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The visual system uses two complimentary strategies to process multiple objects simultaneously within a scene and update
their spatial positions in real time. It either uses selective attention to individuate a complex, dynamic scene into a few focal
objects (i.e., object individuation), or it represents multiple objects as an ensemble by distributing attention more globally
across the scene (i.e., ensemble grouping). Neural oscillations may be a key signature for focal object individuation versus
distributed ensemble grouping, because they are thought to regulate neural excitability over visual areas through inhibitory
control mechanisms. We recorded whole-head MEG data during a multiple-object tracking paradigm, in which human partici-
pants (13 female, 11 male) switched between different instructions for object individuation and ensemble grouping on differ-
ent trials. The stimuli, responses, and the demand to keep track of multiple spatial locations over time were held constant
between the two conditions. We observed increased a-band power (9-13Hz) packed into oscillatory bursts in bilateral inferior
parietal cortex during multiple-object processing. Single-trial analysis revealed greater burst occurrences on object individua-
tion versus ensemble grouping trials. By contrast, we found no differences using standard analyses on across-trials averaged
a-band power. Moreover, the bursting effects occurred only below/at, but not above, the typical capacity limits for multiple-
object processing (at ;4 objects). Our findings reveal the real-time neural correlates underlying the dynamic processing of
multiple-object scenarios, which are modulated by grouping strategies and capacity. They support a rhythmic, a-pulsed orga-
nization of dynamic attention to multiple objects and ensembles.
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Significance Statement

Dynamic multiple-object scenarios are an important problem in real-world and computer vision. They require keeping track
of multiple objects as they move through space and time. Such problems can be solved in two ways: One can individuate a
scene object by object, or alternatively group objects into ensembles. We observed greater occurrences of a-oscillatory burst
events in parietal cortex for processing objects versus ensembles and below/at versus above processing capacity. These results
demonstrate a unique top-down mechanism by which the brain dynamically adjusts its computational level between objects
and ensembles. They help to explain how the brain copes with its capacity limitations in real-time environments and may
lead the way to technological innovations for time-critical video analysis in computer vision.

Introduction
Dynamic perceptual experiences require the visual system to
process multiple objects simultaneously within a scene and
update them from moment to moment. Such situations provide
a high degree of ecological validity for real-world visual cognition
because we often encounter them in everyday life, for example,
in traffic situations or in team sports (Scholl, 2009). Moreover,
dynamic multiple-object scenarios are an important problem in
computer vision with wide applications in the time-critical video
analysis for robotics or autonomous driving (Kazanovich and
Borisyuk, 2006; Xiang et al., 2015). An ideal task to investigate
this ability in experimental settings is multiple-object tracking
(MOT) (Pylyshyn and Storm, 1988). In a typical MOT trial,
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participants need to keep track of multi-
ple, randomly moving target-objects
among distractors for a period of several
seconds (see Fig. 1A).

Previous research has identified two
distinct key strategies for the visual sys-
tem to deal with dynamic multiple-object
problems. A first important mechanism
for MOT is object individuation, which
involves selecting features from a
crowded scene, binding them into an
object, and individuating it from other
objects (for review, see Xu and Chun,
2009; Wutz and Melcher, 2014).
Individuation provides local detail about
specific objects in a scene, but only a few
objects (typically;4) can be individuated
at once (Cowan, 2010) because of limited
selective attention (Cavanagh and Alvarez,
2005). Indeed, object-based attention and
individuation are a central component to
visual cognition, since its capacity limita-
tions set the bounds for many visual tasks,
for example, enumeration (Jevons, 1871),
visual working memory (Luck and Vogel,
1997), and MOT (Trick and Pylyshyn,
1994; for review, see Piazza et al., 2011).
For MOT, individuation capacity is often
probed by indicating the spatial location
of one object location from the pool of
target-objects at trial end (i.e., partial report; see Fig. 1B).

A second core mechanism for MOT is to represent multiple
objects as an ensemble or group (Yantis, 1992; Merkel et al.,
2014, 2015, 2017). In contrast to focal attention to individual
objects, recent reports have highlighted the ability for informa-
tion integration and compression in the visual scene analysis by
computing group-level ensemble statistics across multiple objects
(for review, see Alvarez, 2011; Whitney and Yamanashi Leib,
2018). For example, the average size (Ariely, 2001; Chong and
Treisman, 2003), orientation (Parkes et al., 2001), and location
(Alvarez and Oliva, 2008) of many objects can be reported with
high precision and velocity, and often better compared with the
properties of individual objects. Critically, ensemble computa-
tions exploit higher-order regularities diagnostic of the large-
scale scene-layout (its “gist”) (Torralba and Oliva, 2003; Greene
and Oliva, 2009), which can be computed even under conditions
of reduced or withdrawn attention to individual, focal objects
and thus overcome its typical capacity limitations (Alvarez and
Oliva, 2009; Corbett and Oriet, 2011). A typical ensemble-statis-
tic for MOT is the average location of all target-objects (i.e., their
centroid; see Fig. 1B).

Currently, there is no clear consensus about the neural corre-
lates underlying dynamic multiple-object problems (e.g., MOT)
and its processing differences in terms of focal object-level versus
distributed ensemble-level attention. Likewise, it is not clear how
its different processing capacity limitations are implemented in
neural function and whether they are because of “online” percep-
tual or “offline” memory-related mechanisms. Previous fMRI
and MEG work on multiple-object attention on the level of
object individuation suggests neural substrates in parietal cortex
(Todd and Marois, 2004; Xu and Chun, 2009; Rouhinen et al.,
2013). In terms of temporal dynamics, neural oscillations in the
a-frequency band (9-13Hz) are a key candidate because they are
associated with the functional inhibition of neural processes

(Klimesch et al., 2007; Haegens et al., 2011). In the case of
dynamic object individuation, neural excitation-inhibition needs
to be regulated focally, to carve-out discrete objects from contin-
uous visual inputs (e.g., by modulating signal-to-noise in saliency
maps) (Quiles et al., 2011; Jensen et al., 2012; Wutz et al., 2014)
and keep distinct objects separate in spatial working memory
(Palva and Palva, 2007; Jensen et al., 2014). By contrast, ensemble
computations require more global inhibition, because attention
is distributed across the visual scene and objects are represented
as a group (Torralba and Oliva, 2003; Alvarez, 2011).

We aimed to identify the neural dynamics underlying object-
and ensemble-level computations during MOT by means of
MEG recordings. We focused on single-trial activity changes in
neural oscillations (e.g., oscillatory burst events) (Lundqvist et
al., 2016; for review, see van Ede et al., 2018), because they
account for relevant trial-by-trial variability in neural timing
expected in time-critical tasks, such as MOT. The participants
switched between instructions to perform object individuation
(i.e., partial report) or ensemble processing (i.e., centroid/averag-
ing task; see Fig. 1A,B) in counterbalanced blocks and in a dual-
task condition, in which the task demands were randomly inter-
mixed in each block and cued after each trial, to control for top-
down influences. This strategy allowed us to match processing in
the two tasks in visual stimuli, responses, and the requirement to
keep track of multiple spatial locations over time, while preserv-
ing critical differences in the dynamic deployment of attention to
individual objects versus group-level ensembles during dynamic
multiple-object problems.

Materials and Methods
All procedures were approved by the ethics committee of the University
of Salzburg.

Participants
Twenty-four participants (13 female; mean age 6 SD, 25.96 5.3 years;
20 right-handed) took part in the experiment. All participants had

Figure 1. Trial sequence, experimental conditions, and behavioral data. A, A typical trial in the experiment. Black arrows
indicate the target-object locations and are only shown for illustration. B, Response screens for each task. Blue and red circles
represent the probe locations: the location of the item to be indicated for partial report (blue) for the individuation condition
or the centroid location of the items (red) for the averaging condition. They are only shown for illustration. C, Behavioral per-
formance (in percent correct trials) per task and set size under single-task (left) and dual-task conditions (right). Error bars
indicate 1 SE for repeated measures (Morey, 2008). ***p, 0.001.
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normal or corrected-to-normal vision, gave written informed consent
before the experiment, and received a monetary compensation or course
credits.

Apparatus
MEG data acquisition. Electrophysiological activity was recorded

with a whole-head MEG system with 102 magnetometers and 204 planar
gradiometers (Neuromag306; Elekta), sampled at 1000Hz in a magneti-
cally shielded room. For each participant, a head frame coordinate refer-
ence was defined before the experiment by digitizing the cardinal points
of the head (nasion and left and right preauricular points), the location
of five head position indicator coils, and a minimum of 200 other head
shape samples (3Space Fastrack; Polhemus). The head position within
the MEG helmet (relative to the head position indicator coils and the
MEG sensors) was controlled before each block to ensure that no large
movements occurred during the data acquisition.

Stimulus presentation. Stimuli were generated using MATLAB 8.5
(The MathWorks) and Psychophysics Toolbox, version 3 (Brainard,
1997; Pelli, 1997). A DLP projector (PROPixx; VPixx Technologies)
showed the stimuli at a refresh rate of 120Hz centered onto a translucent
screen (25 horizontal� 16 vertical degrees of visual angle [DVA]). The
screen was located in front of the participant (viewing distance, 125 cm)
within the dimly lit, magnetically shielded MEG room. Stimulus timing
was controlled with a data and video processing peripheral (DATAPixx;
VPixx Technologies) and monitored via a photograph diode placed at
the upper left corner of the projection screen. The delay between trigger
and stimulation onset was corrected with this method.

Stimuli and experimental design
Each trial started with the central presentation of a red fixation cross
(0.25 visual angle, DVA) on a gray background, of a red frame indicating
the bounds of the tracking display (6� 6 DVA) and of 12 white dots
(0.25 DVA) presented at random, nonoverlapping locations within the
inner 3� 3 DVA of the display for 1 s duration. Then, a subset of the
white dots (2, 4, or 8 depending on the target-object pool per trial) was
cued as task-relevant objects by presenting a green circle (0.5 DVA)
around them for 1 s duration. The total number of presented items was
held constant, to control for visual load and track set size effects based
exclusively on the number of task-relevant items. Subsequently, the cue
was removed, rendering task-relevant and -irrelevant objects indistin-
guishable from each other, and the dots started to move with 1 DVA/s
speed in random directions on linear paths. The motion paths were gen-
erated offline before the experiment such that the moving dots did not
collide with each other (0.5 DVA minimal center-to-center distance) or
with the display edges. The duration of the motion epoch was randomly
jittered to last between 2 and 3 s duration per trial such that the objects’
final spatial positions were unpredictable during tracking. It was fol-
lowed by a delay epoch (for 1 s duration), during which only the fixation
cross and the tracking boundary were presented and the subjects had to
remember the target dot locations (see Fig. 1A). At trial end, a response
screen was presented, which depended on the performed task (i.e., object
individuation, ensemble processing). On individuation trials, all distrac-
tor dots and all except for one, a priori unknown target dot, were pre-
sented after the delay, and the subjects’ task was to indicate the location
of the missing target dot from the pool of target-objects via mouse-click
(i.e., partial report). On ensemble averaging trials, all distractor dots
were reshown and the subject’s task was to indicate the centroid location
of the target dots (see Fig. 1B). The two tasks were run in counterbal-
anced blocks and in a dual-task condition, which controls for strategic
influences, because the task demands were randomly intermixed within
a block and cued after each trial. We used two blocks each comprising
120 trials for each condition (240 trials total for the two single tasks and
the dual-task) with all set sizes (2, 4, 8 objects) balanced and randomly
intermixed within a block. The experiment lasted;2.5 h.

Behavioral data analysis
We quantified behavioral performance in terms of percent correct trials,
in which the difference between the responded and the probed screen

location (i.e., partial report item or centroid) was ,0.5 DVA.
Performance was contrasted between the tasks and across the different
object-pools with a two-way, repeated-measures ANOVA. The per-
formance difference per task between single- versus dual-task conditions
was tested with dependent-samples t test. All error bars (for both behav-
ioral and MEG measures) show the SEM for repeated measures. The
mean between conditions was subtracted from the data in each condi-
tion before calculating the SE. The resulting error estimate was bias cor-
rected by the number of conditions [M, multiplied by H(M/(M� 1))]
(Morey, 2008).

Eye-movement data analysis
Eye-movements were recorded with a 2 kHz, binocular eye-tracker
(TRACKPixx; VPixx Technologies). We used an automated algorithm
for micro-saccade detection that computes thresholds based on velocity
changes from the horizontal and vertical eye-tracker components
(Engbert and Kliegl, 2003). Micro-saccades were identified as binocular
events that exceeded a given duration and velocity threshold. The mini-
mum micro-saccade duration was 12ms, and the velocity threshold was
set at 6 times the noise level per trial and horizontal/vertical component.
Trials that contained blinks were excluded from the analysis before
micro-saccade detection (on average, 446 36 SD trials were excluded).
Because of technical difficulties, eye-tracking data were only available for
13 of 24 subjects. On average, the participants performed 209 micro-sac-
cades over the course of the experiment (SD= 202, minimum=12,
maximum=534). For each participant, we calculated the difference in
the vertical and horizontal eye-gaze position before and after each
micro-saccade during the motion and jitter epochs, to quantify the
micro-saccade size per trial. Vertical and horizontal eye gaze compo-
nents were combined via vector addition. Moreover, we averaged the
simultaneously recorded a power over the time samples corresponding
to micro-saccades per trial. Then, we correlated a power and micro-sac-
cade size across all micro-saccade occurrences for each participant sepa-
rately. The false discovery rate procedure by Benjamini and Hochberg
(1995) was used to correct for multiple comparisons across participants.

MEG data analysis
Data preprocessing. The data were analyzed using custom-built

MATLAB code (MATLAB 9.5; The MathWorks) and the FieldTrip tool-
box (Oostenveld et al., 2011). We use a signal space separation algorithm
implemented in the Maxfilter program (version 2.2.15) provided by the
MEG manufacturer to remove external noise from the MEG signal
(mainly 16.6Hz, which is the alternating current used by the railway
electrification systems in Austria, Germany, and Switzerland, and 50Hz
plus harmonics, which is line noise in Europe) and realign data to a com-
mon standard head position (trans default Maxfilter parameter) across
different blocks based on the measured head position at the beginning of
each block. Data were segmented from 1.5 s before to 6 s after fixation
onset and downsampled offline to 250Hz. In separate analysis, data
were time-locked to the motion epoch offset/delay epoch onset and seg-
mented from 3 s before to 3 s after, to reveal exclusive delay epoch activ-
ity. Data were high-pass filtered at 1Hz with a FIRWS filter (2Hz
transition width) and band-stop filtered between 49-51, 99-101, and
149-151Hz with a two-pass Butterworth filter (order 4), applied in the
forward and reverse directions. The trial average was subtracted from
each single trial, to obtain induced activity without the contribution
from stimulus-evoked components. For validation purposes, we reran
the main bursting analyses without subtracting the event-related field
and obtained very similar results. Unless otherwise indicated, all data
show MEG activity on gradiometer channels. The effects on magnetom-
eter channels were qualitatively and quantitatively similar.

Artifact rejection. A set of different summary statistics (variance,
maximum absolute amplitude, maximum z value) was used to detect sta-
tistical outliers of trials and channels in the datasets. These trials and
channels were removed from each dataset (semiautomatic artifact rejec-
tion). In addition, the data were visually inspected, and any remaining
trials and channels with artifacts were removed. On average, 1.3 channels
(61.5 SD) and 9.7% of the trials (62.6% SD) were rejected. The rejected
channels were interpolated with the nearest-neighbors approach for
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sensor-level analysis. Interpolated channels were
not used for source modeling.

Time–frequency representations. Time–fre-
quency representations were calculated on single-
trial data using Morlet-Wavelets applied to short
sliding time windows in steps of 10ms in the time
interval between �0.5 and 5 s relative to fixation
onset and in the frequency range between 5 and
50Hz. We used a frequency-dependent window
width of 5 cycles per frequency. The squared
absolute value gave the signal power for each
MEG sensor across different frequencies and time
points. For gradiometer sensors, the power values
were calculated for the horizontal and vertical
component of the planar gradient and then com-
bined via their vector sum. Peaks in the power
spectra during the motion epoch (2–4 s) for each
participant were found with an automatic peak-
detection algorithm (i.e., with the in-built
MATLAB function, findpeaks.m).

Neural activity increase with Wilcoxon sign-
rank test.MEG signal power during the MOT task
(i.e., fixation epoch [0–1 s], cue epoch [1–2 s],
motion epoch [2–4 s], jittered motion-delay tran-
sition epoch [4–5 s], delay epoch [1 s duration
time-locked to the end of the motion epoch on
each trial]) was compared with the pretrial base-
line epoch (�0.5 to 0 s relative to fixation onset)
by means of a Wilcoxon signed-rank test. This
time epoch was chosen as baseline because it was
free from stimulus-evoked, eye-movement-
related, and task-related activity. Baseline activity
for each trial was calculated by averaging power
between �0.5 and 0 s for every frequency bin on
each sensor. Single-trial baseline values were then
compared with each time–frequency bin and time
sample during the task epochs. The sum of the
signed rank difference across trials (Wilcoxon test
statistic) was converted into a z value for a stand-
ard normal distribution. The resulting time–
frequency z value maps for each sensor were
averaged over subjects. Gradiometer and magne-
tometer sensor systems were analyzed separately. In order to identify
sensors with significant activity increases, we averaged the z value maps
over the a-frequency band (9-13Hz) and the motion epoch (2–4 s). The
resulting sensor topographies were Bonferroni-corrected for multiple
comparison correction (threshold at z = 3.3 corresponding to one-sided
p, 0.05/102 sensors; see Fig. 2B). Figure 2A shows the time–frequency z
value map averaged over significant gradiometer sensors and masked at
a Bonferroni-corrected threshold (z = 5.48 corresponding to one-sided
p, 0.05/46 frequency bins� 500 time samples).

Neural activity increase with dependent-samples t test. The
Wilcoxon sign-rank test quantifies the a power increase from baseline
across trials (i.e., a fixed-effects analysis). For validation purposes, we
also performed a random-effects analysis to quantify the a power
increase (i.e., a dependent-samples t test over participants). For each par-
ticipant, we computed the average power over all trials, the a-frequency
band (9–13Hz) and separately for the baseline (�0.5 to 0 s) and the
motion epochs (2–4 s) per MEG-gradiometer channel. Then, we per-
formed dependent-samples t tests (BL vs motion) across participants
(df = 23). The two methods (fixed vs random effects) yield similar results
with respect to the MEG-sensor selection.

Neural activity increase with bursting analysis. We followed the
approach by Lundqvist et al. (2016) to identify oscillatory bursts in the
MEG signal. Bursts were detected when the power per frequency bin
and time sample during the MOT task epochs exceeded its respective
pretrial mean power (averaged between �0.5 and 0 s) by 2� its trial-
specific variability estimate for at least three cycles of the correspond-
ing frequency. The variability estimate per trial and frequency were

calculated by the SD of the MEG signal during the baseline epoch
(�0.5 to 0 s; Eq. 1).

burst event ¼ MEGpower for 3 cycles. pre� trial mean

1 2 p pre� trial SD (1)

The bursting analysis results in sparse time–frequency maps for each
trial and sensor, which separate the occurrence of a suprathreshold burst
event from nonburst periods. In order to show the topographical distri-
bution of burst events, we averaged the burst event maps over trials (i.e.,
calculating the burst rate), the a-frequency band (9–13Hz), and the
motion epoch (2–4 s). Figure 3A shows the time–frequency burst rate
map averaged over gradiometer sensors with a significant power increase
(Wilcoxon z statistic; see Fig. 2B) and masked above a burst rate of 25%
trials. For validation purposes, we also used an alternative algorithm for
burst event detection (derived from automatic spike-detection methods,
adapted fromQuiroga et al., 2004) (Eq. 2).

burst event ¼ MEGpower for 3 cycles.median

ðMEGpower=0:6745Þ (2)

Equation 2 refers to the statistical concept of the probable error,
which defines the half-range interval around a distribution’s central
point. For symmetrical distributions, it is equivalent to the interquartile
range or the median absolute deviation (Hoaglin et al., 1983). The

Figure 2. a-band power increase during MOT on the sensor and source level. A, Power increase relative to pretrial
baseline epochs (Wilcoxon z value) averaged over significant gradiometer sensors (see B). B, MEG-gradiometer topogra-
phy for the power increase relative to pretrial baseline epochs (Wilcoxon z value) averaged between 9 and 13 Hz and
between 2 and 4 s. A, B, z values with p, 0.05 are shown (Bonferroni-corrected). C, Source modeling for the power
increase relative to pretrial baseline epochs (signal change in percent) averaged between 9 and 13 Hz and between 2
and 4 s.

Figure 3. MEG-sensor topographies for power and bursting. A, Magnetometer topographies for the power increase
relative to pretrial baseline epochs (Wilcoxon z value) averaged between 9 and 13 Hz and between 2 and 4 s. B,
Gradiometer topographies for the power increase relative to pretrial baseline epochs with a random-effects approach
(dependent-samples t test over participants) averaged between 9 and 13 Hz and between 2 and 4 s. For comparison,
white dots indicate the sensors of interest resulting from the sensor selection with the fixed-effects approach (Wilcoxon
test over trials; see Fig. 2B). C, Magnetometer topographies for the burst rate (in percent trials) averaged between 9 and
13 Hz and between 2 and 4 s. D, Gradiometer topography for the burst rates (in percent trials) without event-related
field subtraction averaged between 9 and 13 Hz and between 2 and 4 s.
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probable error can be expressed in terms of SDs when scaled with a con-
stant factor that depends on the assumed distribution (i.e., this factor
refers to the 75% quantile for a normal distribution with f �1

(0.75) = 0.6745). It is a more robust measure of variability compared
with the SD because it is more resilient to outliers (i.e., it remains largely
constant across different burst rate regimens and burst amplitudes).
Moreover, because the variability per trial and channel is estimated
across the MEG signal of the entire trial, it is independent from the trial-
specific baseline epoch. The two methods yielded highly similar results
(compare Figs. 6 and 7).

Comparison between across-trials averaged power and single-trial
bursting. As outlined above, the bursting analysis provides a single-trial
measure of cortical activation. We compared the single-trial bursting
findings to a standard approach on across-trials averaged power. For the
power calculation, we first subtracted the average power in the baseline
epoch (�0.5 to 0 s) from the power maps per condition. Thus, the power
analysis accounts for possible average baseline differences between the
conditions but, unlike the bursting analysis, it does not relate the single-
trial MEG activity increases to its trial-specific baseline mean and vari-
ability estimate.

Source localization. To illustrate the source localization of the
observed sensor-level effects, we performed source modeling based on a
spatial-filtering algorithm (Beamforming). A structural MRI was avail-
able for 16 of 24 participants. We coregistered the brain surface from
their individual segmented MRIs with a single-shell head model (Nolte,
2003). For the remaining subjects, we obtained the canonical cortical
anatomy from the affine transformation of an MNI template brain
(brainweb.bic.mni.mcgill.ca/brainweb/) to the subject’s digitized head
shape. Then, we created MNI-aligned grids in each subjects’ individual
headspace. To this end, each subject’s head shape was warped to the
MNI template brain, and the inverse of the transformation matrix was
applied onto an MNI template grid with 889 grid points and, on average,
1.5 cm spacing. With this method, we achieved a consistent mapping of
the spatial positions of grid points across subjects and to the MNI tem-
plate. Single-trial, MEG-sensor time courses were projected into source
space (individual MNI-aligned grids) using a linear constrained mini-
mum variance beamformer algorithm (Van Veen et al., 1997). We
defined a common spatial filter based on the covariance matrix of the
bandpass filtered signal (cutoff frequencies, 1–30Hz). The covariance
window depended on the locus of the effect as expected from sensor-
level analysis (2–4 s). The beamformer filters were computed using the
broadband single-trial data. Both the information from the magnetome-
ter and planar gradiometer sensors systems were used. Time–frequency
representations (see above) were calculated from single-trial, source-
space data; its relative change to the baseline epoch (�0.5 to 0 s) was cal-
culated (1 – signal/baseline) and then averaged between 9 and 13 Hz and
2 and 4 s. The resulting power increase maps (expressed in percent
increase from baseline) were interpolated onto a standard MNI brain for
illustrative purposes (see Fig. 2C). Anatomical structures corresponding
to localized sources were found using the MNl brain and Talairach atlas
(MRC Cognition and Brain Sciences Unit; imaging.mrc-cbu.cam.ac.uk/
imaging/MniTalairach).

Statistical analysis
Cluster-based permutation statistics. The statistical analysis between

conditions was done on the sensor-level time courses for power and
bursting averaged over the gradiometer sensors with a significant power
increase (Wilcoxon z statistic; see Fig. 2B) and the frequencies between 9
and 13Hz (or 20 and 28Hz for b -band bursting). It is important to note
that this analysis strategy avoids “double dipping” because the gradiome-
ter sensor selection as a ROI is based on the power increase from base-
line across all conditions (see above). The average a-band power and
burst rate over trials were compared between conditions (i.e., between
tasks, between tasks at different object-pools, between different object-
pools per task, and between correct vs error trials per task) across each
task epoch separately (i.e., fixation epoch [0–1 s], cue epoch [1–2 s],
motion epoch [2–4 s], jitter epoch [4–5 s], and delay epoch [0–1 s from
delay onset]) using a nonparametric, cluster-based permutation test
(Maris and Oostenveld, 2007). The b -band burst rates were tested with

the same method during the cue epoch. The choice of the task epochs
was based on the temporal properties of the visual stimulation.
Temporal smoothing inherent in the applied sliding Wavelet-window
approach can influence the observed effects close to the boundaries of
the task epochs. The error bounds are within 62.5 cycles per frequency
(i.e., for 9–13Hz: 6192–277ms). This effect, however, dampens consid-
erably with increasing temporal distance because of the implicit
Gaussian kernel of the Wavelet window. This nonparametric, cluster-
based permutation procedure controls for the Type I error accumulation
arising from multiple statistical comparisons at multiple time points.
First, temporal clusters of adjacent suprathreshold effects (dependent-
samples t statistics exceeding p, 0.05, two-sided) were identified. The t
values within a connected cluster were summed up as a cluster-level sta-
tistic. Then, random permutations of the data were drawn by exchanging
the data between conditions within the participants. After each permuta-
tion run, the maximum cluster-level statistic was recorded, generating a
reference distribution of cluster-level statistics (approximated with a
Monte Carlo procedure of 1000 permutations). The proportion of values
in the corresponding reference distribution that exceeded the observed
cluster statistic yielded an estimated cluster-level p value, which is cor-
rected for multiple comparisons.

Statistical analysis of neural activity increases integrated across the
motion epoch. In order to statistically test the observed task- and object-
pool-specific pattern for main and interaction effects, we calculated sin-
gle-trial metrics of the a-band burst events (i.e., their count and duration
per trial) and for a-band power across the motion and transition epochs
(2–5 s). The burst counts were calculated as the number of burst occur-
rences per trial (see above for the burst detection algorithm) with a mini-
mum of 1 cycle per respective frequency between them. The burst
duration was calculated as the average time period over all burst events
per trial (in case of multiple burst events). We only considered burst
events between 2 and 5 s and thus excluded those, of which the bigger
proportion was outside this time interval. Moreover, we computed the
average a-band power by first subtracting the power in the baseline
epoch (�0.5 to 0 s) per condition and then averaging the power values
between 2 and 5 s. Power, burst counts, and durations were averaged
over gradiometer sensors with a significant power increase (Wilcoxon Z-
statistic; see Fig. 2B) and the frequency bins between 9 and 13Hz, and
then compared between the conditions by means of repeated-measures
ANOVAS and dependent-samples t tests.

Results
Behavioral performance was quantified in terms of percent cor-
rect trials, in which the difference between the responded and
the probed screen location (i.e., partial report item or centroid)
was ,0.5 DVA. As expected, performance for both tasks
decreased with more processed objects under both single- and
dual-task conditions (single: F(2,46) = 304, p � 1� 10�323; dual:
F(2,46) = 231, p � 1� 10�323; Fig. 1C). The main effect between
the tasks (single: F(1,23) = 19, p � 2.3� 10�4; dual: F(1,23) = 48, p
� 4.3� 10�7) is not straightforward to interpret in absolute
terms (i.e., whether it is different from zero), because the two
tasks differ in chance level (Alvarez and Oliva, 2008). Moreover,
it depended on single- versus dual-task conditions and on the
number of processed objects. As expected given their proposed
difference in attention (Alvarez and Oliva, 2008, 2009), the dual-
task demands impaired individuation (single vs dual: t(23) = 7.4,
p � 1.6� 10�7), while it had only negligible effects on ensem-
ble-averaging (t(23) = 1.1, p � 0.28). Furthermore, individua-
tion and averaging performance decreased differently with
increasing numbers of processed objects (interaction for task
� object-pool, single: F(2,46) = 18, p � 1.7� 10�6; dual: F(2,46)
= 10, p � 2 � 10�4). Consistent with different capacity limits
for the two tasks, object individuation performance continued
to decrease with increasing target-object pools, whereas ensem-
ble-averaging performance remained more stable across many
objects (Fig. 1C).
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In order to identify neural activity
increases during the MOT task, we com-
puted time–frequency power maps and
used a Wilcoxon sign-rank test to com-
pare the power increase over trials during
task epochs against pretrial baseline
epochs (500ms before fixation onset; see
Materials and Methods). Neural activity
increased from baseline first during the
target-cue epoch in the a- (9-13Hz) and
b -frequency bands (20-28Hz). Then dur-
ing the motion epoch, power remained
exclusively elevated in the a-frequency
band (Fig. 2A). The a band effects
increased until ;1 s after motion onset
and ceased toward the jittered transition
from the motion into the delay epoch. In
separate analyses, we time-locked the
power maps to the end of the motion
epoch on each trial to test for exclusive
delay epoch activity. It showed that
a-band power was still significantly
increased during the memory delay (Fig.
2A). The a-band power increase had a
central-parietal topography (8 significant
MEG-gradiometer channels; p , 0.05,
one-sided and Bonferroni corrected; Fig.
2B). We used an lcmv-beamforming algo-
rithm (Van Veen et al., 1997) (see
Materials and Methods) to locate the neu-
ral generators of the observed a-band
effects. In line with prior fMRI work on individuation for static
displays (Todd and Marois, 2004; Xu and Chun, 2009), we found
the greatest signal change during the motion epoch versus pre-
trial baseline epochs in the inferior parietal cortex (BA 40; Fig.
2C). The source modeling revealed bilateral cortical activations,
but the strongest effects were found in the left hemisphere (maxi-
mum voxel MNI coordinates in cm = [�50, �50, 55]). Similar
results were found on MEG-magnetometer channels (10 signifi-
cant sensors; Fig. 3A) and when using a random-effects approach
to quantify the a power increase from baseline (dependent-sam-
ples t test for BL vs motion epoch over participants; Fig. 3B). On
a single-subject-level, 22 of 24 participants showed a peak
between 9 and 13Hz during the motion epoch (average peak at
mean = 10.5Hz, SD = 62Hz; Fig. 4). We recorded the partici-
pants’ eye gaze to control for micro-saccades during MOT. The
long motion epoch with multiple moving objects favors micro-
saccades, which can mirror oscillatory neural activity (Yuval-
Greenberg et al., 2008) and alter perception and attentional
selection (Hafed, 2013). In our paradigm, however, effects
resulting from micro-saccades were negligible because they
occurred rarely during the motion epoch (0.3%–0.5% trials;
Fig. 5). Further, there were no significant correlations between
the micro-saccade size and the simultaneously recorded a
power across micro-saccade occurrences for none of the partic-
ipants (false discovery rate-corrected for multiple-comparison
across participants, all absolute r, 0.39, all false discovery rate-
adjusted p. 0.48) (Benjamini and Hochberg, 1995).

We used bursting analysis methods (Lundqvist et al., 2016)
(see Materials and Methods) to compute the observed power
increases on the single-trial level and compare it between the dif-
ferent experimental conditions. In contrast to standard across-
trials averaged power analyses, the bursting approach isolates

time- and band-limited, high-signal epochs (i.e., bursts) during
each trial with respect to its respective pretrial mean and variabil-
ity estimate. Because bursts can occur at different rates, times,
and with different durations from trial to trial, we expected them
to be more diagnostic of dynamic activity changes in the time-
critical MOT task. We found the strongest bursting activity,
quantified in the percentage of trials that contained a burst at a
particular sensor-time–frequency sample (i.e., burst rate), in the
a-frequency band during the motion epoch over central-parietal
MEG-gradiometer sensors (Fig. 6A,B). Similar results were
found on MEG-magnetometer channels (Fig. 3C), without sub-
tracting event-related fields from single trials (Fig. 3D) and with
an alternative algorithm for burst detection (Quiroga et al., 2004)
(see Materials and Methods; Fig. 7). On average, one or two
a-band bursts were detected per trial (mean = 1.15; SD = 0.22)
with a mean duration of 865ms (SD = 348ms; see Fig. 10).

The single-trial bursting analysis was sensitive to differences
in neural activity between the performed tasks during MOT

Figure 5. Micro-saccades during MOT. Micro-saccade rate (in percent trials).

Figure 4. Single-subject power spectra during MOT. Power spectra averaged over significant gradiometer sensors (see Fig.
2B) and between 2 and 4 s for each participant separately and for the grand average. Black horizontal lines indicate the
a-frequency range at 9-13 Hz.
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(individuation, averaging, dual-task). We observed greater
a-band burst rates for individuation versus averaging during the
motion epoch (cluster-corrected p� 0.05), during the jittered
transition between motion and delay epochs (cluster-corrected
p� 0.004), and during the delay epoch (cluster-corrected p �
0.006; Fig. 8A). Similar results were found for the dual-task con-
dition versus averaging (motion: all cluster-corrected p � 0.008,
jitter: p� 0.006, delay: p� 0.006). By contrast, we found no
significant differences for the dual-task condition versus indi-
viduation during any task epoch. Moreover, there were no sig-
nificant differences in the a-band burst rates during the
fixation and cue epochs and in b -band bursting (averaged
between 20 and 28Hz) during the cue epoch between any of
the tasks. The observed a band effects rooted mainly on sin-
gle-trial activity changes because across-trials averaged power
was less sensitive to the between-task differences (Fig. 8B). We
used baseline-corrected power (baseline interval: �0.5 to 0 s),
which factors out average baseline differences between the con-
ditions, but in contrast to the burst analysis, it does not quan-
tify activity increases from baseline for each single trial. We
found no a-band power differences for individuation versus
averaging and for individuation versus the dual-task condition.
However, there was greater a-band power for the dual-task

versus averaging (motion: all cluster-corrected p� 0.022, jitter:
p� 0.024, delay: p� 0.034).

The observed a-band bursting effects were strongest up to
the typical capacity limitations for multiple-object processing at
;4 objects. We found significant differences between the indi-
viduation versus averaging tasks below/at capacity during the
motion epoch (4 objects: cluster-corrected p� 0.038 and
p� 0.04), during the motion-delay transition (2 objects: all clus-
ter-corrected p� 0.002, 4 objects: p� 0.004), and during the
delay epoch (2 objects: all cluster-corrected p� 0.006, 4 objects:
p� 0.002). Above capacity at 8 objects, however, there were only
small differences between the two tasks during the delay (cluster-
corrected p� 0.044; Fig. 9A–C). The dual-task condition showed
no significant differences versus individuation for any task epoch
or object pool. However, it showed greater burst rates versus
averaging below/at capacity (2 objects, motion: all cluster-cor-
rected p� 0.01, jitter: p� 0.004, delay: p� 0.008; 4 objects,
motion: p� 0.022 and p� 0.042, jitter: p� 0.01, delay: p �
0.004) and smaller effects above capacity (8 objects, motion: all
cluster-corrected p� 0.02, delay: p� 0.034; Fig. 9A–C).

Comparing the different object-pools for each task condition
separately showed that capacity limitations had a strong impact
on the burst rates during the motion epochs for individuation
and, in part, under dual-task conditions. We found greater burst
rates below versus above capacity (individuation 2 vs 8 objects,
motion: all cluster-corrected p� 0.002; 4 vs 8 objects, motion:
p� 0.008; 4 vs 8 objects, jitter: p� 0.018; dual task 2 vs 8 objects,
motion: p� 0.02) but no significant differences below/at capacity
(i.e., 2 vs 4 objects; Fig. 9D,F). By contrast, we found a different
pattern on averaging trials. There were burst rate differences
below/at capacity (2 vs 4 objects, motion: cluster-corrected
p� 0.022) and more bursting above versus below capacity (4 vs 8
objects, jitter: cluster-corrected p� 0.022; Fig. 9E). Moreover, the
burst rates during the delay epoch were also different for individ-
uation/dual-task conditions versus averaging. Whereas we found
particularly low burst rates on two-object trials under individua-
tion (2 vs 4 objects: all cluster-corrected p� 0.036; 2 vs 8 objects:
p� 0.044) and dual-task conditions (2 vs 4 objects: all cluster-
corrected p� 0.026; 2 vs 8 objects: p� 0.012), averaging was
mainly characterized by stronger burst rates on 8 object trials (2
vs 8 objects: all cluster-corrected p� 0.004; 4 vs 8 objects:
p� 0.006; Fig. 9D–F).

In order to formally test the observed task- and object-pool
specific pattern, we ran two-way, repeated-measures ANOVA
and post hoc, dependent-samples t tests on the number of
a-band bursts per trial, their average duration, and the average
a-band power (detected and integrated from 2 to 5 s after
motion onset; Fig. 10). For the a-band burst count per trial, we
found a significant main effect for the individuation versus aver-
aging tasks (F(1,23) = 5.9, p� 0.023) and an interaction between
the performed tasks across different numbers of processed
objects (F(2,46) = 3.9, p� 0.028). There were more bursts on indi-
viduation versus averaging trials for two (t(23) = 3, p� 0.007) and
4 objects (t(23) = 3, p� 0.007) but not for 8 objects (t(23) = 0.5,
p. 0.62). By contrast, there were no significant main and inter-
action effects for the a-band burst duration and power.
Comparing individuation versus the dual-task condition, we
found a significant interaction over object-pools for the burst
counts (F(2,46) = 3.9, p� 0.028) and no significant effects for the
burst duration and power. Moreover, for averaging versus the
dual-task condition, there were main effects on the burst counts
(F(1,23) = 6.9, p� 0.016) and on power (F(1,23) = 5.6, p� 0.027)
but no significant effects for the burst duration (Fig. 10).

Figure 6. a-band bursting during MOT. A, Burst rate (in percent trials) averaged over sig-
nificant gradiometer sensors (see Fig. 2B). Burst rates.25% are shown. B, MEG-gradiome-
ter topography for the burst rates (in percent trials) averaged between 9 and 13 Hz and 2
and 4 s.

Figure 7. a-band bursting during MOT with an alternative algorithm. A, Burst rate (in
percent trials) computed with an alternative algorithm (Quiroga et al., 2004) averaged over
significant gradiometer sensors (see Fig. 2B). Burst rates .20% are shown. B, MEG-gradi-
ometer topography for the burst rates (in percent trials) averaged between 9 and 13 Hz and
2 and 4 s.
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Finally, we investigated possible links
between bursting and behavioral per-
formance, to add support for the behav-
ioral relevance of our results. To this end,
we split correct and error trials separately
for individuation and averaging condi-
tions and contrasted their a-band burst
rates over each task epoch. For individua-
tion, we found greater burst rates on cor-
rect trials during the motion epoch
(cluster-corrected p � 0.05) and greater
burst rates on error trials during the delay
epoch (cluster-corrected p� 0.02; Fig.
11). For averaging, there were greater
burst rates on error trials during both the
jitter epoch (cluster-corrected p� 0.018)
and during the delay epoch (cluster-cor-
rected p� 0.008). There were no signifi-
cant differences during the other task
epochs (Fig. 11). These results suggest that the observed bursting
effects were relevant for behavior in different ways for the two
tasks.

Discussion
We observed oscillatory bursts over inferior parietal cortex dur-
ing dynamic multiple-object situations. Confirming previous
work on dynamic multiple-object processing, we observed effects
in the a-frequency band (Rouhinen et al., 2013; Jia et al., 2017).
Advancing on previous reports, however, the burst occurrences
were diagnostic for the task demands for object individuation
versus ensemble/average processing, the number of processed
objects during MOT, and its behavioral outcome. On individua-
tion trials, more bursts were detected below/at versus above the
typical capacity limit. By contrast on ensemble trials, we found
more stable burst rates across different object-pools, which were
lower compared with those found on individuation trials up to
capacity. The observed bursting effects occurred both “online”
during object-motion tracking and “offline” during the memory
delay. Moreover, under dual-task conditions, we found greater
burst rates compared with single-task ensemble averaging and
similar burst rates compared with single-task individuation,
which suggests strategic influences per task on the observed
effects. Finally, the observed bursting showed behavioral rele-
vance because greater bursting was found on correct individua-
tion trials and on error trials for averaging. Overall, our findings
identify the neural correlates for object versus ensemble and
below versus above capacity processing during time-critical,
multiple-object scenarios.

a-band oscillations are thought to regulate neural excitability
via inhibitory control (Klimesch et al., 2007; Haegens et al.,
2011). Along these lines, two possible functional interpretations
for the observed dynamic a band increases stand out: On the
one hand, they could reflect the inhibition of task-irrelevant
inputs (Bonnefond and Jensen, 2012; Roux and Uhlhaas, 2014).
Previous work on event-related potentials has suggested that
both effects resulting from target enhancement and distractor
suppression play a role during MOT (Drew et al., 2009; Doran
and Hoffman, 2010). Less target-objects meant also more distrac-
tor-objects, respectively, in our paradigm. Thus, in line with an
interpretation based on distractor suppression, we found greater
a-band burst rates with greater numbers of task-irrelevant
objects. Alternatively, the observed a band effects might signal
inhibitory control needed to prioritize, select, and maintain task-

relevant objects carved out as individuals from visual inputs
(Palva and Palva, 2007; Jensen et al., 2014; Wutz et al., 2014). In
this perspective, complex visual scenes are segmented into local
objects by regulating neural excitability focally according to their
a-timed release from inhibition. By contrast, inhibition is more
globally distributed across many objects in the scene for ensem-
ble computations. Consistent with this view, we found greater
a-band burst rates up to the typical capacity limits for object
individuation and similar burst rates below capacity. Above
capacity, however, when individuation via a-timed inhibitory
control is insufficient, we observed lower a-band bursting down
to the level for global ensemble processing. The observed effects
during the delay epoch further support the interpretation based
on task-relevant object individuation. No task-irrelevant distrac-
tors were present during the memory delay; thus, effects result-
ing from distractor suppression were not expected. Instead,
during the delay, task-relevant objects need to be kept separate
via inhibitory control to perform partial report on individuation
trials. By contrast, on ensemble trials, the centroid task allowed
for integration and maintenance in a compressed format (i.e.,
their average) without explicitly representing the spatial positions
of the individual objects during the delay (Greene and Oliva,
2009; Alvarez, 2011; Corbett and Oriet, 2011). Importantly, we
also found a-band bursting differences between the two tasks
during the motion epoch. In addition to its effects on memory
maintenance, this suggests that a-timed inhibitory control can
also be used dynamically to switch between input individuation
and compression “online” during dynamic multiple-object
perception.

Alternatively, the observed a-band bursting effects reflect
rather differences between the two tasks in terms of difficulty or
effort. Three lines of evidence render this explanation inadequate
in our paradigm. First, we found the greatest burst rate differen-
ces when performance was most similar (below/at capacity) and
the smallest burst rate differences when the performance differ-
ence was greatest between the two tasks (above capacity, see
Behavioral data; Fig. 1C). Second, behavioral outcome impacted
bursting differently for the two tasks with more bursting on cor-
rect individuation trials and on incorrect averaging trials. Third,
whereas the dual-task demands worsened individuation per-
formance probably because of higher difficulty, it did not impact
the burst rates under dual-task conditions versus single-task
individuation. Instead, we found burst rate differences between
the dual-task condition versus single-task averaging. This pattern
suggests that the observed effects were because of top-down

Figure 8. a-band bursting and power increase separated by experimental task. A, Burst rate (in percent trials) per task
averaged between 9 and 13 Hz and over significant gradiometer sensors (see Fig. 2B). B, Power per task averaged between 9
and 13 Hz and over significant gradiometer sensors (see Fig. 2B). Shaded regions represent 1 SE for repeated measures
(Morey, 2008). Black lines indicate significant effects (cluster-corrected). *p, 0.05, **p, 0.01, ***p, 0.005, n.s., not
significant.
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strategies during single-task ensemble-averaging, which could
not be applied under single-task individuation and dual-task
conditions. The investigation of top-down grouping strategies
during multiple-object processing has a long history in experi-
mental and cognitive psychology (Wertheimer, 1912; Yantis,
1992; Merkel et al., 2014, 2015, 2017). The observed a-band
bursting effects signal a potential implementation of top-down
principles during dynamic multiple-object scenarios into neural
function by grouping objects into ensemble representations.

Our findings queue up with recent reports from neurophysi-
ology about oscillatory burst events underlying cognitive and
motor operations (Feingold et al., 2015; Lundqvist et al., 2016;
Sherman et al., 2016; Shin et al., 2017). These observations have
sparked a debate on principles about the sustained versus tran-
sient nature of oscillatory dynamics (for discussion, see van Ede
et al., 2018). The key aspect is that, in many cases, sustained os-
cillatory activity represents an analysis artifact from averaging
over trials, and it may instead be better captured by transient

Figure 9. a-band bursting during MOT separated by task and object-pools. A-C, Burst rate (in percent trials) per task averaged between 9 and 13 Hz and over significant gradiometer sensors
(see Fig. 2B) for two (A), four (B), and 8 objects (C). D-F, Burst rate (in percent trials) per object-pool averaged between 9 and 13 Hz and over significant gradiometer sensors (see Fig. 2B) for
individuation- (A), averaging- (B), and dual-task conditions (C). Shaded regions represent 1 SE for repeated measures (Morey, 2008). Black lines indicate significant effects (cluster-corrected).
*p, 0.05, **p, 0.01, ***p, 0.005, n.s., not significant.

Figure 11. a-band bursting during MOT separated by correct versus error trials. Burst
rate (in percent trials) per task averaged between 9 and 13 Hz and over significant gradiome-
ter sensors (see Fig. 2B) separately for correct and error trials. Shaded regions represent 1 SE
for repeated measures (Morey, 2008). Black lines indicate significant effects (cluster-cor-
rected). *p, 0.05, **p, 0.01.

Figure 10. a-band burst count, burst duration, and power during MOT. A-C, Burst count per trial (A), burst duration per trial (B), and power (C) for each task and at different object-pools
averaged between 9 and 13 Hz and between 2 and 5 s and over significant sensors (see topography in Fig. 2B). Error bars indicate 1 SE for repeated measures (Morey, 2008). Significance level
for dependent-samples t tests between each condition: *p, 0.05, **p, 0.01, n.s., not significant.
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high-signal burst events that happen at different rates and times,
and with different durations from trial to trial. Here, we detected
bursts in single-trial MEG activity. It is thus not clear whether
and how our findings relate to the oscillatory burst events found
with single-cell neurophysiology. Critically, however, the burst-
ing analysis served as a sensitive tool to capture single-trial differ-
ences in our paradigm, which would have gone unnoticed with a
standard approach on across-trials averaged power. Comparing
the dynamic mode of attention to multiple moving objects stud-
ied here versus classic “sustained attention” situations, in which
typically more sustained power effects are found, buttresses the
potential functional significance of the observed bursting effects.
The following three aspects stand out: First, in a classic “sus-
tained-attention” task, participants typically need to constantly
monitor a static stimulus at a particular fixed spatial location. By
contrast, our MOT task requires keeping track of dynamic visual
objects, which continuously change their spatiotemporal posi-
tions in random directions throughout the trial. Second in con-
trast to “sustained-attention” over time to a single, isolated
object or spatial location, the participants need to dynamically
shift their attention-focus multiple times per trial between many
objects/locations during MOT. Third, a typical attention experi-
ment is built on a repetitive trial structure that reiterates the
same sequence of temporal events often with the same constant
latencies over and over (e.g., Cue – Focus – Response). In our
MOT task, however, not one single trial is like the next one
because the spatiotemporal coordinates of each object’s motion
path were randomly generated for each trial. Consequently, there
is a high degree of intertrial variability in the timing of the rele-
vant perceptual/cognitive processes, because critical situations
might happen at different times on different trials (e.g., when an
object moves to the display edges or 2 objects cross in close
proximity).

All three aspects (static vs motion, one vs many objects, inter-
trial variability) favor sparse bursts over sustained activity.
Moreover, they suggest that MOT requires a more dynamic
mode of attention compared with the typical “sustained atten-
tion” situation. Importantly, these three aspects are also more
pronounced on individuation versus averaging trials. For indi-
vidual objects, there is (1) “more” motion (i.e., a higher dynamic
range in the spatiotemporal coordinates vs a more stable cent-
roid), (2) “more” objects (i.e., processing is split between multiple
objects vs one average object), and (3) “more” intertrial variabili-
ty (i.e., in timing for independent objects vs averages). Because
MOT for individual objects versus ensembles requires more
dynamic and flexible attention, it is better captured by sparsely
timed bursts on individual trials compared with across-trials
averaged, sustained activity.

This view is in line with recent perspectives from neurophysi-
ology and computational modeling on dynamic processing and
its burst-like neural signatures. For example, in the Working
Memory 2.0 model (Miller et al., 2018), brief bursts of oscillatory
activity reflect reactivations of attractor states for new mental
content (i.e., new attention foci or working memory items),
beyond the established view based on sustained and persistent
activity. Neural ensemble communication in a and b oscilla-
tions (there is explicitly no distinction between the two in the
theory) acts as a default state and implements top-down infor-
mation and inhibition. Excitation at sensory read-in kicks the
rhythms up to g frequencies in short discrete bursts supporting
the encoding of new content and refreshing previous impres-
sions. a/b - and g -frequency bursts serve antagonistic roles on
inhibition-excitation. Its interplay enables the exertion of the

volitional, executive control needed to act flexibly in dynamic sit-
uations. a/b inhibition is integral in the model because it allows
for selective and timed routing of sensory flow into objects.
Consequently, more a/b bursting would be expected for many
individual objects versus one average ensemble. In principle,
attractor networks are capable of processing multiple items
simultaneously with minimal interference between them through
temporal multiplexing their reactivations in time. However, the
refresh rate of successive reactivations sets the system’s capacity
limitations. Consistent with our observations, exceeding capacity
would then lead to a breakdown of bursting because too many
items have to be reactivated within the limited time available for
the refresh.

Our results constitute an important step toward understand-
ing how dynamic multiple-object processing is implemented in
brain function. Consistent with our source modeling results,
most functional explanations for object and scene processing
thus far revolve around spatially defined saliency maps in parietal
cortex (Todd and Marois, 2004; Xu and Chun, 2009). Our find-
ings augment these theoretical perspectives by capturing its tem-
poral dynamics in neural a band oscillations. They may thus
lead the way to novel conceptions about how dynamic multiple-
object situations are solved in real time in the visual world and in
computer vision (supporting recent developments in computa-
tional modeling and engineering) (Mahadevan and Vasconcelos,
2010; Nguyen et al., 2013). Alpha oscillations are thought to
coordinate the timing of brain processes (Klimesch et al., 2007;
Klimesch, 2012) and to underlie the temporal resolution of visual
perception and attention (Gho and Varela, 1988; VanRullen et
al., 2005; Samaha and Postle, 2015; Wutz et al., 2018). They
structure visual processing into discrete temporal events (for
review, see VanRullen and Koch, 2003), within which scenes are
decomposed into objects via the timed release from inhibition
(for review, see Jensen et al., 2014; Wutz and Melcher, 2014).
Our findings reveal that this spatiotemporal event structure can
be dynamically regulated between object- and ensemble-analysis
levels, to overcome capacity limitations because of selective
attention and to master the real-time requirements of visual
cognition.
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