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Abstract

We used functional magnetic resonance imaging (fMRI) to investigate the neural codes for

representing stimulus information held in different states of priority in working memory.

Human participants (male and female) performed delayed recall for 2 oriented gratings that

could appear in any of several locations. Priority status was manipulated by a retrocue, such

that one became the prioritized memory item (PMI) and another the unprioritized memory

item (UMI). Using inverted encoding models (IEMs), we found that, in early visual cortex,

the orientation of the UMI was represented in a neural representation that was rotated rela-

tive to the PMI. In intraparietal sulcus (IPS), we observed the analogous effect for the repre-

sentation of the location of the UMI. Taken together, these results provide evidence for a

common remapping mechanism that may be responsible for representing stimulus identity

and stimulus context with different levels of priority in working memory.

Introduction

Important for understanding the flexible control of behavior [1,2] is understanding working

memory: the mental retention of task-relevant information and the ability to use it to guide

contextually appropriate actions [3,4]. State-based theoretical models of working memory

posit that information can be held at different levels of priority in working memory, with

information at the highest level of priority in the focus of attention (FoA) and the remaining

information in a variously named state of “activated long-term memory” [5] or “region of

direct access” [6].

Much of the empirical support for these models comes from tasks using a “retrocuing” pro-

cedure that allows for the controlled study of the back-and-forth switching of priority between

memory items. In the dual serial retrocuing (DSR) task, 2 items are initially presented as mem-

oranda, followed by a retrocue that designates one the “prioritized memory item” (PMI; equiv-

alent to the “attended memory item” in previous publications) that will be interrogated by the

impending probe. The uncued item cannot be dropped from working memory, however,

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000769 June 29, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yu Q, Teng C, Postle BR (2020) Different

states of priority recruit different neural

representations in visual working memory. PLoS

Biol 18(6): e3000769. https://doi.org/10.1371/

journal.pbio.3000769

Academic Editor: Frank Tong, Vanderbilt

University, UNITED STATES

Received: February 25, 2020

Accepted: June 19, 2020

Published: June 29, 2020

Copyright: © 2020 Yu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All data are available

from the OSF database (osf.io/G4C3N).

Funding: This study was funded by National

Institute of Mental Health Grant R01MH064498 to

BRP. The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: DSR, dual serial retrocuing; EEG,

electroencephalography; FEF, frontal eye fields;

http://orcid.org/0000-0001-8480-7634
http://orcid.org/0000-0003-3182-9420
https://doi.org/10.1371/journal.pbio.3000769
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000769&domain=pdf&date_stamp=2020-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000769&domain=pdf&date_stamp=2020-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000769&domain=pdf&date_stamp=2020-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000769&domain=pdf&date_stamp=2020-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000769&domain=pdf&date_stamp=2020-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.3000769&domain=pdf&date_stamp=2020-07-10
https://doi.org/10.1371/journal.pbio.3000769
https://doi.org/10.1371/journal.pbio.3000769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


because following the initial memory probe, a second retrocue may indicate (with p = 0.5) that

this initially uncued item will be tested by the second memory probe. Thus, following the ini-

tial retrocue, the uncued item becomes an “unprioritized memory item” (UMI; equivalent to

the “unattended memory item” in previous publications) [7].

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) studies

using the DSR task have suggested that the PMI and UMI may be processed differently.

Whereas classification evidence from multivariate pattern analysis (MVPA) for an active

delay-period representation of the PMI is robust, particularly in the occipital and temporal

regions associated with visual perception and object recognition, evidence for an active repre-

sentation of the UMI either drops to baseline [8–10] or can only be recovered in rostral, multi-

modal areas of parietal and frontal cortex [11]. This has led to the suggestion that, for visual

stimuli, an elevated level of activation, particularly in the occipital and temporal regions, may

be the neural basis of the representation of information in the FoA. However, the neural bases

of information held in working memory, but outside the FoA, are less clear.

Synaptic accounts of the retention of unattended information hold that the UMI is main-

tained in an activity-silent state, potentially through changes in short-term synaptic plasticity

in the neural circuits involved in stimulus representation [12–14]. These changes may also

occur concurrent with the activity-based representations of the FoA [15]. Consistent with this

account, information about the UMI can be recovered by probing the delay period with a

pulse of transcranial magnetic stimulation (TMS) [16] or a task-irrelevant visual impulse [17]

(c.f. [15,18] for simulations). Another hypothesis is the “cortical specialization” account,

whereby all information held in working memory is maintained, possibly in a lower-resolution

format, in a specialized circuit in frontal eye fields (FEF) and intraparietal sulcus (IPS) and

only the PMI is represented in a high-fidelity representation in occipital cortex [11].

Recently, a third alternative, positing a representational transformation of the UMI, has

been proposed. One source of this idea was the results from a dual serial visual search task, in

which the pattern of activity representing a search template in object-selective posterior fusi-

form cortex transitioned to an “opposite” format if a different template was to be searched for

prior to the critical template (i.e., when the critical template was the UMI) relative to when it

was relevant for the current search [19]. By this representational transformation scheme, both

the UMI and the PMI may be encoded simultaneously in posterior cortex, with the format of

their neural representation varying with priority status [20].

Although the van Loon and colleagues [19] study provided a new and plausible account for

the representation of the UMI, much remains to be explored for this priority-based transfor-

mation account. First, it is unclear whether this operation can generalize to different domains

of information, for example, low-level visual information. Second, the van Loon and colleagues

study [19] observed the opposite pattern only during the search display. Tracking the changes

in the neural representations throughout the delay period (with no stimulus on screen) in a

typical working memory task would be essential to understand the mechanism of this neural

signal. Thus, the current study was designed to assess evidence for a priority-based remapping

at 2 novel levels of representation: the item-specific “identity” of oriented-grating stimuli and

the trial-unique “context” of each stimulus, operationalized as location. Specifically, we used

inverted encoding models (IEMs) to reconstruct the orientation and location of the PMI and

of the UMI and tested the remapping hypothesis by comparing the representational formats of

the two.

The design, procedures, and hypotheses were preregistered at https://osf.io/g4c3n/.
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Results

Participants were scanned with fMRI while performing a DSR task in which 2 gratings (9 pos-

sible orientations) were presented serially, each at one of 9 possible locations, and after an ini-

tial Delay1.1, Cue1 indicated which of the two (first or second) would be tested for recall at the

end of the ensuing Delay1.2. Following Recall1, Cue2 indicated the grating to be tested at the

end of Delay2, with a 50% of probability for each grating (Stay or Switch; Fig 1). Of primary

interest was the neural representation of the sample stimuli during Delay1.2, when Cue1 had

given one the status of PMI and the other the status of UMI. The neural representation of the

orientation and the location of each item were assessed by training 2 IEMs with leave-one-

run-out cross-validation. For “PMI-trained IEMs,” the data on each trial were labeled accord-

ing to the identity of the PMI at the time point of interest, and the converse was true for

“UMI-trained” IEMs. Results from the PMI-trained IEMs would be the primary focus of this

study because PMI-trained models have been shown to be valid and robust for various brain

regions, including occipitotemporal cortex, IPS, and FEF [21–23].

General behavioral performance

Behavioral responses were analyzed with a 3-factor mixture model [24] that uses maximum

likelihood estimation to generate estimates of 1) the probability of responses to the cued item

(“responses to target”; pT), 2) the probability of responses incorrectly made to the uncued item

(“responses to nontarget”; pN), and 3) the probability of responses that were guesses, as well as

4) a “concentration” parameter that estimates the precision of nonguess responses. The mix-

ture model estimates for Recall1 showed a concentration of 21.9 ± 3.6, pT of 79.8% ± 1.9%, pN

of 5.2% ± 1.1%, and guessing of 15.0% ± 1.1%. For Recall2, performance on the Stay versus

Switch conditions was significantly different in terms of concentration (21.3 ± 3.1 for Stay ver-

sus 16.1 ± 2.4 for Switch; t[12] = 4.74; p< 0.001) and comparable in terms of the other param-

eters (pT: 77.1% ± 2.6% versus 79.0% ± 2.5%; pN: 6.8% ± 1.5% versus 7.2% ± 1.4%; and

guessing: 15.9% ± 1.5% versus 13.8% ± 1.7%; t-values < 0.21; p-values > 0.145; for Stay versus

Switch, respectively).

Fig 1. Procedure of the DSR task. Two oriented gratings were presented sequentially, each at one of 9 possible locations (white circles are included for illustration but

were not present in the actual experiment). After Delay1.1, a numeral (Cue1) indicated whether the sample item presented first or second would need to be recalled after

Delay 1.2. Recall of the cued item was performed on a recall dial (Recall1), then, after a 0.5-s blank interval, a second cue (Cue2) indicated whether the sample item

presented first or second would need to be recalled after Delay2. DSR, dual serial retrocuing.

https://doi.org/10.1371/journal.pbio.3000769.g001
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Reconstructions with PMI-trained IEMs

Stimulus orientation: Early visual region of interest (ROI). For orientation reconstruc-

tion in early visual cortex, during portions of Delay1.1, both the reconstructions of the PMI

and the UMI were significant (both positive slopes; p-values < 0.020) and were not different

from each other (p-values > 0.173). The PMI and the UMI started to differ in their reconstruc-

tion strength after the onset of Cue1 (presented at 10 s after trial onset). This difference was

significant for 16–18 s after trial onset (p-values = 0.013 and 0.025; Fig 2A). These results were

consistent with previous findings [8–10] demonstrating a clear priority-based modulation of

stimulus representations after retrocuing.

Critically, at the final time point of Delay1.2 (18 s), the reconstructions of the orientation of

the PMI and of the UMI went in opposite directions: there was a significant reconstruction

with a positive slope for the PMI (p = 0.044) and a significant reconstruction with a negative

slope for the UMI (p = 0.048; p-values corrected for multiple comparisons for this and all the

subsequent analyses on time 18 s; Fig 3A). The result for the UMI is particularly noteworthy

because it indicates that information about the unprioritized orientation was maintained in an

active state in early visual cortex but in a format that differed from its representation when

prioritized.

Stimulus orientation: IPS ROI. The time course of the reconstructions of orientation in

IPS showed no convincing evidence of above-chance reconstruction of either the PMI or the

UMI during Delay1.1, although there was a suggestion of an influence of priority during

Delay1.2 that was qualitatively similar to what was observed in the early visual ROI, with the

reconstructions of the PMI and the UMI moving in opposite directions following Cue1.

Reconstruction strengths of the PMI and the UMI differed at 16 s after trial onset (p = 0.022),

but not at 18 s (p = 0.288; Fig 2B). Furthermore, the positive slope of the IEM reconstruction

of the PMI was not statistically different from 0 at either 16 or 18 s (p-values> 0.128), and that

of the UMI was significantly negative at 16 s (p = 0.022), but not at 18 s (p = 0.638; Fig 3B).

Stimulus location: Early visual ROI. The location of the PMI could be reconstructed

throughout Delay1.1 and Delay1.2 (positive slopes; p-values < 0.001; Fig 4A). Reconstruction

of the location of the UMI was also robust with a positive slope during Delay1.1 (p-

values< 0.001), began to decline after the cue, and was no longer different from 0 during the

final time point of Delay1.2 (p = 0.091, Fig 5A).

Stimulus location: IPS ROI. In IPS, the reconstruction time course indicated significant

representation of the location of both the PMI and the UMI during portions of Delay1.1 (both

positive slopes, p-values < 0.026). Priority-based differentiation then developed during

Delay1.2, with the representation of the location of the PMI differing from that of the UMI at

16 s (p = 0.027) and 18 s after trial onset (p< 0.001; Fig 4B). Critically, at 18 s, the slope of the

reconstruction of the location of the PMI was significantly positive (p = 0.013), and the slope

of the reconstruction of the location of the UMI was significantly negative (p = 0.013; Fig 5B).

These results indicate an involvement of IPS in maintaining the location context of both prior-

itized and unprioritized items in working memory.

Reconstructions with UMI-trained IEMs

Stimulus orientation: Early visual ROI. The reconstruction time courses showed above-

chance reconstruction of the PMI during portions of Delay1.1 (positive slopes, p-

values< 0.006), an effect that reversed during Delay1.2 (negative slopes, p-values < 0.001). At

16 s of Delay1.2, the difference between the UMI and the PMI was significant (p = 0.032; S1A

Fig). At 18 s, the reconstruction of the UMI was not successful (p = 0.494), but the reconstruc-

tion of the PMI was successful (negative slope, p< 0.0001; S2A Fig).
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Fig 2. Time course of IEM reconstructions of stimulus orientation. (A) Time course of the slope of orientation reconstructions in early visual ROI. (B) Time course of

the slope of orientation reconstructions in IPS ROI. Slopes of the orientation reconstructions of the 2 sample items were plotted as a function of time from the beginning

of the trial through the time point concurrent with the end of Delay1.2 and the onset of Recall1 (0–18 s after trial onset). All results were from PMI-trained IEMs. Red lines

represent the PMI, and blue lines represent the UMI. Gray shaded area indicates display of Cue1 (10–10.75 s). Red, blue, and black dots indicate p< 0.05 for significant

reconstruction of PMI, significant reconstruction of the UMI, and a significant difference between the two, respectively. All error bars indicate ± 1 SEM. Data are available

at osf.io/G4C3N. a.u., arbitrary unit; IEM, inverted encoding model; IPS, intraparietal sulcus; PMI, prioritized memory item; ROI, region of interest; UMI, unprioritized

memory item.

https://doi.org/10.1371/journal.pbio.3000769.g002
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Stimulus orientation: IPS ROI. The time course showed above-chance reconstructions

for both the PMI and the UMI during portions of Delay1.1 and then only for the UMI during

early Delay1.2 (positive slopes, p-values < 0.048; S1B Fig). However, neither reconstruction

was significant during late Delay1.2 (p-values > 0.143, S2B Fig).

Stimulus location: Early visual ROI. The reconstruction time courses showed significant

reconstructions for the PMI and the UMI throughout Delay1.1 and above-chance reconstruc-

tions for the two for part of early Delay1.2 (both positive slopes, p-values < 0.016; S3A Fig).

During late Delay1.2, neither location could be reconstructed (p-values = 0.124; S4A Fig).

Stimulus location: IPS ROI. There was above-chance reconstruction for the PMI and for

the UMI for portions of Delay1.1 (positive slopes, p-values < 0.012), but not for Delay1.2,

although a difference between the PMI and the UMI emerged at 18 s during Delay1.2
(p = 0.045; S3B Fig). When focusing on 18 s, neither the UMI nor the PMI location could be

reconstructed in IPS (p-values = 0.126 and 0.218; S4B Fig), although the pattern was consistent

with the PMI-trained IEM results, with a positive trending slope for the UMI and a negative

trending slope for the PMI.

Temporal generalization of reconstructions

Finally, it is worthy of note that temporal generalization analysis demonstrated failed generali-

zation between the encoding and the maintenance periods for both orientation (S5 Fig) and

location (S6 Fig), suggesting a dynamic change in neural code from the encoding to different

maintenance periods in the DSR task (full statistical results can be found in S1–S8 Tables).

Fig 3. IEM reconstructions of stimulus orientation in Delay1.2. (A) IEM reconstructions of stimulus orientation during late Delay1.2 (18 s after trial onset) in early

visual ROI. (B) IEM reconstructions of stimulus orientation during late Delay1.2 in IPS ROI. All results were from PMI-trained IEMs. Red lines represent the PMI, and

blue lines represent the UMI. All error bars indicate ± 1 SEM. Data are available at osf.io/G4C3N. a.u., arbitrary unit; IEM, inverted encoding model; IPS, intraparietal

sulcus; PMI, prioritized memory item; ROI, region of interest; UMI, unprioritized memory item.

https://doi.org/10.1371/journal.pbio.3000769.g003
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Fig 4. Time course of IEM reconstructions of stimulus location. (A) Time course of the slope of location reconstructions in early visual ROI. (B) Time course of the

slope of location reconstructions in IPS ROI. Slopes of the location reconstructions of the 2 sample items were plotted as a function of time from the beginning of the trial

through the time point concurrent with the end of Delay1.2 and the onset of Recall1 (0–18 s after trial onset). All results were from PMI-trained IEMs. Red lines represent

the PMI, and blue lines represent the UMI. Gray shaded area indicates display of Cue1 (10–10.75 s). Red, blue, and black dots indicate p< 0.05 for significant

reconstruction of PMI, significant reconstruction of the UMI, and a significant difference between the two, respectively. All error bars indicate ± 1 SEM. Data are available

at osf.io/G4C3N. a.u., arbitrary unit; IEM, inverted encoding model; IPS, intraparietal sulcus; PMI, prioritized memory item; ROI, region of interest; UMI, unprioritized

memory item.

https://doi.org/10.1371/journal.pbio.3000769.g004
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Discussion

What neural mechanism underlies the maintenance of working memory content with differ-

ent priorities? The present results suggest that, when deprioritized, the neural representations

of an item’s identity and of its context undergo a transformation that we characterize as prior-

ity-based remapping. With fMRI, a neural code refers to the systematic set of mappings

between unique stimulus values and unique patterns of neural activity, the property that sup-

ports multivariate decoding and encoding. The present results, for example, indicate that 9 val-

ues of stimulus orientation map to 9 different high-dimensional patterns of activity within

early visual cortex. Furthermore, they suggest that when a stimulus transitions to an unpriori-

tized status, this set of mappings rotates such that the individual mappings between stimulus

values and neural patterns are now different, but the distance (in orientation) between neural

patterns is preserved. Thus, although the item’s neural representation has changed, the code

underlying the representation of orientation has not changed. For this reason, we characterize

the priority-based transformations reported here as examples of remapping, not of recoding.

This remapping account is also consistent with the findings of van Loon and colleagues [19],

who observed that a classifier trained on a stimulus category when it was the PMI could also

decode that category when it was the UMI, even though the pattern of activity of the UMI pro-

jected into an opposite region of multidimensional scaling space relative to the PMI. The char-

acteristics underlying priority-based remapping may account for some of the mixed results in

previous work on the effects of retrocuing.

Fig 5. IEM reconstructions of stimulus location in Delay1.2. (A) IEM reconstructions of stimulus location during late Delay1.2 (18 s after trial onset) in early visual ROI.

(B) IEM reconstructions of stimulus location during late Delay1.2 in IPS ROI. All results were from PMI-trained IEMs. Red lines represent the PMI, and blue lines

represent the UMI. All error bars indicate ± 1 SEM. Data are available at osf.io/G4C3N. a.u., arbitrary unit; IEM, inverted encoding model; IPS, intraparietal sulcus; PMI,

prioritized memory item; ROI, region of interest; UMI, unprioritized memory item.

https://doi.org/10.1371/journal.pbio.3000769.g005
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Stimulus identity

In this study, IEM of delay-period activity indicated that early visual cortex represents the ori-

entation of grating stimuli when they are being held in the FoA, an observation that is broadly

consistent with previous neuroimaging studies of working memory for stimuli defined by low-

level visual features (for example, [22,25–27]). When a retrocue designated an item a UMI,

IEM indicated that its representation in early visual cortex underwent a transformation that

corresponded to a rotation of 90˚ relative to how it was represented in the FoA. By extension,

the present results also lend support to the interpretation of the priority-based transformation

reported by van Loon and colleagues [19]. Because they observed a transformation of the pos-

terior inferior temporal representation of objects in their study (cows, dressers, ice skates) to

an “opposite” pattern in multidimensional scaling space, the general principle underlying pri-

ority-based remapping may be one of transforming the representation of deprioritized infor-

mation into a format that is complementary to its representation when in the FoA, effectively

maximizing the difference between an item when it is a UMI versus when it is a PMI. Further-

more, although the design of the present study did not allow us to assess stimulus representa-

tion during Delay2, results from a different study that used a similar procedure suggest that on

“switch” trials, the representation of the previously deprioritized item rotates back to its PMI

format [28].

Stimulus context

The binding of information about a stimulus to its trial-unique context is fundamental to what

it means to hold information in working memory [29,30]. In the present study, the location at

which the items held in working memory had been presented (i.e., their context) could be suc-

cessfully reconstructed in IPS, and the format of these representations also displayed priority-

based remapping. This effect, as measured by IEM, corresponded to a rotation of the mne-

monic representation of an item’s location by 180˚ when it was a UMI relative to when it was

in the FoA.

These results are consistent with the idea that a parietal priority map tracks the location

context of all items held in visual working memory and that, similar to the neural representa-

tion of stimulus identity, the priority-based representational transformation of location con-

text is also implemented via rotational remapping. Interestingly, in the present study, location

context was not needed for task performance because items were cued according to order of

presentation. These results are consistent with previous reports of an automatic encoding of

location information [31], suggesting that the binding between location and identity is an

intrinsic process in working memory for objects.

What brain areas support priority-based remapping?

Noteworthy in our results is the fact that the priority-based remapping of stimulus orientation

was observed in early visual cortex, but not in IPS, whereas the priority-based remapping of

stimulus location was observed in IPS, but not in early visual cortex. Considering orientation,

we cannot rule out the possibility that our study may have simply lacked the power to detect

the remapping of orientation in IPS. Already in Delay1.1, when both items were in the FoA,

there was only weak evidence for the representation of orientation in IPS, and we know from

previous work that successful decoding of low-level visual features is less robust in IPS relative

to early visual cortex, particularly in conditions, like high memory load, when stimulus infor-

mation is weaker (for example, [32]). This low-sensitivity account seems much less plausible,

however, for the representation of location, which was robust in early visual cortex for the
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PMI. Two other factors that may be important for understanding our results are domain speci-

ficity and task-specific function.

A domain-specificity account would predict that priority-based remapping is predomi-

nantly engaged in regions that are necessary for representing the visual feature in question.

From this perspective, our results may have been predictable from the facts that damage to

occipital areas, but not IPS, can produce apperceptive agnosia [33], and that damage to IPS,

but not to early visual areas, can produce disordered spatial cognition [34]. It is noteworthy, in

this regard, that van Loon and colleagues [19] observed priority-based remapping of category

representations in fusiform gyrus. A functional account would emphasize the content/context

distinction. For tasks for which stimulus location serves as context, the representation of loca-

tion in IPS might undergo priority-based remapping because of this region’s role in context

binding (for example, [32]). From this perspective, despite the strong representation of retino-

topy in early visual cortex, the absence of a functional role for this brain area in context bind-

ing may explain the absence of evidence for remapping of the representation of location. It will

be interesting, in future work, to pit these 2 accounts against each other with a task in which

stimulus location is the to-be-remembered content and orientation the context that is used for

cuing priority.

Comparison with previous results

Why did the present study and that of van Loon and colleagues [19] find evidence for active

representation of the UMI in stimulus-representing cortex when many previous attempts with

the DSR task have been unsuccessful? One important factor is how the classifier/encoding

model is trained for probing the representation of the UMI. In previous studies, researchers

either used a separate 1-item task to train the classifier [8–10] or used a regression model

based on the UMI [11]. In the present study and in van Loon and colleagues [19], it was a

decoder/encoder based on the PMI that found evidence for active neural representation of the

UMI. Decoders trained on a different task or on the UMI may not be able to discriminate rep-

resentations that are rotations of the PMI.

The trend in the present study—that results with UMI-trained models were less robust than

those with PMI-trained models—is also consistent with previous work. For example, Christo-

phel and colleagues [11] could not decode UMI-related information in an ROI comprising

V1–V4 (although decoder performance came closer to statistical significance when the analysis

was restricted to V3 and V4). In the study from van Loon and colleagues [19], although decod-

ing of the UMI using a UMI-trained classifier was statistically significant, the decoding accu-

racy was markedly lower in comparison with using a PMI-trained classifier. Together, the 3

sets of results are consistent with the idea that UMI-trained models/classifiers are not as effec-

tive as PMI-trained models/classifiers.

A notable inconsistency between the present results and those from a previous study that

used the DSR technique [11] is the absence, in this study, of evidence for an active representa-

tion of the UMI in IPS, whether with PMI- or UMI-trained IEMs. One factor, mentioned

above, is that in our experience, successful decoding of low-level visual features is less robust

in IPS relative to early visual cortex (for example, [32]). Perhaps relatedly, it has been suggested

that the representation of stimulus identity in IPS is lower resolution and weaker than in early

visual cortex (c.f. [11]), factors that could have influenced our results.

Possible alternative accounts

Because the prioritization-related changes that we have documented here manifest as a “flip-

ping” of IEM reconstructions, there are at least 2 alternatives to priority-based remapping that
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need to be considered: undershoot and inhibition. Undershoot can occur when the drive on

activity in a region is removed, such as for early visual cortex with the offset of visual stimula-

tion. In the present study, an undershoot account would hold that activity in voxels represent-

ing the UMI return to baseline when the retrocue triggers the shift of attention to the PMI.

Importantly, because undershoot is a passive phenomenon, one would expect it to be present

for all conditions. In the present results, however, the effects were specific to domain and to

brain region: they were observed in early visual cortex for the representation of orientation,

but not of location, and they were observed in IPS for location, but not for orientation. Fur-

thermore, because in early visual cortex, the Delay1.1 representation of location was greater in

amplitude than was that of orientation, any undershoot in that region would be expected to be

greater for location than for orientation.

A second alternative account of the prioritization-related changes reported here is stimu-

lus-specific inhibition or suppression. By this account, if the signal intensity in voxels driving

the orientation channel that the UMI is centered on is suppressed, spontaneous activity in vox-

els that drive off-orientation channels could cause the inversion in channel responses observed

in the IEM results. Further computational modeling may be useful for differentiating between

different accounts.

It is also important to note, as we consider alternative accounts, that priority-based remap-

ping of active representations is not incompatible with the previously proposed, activity-silent

mechanism of retaining the UMI. Because remapping of the active representations of stimulus

information was only evident later in the delay period, it is possible that remapping also

occurred at the synaptic level before the representation became reactivated. It is also possible

that remapping occurred at the activity level with the activity-silent representation unchanged.

Therefore, several different mechanisms may work together to support the representation of

priority in working memory.

Priority-based remapping in visual working memory

The proposed mechanism of priority-based remapping can be considered at several levels of

description. At the level of its neural implementation, priority-based remapping may be

accomplished via a systematic reweighting of the weights that map from neuron space into the

lower-dimensional space of population-level representation. This is reminiscent of the ordinal

reversal of voxel signal intensities between encoding and retention that has been reported in

primary auditory cortex for auditory working memory [35]. It is also reminiscent of the rota-

tional dynamics described in mouse auditory cortex by Libby and Buschman [36], a result of a

subset of the neurons representing a memory dynamically inverting their selectivity.

At the level of control, priority-based remapping has been modeled as a consequence of

competition between prefrontal pointers that activate their corresponding perceptual repre-

sentations with different levels of priority [18,37]. Whether the effects that we observed in pari-

etal cortex may also reflect the operation of a source of the priority-based control of

information held in working memory, as implemented via the priority-sensitive representation

of stimulus context, is an important question for future research.

Finally, at a theoretical level, why should the features of a stimulus be represented in rotated

formats when the stimulus is a UMI versus when it is a PMI? One possible explanation is that

such remapping may be an effective way to keep information in an active, accessible state

while also accomplishing the simultaneous goals of protecting it from degradation and mini-

mizing the likelihood that it will interfere with the real-time guidance of behavior. Similar

ideas have been proposed, for example, as a basis for retaining remembered information in
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noisy neural networks [37] or the projection of active representations into a null space [38] as

a means of maintaining multiple representations of goal states [39].

To conclude, with multivariate IEMs, we observed and quantified changes in the neural

representation of stimulus information as a function of attentional prioritization. In early

visual cortex, the representation of the orientation of a sample transformed into an opposite

pattern when it transitioned from a PMI to a UMI. In IPS, the same was true for the represen-

tation of the location at which that item had been presented. These results suggest a mecha-

nism for a priority-based remapping of information when it is held in working memory but

outside the FoA.

Methods

Ethics statement

This study was approved by the University of Wisconsin-Madison Health Sciences Institu-

tional Review Board (2017–0344) and was conducted according to the principles of the Decla-

ration of Helsinki. Participants provided written informed consent prior to participation.

Participants

An a priori power analysis based on the effect sizes found in a previous experiment [20] indi-

cated that a target sample size of 13 subjects was needed to detect the smallest of the effects pre-

dicted by our hypotheses. A total of 14 individuals participated in the study (3 male, average

age 21.1 ± 4.5 years), with one subsequently excluded because of excessive head movement. All

were recruited from the University of Wisconsin-Madison community. All had normal or cor-

rected-to-normal vision and were neurologically healthy. All participants were monetarily

compensated for their participation.

Stimuli and procedure

All stimuli were created and presented using MATLAB (The MathWorks, Natick, MA, USA)

and Psychtoolbox 3 extensions [40,41] on a 60-Hz Avotec Silent Vision 6011 projector (Avo-

tec, Stuart, FL, USA) and viewed through a coil-mounted mirror in the MRI scanner. A track-

ball response pad (Current Designs, Philadelphia, PA, USA) was employed to record the

behavioral responses.

Participants performed a DSR task in the scanner. A white fixation dot was presented at the

center of the screen throughout the experiment. On each trial, participants first viewed 2 sam-

ple stimuli (sinusoidal gratings: radius = 5˚; contrast = 0.6; spatial frequency = 0.5 cycles/˚;

phase angle randomized between 0˚ and 180˚) presented sequentially on the screen (0.75 s

exposure or each, separated by an ISI of 0.5 s). The orientation of each sample was selected

independently from a fixed set of 9 values, spaced by 20˚ and with a jitter between 0˚–3˚ added

to each, and the location of each was selected independently from a fixed set of 9 locations,

each centered on an imaginary circle with radius of 8˚ from central fixation and each spaced

40˚ distant from the nearest locations. Offset of the second sample was followed by a delay

period (Delay1.1, of 8 s), then a retrocue (Cue1; central presentation for 0.75 s) specifying

whether the sample presented first or second (“1” or “2”) would need to be recalled at the end

of Delay1.2 (8 s). Recall was prompted by an orientation wheel appearing at the same location

as the cued sample, and participants had been trained to use it to reproduce the cued orienta-

tion within a 4-s response window (Recall1). 0.5 s after the end of Recall1, a second retrocue

(Cue2, central presentation for 0.75 s), indicated which sample (“1” or “2”) need to be recalled

at the end of Delay2 (2 s). On 50% of trials, Cue2 cued the same item that had been cued by
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Cue1 (a “Stay” cue), and for the remaining 50%, it cued the previously uncued sample (a

“Switch” cue). Recall2 (same procedure as Recall1) was followed by an intertrial interval that

varied randomly between 6, 8, and 10 seconds (Fig 1). During Delay1.2, the cued sample was

termed the PMI and the uncued sample the UMI.

All participants completed 2 fMRI scanning sessions. For the first 4 participants, the first

scanning session comprised 12 blocks of 12 trials each, and a second scanning session com-

prised thirteen 12-trial blocks for a total of 300 trials. Each scanned block lasted 464 s. The

selection of stimulus location and orientation were independent, such that the orientation of

the second sample matched that of the first on approximately one-ninth of the trials, and the

location of the second sample matched that of the first on approximately one-ninth of the tri-

als. For the remaining participants, we fully counterbalanced the conditions. To fully cross

stimulus orientation, stimulus location, Cue1, and Cue2, 324 trials were required. To achieve

this, participants 5–13 performed thirteen 12-trial runs during the first scanning session and

fourteen 12-trial runs during the second scanning session. Each run consisted of 12 trials,

resulting in a run length of 464 s. Before the first session, each participant completed 2 blocks

of practice trials (12 trials per block) outside of the scanner and another block of practice

within the scanner before the fMRI scanning began. During the scan, eye position was moni-

tored and recorded using the Avotec RE-5700 eye-tracking system (Avotec).

This design was modified from a previous study [42] that found that in early visual cortex,

the IEM reconstruction of a stimulus’ orientation when a UMI was opposite to its reconstruc-

tion when a PMI, and in IPS, the IEM reconstruction of its location when a UMI was opposite

to its reconstruction when a PMI. One complication for the representational transformation

interpretation of those results, however, was that there existed in both a negative correlation

between the identities of the PMI and UMI: both tasks were designed such that the PMI and

UMI could never be the same on a single trial. This negative correlation could conceivably pro-

duce negative IEM reconstruction for analytic reasons. In the present study, the orientation

and location of each trial’s samples were selected independently. This aspect of the design,

however, meant that retrocuing in terms of an item’s location would be ambiguous on trials

when the 2 samples appeared at the same location, and so sequential presentation and cuing

by order were instituted. Note that although this aspect of the procedure meant that stimulus

location was not task-critical (for example, one could ignore or forget where the samples had

appeared and still succeed at the task), we expected that participants would nonetheless repre-

sent sample location in working memory. For example, previous work has indicated that stim-

ulus location is encoded robustly during working memory for the orientation of individually

presented stimuli [23,31].

Behavioral analysis

We analyzed behavioral responses with a 3-factor mixture model [24] that uses maximum like-

lihood estimation to generate estimates of 1) the probability of responses based on a represen-

tation of the probed item (“responses to target”), 2) the probability of responses incorrectly

based on a representation of the unprobed item (i.e., “misbinding” or “swap” errors

(“responses to nontarget”), and 3) the probability of responses that were guesses not based on

either memory item, as well as 4) a “concentration” parameter that estimates the precision of

nonguess responses. Conceptually, the concentration parameter is similar to a model-free

measure of the precision of responses that is computed as the inverse of the standard deviation

of the distribution of responses.
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fMRI data acquisition

Whole-brain images were acquired using a 3 Tesla GE MR scanner (Discovery MR750; GE

Healthcare, Chicago, IL, USA) at the Lane Neuroimaging Laboratory at the University of Wis-

consin-Madison HealthEmotions Research Institute (Department of Psychiatry). Functional

imaging was conducted using a gradient-echo echo-planar sequence (2 s repetition time [TR],

22 ms echo time [TE], 60˚ flip angle) within a 64 × 64 matrix (42 axial slices, 3 mm isotropic).

A high-resolution T1 image was also acquired for each session with a fast, spoiled gradient-

recalled-echo sequence (8.2 ms TR, 3.2 ms TE, 12˚ flip angle, 176 axial slices, 256 × 256 in-

plane, 1.0 mm isotropic).

fMRI data preprocessing

Functional MRI data were preprocessed using AFNI (http://afni.nimh.nih.gov) [43]. The data

were first registered to the final volume of each scan and then to anatomical images of the first

scan session. Six nuisance regressors were included in GLMs to account for head motion arti-

facts in 6 different directions. The data were then motion corrected, detrended, and z-score

normalized within each run.

fMRI ROI definition

The ROIs were created with a conjunction of anatomically and functionally defined voxels.

We first created anatomical ROIs by extracting masks from the probabilistic atlas of Wang and

colleagues [44] and warping them to each subject’s structural scan in native space to create 2

regional masks, defining an early visual ROI as V1–V2 (merged, both hemispheres) and an

IPS ROI as IPS0–5 (merged, both hemispheres). To identify task-related activity, we solved a

general linear model (GLM) with AFNI, modeling each epoch of the task with 6 boxcar regres-

sors—Sample (2 s), Delay1.1 (8 s), Delay1.2 (8 s), Recall1 (4 s), Delay2 (2 s), and Recall2 (4 s)—

convolved with a canonical hemodynamic response function and also including covariates to

control for motion. We then created an anatomically constrained functional ROI for bilateral

early visual cortex by selecting the 500 voxels inside the early visual anatomical ROI with the

strongest loading on the Sample regressor and for bilateral IPS by selecting the 500 voxels

inside the IPS anatomical ROI with highest loading on the Delay1.2 regressor.

Multivariate IEM

Mathematics. All IEM analyses were performed using custom functions in MATLAB.

The IEM assumes that the responses of each voxel can be characterized by a small number of

hypothesized tuning channels. The numbers of orientation and location tuning channels were

both 9. Following previous work [21,45], the idealized feature tuning curve of each channel

was defined as a half-wave–rectified sinusoid raised to the eighth power for both orientation

and location.

For the IEM, we first computed the weight matrix (W) that projects the hypothesized chan-

nel responses (C1) to actual measured fMRI signals in the training data set (B1) and then

extracted the estimated channel responses (Ĉ2) for the test data set (B2) using this weight

matrix. The relationship between the training data set (B1, v × n, v: the number of voxels in the

ROI; n: the number of repeated measurements) and the channel responses (C1, k × n, k: the

number of orientations/locations) was characterized by

B1 ¼WC1;

where W was the weight matrix (v × k).
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Therefore, the least-squared estimate of the weight matrix (Ŵ) was calculated using linear

regression:

Ŵ ¼ B1C
T
1
ðC1C

T
1
Þ
� 1
:

The channel responses (Ĉ2) for the test data set (B2) was then estimated using the weight

matrix (Ŵ ):

Ĉ2 ¼ ðŴ
TŴÞ� 1ŴTB2:

The logic behind inferring neural codes from patterns of IEM training and

testing

We understand a neural code to refer to the systematic set of mappings between unique stimu-

lus values and unique patterns of neural activity. For example, 9 values of stimulus orientation

might map to 9 different high-dimensional patterns of activity within an ROI. One way in

which neural coding in posterior cortex could vary with an item’s priority status would be if

this set of mappings were to rotate such that the individual mappings between these stimulus

values and these neural patterns are now different, but the distance between neural patterns is

preserved. In other words, although each item’s neural representation has changed, the neural

code has not changed. Therefore, we would consider such a transformation to be an example

of remapping (of stimulus value to neural pattern), not of recoding. Such remapping would be

consistent with the findings of van Loon and colleagues [19], who observed that a classifier

trained on a stimulus category when it was the PMI could also decode that category when it

was the UMI, even though the pattern of activity of the UMI projected into an opposite region

of multidimensional scaling space relative to the PMI. Another way in which neural coding

could vary with priority status would be if an altogether different set of mappings between the

9 stimulus values and 9 new patterns of activity were established. This would correspond to

recruiting a different neural code. Under such a recoding scenario, cross-condition classifica-

tion, such as described by van Loon and colleagues [19], would fail.

In the present study, neural codes were operationalized by IEMs, and 4 different patterns of

results were anticipated as possible outcomes. We illustrate them here with reference to stimu-

lus orientation. The most straightforward scenario would be when an IEM trained on the ori-

entation of stimuli when they are PMIs can successfully reconstruct the orientation of the

same stimuli when they are UMIs. This would be interpreted as evidence that stimulus orienta-

tion is represented in the same neural code regardless of priority status. A second pattern

could be that a PMI-trained IEM can successfully reconstruct the orientation of UMIs but

does so in such a way that the reconstructed orientation is systematically shifted by a constant

amount. For example, a stimulus with 0˚ orientation reconstructs as 90˚ when it is a UMI, and

a stimulus with 30˚ orientation reconstructs as 120˚ when it is a UMI. This would be inter-

preted as evidence for a rotational remapping within the same neural code because it would

correspond to the process described in the previous paragraph. A third pattern could be that a

PMI-trained IEM fails to reconstruct the UMI, but the UMI can be reconstructed with a differ-

ent IEM (for example, with a UMI-trained IEM). This would be interpreted as evidence that

the same stimulus information is represented in different neural codes depending on priority

status. The final possible outcome that we considered would be the failure to reconstruct the

orientation of the UMI with any IEM, which would amount to a failure to find evidence for an

active representation of the UMI (in the context of all the possible IEMs that have been

trained).
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Analysis plan

We used a leave-one-run-out cross-validation procedure to train and test IEMs, building

weight matrices with signals from a time point of interest from the trials from all but one of

the runs, then tested on the signals from that same time point from the trials in the held-out

run. This procedure was iterated such that each run was tested using a separate training data

set. The estimated channel outputs obtained after each iteration were shifted to a common

center, with 0˚ corresponding to the tested feature (orientation/location) channel.

Specifically, for “PMI-trained IEMs,” the data on each trial were labeled according to the

identity of the PMI at the time point of interest, such that the model learned each of the 9 pos-

sible values of stimulus orientation. Importantly, because the orientation of the UMI was ran-

dom relative to the PMI on each of these trials, a PMI-trained IEM could not learn any

information about the UMI. For “UMI-trained” IEMs, the data from the same time points

were labeled according to the identity of the UMI. For PMI-trained IEMs, the IEMs were

tested on data labeled according to the identity of the PMI as well as on data labeled according

to the identity of the UMI. When tested with UMI-labeled data, reconstructions from this

PMI-trained IEM would index the extent to which the representational format of the UMI was

similar to that of the PMI. Results from the PMI-trained IEMs would be the primary focus of

this study because PMI-trained models have been shown to be valid and robust for various

brain regions, including occipitotemporal cortex, IPS, and FEF [21–23]. For UMI-trained

IEMs, the IEM was trained on data labeled according to the identity of the UMI and tested on

data labeled according to the identity of the both the PMI and the UMI.

For each IEM, we first examined the time course of reconstructions from trial onset to the

onset of Recall1 (i.e., from 0 to 18 s after trial onset), which demonstrated how representations

of the PMI and of the UMI evolved before and after Cue1 (i.e., during Delay1.1 and Delay1.2).

Moreover, because we were interested in the delay period after the retrocue onset (Delay1.2),

we focused on 18 s after trial onset (i.e., 7.25 s after Cue1 offset) for statistical comparisons in

order to maximize the likelihood that our analyses would capture the effect of the retrocue

while taking into account the hemodynamic lag in the BOLD signal. All the IEMs were esti-

mated for orientations and locations separately. Temporal generalization analyses were con-

ducted by training and testing the IEM on every time point to examine whether the neural

code at a specific time point could be successfully generalized to another.

Statistical analyses

To characterize the strength of each reconstruction, we collapsed over the channel responses

on both sides of the tested channel, averaged them, and calculated the slope of each collapsed

reconstruction using linear regression [31,46]. A larger positive slope indicates stronger posi-

tive representation, and a larger negative slope indicates stronger negative representation. We

used a bootstrapping procedure [21] to characterize the significance of the slopes. For each

IEM/ROI, 10 orientation/location reconstructions were randomly sampled with replacement

from the reconstruction pool of 13 participants and averaged. This procedure was repeated

10,000 times, resulting in 10,000 average orientation/location reconstructions for each IEM/

ROI and, correspondingly, 10,000 slopes. To obtain a two-tailed measure of the p-values, the

probabilities of obtaining a positive (ppos; reconstruction peaking at the tested channel) or neg-

ative (pneg) slope among the 10,000 slopes were calculated separately, and the p-values of the

bootstrapping tests were calculated using the following equation:

p ¼ 2 �minðppos; pnegÞ:
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To characterize the difference between 2 slopes, we first calculated the difference between 2

bootstrapped slopes 10,000 times, which generated 10,000 slope differences. The significance

of the slope difference was then calculated using the same two-tailed method as above. All the

p-values for the analysis at 18 s were corrected for multiple comparisons across conditions and

ROIs; all the p-values for the time course analysis remained uncorrected.

Supporting information

S1 Fig. Time course of IEM reconstructions of stimulus orientation using UMI-trained

IEMs. (A) Time course of the slope of orientation reconstructions in early visual ROI. (B)

Time course of the slope of orientation reconstructions in IPS ROI. Slopes of the orientation

reconstructions of the 2 sample items were plotted as a function of time from the beginning of

the trial through the time point concurrent with the end of Delay1.2 and the onset of Recall1
(0–18 s after trial onset). All results were from UMI-trained IEMs. Red lines represent the

PMI, and blue lines represent the UMI. Gray shaded area indicates display of Cue1 (10–10.75

s). Red, blue, and black dots indicate p< 0.05 for significant reconstruction of PMI, significant

reconstruction of the UMI, and a significant difference between the two, respectively. All error

bars indicate ± 1 SEM. Data are available at osf.io/G4C3N. IEM, inverted encoding model;

IPS, intraparietal sulcus; PMI, prioritized memory item; ROI, region of interest; UMI, unprior-

itized memory item.

(TIF)

S2 Fig. IEM reconstructions of stimulus orientation in Delay1.2 using UMI-trained IEMs.

(A) IEM reconstructions of stimulus orientation during late Delay1.2 (18 s after trial onset) in

early visual ROI. (B) IEM reconstructions of stimulus orientation during late Delay1.2 in IPS

ROI. All results were from UMI-trained IEMs. Red lines represent the PMI, and blue lines rep-

resent the UMI. All error bars indicate ± 1 SEM. Data are available at osf.io/G4C3N. IEM,

inverted encoding model; IPS, intraparietal sulcus; PMI, prioritized memory item; ROI, region

of interest; UMI, unprioritized memory item.

(TIF)

S3 Fig. Time course of IEM reconstructions of stimulus location using UMI-trained IEMs.

(A) Time course of the slope of location reconstructions in early visual ROI. (B) Time course

of the slope of location reconstructions in IPS ROI. Slopes of the location reconstructions of

the 2 sample items were plotted as a function of time from the beginning of the trial through

the time point concurrent with the end of Delay1.2 and the onset of Recall1 (0–18 s after trial

onset). All results were from UMI-trained IEMs. Red lines represent the PMI, and blue lines

represent the UMI. Gray shaded area indicates display of Cue1 (10–10.75 s). Red, blue, and

black dots indicate p< 0.05 for significant reconstruction of PMI, significant reconstruction

of the UMI, and a significant difference between the two, respectively. All error bars indicate ± 1

SEM. Data are available at osf.io/G4C3N. IEM, inverted encoding model; IPS, intraparietal sul-

cus; PMI, prioritized memory item; ROI, region of interest; UMI, unprioritized memory item.

(TIF)

S4 Fig. IEM reconstructions of stimulus location in Delay1.2 using UMI-trained IEMs. (A)

IEM reconstructions of stimulus location during late Delay1.2 (18 s after trial onset) in early

visual ROI. (B) IEM reconstructions of stimulus location during late Delay1.2 in IPS ROI. All

results were from UMI-trained IEMs. Red lines represent the PMI, and blue lines represent

the UMI. All error bars indicate ± 1 SEM. Data are available at osf.io/G4C3N. IEM, inverted

encoding model; IPS, intraparietal sulcus; PMI, prioritized memory item; ROI, region of
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interest; UMI, unprioritized memory item.

(TIF)

S5 Fig. Time-point-by-time-point temporal generalization of orientation. Temporal gener-

alization of orientation reconstructions, in early visual and IPS ROIs, for PMIs and UMIs

using PMI-trained IEMs. Strength of reconstructions are indicated by the slope of reconstruc-

tions. The x- and y-axes show the tested and training time points, respectively. Data are avail-

able at osf.io/G4C3N. IEM, inverted encoding model; IPS, intraparietal sulcus; PMI,

prioritized memory item; ROI, region of interest; UMI, unprioritized memory item.

(TIF)

S6 Fig. Time-point-by-time-point temporal generalization of location. Temporal generali-

zation of location reconstructions, in early visual and IPS ROIs, for PMIs and UMIs using

PMI-trained IEMs. Strength of reconstructions are indicated by the slope of reconstructions.

The x- and y-axes show the tested and training time points, respectively. Data are available at

osf.io/G4C3N. IEM, inverted encoding model; IPS, intraparietal sulcus; PMI, prioritized mem-

ory item; ROI, region of interest; UMI, unprioritized memory item.

(TIF)

S1 Table. p-Values (uncorrected) of time-point-by-time-point temporal generalization of

orientation reconstructions of PMI in early visual cortex. PMI, prioritized memory item.

(XLSX)

S2 Table. p-Values (uncorrected) of time-point-by-time-point temporal generalization of

orientation reconstructions of UMI in early visual cortex. UMI, unprioritized memory item.

(XLSX)

S3 Table. p-Values (uncorrected) of time-point-by-time-point temporal generalization of

orientation reconstructions of PMI in IPS. IPS, intraparietal sulcus; PMI, prioritized mem-

ory item.

(XLSX)

S4 Table. p-Values (uncorrected) of time-point-by-time-point temporal generalization of

orientation reconstructions of UMI in IPS. IPS, intraparietal sulcus; UMI, unprioritized

memory item.

(XLSX)

S5 Table. p-Values of time-point-by-time-point temporal generalization of location recon-

structions of PMI in early visual cortex. PMI, prioritized memory item.

(XLSX)

S6 Table. p-Values (uncorrected) of time-point-by-time-point temporal generalization of

location reconstructions of UMI in early visual cortex. UMI, unprioritized memory item.

(XLSX)

S7 Table. p-Values (uncorrected) of time-point-by-time-point temporal generalization of

location reconstructions of PMI in IPS. IPS, intraparietal sulcus; PMI, prioritized memory

item.

(XLSX)

S8 Table. p-Values (uncorrected) of time-point-by-time-point temporal generalization of

location reconstructions of UMI in IPS. IPS, intraparietal sulcus; UMI, unprioritized mem-

ory item.

(XLSX)
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