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The contexts for action may be only transiently visible,

accessible, and relevant. The cortico-basal ganglia (BG) circuit

addresses these demands by allowing the right motor plans to

drive action at the right times, via a BG-mediated gate on motor

representations. A long-standing hypothesis posits these same

circuits are replicated in more rostral brain regions to support

gating of cognitive representations. Key evidence now

supports the prediction that BG can act as a gate on the input to

working memory, as a gate on its output, and as a means of

reallocating working memory representations rendered

irrelevant by recent events. These discoveries validate key

tenets of many computational models, circumscribe motor and

cognitive models of recurrent cortical dynamics alone, and

identify novel directions for research on the mechanisms of

higher-level cognition.
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Introduction
The world is rich with information, much of it only

transiently available to the senses. And yet, an animal

must leverage a small, but crucial, fraction of this input in

order to provide a context for its behavior. Working

memory is a central adaptation to confront this problem,

selecting behaviorally relevant information, maintaining

it in time, and referencing it when appropriate in order to

make decisions about how to act in the world. Indeed, the

elaborated working memory system of higher primates

partly underlies their distinguishing intelligence and

flexible behavior.

Working memory is capacity limited. Measures of

capacity predict individual differences in cognitive abil-

ity, including scholastic aptitude, intelligence, and aging-

related cognitive change [1,2]. Moreover, changes in
www.sciencedirect.com 
working memory capacity accompany neurological and

psychiatric disease [3] and may underlie behavioral and

cognitive deficits associated with these disorders [4].

However, just as the world is dynamic, so is the working

memory system adapted to address these dynamics.

Thus, control processes are required in order to rapidly

and selectively store information in memory (input con-

trol), to rapidly and selectively deploy subsets of that

information for use in behavior (output control), and to

selectively eliminate an obsolete representation from

memory when its predicted utility declines (reallocation).

Such control functions would seem to be crucial for

strategically making use of capacity-limited working

memory. And indeed, though less understood, individual

differences in these control processes could be equally or

even more important than the size of a static capacity for

intellectual ability.

Though still in its early stages, the last few years have

yielded rapid advances in our understanding of how the

brain solves the input, output, and allocation control

problems facing working memory. These experiments

have associated all three functions with interactions be-

tween frontal and basal ganglia systems. Below, we

review this work to outline an account of how the brain

manages working memory.

From motor control to cognitive control
There is a clear parallel between the problems

addressed by working memory control processes and

the fundamental challenges faced by an animal’s motor

system. Consider the task of hunting for dinner. For

example, a predator must program motor actions on the

basis of transiently observed information about prey

(input control); maintain these programs until the time

is right, enacting only the most appropriate motor

program at that time (output control); and finally,

refrain from perseveratively considering outdated

motor programs, should the prey escape (reallocation;

Figure 1a). Thus, demands on selective encoding,

maintenance, utilization, and clearing of information

face a variety of species.

This similarity motivates the search for neural solutions

that might also be shared across species. Indeed, recent

phylogenetic analyses show that the basal ganglia (BG)

has been highly conserved evolutionarily — all its

major structures preserved since their debut in an

unknown ancestor common to all vertebrates [5]. This

conservation of structure may attest to the BG’s efficacy

in solving the action selection problems faced by many

species.
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Theoretical overview. (a) All behaving animals must be capable of selecting useful motor actions at the right times. A long-standing hypothesis [11]

holds that the same frontostriatal mechanisms supporting this kind of action selection might also support higher-order cognitive functions. (b)

Frontostriatal mechanisms can implement a gate to select useful but transient information for rapid storage in working memory, as well as a gate to

select of information from working memory to inform motor planning [6,10,13]. (c) Models involving rostral to caudal nesting of corticostriatal input and

output gating loops have been shown to solve abstract, multiply contingent action problems [18] as well as forms of Bayesian inference [22��] and

symbolic referencing [23��]. A key feature of these models is the presence of a ‘diagonal’ rostrocaudal projection (red arrows) allowing rostral areas to

modulate the striatal input to more caudal basal ganglia; one implemented model is shown here. (d) Multiple such frontostriatal circuits are thought to

exist, each modulated in a top-down manner by more rostral circuits (PMd by pre-PMd; pre-PMd by the inferior frontal sulcus [IFS]; and IFS by the

rostrolateral prefrontal cortex [RLPFC]). The diagonal rostrocaudal projections are thought to be particularly important for modulating output gating

mechanisms (‘BG out’) as opposed to input gating mechanisms (‘BG in’).
One way to describe the dynamics of this selection

function is as a gate that regulates the passage of infor-

mation from one neural circuit to another [6], such as in

the case of motor selection, between thalamus and motor

cortex. Theoretical models posit that motor gating occurs

via the opposing circuit-level effects of the two classes of

medium spiny neurons of the striatum: Go and NoGo cells.

The net effect of D1-receptor - expressing Go cells is to

‘open the gate’ by facilitating recurrent thalamo-cortical
Current Opinion in Behavioral Sciences 2015, 1:23–31 
information flow, whereas D2-receptor-expressing NoGo
cells ‘close the gate’ by blocking thalamo-cortical infor-

mation flow. By this scheme, a planned motor action

represented cortically might trigger the activation of Go
cells via a corticostriatal projection, in turn facilitating a

projection from thalamus to the primary motor neurons

responsible for enacting specific movements. At the same

time, alternative action plans would trigger NoGo cells

and so would have negligible thalamocortical influence.
www.sciencedirect.com
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A variety of recent evidence has offered novel support for

this framework. Go and NoGo cells are coactive when

animals are motorically active, but not quiescent [7], in

particular when action sequences are being initiated

[8] — all consistent with a role for these cells in gating

for action selection as opposed to a more general pro-

kinetic vs. anti-kinetic dichotomy between Go and NoGo
cells. Further evidence for this framework has recently

been provided by optogenetic techniques [9��]. Trans-

genic mice expressing light-activated ion channels in

putative Go and NoGo cells chose between one of the

two ports after the onset of a cue. Light-induced firing of

Go cells led to an increase in contralateral movements,

whereas light-induced firing of NoGo cells led to an

decrease in contralateral movements. The effect of stimu-

lation was greatest when the value of the two potential

actions was closely matched (as estimated by a compu-

tational model), suggesting stimulation was capable of

mimicking a small shift in their relative value. Moreover,

this stimulation was effective only when delivered sim-

ultaneously with the cue, consistent with a particular

influence of action value during action selection.

As discussed below, these BG-mediated gating mechan-

isms may extend beyond the selection of motor actions

and into the more abstract domains of working memory

[10] (Figure 1b) and cognitive control (Figure 1c); where

they can be used to solve analogous problems of selection

and updating. Indeed, the known anatomy of parallel

motor, frontal, and prefrontal basal ganglia-thalamocorti-

cal circuits hints at analogous computation (Figure 1d)

[11]. And, a variety of computational models have demon-

strated the feasibility of such an architecture for solving

complex working memory control problems [6,10,

12–21,22��,23��]. However, only recently have animal

and human behavioral, neuropsychological, pharmaco-

logical, PET and fMRI studies provided direct functional

evidence for multiple BG gating dynamics in WM and

their importance for higher thought and action.

Input gating of working memory
Gating dynamics provide a powerful solution to the input

control problem for working memory [6,10,12]. When

useful information becomes available in the environment,

the gate is open and working memory is updated with this

useful information. Otherwise, the gate is closed and

irrelevant information is kept from needlessly occupying

capacity.

Several computational models of working memory have

achieved this gating dynamic using cortico-striatal mech-

anisms analogous to those described for the motor system.

Just as a cortically represented motor action could cause

Go cells to fire via corticostriatal projections, thereby

facilitating thalamic-motoneuron information flow for

movement programming (as described above), a cortically

represented stimulus could also cause Go cells to fire,
www.sciencedirect.com 
again via corticostriatal projections, and thereby facilitate

thalamic-prefrontal information flow for working memory

updating. By contrast, distracting sensory representations

would trigger NoGo cells and so would have negligible

thalamoprefrontal influence. By this scheme, updating is

favored (and stable maintenance prevented) by input to

Go cells, whereas updating is prevented (and stable

maintenance favored) by input to NoGo cells. Thus,

the Go/NoGo system is a potent means of circumventing

stability/flexibility tradeoffs that plague single-com-

ponent systems.

Several features of this and related striatal input gating

models are supported by human neuroscience evidence.

First, there is evidence that D1-expressing Go cells

support the rapid updating of information in working

memory. Striatal activation in fMRI, thought to be driven

primarily by D1 receptor activation [24] is a common

observation during working memory tasks that require

updating (Figure 2a). Training of updating transfers to

other tasks involving overlapping striatal BOLD

responses [25]; this transfer is accompanied by alterations

in the striatal hemodynamic response to updating chal-

lenges [26] and results in increased striatal dopamine

receptor binding [27] (Figure 2b) as assessed via PET.

Shifting the striatal balance toward Go firing (via block-

ade of D2 receptors with haloperidol) also enhances

working memory updating [28]. Second, there is evidence

that D2-expressing NoGo cells act to limit the rapid

updating of information in working memory. For

example, the ‘attentional blink’ is more pronounced

among individuals with enhanced D2/D3 receptor bind-

ing in the BG [29�] (Figure 2c). Likewise, the depletion of

central dopamine due to Parkinson’s disease counter-

intuitively enhances resistance to distraction in these

patients, while producing deficits in the updating of

working memory [30]. In summary, a variety of recent

evidence strongly implicates BG-mediated input gating

in working memory updating.

It is important to note that BG-mediated gating is unli-

kely to be the only mechanism by which working memory

is updated. For example, dopaminergic projections might

directly ‘toggle’ prefrontal ensembles from a labile state

to a more stable one, and hence act as a second kind of

gating mechanism [21]. Indeed, high-resolution fMRI

reveals the dopaminergic midbrain reliably responds to

demands on working memory updating [31�] even after

the requisite gating policies have been acquired — a

finding not required by BG-mediated gating models,

and broadly consistent with direct dopaminergic gating

of PFC. However, there remain some challenges for this

kind of account, most notably in cases where updating

would be selective. Dopaminergic projections into PFC

are diffuse and may not have the necessary spatial speci-

ficity for selective updating of distinct representations

[32]. Selective updating by dopaminergic input might
Current Opinion in Behavioral Sciences 2015, 1:23–31
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Figure 2
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Basal ganglia (BG) contributions to working memory input control. (a) A meta-analysis of over 8000 studies, carried out with Neurosynth’s python

package [53], reveals that studies with abstracts including the term ‘updating’ are significantly more likely to report a BOLD response in the bilateral BG

(Z = 2.58–7.03, FDR to p < .05; among other regions, not shown). (b) Binding of the competitive dopamine agonist raclopride within the BG is

decreased during an updating task (letter memory), relative to a control task (Stroop). (c) Individual differences in D2 binding affinity within the bilateral

BG predict individual differences in the rapid updating of working memory (as assessed by the attentional blink), uniquely throughout the brain (even at

a liberal threshold of p < .01). (b,c) adapted from [27,29�] respectively.
occur temporally instead (e.g. via phase-tuned or fre-

quency-tuned signals), but the prefrontal dopamine

response may also lack the temporal resolution required

by this scheme [33] (unlike BG output to thalamus

[34��]). Thus, while dopamine clearly has effects in

PFC (perhaps largely via effects on the gain of neuronal

ensembles), the spatial-coarseness and temporal-coarse-

ness of prefrontal dopaminergic afferents might render

those projections ineffective for selective working mem-

ory updating. Nonetheless, people are capable of simul-

taneously updating the entirety of working memory [35];

diffuse dopaminergic neuromodulation might be well

adapted for such ‘global updates’ (but see [36,37]).

Output gating of working memory
According to the prevailing top-down ‘biased compe-

tition’ model of prefrontal function, information residing

in working memory actively biases behavior. However,

not all information in working memory needs to be

relevant at the same time, and indeed might cross-talk

or mutually interfere if mere maintenance yielded an

obligatory biasing influence. Clearly, the capacity to

‘single out’ or select relevant representations stored

within working memory is adaptive [38]. Behavioral evi-

dence indicates that humans are capable of selecting

information from within working memory [39].

One possibility is that BG-mediated gating mechanisms

for selecting actions might also be extended for selecting

the outputs of working memory. In fact, the analogy
Current Opinion in Behavioral Sciences 2015, 1:23–31 
between the BG’s role in action selection and its potential

role in selecting working memory output is straightfor-

ward. Premotor areas gating the output of primary motor

neurons requires similar rostral-to-caudal frontostriatal

projections as required for more abstract representations

in working memory to influence premotor planning. In

other words, higher-order plans can select motor plans via

rostral corticostriatal circuits, just as motor plans can

select individual movements via caudal ones.

Hierarchical, rostrocaudal neural architectures have recently

been argued to support the performance of complex tasks

involving conditional rules [40,41,42��,43–45,46�]. A priori,
output gating is an advantageous scheme in frontostriatal

hierarchies of this kind. Unlike hierarchical input gating,

hierarchical output gating allows subordinate regions to

proceed with their own input and reallocation policies

until (or unless) higher-order regions identify an important

context or conditionality. Only at that point would higher-

order regions impinge on the function of lower-order regions

by biasing their output toward a contextually appropriate

subset of candidates. Computational models have demon-

strated the feasibility of this corticostriatal output-gating

architecture for solving hierarchical tasks [18,22��,42��], and

at least one such model has been supported by data from

fMRI [42��]. Moreover, human diffusion tractography

confirms a prediction motivated by this model — namely,

that any given area of striatum is more likely to also receive

projections from frontal areas more rostral, rather than

caudal, to its primary input source [47].
www.sciencedirect.com
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Figure 3

(a)

(d)

L R

(b) (c)

Current Opinion in Behavioral Sciences 

Output gating and reallocation. (a) A transient BOLD response is elicited in the dorsal pre-premotor cortex (pre-PMd) by demands on selective output

gating. Individual differences in the recruitment of this area and its right hemisphere homologue uniquely predict the mean efficiency of selective output

gating, as assessed in behavior. (b) A partially overlapping region also in the vicinity of the pre-PMd shows a differential increase in coupling with the

BG during output gating. Individual differences in this coupling uniquely predict behavioral estimates of stochastic variability during selective output

gating. (c) BOLD in a more caudal sector of frontal cortex, the PMd, tracks trial to trial changes in the predicted utility of information (as estimated from

a reinforcement learning model), but only when it is specified as relevant by a higher-order contextual stimulus. (d) By contrast, when contexts specify

information in working memory as irrelevant, predicted utility is differentially tracked by the BOLD response in the bilateral ventral BG.

(a,b) Adapted from [48��]; (c,d) adapted from [50��].
Though a variety of computational modeling thus

indicates that corticostriatal circuits can support output

gating, empirical studies have only begun to test the

function of this hypothesized system. We recently con-

firmed the differential importance of output gating in

hierarchical control [48��]. Our task used three sequen-

tially presented and completely reorderable stimuli: two

‘item’ stimuli and a ‘context’ stimulus that specified

which of the two items would be relevant for responses.

The core logic was straightforward: when the context

appears first, it can be used to drive selective input gating

of only the relevant subsequent item into working mem-

ory; however, when context appeared last, it could only be

used for selectively output gating the relevant item out of

all those seen. All trials showed sustained recruitment of a

relatively caudal sector of frontal cortex (the dorsal pre-

motor cortex, or PMd), but a somewhat more rostral area

(the pre-PMd) transiently increased its recruitment

specifically when context was provided last, and was

therefore implicated output gating (Figure 3a). An over-

lapping region of the pre-PMd also increased its coupling

with the BG in the same conditions (Figure 3b). These

two dynamics in pre-PMd each predicted a distinct kind

of individual difference during selective output gating

alone: whereas bilateral prePMd recruitment predicted
www.sciencedirect.com 
the mean efficiency of responses during selective output

gating, its bilateral coupling with BG predicted response

variability, as expected of a stochastic BG-mediated

output gate.

Working memory content control: the case of
reallocation
The rapidly developing literature on working memory

input and output control has been strongly guided by the

numerous models to posit that BG-mediated gating

processes may address these problems. Unfortunately,

computational models differ widely in how they treat a

third kind of control problem. How is working memory

reallocated when already-stored information is later

revealed to be irrelevant? By some accounts, an active

removal process is necessary; by others, passive decay

could be sufficient [49]. Finally, a third class of models

posit that irrelevant representations will tend to linger

until (or unless) they are overwritten with new infor-

mation, such as by input gating mechanisms

[6,10,15,23��]. All such accounts lead to the prediction

that the utility of information in WM for future behavior is

tracked in some way. Given its established role in action

value coding, the BG is again an a priori candidate for this

function.
Current Opinion in Behavioral Sciences 2015, 1:23–31
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Box 1 Open questions

� How do gating dynamics develop across the lifespan [54�,55], and

could they underpin age-related shifts in modes of cognitive

control [56,57]?

� What is the pharmacology and neurogenetics of working memory

output control and reallocation?

� Might BG-mediated gating enable frontal cortex to implement

Bayesian inference [22��] and symbolic referencing [23��] (see also

[58])?

� How do BG contribute to the time-varying, high-dimensional

cortical representations highlighted in the cortex-centric recurrent

network models of motor [59] and cognitive [60�,61�] control?

� Are motor and cognitive corticostriatal circuits distinct truly

isomorphic save their rostrocaudal locus, and evolutionary history

(for at least one exception, see [62])?

� How might BG-mediated gating dynamics illuminate classic

cognitive phenomena like the psychological refractory period, the

focus of attention, and object-based encoding in visual working

memory [63��,64,65��], independent of expectancy violations

[65��]?
We recently found evidence consistent with this hypoth-

esis [50��]. We analyzed trials of our reorderable working

memory task where context appeared in the middle pos-

ition, between the presentation of the two lower-level

items. When this ‘context middle’ stimulus rendered the

preceding lower-level item irrelevant, we observed a large

benefit to behavioral performance when sufficient time

followed presentation of the context. This benefit was

much larger than that seen in any other condition — as

though subjects required time to reallocate working

memory capacity occupied by the irrelevant item. This

result parallels others (see [50��]) demonstrating a slug-

gish time course for WM reallocation, with irrelevant

information impacting behavior even 1.5 s later.

We predicted that this slowing could occur because to-be-

removed items were nonetheless predicted to have uti-

lity, even though they were specified as irrelevant by the

contextual stimulus. To test this counterintuitive predic-

tion, we adapted a simple reinforcement learning model

to track the likelihood that each item, regardless of the

context in which it was presented, would in fact be

associated with the correct answer. Learning rates in this

model were fit to reaction times in our behavioral task,

and from this, we predicted a function of trial-to-trial

predicted utility of irrelevant items. This timecourse

correlated with activation in ventral striatum in a separate

fMRI experiment. By contrast, the model-based esti-

mates of the utility of relevant items were tracked by

recruitment in frontal, not striatal regions (Figure 3c,d).

These results motivate the inclusion of BG-mediated

mechanisms in models of WM reallocation [51] and other

WM control processes. They also reaffirm the dichoto-

mous stability vs. flexibility functions sometimes ascribed

to frontal vs. striatal regions in the service of working

memory, as well as the opposing actions of dopamine on

these two areas. One intriguing possibility consistent with

these results is that BG-mediated gating mechanisms

might be capable of ‘vetoing’ the clearance of information

from working memory, analogous to the motoric preser-

vation induced by stimulation of the ventral striatum [52].

Conclusions
Working memory contends with the complexity of the

real world via a set of control processes that select what

items to maintain, which maintained items to use, and the

priority of items within memory. Many of these demands

are analogous to those faced in movement selection by

the motor system. Accordingly, fronto-striatal mechan-

isms for motor selection might be elaborated in more

rostral frontostriatal circuits and used for more abstract

working memory operations. This long-held hypothesis

has now been subjected to empirical tests. Abundant

evidence supports a role for BG-mediated input gating

mechanisms during working memory updating.

In addition, there is now emerging evidence for
Current Opinion in Behavioral Sciences 2015, 1:23–31 
BG-mediated mechanisms during selection from working

memory and in tracking the predicted utility of items

within working memory. Both of these latter functions

may be crucial in supporting more sophisticated forms of

planning and thought. And though many unanswered

questions remain (Box 1), these new discoveries represent

a major success story for the use of neurocomputational

modeling to inform the cognitive neuroscience of how

working memory might actually work, in the brain.
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