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Abstract

The brain consists of many interconnected networks with time-varying, partially autonomous

activity. There are multiple sources of noise and variation yet activity has to eventually con-

verge to a stable, reproducible state (or sequence of states) for its computations to make

sense. We approached this problem from a control-theory perspective by applying contrac-

tion analysis to recurrent neural networks. This allowed us to find mechanisms for achieving

stability in multiple connected networks with biologically realistic dynamics, including synap-

tic plasticity and time-varying inputs. These mechanisms included inhibitory Hebbian plastic-

ity, excitatory anti-Hebbian plasticity, synaptic sparsity and excitatory-inhibitory balance.

Our findings shed light on how stable computations might be achieved despite biological

complexity. Crucially, our analysis is not limited to analyzing the stability of fixed geometric

objects in state space (e.g points, lines, planes), but rather the stability of state trajectories

which may be complex and time-varying.

Author summary

Stability is essential for any complex system including, and perhaps especially, the brain.

The brain’s neural networks are highly dynamic and noisy. Activity fluctuates from moment

to moment and can be highly variable. Yet it is critical that these networks reach a consistent

state (or sequence of states) for their computations to make sense. Failures in stability have

consequences ranging from mild (e.g incorrect decisions) to severe (disease states). In this

paper we use tools from control theory and dynamical systems theory to find mechanisms

which produce stability in recurrent neural networks (RNNs). We show that a kind of

“unlearning” (inhibitory Hebbian and excitatory anti-Hebbian plasticity), balance of excita-

tion and inhibition, and sparse anatomical connectivity all lead to stability. Crucially, we

focus on the stability of neural trajectories. This is different from traditional studies of stabil-

ity of fixed points or planes. We do not assess what trajectories our networks will follow

but, rather, when these trajectories will all converge towards each other to achieve stability.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007659 August 7, 2020 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kozachkov L, Lundqvist M, Slotine J-J,

Miller EK (2020) Achieving stable dynamics in

neural circuits. PLoS Comput Biol 16(8):

e1007659. https://doi.org/10.1371/journal.

pcbi.1007659

Editor: Adrian M Haith, Johns Hopkins University,

UNITED STATES

Received: January 14, 2020

Accepted: June 27, 2020

Published: August 7, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1007659

Copyright: © 2020 Kozachkov et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All detailed proofs of

main results are found in the appendix. Simulations

(Figs 2 and 3) were performed in Python. Code to

reproduce the figures is available at [https://github.

com/kozleo/stable_dynamics]. Numerical

http://orcid.org/0000-0003-4330-1201
http://orcid.org/0000-0003-1011-5234
http://orcid.org/0000-0002-0582-6958
https://doi.org/10.1371/journal.pcbi.1007659
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007659&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007659&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007659&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007659&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007659&domain=pdf&date_stamp=2020-08-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007659&domain=pdf&date_stamp=2020-08-19
https://doi.org/10.1371/journal.pcbi.1007659
https://doi.org/10.1371/journal.pcbi.1007659
https://doi.org/10.1371/journal.pcbi.1007659
http://creativecommons.org/licenses/by/4.0/
https://github.com/kozleo/stable_dynamics
https://github.com/kozleo/stable_dynamics


Introduction

Behavior emerges from complex neural dynamics unfolding over time in multi-area brain net-

works. Even in tightly controlled experimental settings, these neural dynamics often vary

between identical trials [1,2]. This can be due to a variety of factors including variability in

membrane potentials, inputs, plastic changes due to recent experience and so on. Yet, in spite

of these fluctuations, brain networks must achieve computational stability: despite being

“knocked around” by plasticity and noise, the behavioral output of the brain on two experi-

mentally identical trials needs to be similar. How is this stability achieved?

Stability has played a central role in computational neuroscience since the 1980’s, with the

advent of models of associative memory that stored neural activation patterns as stable point

attractors [3–7], although researchers were thinking about the brain’s stability since as early as

the 1950’s [8]. The vast majority of this work is concerned with the stability of activity around

points, lines, or planes in neural state space [9,10]. However, recent neurophysiological studies

have revealed that in many cases, single-trial neural activity is highly dynamic, and therefore

potentially inconsistent with a static attractor viewpoint [1,11]. Consequently, there has been a

number of recent studies—both computational and experimental—which focus more broadly

on the stability of neural trajectories [12,13], which may be complex and time-varying.

While these studies provide important empirical results and intuitions, they do not offer

analytical insight into mechanisms for achieving stable trajectories in recurrent neural net-

works. Nor do they offer insights into achieving such stability in plastic (or multi-modal) net-

works. Here we focus on finding conditions that guarantee stable trajectories in recurrent

neural networks and thus shed light onto how stable trajectories might be achieved in vivo.

To do so, we used contraction analysis, a concept developed in control theory [14]. Unlike a

chaotic system where perturbations and distortions can be amplified over time, the population

activity of a contracting network will converge towards the same trajectory, thus achieving sta-

ble dynamics (Fig 1). One way to understand contraction is to represent the state of a network

at a given time as a point in the network’s ‘state-space’, for instance the space spanned by the

possible firing rates of all the networks’ neurons. This state-space has the same number of

dimensions as the number of units n in the network. A particular pattern of neural firing rates

corresponds to a point in this state-space. This point moves in the n dimensions as the firing

rates change and traces out a trajectory over time.

In a contracting network, all such trajectories converge. These contracting dynamics have

previously been used in several applications, including neural networks with winner take all

dynamics [15,16], in a model of action-selection in the basal ganglia [17], and to explain how

neural synchronization can protect from noise [18]. Here, we instead explore how contraction

can be achieved generally in more complex recurrent neural networks (RNNs) including those

with plastic weights. We used RNNs that received arbitrary time-varying inputs and had syn-

apses that changed on biologically relevant timescales [19–21]. Our analysis reveals several

novel classes of mechanisms that produced contraction including inhibitory Hebbian plastic-

ity, excitatory anti-Hebbian plasticity, excitatory-inhibitory balance, and sparse connectivity.

For the first two parts of the Results section, we focus on contraction of both neural activity

and components of the weight matrix (Fig 1). For the remaining parts of the Results section,

we hold the weights fixed (i.e they become parameters, not variables) and focus on contraction

of neural activity alone.

Results

The main tool we used to characterize contraction was the logarithmic norm (also known as a

matrix measure). The formal definition of the logarithmic norm is as follows (from [22]

PLOS COMPUTATIONAL BIOLOGY Achieving stable neural dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007659 August 7, 2020 2 / 15

integration was performed using sdeint, an open-

source collection of numerical algorithms for

performing integrations of stochastic ordinary

differential equations.

Funding: This work was supported by NIMH

R37MH087027, The MIT Picower Institute

Innovation Fund, ONR MURI N00014-16-1-2832,

and Swedish Research Council Starting Grant

2018-04197. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007659


section 2.2.2): let A be a matrix in Cn×n and k�ki be an induced matrix norm on Cn×n. Then the

corresponding logarithmic norm is the function mð�Þ : Cn�n ! R defined by

mðAÞ ¼ lim
�!0þ

k I þ �A ki � 1

�

In the same way that different vector norms induce different matrix norms, different vector

norms also induce different logarithmic norms. Two important logarithmic norms which we

use throughout the paper are those induced by the vector 1-norm and the vector 2-norm:

m1 Að Þ ¼ max
j

ajj þ
Xn

i6¼j

jaijj

" #

m2 Að Þ ¼ lmax
A� þ A

2

� �

Where λmax denotes the largest eigenvalue. To study the contraction properties of RNNs, we

applied the logarithmic norm to the RNN’s Jacobians. The Jacobian of a dynamical system is a

matrix essentially describing the local ‘traffic laws’ of nearby trajectories of the system in its

state space. More formally, it is the matrix of partial derivatives describing how a change in

any system variable impacts the rate of change of every other variable in the system. It was

shown in [14] that if the logarithmic norm of the Jacobian is negative then all nearby trajecto-

ries are funneled towards one another (see S1A Text Section 1.2 for technical review). This, in

turn, implies that all trajectories are funneled towards one another at rate called the contraction
rate. The contraction rate and the logarithmic norm are related as follows: the maximum value

attained by the absolute value of logarithmic norm of the Jacobian along the network’s

Fig 1. Cartoon demonstrating the contraction property. In a network with N neural units and S dynamic synaptic

weights, the network activity can be described a trajectory over time in an (N + S)-dimensional space. In a contracting

system all such trajectories will converge exponentially in some metric towards each other over time, regardless of

initial conditions. In other words, the distance between any two trajectories shrinks to zero—potentially after transient

divergence (as shown).

https://doi.org/10.1371/journal.pcbi.1007659.g001
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trajectory is the contraction rate. In other words, if the logarithmic norm of the Jacobian is

upper bounded by some negative number −c, where c> 0, then the contraction rate is

simply c.
Importantly, the above description can be generalized to different metrics. A metric is a

symmetric, positive definite matrix which generalizes the notion of Euclidean distance. Every

invertible coordinate transformation y = θx yields a metric M = θTθ. To see this, consider the

squared norm of kyk2 = yTy = xTθTθx = xTMx. Thus, the norm of y is related to the norm of x

through the metric M. If one can find metric in which the network is contracting—in the

sense that its Jacobian has negative logarithmic norm–this implies contraction for all coordi-

nate systems. This makes contraction analysis useful for analyzing systems where exponential

convergence of trajectories is preceded by transient divergence (Fig 1) as in recent models of

motor cortex [23,24]. In this case, it is usually possible to find a coordinate system in which the

convergence of trajectories is ‘pure’. For example, linear stable systems were recently used in

the motor control literature to find initial conditions which produce the most energetic neural

response [23] They are ‘purely’ contracting in a metric defined by the eigenvectors of the

weight matrix (see Example 5.1 in [14]) but transiently diverging in the identity metric (i.e M

= I). Note that the identity metric corresponds to θ = I, which is simply the original, untrans-

formed coordinate system.

Inhibitory hebbian plasticity & excitatory anti-Hebbian plasticity produce

contraction

It is known that certain forms of synaptic plasticity can quickly lead to extreme instabilities if

left unchecked [9,25]. Thus, the same feature that can aid learning can also yield chaotic neural

dynamics if not regulated. It is not known how the brain resolves this dilemma. A growing

body of evidence—both experimental and computational—suggests that inhibitory plasticity

(that is, the strengthening of inhibitory synapses) can stabilize neural dynamics while simulta-

neously allowing for learning/training in neural circuits [26–28]. By using the Jacobian analy-

sis outlined above, we found that inhibitory Hebbian synaptic plasticity (as well as excitatory

anti-Hebbian plasticity) indeed leads to stable dynamics in neural circuits. Specifically, we con-

sidered neural networks of the following common form:

_xi ¼ hðxiÞ þ
XN

j¼1

Wijxj þ uiðtÞ ð1Þ

where the term xi denotes the ‘activation’ of neuron i as a function of time. Here we follow

other authors [23] and interpret xi as the deviation from the baseline firing rate of neuron i.
Note that this interpretation assumes that the baseline firing rates are positive–thus allowing

for x to be negative—and large enough so that baseline + x> 0. The term Wij denotes the

weight between neurons i and j the term h(xi) captures the dynamics neuron i would have in

the absence of synaptic input, including self-feedback terms arising from the diagonal elements

of the weight matrix—in other words, the dynamics neuron i would have if for all i and j, Wij =

0. The term being summed represents the weighted contribution of all the neurons in the net-

work on the activity of neuron i. Finally, the term ui(t) represents external input into neuron i.
We did not constrain the inputs into the RNN (except that they were not infinite) and we

did not specify the particular form of h(xi) except that it should be a leak term (i.e has a nega-

tive derivative for all x, see S1A Text Section 2.2.4, e.g h(xi) = −xi). Furthermore, we made no

assumptions regarding the relative timescales of synaptic and neural activity. Synaptic dynam-

ics were treated on an equal footing as neural dynamics. We considered synaptic plasticity of
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the following correlational form [29]:

_Wij ¼ � kijxixj � gðtÞWij ð2Þ

where the term kij> 0 is the learning rate for each synapse and γ(t) > 0 is a decay factor for

each synapse. For technical reasons outlined in the appendix (S1A Text Section 3), we

restricted K, the matrix containing the learning rates kij, to be positive semi-definite, symmet-

ric, and have positive entries. A particular example of K satisfying these constraints is to have

the learning rates of all synapses to be equal (i.e. kij = k> 0).

Before we show that (2) leads to overall synaptic and neural contraction, it’s useful to spend

some time interpreting this plasticity. Since Wij can be positive or negative (corresponding to

excitatory and inhibitory synapses, respectively), and xixj can be positive or negative (corre-

sponding to correlated and anticorrelated neurons, respectively), there are four cases to con-

sider. We summarize these cases in Table 1 and discuss them in details below. By Hebbian

plasticity we refer to the increase of synaptic efficiency between correlated neurons [30]. In the

context of simple neural networks with scalar weights, as we consider here, efficiency refers to

the absolute value |w| of a weight. Thus, for excitatory synapses, (2) in fact describes anti-Heb-

bian plasticity, because the positive synaptic weight becomes less positive (and thus less effi-

cient) between correlated neurons and more positive (thus more efficient) for anticorrelated

neurons. For inhibitory synapses, (2) describes Hebbian plasticity because the direction of syn-

aptic weight change is negative between correlated neurons, and thus the synapse becomes

more efficient [31,32], while for anticorrelated neurons the direction of synaptic weight change

is positive, and thus the synapse becomes less efficient. Plasticity of this form produced con-

tracting neural and synaptic dynamics regardless of the initial values of the weights and neural

activity (Figs 2 and 3). The black trace of Fig 3A shows that this is not simply due to the weights

decaying to 0. Thus, this plasticity is not only contraction preserving, it is contracting ensuring.
Furthermore, we showed that the network is contracting in a non-identity metric (which we

derive from the system parameters in K), opening up the possibility of transient divergent

dynamics in the identity metric, as seen in the modelling of motor dynamics [23].

To explain how inhibitory Hebbian plasticity and excitatory anti-Hebbian plasticity work

to produce contraction across a whole network, we needed to deal with the network in a holis-

tic fashion, not by analyzing the dynamics of single neurons. To do so, we conceptualized

RNNs with dynamic synapses as a single system formed by combining two subsystems, a neu-

ral subsystem and a synaptic subsystem. We showed that the above plasticity rule led the neural

and synaptic subsystems to be independently contracting. Thus contraction analysis of the

overall system then boiled down to examining the interactions between these subsystems [33].

We found that this plasticity works like an interface between these systems. It produces two

distinct effects that push networks toward contraction. First, it makes the synaptic weight

matrix symmetric (Fig 3A, red trace). This means that the weight between neuron i to j is the

same as j to i. We showed this by using the fact that every matrix can be written as the sum of a

Table 1. Summary of the effect of the plasticity described in Eq (2) on excitatory and inhibitory for correlated or

anticorrelated pre and post synaptic neurons.

Correlated Neurons Anticorrelated Neurons

xixj> 0 xixj < 0

Excitatory Synapse Less Efficient More Efficient

w> 0 Δ|w| < 0 Δ|w| > 0

Inhibitory Synapse More Efficient Less Efficient

w< 0 Δ|w| > 0 Δ|w| < 0

https://doi.org/10.1371/journal.pcbi.1007659.t001
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purely symmetric matrix and a purely anti-symmetric matrix. An anti-symmetric matrix is

one where the ij element is the negative of the ji element (i.e. Wij = −Wji) and all the diagonal

elements are zero. We then showed that anti-Hebbian plasticity shrinks the anti-symmetric

part of the weight matrix to zero, implying that the weight matrix becomes symmetric. The

symmetry of the weight matrix ‘cancels out’ off-diagonals in the Jacobian matrix (see S1A Text

Section 3) of the overall neural-synaptic system. Loosely speaking, off-diagonal terms in the

Jacobian represent potentially destabilizing cross-talk between the two subsystems. Further-

more, anti-Hebbian plasticity makes the weight matrix negative semi-definite. This means that

all its eigenvalues are less than or equal to zero (Fig 3).

Sparse connectivity pushes networks toward contraction

Synaptic connectivity in the brain is extraordinarily sparse. The adult human brain contains at

least 1011 neurons yet each neuron forms and receives on average only 103−104 synaptic con-

nections [34]. If the brain’s neurons were all-to-all connected this number would be on the

order of 1011 synaptic connections per neuron (1011�1011

1011 �
½synaptic connections�

½neurons� ). Even in local patches

of cortex, such as we model here, connectivity is far from all-to-all; cortical circuits are sparse

[35]. Our analyses revealed that sparse connectivity helps produce global network contraction

for many types of synaptic plasticity.

To account for the possibility that some synapses may have much slower plasticity than oth-

ers (and can thus be treated as synapses with fixed amplitude), we made a distinction between

the total number of synapses and the total number of plastic synapses. These plastic synapses

then changed on a similar time-scale as the neural firing rates. By neural dynamics, we mean

Fig 2. Contracting dynamics of neural and synaptic activity. Euclidean distances between synaptic and neural

trajectories demonstrate exponential shrinkage over time. The top row of panels shows the activation of a randomly

selected neural unit (black) and synapse (blue) across two simulations (dotted and solid line). The bottom row shows

the average Euclidean distance in state space for the whole population across simulations with distinct, randomized

starting conditions. Leftmost Panel: Simulations of a contracting system where only starting conditions differ over

simulations. Center Panel: the same as in Leftmost but with an additional random pulse perturbation in one of the two

simulations indicated by a red background shading. Rightmost Panel: same as in Center Panel but with additional

sustained noise, unique to each simulation.

https://doi.org/10.1371/journal.pcbi.1007659.g002
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the change in neural activity as a function of time. We analyzed RNNs with the structure:

_xi ¼ hiðxiÞ þ
XN

j¼1

WijðtÞ rðxjÞ þ uiðtÞ ð3Þ

Where hi(xi) is a nonlinear leak term (see S1A Text Section 2.2.4), and r(xj) is a nonlinear acti-

vation function. The RNNs analyzed in this section are identical to those analyzed in the previ-

ous section, with the exception of the r terms, which we constrained to be linear. Under the

assumption that the plastic synapses have a ‘forgetting term’, we show in the appendix (S1A

Text Section 4) that if the following equation is satisfied for every neuron, then the overall net-

work is contracting:

piðgmaxwmax þ airmaxÞ < bi ð4Þ

where pi denotes the total number of afferent synapses into neuron i and αi denotes the frac-

tion of afferent plastic synapses into neuron i. The term wmax refers to the maximum possible

absolute efficiency of any single synapse. That is, wmax = maxi,j |wij|. Similarly, the term rmax
refers to the maximum possible absolute value of r. That is, rmax = maxi,t |ri(t)|. The term βi
denotes the contraction rate of the ith isolated neuron. That is, bi ¼ � maxi;t

@hi
@xi

tð Þ. Recall from

the introduction that the contraction rate measures how quickly the trajectories of a contract-

ing system reconvene after perturbation. Finally, gmax refers to the maximum gain of any neu-

ron in the network. That is, gmax ¼ maxi;tj
@ri
@xi
j tð Þ. Note that because βi is a positive number by

Fig 3. The anti-Hebbian plasticity pushes the weight matrix towards symmetry. (Left) Plotted are the spectral norms

(largest singular value) of the overall weight matrix as well as the anti-symmetric part of that matrix. Since every square

matrix can be uniquely decomposed as the sum of a symmetric and anti-symmetric component—0.5�(W+W’) and

0.5�(W-W‘), respectively—the teal curve decaying to zero implies that the matrix becomes symmetric. The black trace

shows the spectral norm of the overall weight matrix. If this quantity does not decay to zero, it implies that not all the

weights have decayed to zero. On the right, we plot the largest eigenvalue of the symmetric part of W. A prerequisite

for overall contraction of the network is that this quantity be less than or equal to the ‘leak-rate’ of the individual

neurons. The dotted line shows our theoretical upper bound for this quantity, and the solid line shows the actual value

of taken from a simulation (see Methods).

https://doi.org/10.1371/journal.pcbi.1007659.g003
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assumption, it is always possible to decrease pi to the point where (4) is satisfied. Of course, it

is possible that the only value of pi that satisfies (4) is the trivial solution pi = 0, which corre-

sponds to removing all interconnections between neurons. Since these neurons are assumed to

be contracting in isolation, the network is trivially contracting. However, if the term inside the

parentheses of (4) is small enough, or βi is large enough, intermediate value of pi can be found

which satisfy the inequality. Because increasing the sparsity of a network corresponds to

decreasing pi, we may conclude that increasing the sparsity of connections pushes the system

in the direction of contraction. Note that (4) also implies that the faster the individual neurons

are contracting (i.e. the larger βi is), the denser you can connect them with other neurons

while still preserving overall contraction.

Up to now we have focused our analysis on the case where synaptic weights vary on a time-

scale comparable to neurons, and must therefore be factored into the stability analysis. For the

next two sections, we’ll apply contraction analysis to neural network in the case where the

weights may be regarded as fixed relative to the neural dynamics (i.e. there is a separation of

timescales).

E-I balance leads to contraction in static RNNs

Apart from making connections sparse, one way to ensure contraction is to make synaptic

weights small. This can be seen for the case with static synapses by setting αi = 0 in the section

above, where Wmax now has to be small to ensure contraction. Intuitively, this is because very

small weights mean that neurons cannot exert much influence on one another. If the neurons

are stable before interconnection, they will remain so. Since strong synaptic weights are com-

monly observed in the brain, we were more interested in studying when contraction can arise

irrespective of weight amplitude. Negative and positive synaptic currents are approximately

balanced in biology [36–38]. We reasoned that such balance might allow much larger weight

amplitudes while still preserving contraction since most of the impact of such synapses cancel

and the net effect small. This was indeed the case. To show this, we studied the same RNN as

in the section above, while assuming additionally that the weights are static. In particular, we

show in the appendix (S1A Text Section 5) that contraction can be assessed by studying the

eigenvalues of the symmetric part of W (i.e. WþWT

2
).

Before we discuss the above result in detail, it is useful here to quickly review some facts

about the stability of nonlinear systems as compared to the stability of linear systems. In par-

ticular, the fact that the eigenvalues of W are only informative for assessing contraction in

regions where the dynamics may be regarded as linear. This is because in linear time-variant

(LTI) systems (i.e. _x ¼ Ax) stability is completely characterized in terms of the eigenvalues

of A. However, this is not true for nonlinear systems, even those of the linear time-varying

form _x ¼ AðtÞx: To see this, consider the following counter-example (from [39], section

4.2.2):

_x

_y

" #

¼
� 1 e2t

0 � 1

" #
x

y

" #

ð5Þ

The eigenvalues of A(t) are (−1, 1) for all time, however one can verify by direct evalution

that the solution of this system satisfies y = y(0)e−t, _x ¼ � xþ yð0Þet which is unstable along

x. However, it can be shown straightforwardly that if the eigenvalues of the symmetric part

of A(t) are all negative, then the system is stable [39]. This fact underlies our analysis, and

highlights the reason why the eigenvalues of the symmetric part of W are important for

stability.
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Returning to our results, we show that if excitatory to inhibitory connections are of equal

amplitude (and opposite sign) as inhibitory to excitatory connections, they will not interfere

negatively with stability—regardless of amplitude (see S1A Text Section 5). This is because

connections between inhibitory and excitatory units will be in the off-diagonal of the overall

weight matrix and get cancelled out when computing the symmetric part. As an intuitive

example, consider a two-neuron circuit made of one excitatory neuron and one inhibitory

neuron connected recurrently (as in [40], Fig 1A). Assume that the overall weight matrix has

the following structure:

W ¼
w � w

w � w

 !

When taking the symmetric part of this matrix, the off-diagonal elements cancel out, leav-

ing only the diagonal elements to consider. Since the eigenvalues of a diagonal matrix are sim-

ply its diagonal elements, we can conclude that if the excitatory and inhibitory subpopulations

are independently contracting (w is less than the contraction rate of an isolated neuron), then

overall contraction is guaranteed. It is straightforward to generalize this simple two-neuron

example to circuits achieving E-I balance through interacting populations (see S1A Text Sec-

tion 5). It is also straightforward to generalize to the case where E-I and I-E connections do

not cancel out exactly neuron by neuron, but rather they cancel out in a statistical sense where

the mean amplitudes are matched. Another way to view this E-I balance is in the framework of

combinations of contracting systems (Fig 4). It is known that combining independently con-

tracting systems in negative feedback preserves contraction [14]. We show that E-I balance

actually translates to this negative feedback and thus can preserve contraction.

Fig 4. Cartoon illustrating the combination properties of contracting systems. A) Two isolated, contracting systems. The Jacobian

of the overall system is block diagonal, with all zeros on the off-diagonal—corresponding to the fact that the systems are not connected.

B) If one of the systems is connected to the other in a feedforward manner, the overall Jacobian is changed by the presence of non-zero

terms on the bottom left block—corresponding to the connections going from the ‘top’ system to the ‘bottom’ system. This Jacobian

may not be negative definite. However, it is known that a coordinate change exists which will make it negative definite. Thus,

hierarchically connected contracting systems are contracting. C) If the systems are reciprocally connected, the system may lose its

contracting properties (for example in the case of positive feedback). However, it is known that if the feedforward connections (blue)

are ‘equal and opposite’ to the feedback connections (green) then the overall system is contracting. We use this property in the main

text to prove that inhibitory Hebbian plasticity and excitatory anti-Hebbian plasticity lead to contracting neural circuits.

https://doi.org/10.1371/journal.pcbi.1007659.g004

PLOS COMPUTATIONAL BIOLOGY Achieving stable neural dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007659 August 7, 2020 9 / 15

https://doi.org/10.1371/journal.pcbi.1007659.g004
https://doi.org/10.1371/journal.pcbi.1007659


Relation to other models with fading memory

As can be seen in Fig 2, contracting systems have ‘fading memories’. This means that past

events will affect the current state, but that the impact of a transient perturbation gradually

decays over time. Consider the transient input in Fig 2 (red panel) presented on only one of

the two trials to the network. Because the input is only present on one trial and not the other

we call it a perturbation. When this perturbation occurs, the trajectories of the two trials

become separated. However, after the disturbance is removed, the distance between the net-

work’s trajectories starts shrinking back to zero again. Thus, the network does not hold onto

the memory of the perturbation indefinitely—the memory fades away. A similar property has

been used in Echo State Networks (ESNs) and liquid state machines (LSMs) to perform useful

brain-inspired computations [41,42]. These networks are an alternative to classical attractor

models in which neural computations are performed by entering stable states rather than by

‘fading memories’ of external inputs [43].

While there are several distinctions between the networks described above and ESNs (e.g.

ESNs are typically discrete time dynamical systems, rather than continuous), we show in the

appendix (S1A Text Section 5.1) that they are a special case of the networks considered here.

We show this for ESNs as opposed to LSMs because LSMs are typically implemented on inte-

grate and fire neurons which, because of the spike reset, have a sharp discontinuity in their

dynamics—making them unamenable to contraction analysis.

By highlighting the link between contraction and ESNs, we demonstrate that the contract-

ing neural networks considered here are in principle capable of performing useful and interest-

ing neural computations. In other words, the strong stability properties of contracting neural

networks do not automatically prohibit them from doing interesting computations. By work-

ing within the framework of contraction analysis we were able to study networks both with

dynamic synapses and non-identity metrics—a much broader model space than allowed by

the standard ESN framework.

Discussion

We studied a fundamental question in neuroscience: How do neural circuits maintain stable

dynamics in the presence of disturbance, noisy inputs and plastic change? We approached this

problem from the perspective of dynamical systems theory, in light of the recent successes of

understand neural circuits as dynamical systems [44]. We focused on contracting dynamical

systems, which are yet largely unexplored in neuroscience, as a solution to the problem out-

lined above. We did so for three reasons:

1. Contracting systems can be input-driven. This is important because neural circuits are typi-

cally bombarded with time-varying inputs either from the environment or from other

brain areas. Previous stability analyses have focused primarily on the stability of RNNs

without time-varying input. These analyses are most insightful in situations where the

input into a circuit can be approximated as either absent or constant. However, naturalistic

stimuli tend to be highly time-varying and complex [45].

2. Contracting systems are robust to noise and disturbances. Perturbations to a contracting

system are forgotten at the rate of the contraction and noise therefore does not stack up

over time. Importantly, the rate of forgetting (i.e the contraction rate) does not change with

the size of the perturbation. Thus dynamic stability can co-exist with high trial-to-trial vari-

ability in contracting neural networks, as observed in biology.
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3. Contracting systems can be combined with one another in ways that preserve contraction

(Fig 4). This is not true of most dynamical systems which can easily ‘blow up’ when con-

nected in feedback with one another [8]. This combination property is important as it is

increasingly clear that cognitive functions such as working memory or attention are distrib-

uted in multiple cortical and sub-cortical regions [46,47]. In particular, prefrontal cortex

has been suggested as a hub that can reconfigure the cortical effective network based on

task demands [48]. Brain networks must therefore be able to effectively reconfigure them-

selves on a fast time-scale without loss of stability. Most attempts in modelling cognition,

for instance working memory, tend to utilize single and often autonomous networks. Con-

tracting networks display a combination of input-driven and autonomous dynamics, and

thus have key features necessary for combining modules into flexible and distributed

networks.

To understand what mechanisms lead to contraction in neural circuits, we applied contrac-

tion analysis to RNNs. For RNNs with static weights, we found that the well- known Echo

State Networks are a special case of a contracting network. Since realistic synapses are complex

dynamical systems in their own right, we went one step further and asked when neural circuits

with dynamic synapses would be contracting. We found that inhibitory Hebbian plasticity as

well as excitatory anti-Hebbian plasticity and synaptic sparsity all lead to contraction in a

broad class of RNNs.

Inhibitory plasticity has recently been the focus of many experimental and computational

studies due to its stabilizing nature as well as its capacity for facilitating nontrivial computa-

tions in neural circuits [27,28,49]. It is known to give rise to excitatory-inhibitory balance and

has been implicated as the mechanism behind many experimental findings such as sparse fir-

ing rates in cortex [28]. Similarly, anti-Hebbian plasticity exists across many brain areas and

species, such as salamander and rabbit retina [31], rat hippocampus [50,51], electric fish elec-

trosensory lobe [52] and mouse prefrontal cortex [53]. Anti-Hebbian dynamics can give rise to

sparse neural codes which decrease correlations between neural activity and increase overall

stimulus representation in the network [54]. Because of this on-line decorrelation property,

anti-Hebbian plasticity has also been implicated in predictive coding [31,52]. Our findings

suggest that it also increase the stability of networks.

For more general forms of synaptic dynamics, we showed that synaptic sparsity pushes

RNNs towards being contracting. This aligns well with the experimental observation that syn-

aptic connectivity is typically extremely sparse in the brain. Our results suggest that sparsity

may be one factor pushing the brain towards dynamical stability. It is therefore interesting that

synapses are regulated by homeostatic processes where synapses neighboring an upregulated

synapse are immediately downregulated [55]. On the same note, we also observed that balanc-

ing the connections between excitatory and inhibitory populations leads to contraction. Bal-

ance between excitatory and inhibitory synaptic inputs are often observed in biology [36–38],

and could thus serve contractive stability purposes. Related computational work on spiking

networks has suggested that balanced synaptic currents leads to fast response properties, effi-

cient coding, increased robustness of function and can support complex dynamics related to

movements [21,56–58].

A main advantage to our approach is that it provides provable certificates of global contrac-

tive stability for nonlinear, time-varying RNNs with synaptic plasticity. This distinguishes it

from previous works where—while very interesting and useful—stability is experimentally

observed, but not proven [12]. In some cases [23,24], linear stability around the origin is

proven (which implies that there is a contraction region around the origin) but the size of this

region is neither established nor sought after. Indeed, one future direction we are pursuing is
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the question of: given an RNN, can one provide a certificate of contractive stability in a region?

An answer to this question would shed light on the stability properties of known RNN models

in the literature (e.g. trained RNNs, biologically-detailed spiking models, etc.).

Experimental neuroscience is moving in the direction of studying many interacting neural

circuits simultaneously. This is fueled by the expanding capabilities of recording multiple areas

simultaneously in vivo and study their interactions. This increases the need for multi-modal

cognitive models. We therefore anticipate that the presented work can provide a useful foun-

dation for how cognition in noisy and distributed computational networks can be understood.

Materials and methods

In the interested of space and cohesion, we’ve placed all the detailed proofs of main results into

the appendix. The appendix was written to be self-contained, and thus also contains additional

definitions of mathematical objects used throughout the text. Simulations (Figs 2 and 3) were

performed in Python. Code to reproduce the figures is available at [https://github.com/kozleo/

stable_dynamics]. Numerical integrating was performed using sdeint, an open-source collec-

tion of numerical algorithms for integrating stochastic ordinary differential equations.

Fig 2 details:

All parameters and time constants in Eqs (1) and (2) were set to one. The integration step-

size, dt, was set to 1e-2.

Initial conditions for both neural and synaptic activation were drawn uniformly between -1

and 1. Inputs into the network were generated by drawing N frequencies uniformly between dt
and 100dt, phases between 0 and 2π, amplitudes between 0 and 20 and generating an N x Time
vector of sinusoids with the above parameters.

The perturbations of the network was achieved by adding a vector of all 10s (i.e an additive

vector input into the network, with each network of the element equal to 10) to the above

input on one of the trials for 100 time steps in the middle of the simulation.

The noise was generated by driving each neural unit with an independent Weiner process

(sigma = .2).

Fig 3 details:

The weight matrix used was the same as in Fig 2, leftmost panel (without perturbation,

without noise).

Supporting information

S1 Text. The supplementary appendix file contains extensive mathematical proofs of the

results stated above. We kept the appendix self-contained by restating the basic results of con-

traction analysis and linear algebra which we used often in our proofs.

(PDF)
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