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Probabilistic associations between stimuli afford memory templates that guide perception through proactive anticipatory
mechanisms. A great deal of work has examined the behavioral consequences and human electrophysiological substrates of
anticipation following probabilistic memory cues that carry spatial or temporal information to guide perception. However,
less is understood about the electrophysiological substrates linked to anticipating the sensory content of events based on
recurring associations between successive events. Here, we demonstrate behavioral and electrophysiological signatures of
using associative-memory templates to guide perception, while equating spatial and temporal anticipation (experiments 1 and
2), as well as target probability and response demands (experiment 2). By recording the electroencephalogram in the two
experiments (N= 55; 24 females), we show that two markers in human electrophysiology implicated in spatial and temporal
anticipation also contribute to the anticipation of perceptual identity, as follows: attenuation of alpha-band oscillations and
the contingent negative variation (CNV). Together, our results show that memory-guided identity templates proactively
impact perception and are associated with anticipatory states of attenuated alpha oscillations and the CNV. Furthermore, by
isolating object–identity anticipation from spatial and temporal anticipation, our results suggest a role for alpha attenuation
and the CNV in specific visual content anticipation beyond general changes in neural excitability or readiness.
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Significance Statement

Probabilistic associations between stimuli afford memory templates that guide perception through proactive anticipatory
mechanisms. The current work isolates the behavioral benefits and electrophysiological signatures of memory-guided iden-
tity-based anticipation, while equating anticipation of space, time, motor responses, and task relevance. Our results show that
anticipation of the specific identity of a forthcoming percept impacts performance and is associated with states of attenuated
alpha oscillations and the contingent negative variation, extending previous work implicating these neural substrates in spa-
tial and temporal preparatory attention. Together, this work bridges fields of attention, memory, and perception, providing
new insights into the neural mechanisms that support complex attentional templates.

Introduction
Probabilistic associations between stimuli can lead to memory-
based templates that impact perceptual performance through
anticipation of the location, temporal onset, identity, or features
of anticipated sensory events. Early studies relied on relatively
simple symbolic cues (e.g., arrows) to demonstrate that attention
can be guided in space and time, and across features to facilitate
performance (Posner, 1980; Coull and Nobre, 1998; Treue and
Martínez Trujillo, 1999). More recently, studies have considered
attentional orienting in more naturalistic tasks, in which the con-
tents of long-term memory, often probabilistic in nature, guide
the processing of incoming stimuli (Hutchinson and Turk-
Browne, 2012). The bulk of the studies investigating memory-
guided attention have focused primarily on anticipating spatial
location (Chun and Jiang, 1998; Summerfield et al., 2006; Awh et
al., 2012; Goldfarb et al., 2016; Jiang, 2018) and the expected tem-
poral onset of items (Olson and Chun, 2001; Cravo et al., 2017).

Received Nov. 19, 2019; revised Feb. 19, 2020; accepted Mar. 9, 2020.
Author contributions: S.E.P.B., M.G.S., A.C.N., and F.v.E. designed research; S.E.P.B. performed research;

S.E.P.B. and F.v.E. analyzed data; S.E.P.B., A.C.N., and F.v.E. wrote the paper.
*A.C.N. and F.v.E. share senior authorship.
This research was funded by the Clarendon Fund and a Mary Somerville Graduate School Scholarship to

S.E.P.B.; a Marie Skłodowska-Curie Fellowship from the European Commission (ACCESS2WM) to F.v.E.; a
Wellcome Trust Senior Investigator Award (104571/Z/14/Z) and a James S. McDonnell Foundation
Understanding Human Cognition Collaborative Award (220020448) to A.C.N.; a James S. McDonnell
Foundation Scholar Award (220020405) and an Economic and Social Research Council Grant (ES/S015477/1)
to M.G.S; and by the National Institute for Health Research Oxford Health Biomedical Research Center. The
Wellcome Center for Integrative Neuroimaging is supported by core funding from the Wellcome Trust (Grant
203139/Z/16/Z). We thank Sammi Chekroud and Alex Board for help with data acquisition, as well as Dejan
Draschkow for helpful discussions.
Correspondence should be addressed to Sage E. P. Boettcher at sage.boettcher@psy.ox.ac.uk.
https://doi.org/10.1523/JNEUROSCI.2751-19.2020

Copyright © 2020 Boettcher et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution License

Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction
in any medium provided that the original work is properly attributed.

4010 • The Journal of Neuroscience, May 13, 2020 • 40(20):4010–4020

https://orcid.org/0000-0003-0338-0646
https://orcid.org/0000-0001-5762-2802
https://orcid.org/0000-0002-7434-1751
mailto:sage.boettcher@psy.ox.ac.uk
https://creativecommons.org/licenses/by/4.0/


However, in addition, there is mounting interest in investigating
mechanisms that support memory-based anticipation of the
identity of upcoming percepts (Summerfield et al., 2008; Turk-
Browne et al., 2008, 2010; Kok et al., 2012; Peelen and Kastner,
2014; Stokes et al., 2014).

Identity anticipation through “perceptual templates” plays a
central role in theories of attention (Duncan and Humphreys,
1989; Wolfe, 1994; Desimone and Duncan, 1995). In much of
the work examining perceptual templates to date observers are
explicitly provided with the template of the forthcoming target.
That is, they are shown a particular object that they must subse-
quently match or search, such as in delayed-match-to-sample or
visual search tasks (Chelazzi et al., 1993, 1998; Carlisle et al.,
2011; van Driel et al., 2017). Though this can be informative in
assessing perceptual templates, it fails to capture a common every-
day experience in building memory templates. Outside of the labo-
ratory, frequent associations between successive different stimuli
support the establishment of memory templates. Building on pre-
vious work investigating associative memory templates (Higuchi
and Miyashita, 1996; Rainer et al., 1999; Turk-Browne et al., 2008,
2010; Kok et al., 2012, 2014, 2017), we here targeted two specific
human electrophysiological substrates of associative memory tem-
plates during the anticipatory period.

We developed a task to investigate the anticipation of visual
identity information based on probabilistic associative memory.
We report robust behavioral benefits on target perception in the
context of a demanding visual identification task. We also inves-
tigated the electrophysiological markers linked to proactive tem-
plate-based anticipation, specifically testing for the involvement
of two canonical neural markers of anticipation from the spatial
and temporal orientating literatures—the modulation of alpha-
band oscillations and the contingent negative variation (CNV).

Alpha attenuation has been associated with both spatial
(Worden et al., 2000; Thut et al., 2006; Haegens et al., 2011; van
Ede, 2018) and temporal (Rohenkohl and Nobre, 2011; Zanto et
al., 2011; van Ede et al., 2017a; Heideman et al., 2018) orienting
of attention, including during long-term memory-guided antici-
pation (Stokes et al., 2012). Likewise, the CNV is an event-related
potential (ERP) component classically associated with temporal
anticipation (Miniussi et al., 1999; Nobre, 2001; Los and Heslenfeld,
2005; Pfeuty et al., 2005; Praamstra et al., 2006; Cravo et al., 2011),
and also in the context of long-term memory-guided anticipation
(Cravo et al., 2017). Probing the involvement of these electrophysio-
logical signatures during object–identity anticipation is important
to inform a relevant and current theoretical debate about the nature
of such markers. Alpha and CNV modulations during anticipation
in space and time may purely reflect changes in the excitability of
underlying neuronal populations (Romei et al., 2008, 2010; Benwell
et al., 2017; Iemi et al., 2017; Samaha et al., 2017), independent of
“informational content.” In the current work, we isolate identity
anticipation and control for general “readiness” or “excitability” by
equating spatial and temporal anticipation as well as target and
response probabilities. If alpha and CNV modulations nevertheless
still occur under these conditions, this would provide evidence that
they also play a role in the anticipation of visual content.

Materials and Methods
Participants
In both experiments, all participants were right handed with normal/cor-
rected-to-normal vision had no history of neurologic disorders, and
were not taking any neurologic medication. All participants gave
informed written consent, and were compensated £15 per hour for a

total of £45. The experiments were approved by the Oxford Central
University Research Ethics Committee.

In experiment 1, 30 volunteers participated. Of the 30 participants, 5
missed.80% of the difficult targets preceded by a nonpredictive stimu-
lus 1 (S1). On this basis, these participants were excluded from the analy-
sis. Of the 25 remaining participants, the average age was 24.2 years (age
range, 18–33 years) and there were 9 females.

In experiment 2, 36 volunteers participated. Of the 36 participants, 6
performed at chance for targets on nonpredictive S1 trials. On this basis,
these participants were excluded from the analysis. Of the remaining 30
participants, the average age was 27.1 years (age range, 20–34 years) and
15 were females.

Procedures
Participants sat in a dimly lit booth at a distance of 100 cm from the
monitor (22 inch SyncMaster 2233, Samsung; resolution, 1680� 1050
pixels; refresh rate, 100Hz; screen width, 47 cm). The experimental
script was generated using Psychophysics Toolbox (Brainard, 1997) on
MATLAB (version 2014b, MathWorks). Participants were instructed to
refrain from excessive blinking and to keep their face as relaxed as possi-
ble to avoid muscular artifacts in the EEG recordings.

Experiment 1. The structure of experiment 1 is shown in Figure 1.
Participants were shown a random sequence of objects taken from a set
of 14 objects from the Novel Object and Unusual Name database
(NOUN; Horst and Hout, 2016). Among these objects, there were four
critical objects: easy S1, easy target, difficult S1, and difficult target, and
10 neutral objects. These four objects were randomly allocated to every
fourth participant and then counterbalanced for subsequent participants
such that for each random allocation of four objects, each object held
each of the four critical roles. Participants’ task was to press a corre-
sponding key (either “m” or “x” key) whenever they detected a target.
The targets switched their association with the keys randomly between
blocks, such that each target was associated with the “x” and “m” buttons
for half of the blocks.

Before the start of the task, observers were informed about the S1
objects. Specifically, they were told that following the presentation of a
predictive S1 there was a 70% probability that the next item would be
the corresponding target (i.e., the paired associate). Therefore, within the
stream, specific S1 identities would predict specific target identities. In
the other 30% of the trials, each of the other items was equiprobable.

A single trial consisted of the following sequence: S1, blank, stimulus
2 (S2), and a mask. S1 could be either predictive or nonpredictive and
was always presented for 250ms. S2 could be either one of the targets or
a foil object. S2 was immediately followed by a 100 ms mask that con-
sisted of patches drawn randomly from the potential target items. For
each set of objects, three of these masks were created and used randomly
throughout the experiment. Target difficulty was determined by its ex-
posure duration. The easy target was always presented for 150ms before
the mask, whereas the difficult target was presented for only 25ms
before the mask. The neutral objects were shown for either 150 or 25ms
equiprobably (i.e., any particular neutral object would be shown for 150
and 25ms half of the time). The mask was followed by a 1000 ms blank
before the next trial began. With this design, the appearance of S2 was
completely predictable in space and time. Participants completed 14
blocks of 100 trials in total.

Experiment 2. For the structure of experiment 2, see Figure 4. The
stimuli, experimental setup, and EEG procedures were the same as in
experiment 1. A trial was similar to that of experiment 1, with a few criti-
cal changes. On each trial, participants first saw S1 (250ms), which again
could be a predictive or a nonpredictive S1 with equal probability. This
was followed by a 750 ms blank and the quick presentation of one of
three targets (30ms)—we will refer to these targets as target A, B, or C.
That is, there was a task-relevant item presented on every trial. Critically,
two of these items (target A and target B) were predictable based on S1,
whereas the other item (target C) was always equally probable after all S1
stimuli. Following the presentation of the target and a mask (100ms), all
three potential targets appeared on the screen, and observers used the
left, down, and right arrow keys to indicate which object they had just
seen. The position of the three targets was randomized across trials such
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that observers could not prepare their response before the response
screen. The stimuli were randomly allocated to each participant. With
these changes to the design, every trial and item was task relevant, and
participants could not prepare a specific response during the period after
S1. Here, therefore, predictive and nonpredictive S1s differed only with
regard to its ability versus inability to form a specific target template in
anticipation of S2.

The relationships between the S1 and target items were explicitly
detailed to the participants before the experiment. In total, there were
eight potential S1 items. Four of these items were predictive, and four
were nonpredictive. Of the four predictive S1 items, two predicted target
A and two predicted target B. That is, if one of these predictive S1 objects
appeared, the associated target would follow in two-thirds of the trials.
In the remaining one-third of the trials, target C would appear. On non-
predictive S1 trials, all targets were equally likely. As such, throughout
the experiment, all three targets were equally likely to appear such that
there was no higher probability of a predictable target.

Behavioral analysis (experiments 1 and 2)
Behavioral data were analyzed using R (R Core Team, 2018). Reaction
times (RTs) and error rates were submitted to an ANOVA implemented
in the ez package (Lawrence, 2013), and t tests were implemented in lsr
(Navarro, 2018). Effect size estimates (hG

2 and d) are provided for all
effects. Plotting was completed using the ggplot2 package in R
(Wickham, 2009).

EEG acquisition (experiments 1 and 2)
We acquired EEG using Synamps amplifiers and Neuroscan data acqui-
sition software (Compumedics). Sixty-one electrodes were distributed
across the scalp using the international 10–10 positioning system. The
left mastoid was used as the active reference, and we included a right
mastoid measurement to derive an average mastoid reference offline.
The ground was placed on the left upper arm. Additionally, vertical and
horizontal electro-oculography (EOG) electrodes were used to monitor
for eye blinks and eye movements. During acquisition, data were low-

pass filtered by an antialiasing filter (250 Hz cutoff), digitized at 1000Hz,
and stored for offline analysis.

EEG preprocessing (experiments 1 and 2)
The preprocessing and analysis scripts for both experiments can be found
as html files and as reproducible scripts (Jupyter notebooks; Kluyver et al.,
2016) at https://github.com/SageBoettcher/identityTemplates. The pre-
processing pipeline is modified from the analysis pipeline used by
Draschkow et al. (2018). All EEG data analysis was conducted in MNE-
Python (Gramfort et al., 2013). The data were downsampled to 200Hz
and high-pass filtered at 0.1Hz. To regress out eye movement activity, an
independent component analysis (Jung et al., 2000) was used to decom-
pose the data, which was high-pass filtered at 1Hz, into 60 temporally in-
dependent components. Eye movement components were detected by
first correlating the filtered data with the EOG and subsequently, when
needed, manually selecting a subset of typical component maps and iden-
tifying the best group match to them (Viola et al., 2009). Selected compo-
nents were then removed from the data. Trials were segmented from
�200 to 1750ms (experiment 1) or 11000ms (experiment 2) relative to
the onset of S1. Average activity over the 200ms preceding the stimulus
onset was used as a baseline against which all amplitudes were calculated.
Finally, epochs with especially high variance were discarded. These epochs
were detected through a generalized extreme studentized deviate test for
outliers with an a value of 0.05 and were discarded from the analysis. On
average, 34 of 1400 trials were discarded in this manner.

EEG data analysis (experiments 1 and 2)
Alpha. For the time–frequency analysis, we used epochs from �200 to
1000ms. Morlet wavelets were convolved with the data between 3 and
40Hz. For each frequency, we used a fixed 400 ms time window such
that the number of cycles changed with the frequency. After the time fre-
quency transformation, activity was averaged over all posterior electro-
des (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1,
Oz, O2) and contrasted between predictive and nonpredictive trials (sep-
arately for the easy and difficult conditions in experiment 1). We

Figure 1. Trial schematic and behavioral data from experiment 1. A, An example of the trial sequence from experiment 1. On each trial, participants saw S1, which could either be predictive
or nonpredictive about the following S2, which could be an easy target (150 ms), a difficult target (25 ms), or a foil (25 or 150 ms). S2 was immediately followed by a mask. Participants were
instructed to respond to the targets (but not the foils) with the corresponding button as quickly as possible. B, The probability of a specific S2 target following a predictive S1 was 70%,
whereas nonpredictive S1s were equally likely to be followed by either of the two potential targets or any of the four foils. S1–S2 relationships were made explicit to participants before start-
ing the experiment. C, Participants responded more quickly and more accurately to targets preceded by a predictive S1 as well as to easy targets. Additionally, there was a significant interaction
in both RT and percentage error, indicating that predictive S1s had a larger benefit in the difficult-target trials.
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expressed this as a normalized difference [(predictive minus nonpredic-
tive)/(predictive plus nonpredictive) * 100].

ERPs. The ERPs were calculated by averaging trials within a partici-
pant and then subsequently averaging these waveforms across partici-
pants separately for each condition. The ERPs were averaged across a
predefined set of central–posterior electrodes (P1, Pz, P2, CPz, POz) as
well as central–frontal electrodes (F1, Fz, F2, AFz, FCz). These electrodes
were chosen based on previous work showing peak amplitude for the
CNV at electrode Fz and peak amplitude for potentials linked to retrieval
at electrode Pz. We focused our analyses on these electrodes and
included the immediately surrounding electrodes to increase potential
sensitivity.

EEG statistical analysis
Inferential claims about differences between conditions were based
on a cluster-based permutation test (Maris and Oostenveld, 2007)
and were reported according to recommendations by Sassenhagen
and Draschkow (2019).

Results
Experiment 1: target templates and target difficulty
In experiment 1, we investigated whether identity templates
from associative memory impact perception, as well as the neural
markers that may be involved in this template-based anticipa-
tion. To evaluate the adaptive utility of the identity template, we
additionally asked to what extent these hypothesized effects
depend on the anticipated perceptual difficulty of the target.

The structure of the experiment is shown in Figure 1. On each
trial, participants saw two sequential objects (S1 and S2) followed
by a mask. Whenever participants saw one of their two potential
targets—always in the S2 position—they responded with a corre-
sponding button press on a keyboard (m or x, counterbalanced
across blocks). The S1 item could either be predictive or nonpre-
dictive of the identity of the upcoming item. Predictive S1s were
followed by their respective S2 target in 70% of trials. Spatial and
temporal predictions were fixed, with presentation always appear-
ing in the center of the screen after 750ms; therefore, predictive
and nonpredictive S1s differed in that only predictive S1s enabled
participants to anticipate the identity of the upcoming S2 stimuli.

Behavioral results
To assess whether predictive S1s impact performance and
whether this effect was modulated by the expected target

difficulty, we conducted repeated-measures ANOVAs on RTs
and error rates with S1 type (predictive and nonpredictive) and
target difficulty (easy and difficult) as factors. Behavioral results
are depicted in Figure 1C. Target difficulty and S1 type interacted
significantly in both RTs (F(1,24) = 5.4, p= 0.03, hG

2 = 0.002) and
error rates (F(1,24) = 12.0, p=0.002, hG

2 = 0.08). Moreover, we
found the main effects of S1 type and target difficulty for both
RTs (S1 effect: F(1,24) = 87.3, p, 0.001, hG

2 = 0.41; difficulty
effect: F(1,24) = 7.9, p=0.009, hG

2 = 0.01) and error rates (S1 effect:
F(1,24) =29.5, p, 0.001, hG

2 = 0.21; difficulty effect: F(1,24) =15.4,
p, 0.001, hG

2 = 0.28). Paired-samples t tests (Bonferroni-corrected
p values) revealed a significant RT benefit (i.e., faster RTs) of the
predictive S1 for both easy and difficult targets (easy: t(24) =9.17,
p, 0.001, d=1.83; difficult: t(24) = 9.11, p, 0.001, d=1.82), and
that the benefit of the predictive S1 was larger for difficult targets
(t(24) = 2.33, p=0.03, d=0.47). The same pattern occurred for error
rates, with a significant benefit (i.e., lower errors) following versus
nonpredictive S1 items in trials with an easy target (t(24) = 2.9, p =
0.01, d=0.59) as well as trials with a difficult target (t(24) =4.93, p,
0.001, d=0.99). Once again, this benefit of predictive S1s was larger
for difficult targets (t(24) =3.46, p=0.002, d=0.69). Thus, predictive
objects impact performance on the target, and this benefit was par-
ticularly pronounced when the targets were difficult to perceive.

The above results considered only target-present trials. For
completeness, we also analyzed foil trials to determine whether pre-
dictive S1s also led to more false alarms. We found that observers
were indeed more likely to false alarm to a foil following a predic-
tive compared with a nonpredictive S1 (t(24) = 3.14, p=0.004,
d=0.62; 14.5% vs 1.5% false alarms). Because the probability that a
target would appear after an informative S1 was higher than the
probability that a nontarget would appear (in experiment 1, but
not experiment 2, as we return to it later), this increase in false
alarms following predictive S1s may simply reflect a strategic deci-
sion of participants to report the target when unsure.

EEG results
Alpha. To assess the effect of predictive versus nonpredictive S1s
on induced brain activity, we first compared time-resolved and
frequency-resolved maps of power (collapsed over all posterior
electrodes; Fig. 2A,B, insets) from the onset of S1 until 250ms af-
ter the onset of the S2, as seen in Figure 2. More specifically, we
directly contrasted trials with a predictive and a nonpredictive

Figure 2. Alpha attenuation following predictive versus nonpredictive S1s in experiment 1. A, Time–frequency results for posterior electrodes shows alpha attenuation in the predictive-easy
S1 versus the nonpredictive trials, as well as in the predictive-difficult S1 versus the nonpredictive S1 trials. B, The topographies are plotted on the same scale as the above time–frequency
plot. C, The time course of the alpha attenuation averaged between 8 and 12 Hz. Vertical lines at 750 ms show the onset of the S2 target. Significant clusters with a p value , 0.05 are
denoted with the black outline (A, B) and as horizontal lines in C. Shaded areas represent61 SEM (68% confidence intervals).
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S1. We did so separately for trials with a
predictive S1 that predicted an easy tar-
get (predictive-easy S1) and trials with a
predictive S1 that predicted a difficult
target (predictive-difficult S1). The same
nonpredictive S1 trials were used for
both comparisons. Significant clusters
emerged following both the predictive-
easy S1 (Fig. 2A; p, 0.001) and the pre-
dictive-difficult S1 (Fig. 2B; p, 0.001)
in comparison with following the non-
predictive S1. The maximal attenuation
within these clusters for both the easy
and difficult S1 occurred at;11Hz and
600ms after S1 onset (i.e., mostly con-
centrated within the alpha band). A
topographic inspection confirmed that
these effects had a clear posterior topog-
raphy in line with a visual preparation
effect. There were no significant clusters
when directly contrasting easy to diffi-
cult S1s (all cluster p values. 0.13).

To have a clearer understanding of
the time course of the alpha attenuation,
we also averaged these effects along the
classical alpha band (8–12Hz; Fig. 2C).
Once again, we found a significant clus-
ter for both the easy S1s (p, 0.001) and
the difficult S1s (p, 0.001), with no sig-
nificant difference according to the diffi-
culty levels during the anticipation
period (p=0.14, with the only cluster
forming after the onset of the target).
ERPs. To investigate the anticipatory

nature of identity-based templates, we
additionally investigated ERPs locked to
the onset of predictive-easy S1s, predic-
tive-difficult S1s, and nonpredictive S1s
for predefined clusters of frontal and
posterior electrodes. The results are
depicted in Figure 3. We were specifi-
cally interested in testing whether these
identity-based predictions also produce
a CNV—a frontal negativity—in the
predefined frontal electrodes.

We first considered the frontal elec-
trode cluster (Fig. 3A). For both the pre-
dictive-easy S1 and the predictive-
difficult S1 cues, we found a significantly
larger negativity in the late S1-S2 cue–tar-
get interval, compared with the nonpre-
dictive S1 cues (easy, p, 0.001; difficult, p, 0.001). These
negativities were associated with a frontal topography characteristic
of the CNV (Fig. 3C). In the predictive-easy S1 condition, we addi-
tionally found an early positivity (p=0.004) that is likely a spillover
effect from an earlier more posterior positivity that we return to
below (as also confirmed by the time-resolved topographical analy-
sis presented in Fig. 3C). There were no significant clusters when
contrasting the easy and difficult S1s (p values. 0.43).

When comparing effects for predictive versus nonpredictive
S1 cues in the predefined posterior electrodes (Fig. 3B), a signifi-
cant cluster was identified from ;200 to 600ms for both easy
and difficult (p values, 0.01). The effect reflected a late positive

potential elicited by predictive cues. Topographical analysis con-
firmed that the potential was centrally distributed over the poste-
rior scalp (Fig. 3C). As with the alpha modulations and the CNV,
there were no significant clusters when comparing the easy- and
difficult-predictive S1s (all cluster p values. 0.43).

These effects were confirmed, and also nicely demonstrated,
by the time-resolved topographies of predictive versus nonpre-
dictive S1 (separated by the easy and difficult conditions), as
depicted in Figure 3C.

Experiment 2: target templates while equating target and
response probabilities
In experiment 1, the pattern of behavioral data was suggestive of
proactive and flexible template utilization, resulting in larger

Figure 3. Posterior positivity and frontal negativity following versus nonpredictive S1s in experiment 1. A, ERPs locked to the
onset of S1 and averaged across a subset of frontal electrodes (F1, Fz, F2, AFz, FCz). Predictive S1s show a late frontal negativity
relative to nonpredictive S1s, while difficulty did not significantly modulate this effect. B, ERPs locked to the onset of S1 and aver-
aged across a subset of posterior electrodes (P1, Pz, P2, CPz, POz). The predictive S1s show a clear positive deflection from the non-
predictive S1, while difficulty did not significantly modulate this effect. C, Topographies of the ERP effects (predictive-easy versus
nonpredictive and predictive-difficult versus non predictive) over time show an early posterior positivity followed by a late frontal
negativity. Significant clusters with a p value , 0.05 are denoted with horizontal lines in A and B. Shaded areas represent61
SEM (68% confidence intervals).
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performance benefits when target discrimination was difficult.
Proactive memory-based expectation was also suggested by alpha
attenuation and a CNV following predictive versus nonpredic-
tive S1 objects. These predictive S1s allowed participants to pre-
pare for the identity of the upcoming stimulus, while controlling
for spatial and temporal expectations that were matched between
the S1 objects.

Although neural markers clearly signaled target anticipation,
it was not possible to conclude that the neural effects were specif-
ically related to the perceptual identity of the anticipated target.
On average, task-relevant items (targets) were also more likely
following predictive versus nonpredictive S1s, which may have
led to differential motor anticipation, or states of attention.
Because responses were only required to the target stimuli, dur-
ing predictive S1 trials observers could not only prepare for a
task-relevant visual target, but possibly also for the associated
motor response. The neural effects may thus reflect general task
readiness (or excitability), rather than template-specific anticipa-
tion of visual identity. To rule out this potential interpretation,
we designed experiment 2 (Fig. 4).

In experiment 2, we equated these other forms of anticipation
by making S2 a task-relevant stimulus on every trial. Specifically,
participants were always tasked with discriminating S2, but only
a subset of S1 stimuli predicted the identity of S2. Therefore, the
only difference between predictive and nonpredictive S1s was the

likelihood of a specific target appearing. As such, differences
between the S1 conditions must be attributed to proactive target
template activation. Participants once again saw predictive and
nonpredictive S1s (Fig. 4B), which were equated for their spatial
and temporal predictions, as well as motor affordances. Three
stimuli served as S2, two of which were predicted by a subset of
S1 stimuli and one of which was completely unpredictable.
Participants responded to S2 in a three-alternative forced choice
(3AFC) design. To eliminate anticipation of specific motor
responses, response mappings were random on every trial.
Across the experiment, all three targets were equally probable
and potential differences in the preparatory period can no longer
be attributed to differences in target probability or response
preparation. In experiment 2, all trials had the same difficulty
level, allowing us to focus exclusively on the central question of
identity anticipation.

Behavioral results
To test for a benefit to the predictive S1s in the error rates, we
used a paired samples t test. As seen in Figure 4C, targets pre-
ceded by a predictive S1 were again detected more accurately
(t(29) = 4.16, p, 0.001, d= 0.76). Because participants gave a
3AFC response after an imposed delay, reaction times were not
considered informative of perceptual processing in experiment 2
and were therefore not analyzed.

Figure 4. Trial schematic and behavioral data from experiment 2. A, Schematic of an example nonpredictive trial in experiment 2. Participants’ task was to always report the second S2
object. The paradigm is very similar to experiment 1 with the exception that participants must respond on every trial (i.e., each S2 is a target). B, Probabilities of each S2 target given the pre-
ceding S1. In C, we see that there is a significant effect of the predictive S1 on error rates. Because this task was a delayed forced choice, reaction times were no longer informative.
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EEG results
Alpha. To assess the alpha attenuation following predictive ver-
sus nonpredictive S1s, we compared the time–frequency maps in
the period between the onset of S1 and the onset of S2. As shown
in Figure 5A, we observed a significant cluster (p= 0.005), with a
qualitatively similar profile (in terms of time range, frequency
range, sign, and topography), as in experiment 1. The peak
attenuation in this cluster was found at 11Hz and 610ms after
S1. As in experiment 1, this attenuation was associated with a
predominantly posterior topography (Fig. 5A). When focusing
on the predefined 8–12Hz alpha band (Fig. 5B), we found a sig-
nificant cluster (p= 0.01), which spanned a similar time range as
in experiment 1.
ERPs. As in experiment 1, we also investigated ERPs locked to

the onset of S1 in the predefined frontal and posterior electrode
clusters (Fig. 6). In the frontal electrode cluster (Fig. 6A), we
again observed a CNV—a larger negativity following predictive
S1s just before the onset of S2 (cluster p=0.04). Like in experi-
ment 1, we also found a significant positive cluster in the frontal
electrodes between ;300 and 450ms (p= 0.01), which again
likely involved a spillover from a more posterior effect (Fig. 6C).
Indeed, in the posterior cluster (Fig. 6B), predictive S1s again eli-
cited a larger positive potential from;300ms to;550ms, yield-
ing a significant cluster (p= 0.001).

The topographies again demonstrate how the effects of the
predictive versus nonpredictive S1s develop over time and space
(Fig. 6C), and revealed a qualitatively similar spatial–temporal
progression, as observed in experiment 1.

The tightly controlled identity–expectation manipulation in
experiment 2 also enabled us to investigate whether the proactive
deployment of probabilistic associative memory templates based
on S1 improved neural processing of S2 during perceptual analy-
sis (i.e., after S2 target onset). Unlike in experiment 1, the S1
items were all followed by target items, thus equating motor

demands and degree of preparation. Presentation duration of S2
was also equated. To test for qualitative changes in sensory proc-
essing, we applied linear discriminant analysis to decode the con-
tent of the two predictable targets in posterior electrodes when
they were preceded either by a predictive or a nonpredictive S1
(Fig. 7). Cluster-based permutations that considered the first
300ms of target processing showed a single cluster of better
decoding for predictable compared with unpredictable targets,
though this did not survive cluster correction (p= 0.09). When
we considered only the peak decoding period of all targets (at
145ms; Fig. 7B), we found better decoding for predicted versus
unpredicted targets (t(29) = 2.89, p= 0.007). However, because
this effect was not particularly strong (Fig. 7), we would like to
present this as a tentative result in the hope that it will motivate
further investigation, without further elaboration in the
Discussion.

Discussion
Our results provide evidence that identity templates based on
probabilistic associative memory impact perception. Furthermore,
these templates are associated with proactive states of attenuated
alpha oscillations and the CNV, even when controlling for differ-
ences in spatial and temporal anticipation as well as response and
target probabilities.

Our behavioral and EEG results build on and extend earlier
work on memory-guided attentional orienting and perceptual
identity templates in several ways. When considering memory-
guided anticipation, we have focused here on perceptual conse-
quences and the electrophysiological signatures of memory-
guided predictions based on identity, as opposed to anticipation
in space and time (Chun and Jiang, 1998; Olson and Chun, 2001;
Summerfield et al., 2006; Awh et al., 2012; Goldfarb et al., 2016;
Cravo et al., 2017; Jiang, 2018). We have studied this in a context

Figure 5. Alpha attenuation following predictive versus nonpredictive S1 in experiment 2. A, Time–frequency results for posterior electrodes shows alpha attenuation following the predictive
S1 relative to the nonpredictive S1, with a peak negativity at 610 ms after S1 at 11 Hz. B, Time course of the alpha attenuation, averaged between 8 and 12 Hz. Vertical line at 1000 ms shows
the onset of the target. Significant clusters with a p value, 0.05 are denoted with the black outline in A, and by the horizontal line in B. Shaded area represents61 SEM (68% confidence
intervals).
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where the templates must be retrieved from complex probabilistic
associations in memory templates (Higuchi and Miyashita, 1996;
Rainer et al., 1999; Turk-Browne et al., 2008, 2010; Stokes et al., 2009;
Kok et al., 2012, 2014, 2017)—rather than being explicitly provided
(Chelazzi et al., 1993; Carlisle et al., 2011; van Driel et al., 2017)—and
have focused specifically on the anticipatory electrophysiological
substrates associated with such templates.

This work also expands on prior work that has used paired-
associate tasks similar to the one used here (Gallistel, 1990;
Higuchi and Miyashita, 1996; Rose et al., 2001; Stokes et al.,
2014; Brincat and Miller, 2015), but where the focus was on
learning. In the current study, the focus was not on the learning
of the S1–S2 associations, but rather on the exploitation of previ-
ously learned information in the service of guiding ensuing
behavior (but see Rainer et al., 1999; Stokes et al., 2013, 2014)
here in a demanding perceptual task with masked visual targets.
Doing so, we report that participants are able to use learned
identity associations to impact perception.

A major empirical contribution of our study was to identify
electrophysiological markers for the anticipation of identity-
related informational content in the human brain that we discuss
next in turn.

Alpha attenuation
In previous work, alpha attenuation has
been noted during anticipatory periods
for both spatially and temporally predict-
able targets (Worden et al., 2000;
Sauseng et al., 2005; Thut et al., 2006;
Siegel et al., 2008; Rohenkohl and Nobre,
2011; van Ede et al., 2011; Zanto et al.,
2011; Heideman et al., 2018). In this con-
text, alpha attenuation has been theor-
ized to reflect engagement of sensory-
processing areas in preparation for a
task-relevant event, in line also with the
notion that alpha is inversely related to
firing rates (Haegens et al., 2011) and/or
processing capacity (Hanslmayr et al.,
2016) of the underlying populations. In
our results, we have shown alpha attenu-
ation when S1 specifically predicts the
identity of an upcoming target over and
above its location and temporal onset.
Accordingly, we propose that the alpha
attenuation also reflects engagement
with visual processing areas to prepare a
specific target template. As such, the
alpha modulations reported here com-
plement recent work showing that lower
alpha power is associated with higher fi-
delity of stimulus-specific information
(van Ede et al., 2018; Griffiths et al.,
2019; Barne et al., 2020). In this light, it
is interesting to note that alpha band
oscillations were not significantly modu-
lated by the anticipated perceptual diffi-
culty in identifying the target, as might
be expected from a pure excitability
account (Romei et al., 2008, 2010;
Benwell et al., 2017; Iemi et al., 2017;
Samaha et al., 2017). Rather, at least in
our task, the observed alpha attenuation
appears to reflect the anticipation of spe-
cific visual content related to target iden-

tity, though we note that visual content in our task entailed
different shapes across objects, and thus included some spatial
attributes.

When templates are separated by space and time, template
preparation has previously been associated with spatially lateral-
ized contralateral alpha attenuation relative to the memorized
location of the template (de Vries et al., 2017; van Driel et al.,
2017). Our findings complement this recent work by isolating
template identity, while controlling for spatial attention associ-
ated with the template. Moreover, as emphasized earlier, we here
show this in a context in which the template was not presented
to participants, but had to be retrieved from long-term memory
based on a known probabilistic association between S1 and S2.

Snyder and Foxe (2010) demonstrated that when participants
were cued to a relevant nonspatial feature dimension of a target
stimulus (color or motion), alpha power was relatively attenuated
in the area coding for the relevant feature dimension (dorsal vis-
ual stream regions for motion and ventral visual stream regions
for color). This complements the idea that alpha attenuation
may serve as a general attentional mechanism in perception.
However, because this previous work cued feature dimensions

Figure 6. Posterior positivity and frontal negativity following predictive versus nonpredictive S1 in experiment 2. A, ERPs
locked to the onset of S1 and averaged across a subset of frontal electrodes. Predictive S1s show a late frontal negativity rela-
tive to nonpredictive S1s. B, ERPs locked to the onset of S1 and averaged across a subset of posterior electrodes. The predictive
S1s show a clear positive deflection from the nonpredictive S1s. C, Topographies of the ERP effects (Predictive versus
Nonpredictive) show an early posterior positivity followed by a late frontal negativity. Significant clusters with a p value ,
0.05 are denoted with horizontal lines in A and B. Shaded areas represent61 SEM (68% confidence intervals).
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(e.g., color) rather than feature values (e.g., red), it does not
address whether alpha is also a relevant mechanism for expected
identity or template preparation.

Interestingly, a previous study in which participants could
prepare for a specific defining feature of a forthcoming target
grating (Wildegger et al., 2017) found no evidence for modula-
tions within the alpha band. The apparent discrepancy with the
current finding could be due to statistical variability (i.e., a false
negative in previous work) or reflect crucial task dependencies.
For example, our task used complex stimuli, memory associa-
tions, and targets that were always presented centrally, whereas
the previous work used simple orientations, symbolic cues, and
uncertainty about target location.

In the current work, we focused on the process of template-
guided attention. The instantiation of the target template puta-
tively involves a process of retrieval from long-term memory,
possibly followed by storage in visual working memory and
accompanied by visual imagery. Retrieval from long-term mem-
ory storage (Hanslmayr et al., 2016; Staresina et al., 2016;
Waldhauser et al., 2016; Fukuda and Woodman, 2017), prioriti-
zation of perceptual representations in working memory
(Fukuda and Woodman, 2017; van Ede et al., 2017b; van Ede,
2018), and visual imagery (Slatter, 1960; Barrett and Ehrlichman,
1982; Salenius et al., 1995) have all previously been associated
with attenuation of alpha oscillations. Our findings are thus in
line with this large body of prior work. In contrast to this work,
in the current study, these individual processes were never ex-
plicitly tasked to the participants. Rather, here, these processes
may constitute the natural chain of events that support adaptive
memory-guided perceptual anticipation.

ERPs
In addition to the alpha effects, experiments 1 and 2 each also
revealed significant ERPs associated with target identity anticipa-
tion. Moreover, like the alpha modulation, these potentials did not
differ significantly between the predictive-easy and predictive-diffi-
cult S1s in experiment 1. The two ERP effects consisted of a CNV
and a late posterior potential. Both of these have been found previ-
ously in associative learning tasks (Rose et al., 2001; Stokes et al.,
2014). However, in this previous work, S1 predictions were coupled
to response probabilities, a confound we ruled out in experiment 2.

The CNV is a classic signature of temporal and response antici-
pation (Walter et al., 1964; Donchin et al., 1975), and is likely to
reflect the anticipation of the target, here shown to be strength-
ened by foreknowledge of the identity of the ensuing target.

Our late posterior positive potential may relate to the process-
ing of S1 when it predicts a specific target or serves as a link
between the S1 and the S2 item. The exact functional contribu-
tion of the late positive potential in our task is difficult to pin-
point. Its posterior topography and time course are compatible
with a few different possibilities. Identification of the S1 as a rele-
vant, predictive stimulus may have triggered a P300, which has a
long history as a marker of stimulus relevance or meaning
(Squires et al., 1975; Johnson, 1986; Polich, 2007). Alternatively,
it may have reflected the process of recalling the associated target
(Donaldson and Rugg, 1999), therefore providing a link between
S1 and S2. A similar potential has also been noted during the ori-
enting of spatial attention (Brignani et al., 2009), raising the pos-
sibility of an analogous mechanism for orienting attention to
identity-defining stimulus attributes.

Importantly, in experiment 2, both the predictive and non-
predictive S1 indicated that a task-relevant target would appear
in 1000ms in the center of the screen, and all trials required a
response. The only difference was that the predictive S1 indicates
which item is likely to appear. Accordingly, this provides com-
pelling evidence that these ERPs, like the alpha attenuation, are
sensitive to the expectation of the particular identity of the forth-
coming item.

It remains to be investigated whether the effects shown here
are contingent on knowledge of the location and timing of an
upcoming event. By design, space and time were always reli-
able in the current work. While contrasts with nonpredictive
S1s allowed us to eliminate any neural correlates that were at-
tributable to purely spatial and temporal predictions, we cannot
rule out that the observed modulations might still reflect the
interaction between identity-based anticipation and the known
spatial and temporal attributes of the anticipated stimulus.
That is to say, it is as yet unclear whether the same results
would be obtained for identity-based predictions in the absence
of spatial and temporal predictions. At the same time, of
course, in the real world, spatial, temporal, and identity-based
predictions are often bundled.

Figure 7. A, Linear discriminant analysis (LDA) classification accuracy of S2 target A versus S2 target B (in experiment 2) when preceded either by a predictive (blue line) or nonpredictive
(gray line) S1. B, Classifier accuracy at the peak classification time for the group average (145 ms) for both predicted and not predicted targets. To avoid circularity, the peak time was found
based on the average of the predicted and not predicted data. LDA was performed in a time-resolved fashion on the baseline-corrected time series, using the topographical distribution across
all posterior electrodes (as indicated in the inset) as the multivariate data features. Asterisk indicates a significant difference with a p-value, .05.
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Interaction between predictions and perceptual difficulty
In experiment 1, we found a significant interaction between S1
predictiveness and target difficulty (easy or difficult) for both
error rates and reaction times. Interestingly, we did not find neu-
ral evidence for such an interaction in the identified alpha
attenuation or ERPs during the period between S1 and S2. One
may have expected that a more difficult target would call for a
stronger activation of the perceptual template. However, our
data do not speak to this conclusion. On the one hand, we cannot
rule out differences in the extent of template preactivation that
could not be detected with our methods. There may be other
neural correlates of perceptual identity preparation that do
depend on expected target difficulty, which we were unable to
measure. On the other hand, the results invite us to consider
whether and how similar levels of template activation may result
in differential performance benefits. It is possible that the same
perceptual templates will be more effective when incoming stim-
uli are harder to perceive. In this scenario, the consequences of
preactivation of relevant neuronal populations may critically
depend on the strength of neuronal activity triggered by incom-
ing stimulation, playing a greater facilitatory role when incoming
stimulation is weaker or more ambiguous.

Conclusion
Together, our results suggest that proactive preparation for the
identity of a target, based on successive associations impacts per-
ception and is accompanied by the attenuation of alpha oscilla-
tions and modulations of ERPs, including the CNV. We here
demonstrate this while matching spatial and temporal predic-
tions, as well as target probability and response demands. While
isolating identity anticipation has proven instrumental to our
aims, we should also not forget that, in natural behavior, mem-
ory-based anticipation is often multifaceted, affording concur-
rent anticipation of the what, where, and when of upcoming
percepts. In future studies, it will be interesting to consider sys-
tematically the dynamic interplay and potential synergies among
each of these different dimensions of memory-based perceptual
anticipation.
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