery from these 2 monkeys have been presented previously
(Dubey and Ray, 2019a) and are described here in brief. The experiments
were done according to the guidelines of the Institutional Animal Ethics
Committee of the Indian Institute of Science, Bangalore, and the Com-
mittee for the Purpose and Supervision of Experiments on Animals. A
titanium headpost was surgically attached to the skull. The monkeys were
trained on a visual fixation task after which they underwent surgeries in
which custom-made hybrid arrays were implanted in the left hemi-
sphere. The hybrid array had 81 microelectrodes (9 � 9) from Blackrock
Microsystems and 9 ECoG (3 � 3) electrodes from Ad-Tech Medical
Instrument; both were connected to the same Blackrock 96 channel con-
nector and had common reference wires. The platinum microelectrodes
were 1 mm long, with a tip diameter of 3–5 �m, and an interelectrode
distance of 400 �m. The ECoG electrodes, also made of platinum, were
2.3 mm in diameter separated by an interelectrode distance of 10 mm. A
hole was made in the silastic sheet which the ECoGs were embedded in to
make room for inserting the microarray. During surgery, a large crani-
otomy (�2.8 mm � 2.2 mm) and a smaller duratomy were performed
under general anesthesia. The ECoG strip was inserted and slid under the
surrounding dura (Dubey and Ray, 2019a, their Fig. 1). For M2, due to

difficulty in sliding, a part of the strip with 3 electrodes was cut off before
sliding. The hole in the silastic was aligned with the duratomy, the mi-
croarray was placed in the hole and inserted into the cortex using a
pneumatic inserter. The array was 10 –15 mm rostral to the occipital
ridge, and 10 –15 mm lateral from the midline. Six ECoG electrodes in
M1 and four in M2 were located on V1, posterior to the lunate sulcus.
The dura was sutured back and the bone flap replaced. The reference
wires were either inserted in the crevice of the craniotomy or wound
around the titanium strap that secured the bone flap in place. Following
a recovery period of �10 d, the monkeys performed the experimental
tasks regularly. For simultaneous EEG recordings, 18 EEG (passive Grass
electrodes) electrodes were placed on the scalp and connected to the same
data acquisition system as the micro and ECoG electrodes. The EEG
ground electrode was placed in front of the headpost, and the reference
electrode was either behind or right lateral to the headpost. Because of the
presence of titanium mesh and screws present under the skin to secure
the large craniotomies, EEG data were generally noisy. We were able to
get usable simultaneous EEG recordings only from a few occipital elec-
trodes in M1.

Signals were recorded using Cerebus Neural Signal Processor from
Blackrock. LFP, ECoG, and EEG signals were obtained by bandpass fil-
tering the raw data between 0.3 Hz (analog Butterworth filter, first or-
der), and 500 Hz (digital Butterworth filter, fourth order), and sampling
at 2000 Hz. MUA was obtained by filtering the raw data between 250 Hz
(digital Butterworth filter, fourth order) and 7500 Hz (analog Butter-
worth filter, third order) and setting an amplitude threshold at 5 SDs of
the signal on all microelectrode channels.

Behavioral task and stimulus. For the grating stimuli, full screen static-
oriented gratings at 100% contrast and a spatial frequency of 2 or 4 cycles
per visual degree were displayed, with orientation varying in steps of
22.5° from 0° to 157.5°. For naturalistic stimuli, 64 images were chosen
from the McGill Color Calibrated Image Database (Olmos and King-
dom, 2004) (http://tabby.vision.mcgill.ca/html/browsedownload.html)
and grouped in 4 sets of 16 each: Fauna (birds and animals), Flora (flow-
ers, foliage and fruits), Textures and Landscapes (natural and manmade).
Images were cropped and downsampled to get 1280 � 720 sized images.
We also added a set of 16 images of human faces. We used gimp image
editor to make grayscale versions of these images, which were displayed
in separate sessions. Because the RF sizes and locations varied consider-
ably for the different signals, it is impossible to equate low-level features,
such as luminance, spatial frequency, contrast, and color across images
(although we were able to compare some of these properties post hoc; see
Fig. 15). Therefore, all images were presented full screen, without any
further calibration. For two sets (Fauna and Texture), we also displayed
Fourier scrambled versions of the images, interleaved with the original.
They were obtained by computing the Fourier transform of the image, ran-
domizing the phase values, and taking a Fourier inverse to get the scrambled
image. This procedure did not change the overall luminance, but higher-
order correlations were removed. We computed one scrambled image for
each of the original ones. The stimuli are shown in Figure 4.

During a recording session, 8 (gratings), 16 (all stimuli from 1 image
set), or 32 (from 2 image sets) stimuli were shown in a randomly inter-
leaved fashion. The monkey sat in a chair with its head fixed via the
headpost, in front of a gamma-corrected monitor (BenQ XL 2411, LCD,
1280 � 720, refresh rate 100 Hz). The distance from the screen to mon-
key’s eyes was fixed at �50 cm. Each trial began with appearance of the
fixation dot, followed by a blank gray screen for 1000 ms, after which 2– 4
full screen stimuli were displayed for 500 ms each with an interstimulus
interval of 500 ms. The monkey passively fixated on a white fixation dot
(0.1° radius) at the center of the screen while keeping the gaze within 2° of
the fixation dot. The monkey was rewarded by a juice drop for maintain-
ing fixation for the whole trial. For performing information and decod-
ing analysis, a large number of stimulus repeats were required, especially
for population analysis involving multiple electrodes. Across sessions
and monkeys, we obtained an average of 113 � 19.8 (SD) repeats per
stimulus for the gratings, and 67.7 � 12.5 (SD) trials per stimulus across
all image sets.

Electrode selection and RF mapping. All data were analyzed using cus-
tom code written in MATLAB (The MathWorks, R2015b). Electrodes
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were selected on the basis of a RF mapping protocol as described previ-
ously, where we showed that ECoG RFs are surprisingly local, only �3
times the size of LFP RFs (Dubey and Ray, 2019a), and comparable with
the RFs obtained in human subjects (Yoshor et al., 2007). RFs were
estimated by flashing small gratings across the visual field. While we were
able to reliably estimate the RFs of spikes, LFP, and ECoG using this
procedure (Dubey and Ray, 2019a, their Fig. 3), these stimuli were too
small to induce a measurable response in the EEG. LFP and ECoG elec-
trodes that had consistent responses, and reliable estimates of RFs across
days were selected. For the ECoG electrodes, we chose the ones that were
posterior to the lunate sulcus and had a minimum response value �100
�V. For M2, only a small part of the grid was active in the first few weeks
after implantation, but a second patch of microelectrodes started show-
ing reliable activity �4 weeks after implantation. The results shown here
include electrodes from both patches. LFP and ECoG RF centers for both
monkeys are shown in Figure 3B. Overall, we obtained 77 and 31 LFP
electrodes and 5 and 4 ECoG electrodes from M1 and M2, respectively.

Spiking electrode selection. Spike sorting was performed on the selected
LFP electrodes (77 and 31 for the 2 monkeys) using Spikesort (Kelly et al.,
2007) (http://www.smithlab.net/spikesort.html). For the sorted units,
we calculated the signal-to-noise ratio, and the trial averaged change in
firing rate (FR) in the 250 –500 ms period from baseline (0 –250 ms)
across stimulus conditions. We chose units that had signal-to-noise ratio
above a threshold of 2 and a maximum FR change above a threshold of 3.
This procedure yielded an average of 30.3 � 4.5 and 14.0 � 2.8 electrodes
for grating protocols of M1 and M2, and 20.0 � 7.0 and 13.7 � 5.7
electrodes for image protocols of the 2 monkeys. For all of the following
spike analysis, the FR in the 250 –500 ms window after stimulus onset was
used, unless otherwise mentioned.

Power calculation. Power spectral density was calculated using the
Multitaper method, using Chronux toolbox (Bokil et al., 2010) (http://
chronux.org/), using 3 Slepian tapers. Baseline period (spontaneous ac-
tivity) was chosen between 250 and 0 ms before stimulus onset, and
response period was chosen between 250 and 500 ms after stimulus onset
to avoid onset related transients, unless mentioned otherwise. This
yielded a frequency resolution of 4 Hz. Power was calculated for each trial
separately, and then averaged over trials to get the power spectral density
for each electrode. The log of power (to base 10) was taken before aver-
aging across electrodes. For the information analysis and the decoding
calculations, the log of the trial wise power values for each electrode was
used.

Field potential range (FPR) calculation. For BMI applications, often a
metric is desired that is simple, independent of arbitrary cutoffs (such as
the gamma band range), and easy to compute. One such metric that can
be computed in the time domain itself without any spectral analysis is
FPR, which is simply the difference between the maximum and mini-
mum potential of a signal (max(potential) � min(potential)) in the
given time period (Liu et al., 2009). We calculated FPR for each trial of
each stimulus presented for all selected LFP, ECoG, and EEG electrodes
during either the early (0 –250 ms) or late (250 –500 ms) stimulus period
and compared these with other measures based on power calculation.

Coefficient of variation (CV) calculation. The observed responses could
vary for two reasons: noisy fluctuations across trials when the stimulus
was fixed and modulation by presentation of different stimuli. We mea-
sured the variability in the signal due to both these by calculating the CV,
which is defined as the ratio of SD and mean. To measure the fluctuations
across trials, we computed the noise CV (nCV). The “noise” reflects
response variations for a fixed stimulus; these may even arise from im-
portant neural contributions (therefore does not mean noise in the gen-
eral sense of the word) (Belitski et al., 2008). To calculate how much the
response variability depended on the stimulus-induced modulations, we
calculated the signal CV (sCV). It also tells us how well the response can
potentially encode the stimuli.

Mutual information (MI) calculation. To measure how well a signal
encodes the stimuli, we measured the MI between the stimulus shown
( S) and the response ( R). MI (I(S;R)) measures the amount of informa-
tion between two random variables (Shannon, 1948; Cover and Thomas,
1999). Here, these random variables S and R represent the stimulus and
response recorded. It is defined as follows:

I�S; R� � �
s,r

p�s, r�log� p�s, r�

p�r�p�s��,

where s � S, r � R, p(s) and p(r) are the probability mass functions of S
and R; p(s) 	 Pr{S 	 s}. p(s,r) is the joint probability mass function of S
and R, or the probability of observing response r and stimulus s together
across trials. When the logarithm is used with a base of 2, MI has units of
bits. The MI is also expressed in terms of entropy. Entropy is a measure of
the uncertainty about a random variable, or the amount of information
required to correctly say which instance r � R occurred. It is defined as
follows:

H�R� � ��
r

p�r�log�p�r��,

Observing an instance of another variable (s) may provide some infor-
mation about R, and the remaining uncertainty then depends on the
conditional probability p(r�s), that is the probability of observing value
r � R when s is known to have occurred. It is called the conditional
entropy as follows:

H�R�S� ���
s

p�s��
r

p�r�s�log�p�r�s��,

The MI between R and S is the corresponding reduction in the entropy as
follows:

I�S; R� � H�R� � H�R�S�

The response random variable R may be unidimensional or multidimen-
sional. In the latter case, for a pair of responses (R1, R2), p(r) in the above
equations will be replaced by p(r1 r2), the probability of observing (r1, r2)
across all s, and the conditional probability will be p(r1 r2 � s), the proba-
bility of observing (r1, r2) in response to a given s.

We measured the MI between the stimuli ( S) and signal power ( R) at
each frequency between 0 and 150 Hz, for all LFP, ECoG, and EEG
electrodes. The stimulus s could be from 8 gratings or 16 images depend-
ing on the session (entropy of 3 or 4 bits, respectively). For the sessions
where we had displayed 32 images (from 2 sets), analysis was done sep-
arately for 2 (nonoverlapping) stimulus sets of 16 images each. The re-
sponse r was the log of power at a given frequency. For calculating the
joint information using two frequencies, the response was (r1, r2), where
r1 was the log power at one frequency and r2 at the second frequency. In
case of spiking or time domain analysis, the metric r was the FR or the
FPR value.

To perform the calculations, we used the information breakdown
toolbox (ibtB) (Magri et al., 2009). Trialwise responses for each electrode
across stimuli were binned into 7 equi-populated bins. The resulting
probability distributions were used to compute the response entropy,
and conditional entropy, which led to a measure of MI as explained
above. The empirical calculation of entropies suffers from a bias because
of a finite number of samples available, and reduces as the sample size
increases (Panzeri et al., 2007). In our case, we had a large number of
trials available, and so the bias was less, which we removed using a boot-
strapping procedure (Optican et al., 1991; Magri et al., 2009). The re-
sponses were randomly shuffled to remove any information they had
about the stimulus and bootstrapped estimates (10 iterations) of residual
information were thus obtained. The average residual information was
subtracted from the estimated MI. Any negative values were set to 0. We
used the same number of trials for each stimulus condition by randomly
dropping any extra trials. This was done over five iterations, and the MI
values were averaged over them.

Classification. To measure how well the signals could be used to decode
the stimuli, we used a simple linear decoder based on Fisher’s linear
discriminant (Fisher, 1936). Linear discriminant analysis (LDA) has been
used both as a classifier and a dimensionality reduction tool. It assumes a
multivariate normal distribution of data, and a common covariance ma-
trix over classes but has been shown to be efficient even when these
assumptions are not held (Li et al., 2006). LDA projects the data into a
lower dimensional space such that the class means are maximally sepa-
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rated, while the within class variance is minimized. LDA is easy to use and
robust when the number of observations (n) is larger than the number of
predictors ( p). However, when p � n, the covariance matrix estimates
can be singular and estimation errors are more due to lack of observa-
tions. In such situations, regularization and shrinkage of covariance
matrix have been proposed (Friedman, 1989), and a regularized discrim-
inant analysis (Guo et al., 2007) is used. It uses a modified covariance
matrix by regularizing it toward its diagonal, and a further shrinkage can
be performed by dropping any features that have less discriminatory
power. We used a simple LDA to measure decoding accuracy of single-
electrode FRs and power at individual frequencies. We then used a reg-
ularized LDA (rLDA) when all frequencies were used as predictors for
single electrodes, and also when multiple electrodes were pooled to-
gether. To use the same number of trials for all stimulus conditions, we
used an iterative process to randomly drop any extra trials, and accuracy
values were averaged over five such iterations.

The decoder was implemented using the MATLAB “fitcdiscr” func-
tion (Statistics Toolbox). The stimuli (8 gratings or 16 images) were given
discrete numeric labels. Using threefold cross validation throughout,
two-thirds of trials were used to train the decoder. Since the recordings
were simultaneous, the same trials were used for training across all scales
in the given session. Log power values from each of the LFP, ECoG, and
EEG electrodes at each of the frequencies were used to train the decoder
to obtain frequency wise decoding accuracy. Data from the remaining
trials were used to get the test accuracy, using the MATLAB “predict”
function. The frequencywise decoding accuracies were then averaged
across electrodes for each of the scales.

To get the single-electrode decoding accuracy for spiking, we used the
FR from each electrode with the LDA, and averaged accuracies over folds
and across electrodes. For the single-electrode accuracy of the other
scales, we used power at all frequencies between 0 and 150 Hz (38 unique
values, since the frequency resolution was 4 Hz) as predictors and trained
a regularized LDA. The model was trained and the unregularized cova-
riance matrix computed. Then, the level of regularization was deter-
mined iteratively by using 20 levels (between 0 and 1) of the parameter
gamma, which determines the regularized covariance matrix. For each of
these levels, we also used 20 levels of the parameter delta, which deter-
mines which predictors can be dropped from the model. Iterations over
gamma and delta were performed using MATLAB’s “cvshrink” function,
which computed an error estimate for each combination. From these, we
chose gamma and delta using the Min-Min rule (Guo et al., 2007). If
there still were multiple pairs, we chose the one with the lesser gamma.
This gamma then determined the regularization of the trained model,
and delta was a threshold applied on the weights of the predictors to drop
the ones below it. The rLDA was then used to predict the test trials, and
the process repeated over 3 folds as before. Single-electrode accuracies
were averaged across electrodes for each session.

We also did the decoding analyses (using rLDA) when electrodes were
randomly pooled together. The same microelectrodes were used for cal-
culating FR accuracy, LFP accuracy, and the combined accuracy of both.
For each pool size, a maximum of 10 iterations were taken with a differ-
ent subset of randomly chosen nonrepeating electrodes. To get pooled
spiking accuracy, the FR responses of all electrodes picked in the pool
were used as predictors. Similarly, log power at all frequencies from all
electrodes in a pool was concatenated and used to train the regularized
decoder. The combined accuracy of spiking and LFP was calculated by
using both the FR and power values of the same electrodes to train the
decoder. ECoG electrodes were also randomly pooled in the same way;
fewer electrodes resulted in lesser iterations. Accuracies were averaged
over folds and iterations. To get the pooled accuracy for selectively cho-
sen electrodes, a similar process was used, but electrodes were not picked
randomly over iterations. Instead, they were sorted according to their
individual performance; and for each subsequent pool size, one electrode
was added followed by the next best one and so on.

Image analysis. We analyzed some of the low-level features in the im-
ages. Because gamma oscillations were highly dependent on the color of
the stimuli, we focused on color features, in particular, the hue, satura-
tion, and value (for details, see Shirhatti and Ray, 2018). For this, we first
converted the RGB images into HSV space using MATLAB command

rgb2hsv. In the HSV space, the hue values (H) represent colors as angles
on a color wheel. To linearize this metric, we used the cosine and sine
of the hue values. The saturation (S) represents the purity of the color
(1 for pure hue and 0 for grayscale). The value (V) represents the
intensity (1 represents the highest intensity achievable by the monitor
for a particular hue).

We first obtained the spatial frequency spectrum of these features
using fft2 in MATLAB to get a 2D Fourier transform, and then performed
radial averaging to get power spectral density. To get the distribution of
the features in the images (see Fig. 15D, black curve), we used the cos(H),
sin(H), S, and V values of all the pixels. To get the same distributions for
LFP and ECoG, we extracted the image pixels falling in the RFs of LFP
and ECoG electrodes and used those HSV values.

We calculated the mean features in the RF as follows. The mean S and
the mean V were the average of the S and V values of all the pixels in that
RF. The mean hue was obtained as a vector sum of the pixel hue angles,
weighted by their saturation. We also calculated the overall average of
electrodes by averaging in the same way, using the mean values obtained
for each individual electrode.

To get the statistic values at different distances, we first identified the
size and arrangement of the ECoG RFs. We then picked similarly ar-
ranged patches at different distances from the LFP grid. For each distance
between the LFP grid and the ECoG cluster, we picked 5 random clusters.
The average HSV of all LFP electrodes and all ECoG electrodes was
calculated as described above, for all images (80 pairwise values), and
their correlation was computed. Finally, the correlation values were av-
eraged over the (5 randomly chosen) clusters.

ECoG modeling. We modeled the ECoG signal as an average of LFP
signals, as explained in a previous report (Dubey and Ray, 2019a). In
short, we chose LFP electrodes in a square or rectangular grid (with the
maximum difference between the length and breadth set to 1) and aver-
aged their responses for each trial to get a “simulated ECoG” signal from
the LFP signals.

Statistical analysis. The frequencywise MI and decoding accuracy were
compared against chance levels using a one-sample t test. The compari-
son of overall performance among pairs of scales was done using a two-
sample t test.

Figure 1. Frequency spectra for full screen-oriented gratings. A, Power spectral density of
responses (calculated between 250 and 500 ms) to full screen gratings of 4 cpd at 8 equidistant
orientations between 0° and 157.5°, averaged across electrodes for LFP (M1: n 	 77, M2: n 	
31), ECoG (M1: n 	 5, M2: n 	 4), and EEG (M1: n 	 10). Gray traces represent the baseline
power (�250 to 0 ms). B, Change in power spectra for all 8 stimuli, averaged across electrodes
from both monkeys (108 LFP, 9 ECoG, 10 EEG).
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Results
Spectral responses to oriented gratings and natural images
Using a customized hybrid array, we simultaneously recorded
spiking activity, LFP, and ECoG responses in V1 from 2 awake
monkeys while they fixated on full screen-oriented gratings or

natural images. For 1 monkey, we also recorded occipital EEG
responses to gratings. Figure 1A shows the trial-averaged power
spectra in the 250 –500 ms window after stimulus onset (colored
traces) or during baseline (�250 to 0 ms; gray trace), when full
screen gratings at different orientations were presented. Figure

Figure 2. Responses to oriented gratings. A, Raster plots showing spiking responses to full screen-oriented gratings from two example electrodes from the 2 monkeys. The stimulus came on at
0 s and stayed on for 500 ms. B, The averaged FR over trials showing the tuning of the electrodes in A. C, Histogram of the preferred orientation and orientation selectivity of the different scales. For
LFP, ECoG, and EEG, mean power in the range 45–70 Hz was used. For spiking electrodes, the FR values were used.

Figure 3. Frequency spectra for full screen natural images. A, Power spectral density of responses to 16 full screen images from one category (Texture) for the 2 monkeys averaged across
electrodes for LFP (M1: n 	 77, M2: n 	 31) and ECoG (M1: n 	 5; M2: n 	 4). Responses are taken 250 –500 ms after onset. Gray traces represent the baseline power (�250 – 0 ms). Each colored
trace represents one stimulus. B, A part of one stimulus image with the RF centers of LFP electrodes (blue dots) and RFs of ECoG electrodes (colored circles). The border is in the same color as the
corresponding trace in A. White dot represents the center of the screen where the monkey was fixating. C, The change in power from baseline averaged across all LFP electrodes and ECoGs of both
monkeys across all image sets (16 images � 5 sets; 108 � 5 LFP, 9 � 5 ECoG). D, Same as in C, using grayscale versions of the same images. E, Same as in C, for scrambled versions of the colored
images in Fauna and Texture categories (16 images � 2 sets, 108 � 2 LFP, 9 � 2 ECoG).
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1B shows the change in power from baseline obtained by sub-
tracting the gray trace from the colored traces (this is essentially
the log of the change in power from baseline, with units of deci-
bels). The LFP and ECoG power changes were averaged across
electrodes from both monkeys. We observed gamma oscillations
(30 – 80 Hz) across all scales (LFP, ECoG, and EEG) in V1. We
have previously compared the tuning preferences and orientation
selectivity of spikes, LFP, and EEG (Murty et al., 2018), as well as
LFP versus ECoG (Dubey and Ray, 2019b) from the same 2 mon-
keys. As shown previously, spiking activity had high orientation
selectivity, but the preferred orientation varied across the micro-
electrode array (Fig. 2) (see also Murty et al., 2018, their Fig. 8).
On the other hand, LFP and ECoG had similar orientation pref-
erences and selectivity across the array (Fig. 2C) (see also Dubey
and Ray, 2019b, their Fig. 5). EEG power was lesser in magnitude
and had lower orientation selectivity, but had similar orientation
preference (Fig. 2) (see also Murty et al., 2018, their Fig. 2).

Full screen colored natural images typically elicited a broad-
band increase in power, accompanied by a peak in the gamma
frequencies for some images (Fig. 3A), especially stimuli for
which reddish colors were present inside the RFs that have been
shown to induce very strong gamma (Shirhatti and Ray, 2018).
Figure 3B shows one such image stimulus, along with RFs of LFPs
and ECoGs (for details, see Materials and Methods). As shown
previously, ECoG RFs were local; only �3 times the LFP RFs
(Dubey and Ray, 2019a). Other stimuli used are shown in Figure
4. Figure 3C shows the change in power from baseline averaged
across all electrodes and image sets of both monkeys. Interest-
ingly, the ECoG power change was greater than LFP across fre-
quencies. The peak in gamma range was smoothed out due to the
averaging over image stimuli, many of which did not produce
gamma. Peaks in the gamma range reduced when corresponding
grayscale images were presented (Fig. 3D) but remained high for
scrambled images (Fig. 3E). Regardless of the presence of gamma
oscillations, in all cases, ECoG power change from baseline was
higher than the LFP.

ECoG, LFP, and EEG response variations to stimuli
To understand the overall effect of stimulus on the responses, we
investigated the variability in the power due to the presentation of
different stimuli using signal coefficient of variance (sCV), and
variability in power across trials for the same stimulus using the
nCV. For high information and decoding potential, we need high
sCV and low nCV. Figure 5 shows the sCV and nCV for all stim-
ulus sets, averaged across electrodes and monkeys. We observed
the highest sCV in gamma range frequencies for both LFP and
ECoG, in all stimulus sets. Additionally, images also had a smaller
peak at lower frequencies (0 –12 Hz). Gratings had two sCV peaks
within the gamma range, centered at 36 and 56 Hz (discussed
later). Occasionally, a second peak was also observed at �100 Hz,
especially for textures, but this was simply a harmonic of the
gamma peak. EEG responses to gratings showed a higher sCV
between 50 and 70 Hz, although much lower than either of the
other two scales.

Importantly, for all image sets, the sCV for ECoGs was much
higher than the LFPs, especially in the gamma frequency range.
This means that the image stimuli caused much greater inter-
stimulus response variation in ECoG responses than LFPs. In case
of gratings, the sCVs of LFPs and ECoGs were comparable. The
nCVs of LFP, ECoG, and EEG settled around similar values
across different categories and frequencies, but this is due to the
variability in the spectral estimator itself, not the biological signal
(Jarvis and Mitra, 2001; Chandran et al., 2018).

Information and decoding of grating orientation across scales
Using single-trial power estimates for response period, we calcu-
lated the MI (for details, see Materials and Methods) between the
grating stimulus and the log power at all frequencies between 0
and 150 Hz, for each electrode and scale (Fig. 6A shows one
representative electrode for each scale). Averaged information
across electrodes from both monkeys (Fig. 6C) shows that the
most informative frequencies were between 25 and 80 Hz. Fur-
ther, this information appeared to have two peaks (one between
25 and 45 Hz, the other between 45 and 80 Hz) for LFP and
ECoG. Averaged over electrodes, LFPs (maximum of �0.24 bits)
and ECoGs (maximum of �0.15 bits) had much higher informa-

Figure 4. Stimulus images. A, Full screen grating at one representative orientation. B, Rep-
resentative natural image stimulus, with its grayscale and scrambled versions. C, Images used in
each of the image classes: Fauna, Flora, Texture, Landscape, and Faces. Colored borders around
the Texture images correspond to the response traces in Figure 3.

Figure 5. CV versus frequency. CVs for LFP, ECoG, and EEG responses, for 5 colored image sets
and for 1 set of oriented gratings. Solid lines indicate the sCV. Dotted lines indicate the nCV. The
values are averaged across electrodes from both monkeys (108 LFP, 9 ECoG, 10 EEG); in the
shaded regions, SEM is shown.
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tion than EEG (maximum of �0.03 bits).
We also used a linear decoder to decode
the orientation of the stimulus (Fig.
6B,D). We found the same trend as with
MI, with high decoding accuracy between
25 and 80 Hz. LFPs (maximum of �0.2)
and ECoGs (maximum of �0.19) had
similar values, and EEGs (maximum of
�0.15) were least efficient. We also com-
puted MI and decoding accuracies using
FRs (black marker on the y axis) and using
FPR, a metric that can be computed in the
time domain without spectral analysis
(simply the difference between the maxi-
mum and minimum of the signal between
250 and 500 ms; for details, see Materials
and Methods). FRs showed high informa-
tion (0.19 bits) and decoding accuracy
(0.20), comparable with the maximum
values obtained in the gamma range (MI:
0.24 bits, accuracy: 0.21 for LFP; MI: 0.15
bits, accuracy: 0.19 for ECoG). The values
for LFP and ECoG FPR (MI: 0.03 bits, ac-
curacy: 0.15 for both) were lower, compa-
rable with the values obtained using
power at low frequencies (the maxima be-
tween 0 and 12 Hz were as follows: MI:
0.03 bits, accuracy: 0.14 for both LFP and
ECoG). This is not surprising because the
absolute power at low frequencies is much
higher; therefore, the unfiltered raw signal
is dominated by low frequencies.

We also tested whether different fre-
quencies provided independent informa-
tion. For this, we used power values at two
frequencies from each electrode and com-
puted the joint MI about the stimulus, as
well as used them as features for the linear
decoder. This allowed us to see which pairs of frequencies were
most informative and complementary. The information in-
creased when frequencies at �40 Hz were paired with those at
�56 Hz (Fig. 6E,G). Using a pair of frequencies, the maximum
information observed was �0.36 bits for LFPs, �0.26 bits for
ECoGs, and �0.05 bits for EEG. Similar frequencies also per-
formed better in decoding and had maximum accuracies of
�0.27 for LFPs, �0.24 for ECoGs, and �0.16 for EEGs (Fig.
6F,H). Overall, similar frequencies in LFP, ECoG, and EEG con-
tributed the most information about stimulus orientation.

Information about natural images in different
recording scales
Unlike gratings, the MI was significantly higher for ECoG than
LFP at almost all frequencies (Fig. 7A). As expected from the sCV
plots (Fig. 5), MI for ECoG had large peaks in the gamma fre-
quencies (30 – 80 Hz), which was almost twice the MI for LFP.
Power at lower frequencies (0 –12 Hz) also was informative for
both signals. MI of FR (0.22 bits averaged over categories) and
FPR (0.17 bits for LFP, 0.25 bits for ECoG) were lower than the
maximum values in the gamma band of ECoG (0.43 bits averaged
over categories). Combined analysis using a pair of frequencies
revealed that gamma frequencies combined with other frequen-
cies, mainly the lower ones (0 –12 Hz), provided more informa-
tion (Fig. 7B), suggesting that different frequencies carried

independent information about the natural scenes (Belitski et al.,
2008). Combining higher frequencies (�80 Hz) with gamma
and the lower frequencies also resulted in some increase in
information.

We also analyzed responses to colored scrambled images
(Fauna, Textures) and observed an information profile similar to
colored images, with highest information when gamma range
frequencies were combined with lower frequencies (Fig. 7C,D).
As before, MI of FPR (0.10 bits for LFP, 0.16 bits for ECoG) and
FRs (0.15 bits) were lower than that obtained using power in the
gamma frequency range of ECoG (0.44 bits). The decoding anal-
ysis for these stimuli also revealed higher performance of ECoGs,
especially in the gamma frequencies (Fig. 8). For grayscale ver-
sions of these images, these gamma peaks were substantially re-
duced (Fig. 9) with lesser information in ECoG (0.23 bits),
comparable with the MI values for FRs (0.18 bits) and FPR (0.19
bits for ECoG).

We also calculated the MI for images using responses for the
early period (0 –250 ms), just after stimulus onset (Fig. 10). Typ-
ically, the stimulus onset-related transients are strong during this
period (which have power at low frequencies), whereas the
gamma rhythm is weaker (Ray and Maunsell, 2010). The event-
related potential is also more salient in the early period. This was
reflected in the MI results, with a peak now at low frequencies
(which consequently also yielded high values of FPR MI) and a

Figure 6. Frequency dependence of orientation information. Frequencywise MI and accuracy, for full screen grating stimuli of
8 orientations and 4 cpd spatial frequency. A, MI values obtained by using power from typical LFP, ECoG, and EEG electrodes.
Markers on the y axis are MI values obtained by using the FPR (magenta, blue, green for the three signals) and FR (black). B, Same
as in A, but with classification accuracies at each frequency. Dotted line indicates chance accuracy. C, MI at all frequencies for LFP,
ECoG, and EEGs, averaged across electrodes pooled for both monkeys (108 LFP, 9 ECoG, 10 EEG). Shaded regions represent SEM. The
markers are MI values obtained by using the FPR and FR averaged across electrodes for both monkeys. D, Same as in C, but with
classification accuracies. Dotted line indicates chance performance. C, D, Bottom, Horizontal colored patches represent regions
where values were significantly different from chance value (0 for MI, 0.125 for accuracy), using a one-sided t test ( p 
 0.05). E,
Information provided jointly by using power at two frequencies, for the typical electrodes in A. F, Same as in E, but with classifi-
cation accuracies for pairs of frequencies. G, H, Population results for MI and classification over pairs of frequencies, averaged across
electrodes from both monkeys.
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less salient peak in the gamma range. Importantly, even in this
time period, MI for ECoGs were generally higher than LFP. MIs
obtained using FRs remained lower than the maximum values
obtained using FPR and power for both LFP and ECoG. Overall,
across image types (Colored, Grayscale, Scrambled) and both the
early and late periods, we observed higher information in ECoGs
than LFPs for most frequencies.

Single-electrode decoding performance across scales
As different frequencies supply nonredundant information, we
used the power at all frequencies between 0 and 150 Hz as features
with a regularized LDA as a decoder (for details, see Materials and
Methods). For spiking activity, we used FR from each of selected
electrodes in that session as a feature for the decoder. Figure 11A
shows the accuracy for each scale, averaged over electrodes and
sessions, for both monkeys.

ECoGs showed the highest decoding accuracy for all colored
image sets. For the grayscale versions, the overall accuracies of
LFP and ECoG were lesser than for colored images, but ECoGs
had better performance than other scales. For scrambled colored
image, we found that the accuracy of ECoGs was again the highest
with values comparable with that of colored images. Decoding
accuracy of FR did not vary much across image types. These
observations point toward two important aspects: (1) better
identification of images at the ECoG scale than LFP; and (2) color
being a major contributor toward image identification, perhaps

more than the image contents, in area V1. On the other hand, for
grating stimuli, the accuracy of LFPs and ECoGs was not signifi-
cantly different (p 	 0.17). The accuracy of EEGs was lowest and
very close to chance performance. It is to be noted that, although
FRs were tuned to orientation, we obtained a higher accuracy
using power values because all frequencies were used. Individual
frequencies did not have higher performance than individual
FRs, as can be observed from values in Figure 6 (maximum accu-
racy at any frequency was �0.2).

Figure 11B shows the corresponding plots when the early (0 –
250 ms) response was used. As seen from Figure 10, this is dom-
inated by the lower frequencies, which led to high overall values
for LFP and ECoG accuracies. These results are consistent with a
recent study, which showed high image decoding using early re-
sponse in a free viewing task (Lewis et al., 2016), as well as another
study that performed category classification using ECoG signals
from humans (Liu et al., 2009). Figure 12 shows the decoding
accuracies for late (A) and early (B) periods using FPR. We ob-
served that the accuracies were higher when using all frequencies
(Fig. 11) compared with using the broadband voltage signal (Fig.
12). Further, LFPs and ECoGs generally performed equally well
using FPRs, consistent with a small difference in MI/decoding
accuracy using power at low frequencies between LFP and ECoG.

Increase in performance with combining channels and scales
We next investigated the improvement in decoding performance
by combining more electrodes. For this, we used a subset of LFP
electrodes, which had good spiking activity as well. For each pool

Figure 7. Frequency dependence of information for image identity (250 –500 ms). A, MI
versus frequency, averaged across LFP and ECoG electrodes from both monkeys (108 LFP, 9
ECoG), for the five colored image sets. Shaded error bars indicate SEM. Horizontal colored
patches represent regions where values are significantly different from chance (one-sided t test,
p 
 0.05). Markers on the y axis are MI values obtained by using the FPR (magenta, blue for LFP
and ECoG) and FR (black). B, Joint MI using pairs of frequency, averaged across all LFP and ECoG
electrodes. C, D, Same as in A, B, but for scrambled versions of Fauna and Texture images.

Figure 8. Accuracy versus frequency for images (250 –500 ms). Frequency dependence of
decoding accuracy for LFP and ECoG electrodes across different image classes. A, Frequency wise
accuracy, averaged across all electrodes of both monkeys. Horizontal patches represent regions
where values are significantly different from chance (one-sided t test, p 
 0.05). B, Joint
accuracy using frequency pairs. C, D, Same as in A, B, but for scrambled images of 2 sets.
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size, we randomly chose electrodes over 10 iterations and used

their FR, power, or both as features for the regularized decoder
(for details, see Materials and Methods). We did similar pooling
across ECoGs as well.

Figure 13 shows the pooled decoding performance for all
stimulus sets for both monkeys. As expected, adding more chan-
nels increased performance. ECoG performance increased very
steeply, such that a few ECoG electrodes outperformed a much
larger number of microelectrodes for image decoding. LFP and
spikes contributed nonredundant information, and their joint
decoding (Fig. 13, black curves) was better than either of the two,
but lesser than ECoG for image sets. In case of gratings, ECoG
accuracy did not increase to similar levels. It was higher than a
randomly chosen set of LFPs of corresponding pool size, but
lesser than the combined performance of FR and LFP.

The decoding performance did not keep increasing at the
same rate, indicating that only a few channels contributed most
toward classification. To test this further, we performed similar
pooled decoding as above but added electrodes in a ranked man-
ner. From the single-electrode performance (Fig. 11A), we
ranked the individual electrodes for each session in order of their
decoding performance, successively added them to the pool, and
calculated the combined accuracy. We found that a small number
of spiking or LFP electrodes were responsible for most of the

Figure 9. MI versus frequency for grayscale images (250 –500 ms). A, MI versus fre-
quency, averaged across LFP and ECoG electrodes from 2 monkeys (108 LFP, 9 ECoG), for
the five grayscale image sets. Shaded error bars indicate SEM. Horizontal colored patches
represent regions where values are significantly different from chance (one-sided t test,
p 
 0.05). Markers on the y axis are MI values obtained by using the FPR (magenta, blue
for LFP and ECoG) and FR (black). B, Joint MI using pairs of frequency, averaged across all
LFP and ECoG electrodes.

Figure 10. Frequency dependence of information for image identity (0 –250 ms). Same as in
Figure 7, but using responses in early period (0 –250 ms).

Figure 11. Single-electrode decoding accuracy across scales. A, Decoding accuracy across
FR, LFP, ECoG, and EEG for images, grayscale images, scrambled images, and gratings. Power at
all frequencies and FR in response period (250 –500 ms) was used for decoding. Individual
markers represent the values averaged across electrodes for each session, with SEM. Bar plots
represent averages across sessions. All image bar plots are averaged across 2 sessions (1 per
monkey), except Fauna and Texture colored images bar plot (which have 2 sessions per mon-
key). Grating bar plot averages results for sessions with 4 and 2 cpd spatial frequency (total 5
sessions). Dashed lines indicate chance levels (0.0625 for images, 0.125 for gratings). Two-
sample unequal variance t test was used to compare each pair of scales. *p 
 0.05, **p 

0.005. B, Same as in A, but using responses in early (0 –250 ms) period.
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decoding (Fig. 14). In image decoding, ECoGs outperformed the
best ranked LFP and spiking electrodes, and ECoG pooled per-
formance was close to (or higher than) that obtained by using all
LFP electrodes. In case of gratings though, the highest ranked
microelectrodes outperformed the ECoGs.

Features of image stimuli used
Why did ECoG outperform LFP in MI/decoding in our data?
Since the microelectrode and ECoG RFs were on different parts of
the image, we tested whether the difference in performance could
be due to differences in low-level stimulus features in their RFs.
We focused our analyses on color-based features because gamma
rhythm critically depended on color (Shirhatti and Ray, 2018).
We used the HSV space to obtain four statistics for our images:
cosine and sine of angular hue, saturation of the hue, and value
that represents the intensity of the pixel (for details, see Materials
and Methods). The spatial frequency spectra of these features
(Fig. 15A) shows that the features change slowly in space, since
lower frequencies had higher amplitude for all the image catego-
ries. Consistent with this, correlations between the metric values
in LFP RFs versus dummy ECoG RFs were high when the distance
between the LFP and ECoG centers was small and decreased
slowly with increasing distance. The actual distance between LFP
grid center and the center of ECoG RFs cluster was only a few
degrees (Fig. 15B, vertical lines), resulting in similar low-level
features inside the RFs of LFP and ECoG electrodes (Fig. 15C).
Histograms of the feature values for the entire image (Fig. 15D,

black trace) were similar to the values inside the LFP and ECoG
RFs (Fig. 15D, magenta and blue traces), suggesting that both LFP
and ECoGs sampled similar low-level features present in the im-
ages. Together, these results show that the higher decoding of
ECoGs compared with LFP cannot be attributed to differences in
RF features.

We also compared the features in the original versus scram-
bled images. Since the scrambling was done for the entire image
(not over the pixels within the RFs) while the features were pre-
served over the entire image, they were dissimilar within the RFs
of LFP and ECoG, leading to large differences between the origi-
nal and scrambled image values (Fig. 15E).

Increase in performance by averaging LFP signals
Because the low-level color features changed slowly over space for
the natural images (Fig. 15A), nearby brain areas could be coding
for similar features, such that spatial averaging of local signals
could lead to a better representation of the stimulus features. This
could provide a simple explanation for the superior performance
of ECoG compared with LFP (in the Discussion, we discuss a few
other reasons as well). To test this hypothesis, we modeled the
ECoG signal as an average of LFP signals over a grid of electrodes
of varying sizes, as done in a previous study (Dubey and Ray,
2019a). Averaging LFP electrodes this way is different from the
earlier pooling method where each electrode was added as a new
feature. We observed that the sCV of the modeled ECoG signal
indeed increased as the grid size increased (Fig. 16A). The nCV,
which was mainly dependent on the spectral estimator, showed a
negligible reduction (Fig. 16B). Consequently, the decoding ac-
curacy (Fig. 16C) also increased as more electrodes were in-
cluded, reaching a plateau after a grid size of �4 � 4.

Discussion
We simultaneously recorded signals from four scales (spiking,
LFP, ECoG, and EEG) from monkey V1 using a hybrid array
having both microelectrodes and ECoGs. We investigated which
frequencies and scales were informative about stimuli by using
both information theoretic and decoding approaches. ECoG re-
sponses were highly informative and outperformed others in de-
coding image identity. Gamma range frequencies (30 – 80 Hz)
were informative across scales and stimuli, especially during the
late stimulus period (250 –500 ms). Low frequencies also had
high information about natural images, especially during the
early stimulus period (0 –250 ms). Adding electrodes within and
across scales led to better accuracy, suggesting that they conveyed
nonredundant information. Higher performance of ECoG elec-
trodes compared with LFP was not due to differences in low-level
signal properties but instead due to larger spatial summation: a
“modeled” ECoG signal obtained by averaging LFP signals over a
grid of electrodes also improved performance. Although re-
sponses to naturalistic scenes in LFP and ECoG separately have
been reported previously (Kayser et al., 2003; Belitski et al., 2008;
Liu et al., 2009; Brunet et al., 2015; Hermes et al., 2015), to our
knowledge, this is the first study where simultaneous responses
have been recorded from four scales.

It is unclear whether these results are specific to V1 or gener-
alizable to other brain areas. As discussed later, the information
content may depend on the RF sizes of the neurons, statistical
properties of the images, spatial spreads of various signals, as well
as that of the networks that generate gamma or low-frequency
oscillations. Although some of these properties are brain area
specific (e.g., RFs), others may be more intrinsic (e.g., spatial
spreads of signals). Similar studies in other visual areas are nec-

Figure 12. Single-electrode decoding accuracy across scales using FPR. A, Decoding accu-
racy across LFP, ECoG, and EEG for images, grayscale images, scrambled images, and gratings.
Accuracy was calculated using the FPR values for each electrode in 250 –500 ms period. Dashed
lines indicate chance levels (0.0625 for images, 0.125 for gratings). Two-sample unequal vari-
ance t test was used to compare each pair of scales. *p
0.05, **p
0.005. B, Same as in A, but
using FPR in early (0 –250 ms) period.
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essary to study the generalizability of our
results. We note that the EEG signal qual-
ity in our recording setup was poor due to
the presence of a large amount of metal
hardware on the skull (see Materials and
Methods). Additionally, we used only
power values and did not explore other
features, such as cross-frequency cou-
pling (Whittingstall and Logothetis,
2009) or steady-state visual evoked po-
tentials, which can both be quite infor-
mative (for a review of features used in
BMIs, see Padfield et al., 2019). Further,
task training has been used to improve
the performance of EEG based BMIs
(Wolpaw et al., 1991; McFarland et al.,
2010), but we wanted to exclude such
additional effects.

Relationship with previous studies
ECoGs have previously been used for de-
coding movements (Hu et al., 2018),
speech (Mugler et al., 2014), object cate-
gories (Liu et al., 2009; Majima et al.,
2014), and stimulus location and images
(Lewis et al., 2016). We add to this litera-
ture by performing a direct comparison
across simultaneously recorded scales,
and showing that not only is ECoG effi-
cient, but it outperforms other signals, at
least in our recording conditions. Our re-
sults are consistent with recent attempts at
comparing cortical signals using special-
ized arrays (Toda et al., 2011; Miyakawa
and Hasegawa, 2013; Ibayashi et al., 2018)
that have also shown that ECoGs have
high decoding accuracy.

In both LFP and ECoG, we found high
image information in gamma (30 – 80 Hz)
and lower frequencies (1–12 Hz). Similar
results in a free viewing task have been
reported previously (Lewis et al., 2016).
We observed increased information if
these frequencies were combined. That
different frequency ranges provide inde-
pendent information in V1 has also been
shown using movies (Belitski et al., 2008).
Full-screen gratings elicit reliable gamma
oscillations, which can have two compo-
nents (slow and fast) preferring different
orientations (Murty et al., 2018). We ob-
served high information in gamma fre-
quencies, which had two peaks (Fig. 6).
The different preferred orientations of the
two gammas can be responsible for in-
creased information by combining two
frequencies within gamma range (Fig. 6).
However, we did not see two clear peaks in
the power spectra, especially for M1 (Fig. 1). This could be be-
cause of lower resolution, shorter stimulus duration, and analysis
period than the previous study. The gamma peak frequency of
M1 also shifted with orientation and may contribute to observing
two peaks in the population information. Consistent with the

previous study, however, we found that 90° orientation had
higher power in 45–70 Hz range for both monkeys.

In recent years, there has been some debate whether or not
natural scenes elicit gamma (30 – 80 Hz) oscillations, with some
reporting narrowband gamma peak in the power spectral density

Figure 13. Increase in decoding accuracy with pooling electrodes. Decoding accuracy as a function of number of electrodes, for
colored image sets and gratings. Accuracy increases with pool size for all modalities. Black curve represents the combined decoding
performance of FR and LFP. The same electrodes were used for FR, LFP, and combined activity at each pool size. Error bars indicate
SEM over iterations of choosing each pool size.

Figure 14. Increase in accuracy with pooling ranked electrodes. Decoding accuracy as a function of number of electrodes, when
the individual electrodes are successively added as per individual performance, for each scale. *The 90% of maximum accuracy
attained by FR and LFP after combining electrodes.
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during free viewing of images (Brunet et al., 2015) and others
showing weak or no narrowband gamma but a broadband in-
crease in power ��80 Hz (Hermes et al., 2015), which has a
different origin than narrowband gamma (Ray and Maunsell,
2011). We recently showed that reddish hues elicit strong gamma
oscillations (Shirhatti and Ray, 2018); and indeed, gamma oscil-
lations were induced mainly for images with reddish hues in the
RFs; their grayscale counterparts did not elicit comparable
gamma (Fig. 3C,D). Gamma peaks were observed for colored
scrambled images, further showing that color is an important
feature for gamma rhythm generation.

In the early period (0 –250 ms), the gamma rhythm was less
salient, and we observed better decoding at lower frequencies.
This could simply be because of more variable event-related po-
tential in the early period, which affects the lower frequencies.
This was also observed in the FPR metric, which showed high
decoding accuracy. In general, narrowband gamma is salient only
for some stimuli, such as bars, gratings, and reddish hues (Bartoli
et al., 2019) and hence is induced only for some stimuli, but
broadband responses are elicited by all stimuli. Therefore, using
low-frequency components of the signal (or using a metric, e.g.,
FPR) during the early period is a useful strategy to make quick

Figure 15. Statistics of image stimuli showing four features from HSV representation of the images: cos and sine of angular hue, saturation, and value. A, Spatial frequency amplitude spectra for
the four metrics. Colored lines indicate the 5 image categories (averaged over 16 images). Black represents their average. B, The correlation between the average feature in the LFP RFs and in dummy
ECoG RFs obtained by maintaining the relative ECoG layout intact but moving the center of this ECoG cluster away from the LFP cluster. Vertical lines indicate the actual distance between the center
of LFP grid and center of ECoG cluster for the 2 monkeys. C, Scatter plot between the feature values averaged across electrode RFs (LFP, ECoG) for all images (80) for both monkeys. Insets, Correlation
values for the 2 monkeys. �, M1; �, M2. Different colors represent different categories. D, Distribution of pixelwise features in the full image (black), and in pixels falling in the RFs of LFP (magenta)
and ECoG (blue) electrodes. Vertical lines indicate the mean values. E, Feature values across all electrode RFs (108 LFP, 9 ECoG) for images and their scrambled version in 2 categories (16 fauna [black],
16 texture [red]. Correlation values for the 2 monkeys are shown at the top. �, LFP; �, ECoG.
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decisions. On the other hand, gamma range has reasonably high
accuracy, even in the early period (Fig. 10), and outperforms all
other frequency ranges/metrics in the late period (Fig. 7), and is
therefore a useful frequency range when more analysis time is
available in BMI applications. High object category classification
at low latencies (�200 ms) has been observed in ECoG responses
from human visual cortex (Liu et al., 2009, their Fig. 3). Since the
early period has lesser feedback effects, better classification at
short latencies has been argued to be consistent with short recur-
rent loops and feedforward mechanism of object recognition (Liu
et al., 2009).

Why did ECoG outperform other signals in V1?
It is likely that the statistics of the images, in particular the spatial
amplitude distribution (Fig. 15A), played an important role in
the high performance of ECoG signals. As described in Results,
because of the high amplitude at very low spatial frequencies,
image features are likely to change slowly over space, leading to
neural assemblies coding similar features. In such a situation,
averaging the responses of such neural assemblies (which is effec-
tively done by the ECoG electrode due to its larger size) leads to
effective cancellation of random noise in the assemblies while
preserving the common signal, and hence an improvement in the
information content. It can therefore be argued that our results
are therefore specific only for the images shown here. However,
we used natural images over several categories, all of which
showed a similar spatial amplitude distribution (Fig. 15A). Fur-
ther, other studies have shown similar luminance amplitude
spectra for natural images (Párraga et al., 1998, 2002) and high
color correlation at short distances (Cecchi et al., 2010). There-
fore, these results are likely to hold true for natural images in
general. The preservation of MI and decoding accuracy after im-
age scrambling can be explained based on this, since while the
scrambling procedure changes in features inside the RFs (Fig.
15E), the overall image spatial distribution remains the same.

Apart from image statistics, there could be other intrinsic fea-
tures that could have contributed to the high performance of
ECoG. For example, gamma oscillations, which contributed to
improved performance, were stronger (Fig. 3A), and the sCV was
higher (Fig. 5) in ECoG than LFP. The representation of gamma
rhythm in a signal is likely to depend on the spatial spread of the
network that generates gamma, as well as the spatial spread of the
signal itself (the cortical area around the electrode that contrib-
utes to it). In a previous study comparing the relative spreads of
LFP and ECoG, we found that the ECoG spread is surprisingly
local (only three times the LFP), with a diameter of �3 mm

(Dubey and Ray, 2019a). Size of a “coherent gamma network”
can be estimated by observing how the coherence between signals
recorded from microelectrode pairs decreases with interelectrode
distance, which we have computed for the same 2 monkeys (but
different arrays) in a previous study (Murty et al., 2018, their Figs.
7 and 8), and has been previously reported by Jia et al. (2011, their
Fig. 8). Gamma coherence appears to reduce at intraelectrode
distances of �3– 4 mm. Thus, ECoGs, at least in V1, may be
recording from a brain area comparable with that over which
coherent gamma oscillations are generated (which may depend
on inhibitory network projections thought to generate gamma),
and therefore capturing them much better than the LFP. If so, our
results may change with the size of the gamma network, or the
spatial spread of the signal itself (Lindén et al., 2011; Pesaran et
al., 2018).

Even for stimuli that do not generate strong gamma, local
features, such as orientation, contrast, and spatial frequency,
which drive V1 responses, can be more effectively represented by
a larger neural population. By having larger RFs and a larger
cortical spread, the ECoGs may pick activity better than LFPs,
leading to stronger modulation by image features. We show that,
by averaging signals over a larger area (simulating ECoGs), the
accuracy increases (Fig. 16). These considerations encourage de-
veloping appropriate models to study the relationship between
response, electrode size, image features, and visual spread, as has
been attempted recently for LFP gamma (Hermes et al., 2019).

The relationship between interelectrode distance and RF is
likely to be another key factor. When combining electrodes, ac-
curacy of ECoG may be increasing more steeply simply because
ECoGs were farther apart (separated by at least 10 mm), had
nonoverlapping RFs, and therefore sampled different locations in
the visual space. Microelectrodes, on the other hand, had largely
overlapping RFs, and consequently more redundant informa-
tion. The separation between two microelectrodes is �400 �m
for the popular Utah arrays that we used, assuming that it is
enough to prevent picking the same SUA on nearby electrodes.
But it may not be sufficient for LFPs, which have a larger spread
(diameter 0.5–1 mm) (Katzner et al., 2009; Xing et al., 2009;
Dubey and Ray, 2016, 2019a). Given that LFPs were more infor-
mative than FRs, larger interelectrode separation may be useful
for BMI applications. More recordings with coarsely spaced mi-
croelectrodes or finely spaced smaller ECoGs are required to find
the optimal configuration for BMIs.

Finally, ECoG performance could be superior because the
electrodes were farther from the craniotomy and sampled a
healthier neural population. While this is a technical issue, any

Figure 16. Averaging LFP signals over a grid. A, Signal CV versus frequency for increasingly larger grid sizes. The averaged response from LFP electrodes in a grid was used to obtain power and
CV over trials (for details, see Materials and Methods). B, The nCV for the combinations in A. C, Decoding accuracy as a function of grid size. Horizontal line indicates the average decoding accuracy
of all ECoG electrodes across categories. A–C, Values were averaged over 5 image categories, 2 monkeys, and all iterations of a given grid size. Error bars indicate SEM.
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recording setup using electrodes inserted in the brain is likely to
cause some unavoidable tissue damage, which can affect BMI
performance.

Implications for BMIs
Along with accuracy, the longevity of a signal is important for
BMIs. Since most human ECoG recordings last only for a week or
two, it has been difficult to get estimates of signal stability over
time. In our recordings, we obtained clean signals for several
months with the data shown here recorded within 8 (M1) and 13
(M2) weeks after surgery. Although we did not quantify the signal
quality as a function of time, the stability of ECoG was compara-
ble to, if not better than, microelectrode recordings. Clear gamma
peaks could be observed in recordings taken �8 months after
surgery in M1. Human ECoG signals have been shown to be
stable over several days and used for decoding objects (Bansal et
al., 2012). More recently, ECoG signals have been used to control
an exoskeleton by a tetraplegic patient in a study ranging for �2
years (Benabid et al., 2019). These results have implications for
BMIs where ECoGs can prove to be the most desirable implants
as they are less invasive and have a long history of medical use.
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