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Abstract

Working memory is imprecise, and these imprecisions can be explained by the combined

influences of random diffusive error and systematic drift toward a set of stable states

(“attractors”). However, the neural correlates of diffusion and drift remain unknown. Here,

we investigated how delay-period activity in frontal and parietal cortex, which is known to

correlate with the decline in behavioral memory precision observed with increasing memory

load, might relate to diffusion and drift. We analyzed data from an existing experiment in

which subjects performed delayed recall for line orientation, at different loads, during func-

tional magnetic resonance imaging (fMRI) scanning. To quantify the influence of drift and

diffusion, we modeled subjects’ behavior using a discrete attractor model and calculated

within-subject correlation between frontal and parietal delay-period activity and whole-trial

estimates of drift and diffusion. We found that although increases in frontal and parietal

activity were associated with increases in both diffusion and drift, diffusion explained the

most variance in frontal and parietal delay-period activity. In comparison, a subsequent

whole-brain regression analysis showed that drift, rather than diffusion, explained the most

variance in delay-period activity in lateral occipital cortex. These results are consistent with

a model of the differential recruitment of general frontoparietal mechanisms in response to

diffusive noise and of stimulus-specific biases in occipital cortex.

Introduction

Working memory—the ability to mentally retain and manipulate information to guide behav-

ior—is crucial for many aspects of high-level cognition [1–3]. One prominent neural hallmark

of working memory performance is persistent elevated delay-period activity in frontal and
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parietal cortex. Specifically, blood oxygen level–dependent (BOLD) activity in frontal and pari-

etal cortex increases monotonically with memory load and asymptotes at an individual’s mem-

ory capacity [4,5]. Activity in these networks is thought to reflect the engagement of control

[6,7]. For example, one recent study has demonstrated that persistent activity in parietal cortex

tracks the demands of binding stimulus content to its trial-specific context, rather than mem-

ory load per se [8]. These signals have been shown to correlate with individual memory capac-

ity [4,5] and with memory precision [8–10]. In contrast, persistently elevated activity during

the delay period is often absent in the sensory cortex (e.g., occipital cortex for visual informa-

tion), despite the reliable representation of stimulus-specific information [8,10–13].

Recent psychophysical work has shown that inaccuracies in working memory are due to

both random error and systematic biases. For example, when subjects remember features

drawn from a uniform stimulus space, their responses are not uniform. Instead, the responses

“cluster” around a small number of specific values [14–16]. Further modeling work has dem-

onstrated this clustering can be explained by attractor dynamics that pull memories to specific

locations in mnemonic space (e.g., the memory for pink or purple stimuli can be “attracted” to

red). Although such drift induces systematic error into mnemonic representations, it also sta-

bilizes them by limiting random diffusion. Importantly, although the magnitude of drift is

highest during memory encoding, its continued influence during the ensuing delay period is

necessary to counteract the otherwise accumulating effect of random error [16]. Furthermore,

engaging attractor dynamics is thought to be especially beneficial when memory load is higher,

because increased noise in memory representations can be counteracted by increasing drift

toward a few stable representations.

Because load-related imprecision in working memory performance reflects both random

diffusion and drift toward stable attractor states, the extent to which each of these factors

accounts for load-sensitive delay-period activity in parietal and frontal cortex remains unclear.

In the current study, we analyzed data from an existing experiment in which subjects per-

formed delayed recall for line orientation, at different memory loads, during functional mag-

netic resonance imaging (fMRI) scanning. We modeled subjects’ behavior using a discrete

attractor model and regressed the resultant load-sensitive estimates of drift and diffusion, esti-

mated across encoding and memory, against load-dependent delay-period activity in parietal

and frontal cortex. We found that increases in frontal and parietal delay-period activity were

associated with increases in both diffusion and drift, with diffusion explaining more variance.

In lateral occipital cortex, in contrast, drift explained more variance than diffusion in delay-

period activity. These results provide a novel interpretation of the functions associated with

delay-period activity, suggesting that frontoparietal control networks may be engaged to offset

load-related diffusive noise, with load-related drift more prominent in occipital cortex.

Results

Behavioral performance

Subjects performed a delayed estimation task on line orientations, both inside and outside the

MRI scanner (“fMRI sessions” and “behavioral sessions,” respectively). On different trials, sub-

jects either remembered 1 orientation (1O), or 3 different orientations (3O). All behavioral

results were based on data from the behavioral session, because this session contained an equal

number of trials per condition (details in Methods). For subjects who participated in the fMRI

sessions (n = 16), we first plotted the distribution of raw responses separately for 1O and 3O

trials. Recall error, measured as the angular distance between the target orientation and

response orientation, increased with increasing memory load, t(15) = 8.27, p = 5.68 × 10−7.

Furthermore, similar to what has been previously reported for color [14–16], subjects’
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responses to orientation working memory also clustered around a small number of orienta-

tions (Fig 1B), which is consistent with previous observations of a repulsive bias away from

cardinal orientations, and an attractive bias toward oblique orientations [17–19].

To account for these clusters, we fit data using a discrete attractor model [16]. This circular

drift–diffusion model (DDM) fits the dynamic evolution of memories with 2 distinct pro-

cesses: random noise (diffusion) and systematic drift toward one of several stable attractors.

Notably, when the drift parameter is removed, the remaining diffusion-only model (DOM) is

equivalent to a classic mixture model [20]. Note that because memory delay was fixed in the

current study, the DDM estimated drift and diffusion across both the encoding and memory

delay periods. We first demonstrated via simulations that the DDM could be successfully fit to

datasets with discrete target values as in the current study: The bias and variance of the esti-

mates were similar across the uniform and discrete condition (S1 Fig), and mean recovery

error did not significantly differ between the uniform and discrete condition for any of the

parameters (all ps > 0.4, bootstrap; S2 Fig).

Consistent with previous work on color working memory [16], the DDM provided a better

fit to behavior than the DOM (the average difference in cross-validated log-likelihood across

folds was 3.67 between DDM and DOM). For the DDM, the diffusion and the drift parameters

both increased with memory load (t[15] = 4.86, p = 0.0002 and t[15] = 2.43, p = 0.028, respec-

tively), as did the diffusion parameter from the DOM (t[15] = 6.52, p = 9.67 × 10−6; Fig 1C).

When we repeated these analyses on a larger set of data (n = 30; 16 fMRI subjects and 14

behavior-only subjects), all results were qualitatively similar to those reported here (the average

difference in cross-validated log-likelihood across folds was 6.56 between DDM and DOM).

Critically, the DDM was also better at capturing the classic cardinal bias in orientation data,

compared with the DOM. Pearson correlation between actual and predicted data was positive

and significant for both 1O (r = 0.840, p = 0.00007) and 3O (r = 0.876, p = 0.000001) with the

DDM but not with the DOM (1O: r = −0.080, p = 0.745; 3O: r = −0.315, p = 0.190; S3 Fig). The

attractor locations estimated by the DDM also clustered around the 2 oblique orientations

(45˚ and 135˚), consistent with the observation in raw data (S4 Fig).

BOLD signal change in intraparietal sulcus and prefrontal cortex

We next examined the BOLD time course in the intraparietal sulcus (IPS) and in the prefrontal

cortex (PFC) during the working memory task at the 2 memory loads. We observed the classic

pattern of load-sensitive BOLD activity in both regions of interest (ROIs): signal intensity was

sustained above baseline across the delay period in both load conditions (all ps < 0.001), with

greater activity for the higher memory load condition (all ps < 0.01, including the “late delay”

time point at which the principal BOLD-behavior analyses were carried out; Fig 2A and 2B).

Modeling load-dependent BOLD activity with behavior at the ROI level

To relate load-dependent BOLD activity in parietal and frontal cortex to behavior, we fit linear

regression models with the parameters of the DDM and subject as the independent variables,

and BOLD activity as the dependent variable. We first used these regression models to calcu-

late within-subject correlations (ANCOVAs) between behavioral parameters (drift and diffu-

sion) and BOLD activity. The results indicated that BOLD activity in both ROIs correlated

significantly with diffusion (IPS diffusion: r = 0.83, p = 0.00004; PFC diffusion: r = 0.79,

p = 0.0002) and drift (IPS drift: r = 0.59, p = 0.012; PFC drift: r = 0.61, p = 0.009; Fig 2C and

2D).

Next, to evaluate the contribution of drift and diffusion, we found the regression model

that best explained BOLD activity in the 2 ROIs. Comparison between the 4 models of interest

PLOS BIOLOGY Neural correlates of imprecision in visual working memory

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000854 September 8, 2020 3 / 17

https://doi.org/10.1371/journal.pbio.3000854


indicated that Model 2 (modeling BOLD activity as a function of diffusion from the DDM)

explained the most variance in BOLD activity in both IPS and PFC ROIs, and showed the best

model performance in terms of Akaike Information Criterion (AIC), and Bayesian Informa-

tion Criterion (BIC) (see Table 1 for a complete list of model comparisons).

We also used stepwise regression to examine the relative contribution of drift and diffusion

to the prediction of BOLD activity. Starting from Model 3 (modeling BOLD activity as a func-

tion of both drift and diffusion from the DDM), stepwise regression removed drift from the

Fig 1. Trial sequence of the fMRI task and behavioral performance. A. For the data analyzed in the current study,

participants remembered either one or three orientations. Sample stimuli were presented on the screen for 4 seconds,

followed by a brief mask period of 0.25 seconds. After a delay of 7.75 seconds, participants rotated the needle of the

response wheel to indicate the remembered orientation at the probed location. B. The raw response distribution of 1O

and 3O trials, indicated by the gray histograms. The black lines indicate the envelope of target distribution, and pink

and green lines indicate the envelope of response distribution, for 1O and 3O trials separately. C. Model-free and

model-based behavioral performance. From left to right panel shows mean error, diffusion from the DOM model, drift

from the DDM model, and diffusion from the DDM model. Error bars indicate ± 1 SEM. Data are available at osf.io/

ajq3z. 1O, 1 orientation; 3O, 3 different orientations; DDM, drift–diffusion model; DOM, diffusion-only model; fMRI,

functional magnetic resonance imaging.

https://doi.org/10.1371/journal.pbio.3000854.g001
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model for both IPS (F[1,14] = 0.35, p = 0.564) and PFC (F[1,14] = 0.84, p = 0.376) but retained

diffusion for both ROIs (diffusion versus constant model: IPS: F[32,15] = 4.37, p = 0.003; PFC:

Fig 2. BOLD activity and brain-behavior correlations in IPS and PFC. A. Trial-averaged BOLD activity in the IPS

functional ROI. B. Time course of BOLD activity in the PFC functional ROI. Pink and green lines correspond to the 1O

and 3O conditions, respectively. Error bars indicate ± 1 SEM. C. Within-subject correlations between behavioral

parameter from DDM (drift and diffusion plotted separately) and IPS BOLD activity, at “late delay” time point (12 s). D.

within-subject correlations between behavioral parameter (drift or diffusion) and PFC BOLD activity. In each plot, data

from each subject are plotted in a different color, and the “1” and “3” symbols correspond to values from 1O and 3O

trials, respectively. Lines illustrate the best fit of the group-level linear trend (i.e., the within-subject correlation) in

relation to individual subject data. Data are available at osf.io/ajq3z. 1O, 1 orientation; 3O, 3 different orientations;

BOLD, blood oxygen level–dependent; IPS, intraparietal sulcus; PFC, prefrontal cortex; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3000854.g002

Table 1. Comparison between different regression models.

Model Adjusted R2 AIC BIC

IPS

Model 1 0.237 29.379 54.297

Model 2 0.635 5.754 30.672

Model 3 0.619 6.966 33.349

Model 4 0.580 10.255 35.176

PFC

Model 1 0.412 14.116 39.034

Model 2 0.659 −3.271 21.646

Model 3 0.652 −2.817 23.566

Model 4 0.566 4.390 29.308

AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; IPS, intraparietal sulcus; PFC, prefrontal

cortex; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3000854.t001
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F[32,15] = 4.36, p = 0.003). Together, these results suggest the level of BOLD activity in both

IPS and PFC is most strongly correlated with the amount of diffusive noise in memories.

Modeling load-dependent BOLD activity with behavior at the whole-brain

level

We next performed a whole-brain linear regression analysis to explore the relative contribu-

tion of drift and diffusion to the BOLD activity of each voxel. Consistent with our ROI-based

results, we found significant clusters in bilateral IPS and left frontal cortex with load-depen-

dent BOLD activity that can be better explained by load-dependent changes in diffusion (Fig

3A, red clusters). Interestingly, we also observed clusters that showed higher brain-behavior

correlation with drift (Fig 3A, green clusters). These clusters were most prominent in the lat-

eral occipital cortex (LO) and superior postcentral gyrus bilaterally and in right inferior pre-

central gyrus. Because of the known involvement of occipital cortex in visual working

memory, we defined 2 bilateral anatomical ROIs for LO (LO1 and LO2) and repeated with

them the ROI-based analyses as previously performed for IPS and PFC.

Consistent with previous findings [8,10–13], BOLD signal intensity in the 2 LO ROIs

returned to baseline during the delay period, with late-delay-period activity no different from

baseline on 1O trials (LO1: t[15] = 0.300, p = 0.868; LO2: t[15] = 0.315, p = 0.845) and slightly

below baseline on 3O trials (LO1: t[15] = 2.754, p = 0.021; LO2: t[15] = 2.369, p = 0.043; Fig 3B

and 3C). ANCOVAs between the behavioral parameters from the DDM and this BOLD activ-

ity revealed trending correlations with drift (LO1: r = −0.48, p = 0.054; LO2: r = −0.44,

p = 0.081) and less so with diffusion (LO1: r = −0.44, p = 0.079; LO2: r = −0.34, p = 0.18; Fig

3D and 3E). Furthermore, stepwise regression on Model 3 removed diffusion from the model

for both LO1 (F[1,14] = 0.59, p = 0.456) and LO2 (F[1,14] = 0.13, p = 0.727), whereas drift

remained in models for both ROIs (drift versus constant model: LO1: F[32,15] = 3.98,

p = 0.005; LO2: F[32,15] = 4.2, p = 0.004). This result was opposite of what was observed in the

IPS and PFC ROIs.

Temporal evolution of BOLD-behavior correlations

Because the length of memory delays was not manipulated in this fMRI study, we were limited

to obtaining whole-trial behavioral measures of drift and diffusion that did not isolate encod-

ing and delay contributions to these measures. Nonetheless, we were able to investigate

whether the brain-behavior correlation changed dynamically over time by examining the tem-

poral evolution of the within-subject correlation between BOLD activity and behavior (S5 Fig

and S6 Fig) and also of the model performance of Model 1 and Model 2 (S7 Fig and S8 Fig).

We found that in the IPS and PFC, the diffusion model outperformed the drift model, starting

from approximately 4 seconds after trial onset, and sustained until approximately 18 seconds

after trial onset. Importantly, the difference between the 2 reached its peak around the late-

delay period (i.e., approximately 12 seconds after trial onset), the primary focus of our analy-

ses. In comparison, effects in LO1 and LO2 were generally weaker, starting from a diffusion-

dominant effect during the sample period (approximately 4–8 seconds after trial onset) and

switching to a drift-dominant effect during the delay period. These dynamic changes suggested

that our observations with BOLD-behavior correlations for drift and diffusion during delay

cannot be interpreted in their entirety as encoding-related effects.

Discussion

The results of this study provide a new account of the function of load-sensitive activity in the

IPS and PFC [4,5]. First, consistent with previous work with color working memory, here we
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Fig 3. Whole-brain regression analysis with drift and diffusion and ROI-based results in LO. A. Whole-brain

regression with drift and diffusion. Green denotes voxels showing load-dependent BOLD activity that can be better

explained by load-dependent changes in drift, and red denotes voxels showing load-dependent BOLD activity that can be

better explained by load-dependent changes in diffusion. For visualization purposes, results were clusterized at a

threshold of 20 voxels. The left 2 panels show results from the left hemisphere, and the right 2 panels show results from

the right hemisphere. The significance of the regression models was corrected using the FDR method at p< 0.05. B.

Trial-averaged BOLD activity in the LO1 anatomical ROI. C. Time course of BOLD activity in the LO2 anatomical ROI.

Pink and green lines correspond to the 1O and 3O conditions, respectively. Error bars indicate ± 1 SEM. D. Within-

subject correlations between behavioral parameter from DDM (drift and diffusion plotted separately) and LO1 BOLD

activity, at “late delay” time point (12 seconds). E. within-subject correlations between behavioral parameter (drift or

diffusion) and LO2 BOLD activity. In each plot, data from each subject are plotted in a different color, and the “1” and

“3” symbols correspond to values from 1O and 3O trials, respectively. Lines illustrate the best fit of the group-level linear

trend (i.e., the within-subject correlation) in relation to individual subject data. Data are available at osf.io/ajq3z. 1O, 1

orientation; 3O, 3 different orientations; BOLD, blood oxygen level–dependent; FDR, false discovery rate; LO, lateral

occipital cortex; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3000854.g003
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showed that attractor dynamics provided a better account of behavioral data of orientation

working memory, compared with classic mixture models that did not take attractor biases into

account. Next, and most importantly, the diffusion parameter from the discrete attractor

model provided the best account of the load-sensitive delay-period activity of the IPS and PFC.

In contrast, in the LO, where aggregate levels of late delay-period activity were at or below

baseline levels, load-sensitive fluctuation in this activity was better explained by drift, although

the effect was comparably weaker. Thus, our results provide the first evidence to our knowl-

edge that load-related increases in random diffusion during memory delay, one of the impor-

tant factors that determine imprecision in working memory, engages control-related circuits

of the IPS and PFC. Drift toward stable attractor states, on the other hand, may be more

important in sensory-related circuits of the LO.

By definition, working memory is guided by information specific to the current trial. Nev-

ertheless, working memory is also often influenced by many other factors, such as sensory his-

tory [21] and prior knowledge. In working memory for color, the influence of prior

knowledge is reflected as clustered responses around a small number of specific color values,

even when the distribution of sample colors is uniform [14–16]. The present results show that

this phenomenon generalizes to another low-level visual feature (orientation), and these biases

increased with increasing memory load. Together with those of the previous study [16], our

results indicate that dynamical systems modeling offers a useful framework within which to

understand the influence of trial-nonspecific factors on working memory performance. This

framework is also compatible with other models of working memory for orientation, such as

the neural resource model [17], in characterizing the well-known response biases for cardinal

and oblique orientations [18,19].

Neurally, delay-period neural activity in the IPS and PFC increased with increasing mem-

ory load, and we observed that this load-dependent change in BOLD activity was more related

to load-dependent changes in diffusion than in drift. Therefore, load-related activity change in

the IPS and PFC is more likely related to random diffusion processes. The random noise could

be related to noise in representations when memories are held in the IPS/PFC or related to

greater engagement of control processes when working memory has greater diffusion. For

example, a recent study has found that delay-period activity in IPS is more sensitive to the

demands of context binding than of memory load, per se [8]. By this account, increases in dif-

fusion could be due, at least in part, to increased interference between representations of stim-

ulus content and stimulus context, which would be expected to place greater demands on a

frontoparietal priority map controlling visually guided behavior.

In comparison to the IPS and PFC, although the effects were generally weaker, delay-period

activity in the LO showed an opposite trend, in that it was more sensitive to load-related

changes in drift to particular stimulus values (i.e., to attractor strength) than it was to load-

related changes in diffusion. This result is consistent with other demonstrations of bias in

visual cognition, such as the influence of prior expectation on the representation of motion

[22] and the influence of learning on representations of category boundaries in visual cortex

[23]. Because our current study did not involve a learning intervention and did not focus on

stimulus-specific representations, our results suggest that what we already know about the

neural bases of the biasing effects of recent experience on visual cognition may extend to more

trait-like “preexisting” attractor landscapes that have been sculpted through a life-time of expe-

rience with the visual world.

When considering these findings, it is important to not think of these factors as working in

isolation. In frontoparietal cortex, for example, inclusion of drift in the behavioral model pro-

vides a better prediction of neural signals with diffusion in these regions. Furthermore, it is

important to note that the correlation between load-sensitive drift and BOLD activity in
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frontoparietal cortex was also significant; diffusion was simply the parameter that explained more

variance in BOLD data. Therefore, it is possible that occipital and frontoparietal regions are both

implicated in the generation and processing of drift and diffusion in human working memory

performance but that the functioning of frontoparietal cortex is less influential on load-related

increases in drift than it is on load-related increases in diffusion. Bias-related processes in fronto-

parietal and occipital cortex may also play different roles in behavior, with the former reflecting

control processes related to implementation of biases, and the latter reflecting stimulus-specific

representations that are biased toward attractors. Lastly, drift-dominant effects in LO were com-

parably weaker and were only present during part of the trial (the delay and part of the probe

period), compared with the larger-in-magnitude, trial-spanning diffusion-dominant effects in

frontoparietal cortex. Although this difference cannot by simply explained by a difference in

BOLD activity between loads, as seen in the comparison of time courses of correlations, it

remains to be examined whether this pattern would change, if, for example, a higher memory

load was employed to increase load-dependent effect sizes in BOLD and behavior.

Finally, because our study did not manipulate the length of the encoding or delay periods,

unique influences from encoding- and delay-related processes on our estimates of drift and diffu-

sion parameters cannot be dissociated. Therefore, our results should not be interpreted as being

specific to the delay period but rather as illustrating relations between delay-period neural activity

and whole-trial measures of drift and diffusion. Because previous behavioral work has suggested a

substantially weaker influence of the delay period on memory performance, compared with

encoding [24], one might ask whether the whole-trial measures reported here might also be domi-

nated by encoding-related processes. Although overall magnitude of drift has, indeed, been

shown to be higher during encoding [16], we nonetheless believe that delay-related processes had

an important contribution to our estimates of drift and diffusion, for at least 2 reasons. First,

because drift and diffusion during memory exert their effects continuously over time, their influ-

ence on behavior can substantially accumulate over the course of delay periods. For example, in

the previous study [16], delay-period drift has been shown to account for the increase in mean

absolute bias on long versus short delay-period trials. Second, from a functional perspective, drift

counteracts the tendency of random diffusion to accumulate over time [16,25], and this counter-

vailing influence of drift should scale with the rate of diffusion. Indeed, the previous study shows

the lower drift rate during memory is sufficient to substantially prevent the accumulation of ran-

dom errors over time [16]. An important goal for future research will be to systematically manip-

ulate demands on encoding versus memory delay, to directly measure the neural activity

attributable to drift and diffusion during encoding versus during the ensuing delay.

In previous studies emphasizing stimulus-specific representations of visual working memory,

we have argued that disparate patterns of results in frontoparietal versus occipital cortex are consis-

tent with a functional distinction between these 2 regions, with the former more strongly associated

with control and the latter with stimulus representation [8,10]. Here, we see that stimulus-nonspe-

cific factors, as reflected in the relationship between load-dependent changes in behavior (drift and

diffusion) and delay-period activity, are also suggestive of such a distinction. Taken together, our

results suggest imprecision in working memory is due to a combination of stimulus-related biases

in occipital cortex and random diffusion that engages higher-order frontal and parietal cortex.

Methods

Ethics statement

This study was approved by the University of Wisconsin–Madison Health Sciences Institu-

tional Review Board (2017–0344) and was conducted according to the principles of the Decla-

ration of Helsinki. Participants provided written informed consent prior to participation.
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Subjects

The results reported here are from analyses carried out on existing data collected for other pur-

poses [26,27]. Thirty individuals (mean age 20.7 ± 2.3 years, 10 males) participated in the

behavioral session of the study, and 16 of these (mean age 20.6 ± 1.8 years, 8 males) also partic-

ipated in 2 subsequent fMRI scanning sessions. All were recruited from the University of Wis-

consin–Madison community. All had normal or corrected-to-normal vision and reported no

neurological or psychiatric disease. Anatomical scans from the fMRI session were also

screened by a neuroradiologist, and no abnormalities were detected. All subjects were mone-

tarily compensated for their participation.

Stimuli and procedure

All stimuli were created and presented using MATLAB (MathWorks, Natick, MA; www.

mathworks.com) and Psychtoolbox 3 extensions (psychtoolbox.org) [28,29]. In the behavioral

session, stimuli were presented at a viewing distance of 62 cm on an iMac screen, with a refresh

rate of 60 Hz. Subjects registered behavioral responses on a trackball response pad. In the

fMRI session, stimuli were projected onto a 60-Hz Avotec Silent Vision 6011 projector (Avo-

tec, Stuart, FL), and viewed through a coil-mounted mirror in the MRI scanner at a viewing

distance of 69 cm. Subjects registered behavioral responses on a MR-compatible trackball

response pad (Current Designs Inc., Philadelphia, PA).

There were 3 types of stimuli: oriented bars, color patches, or luminance patches. Each ori-

ented-bar stimulus appeared as a black line (width = 0.08˚) bisecting a white circle (radius = 2˚).

Line orientations were drawn from a pool of 9 orientations ranging from 0˚ to 160˚, in 20˚

increments, with a random jitter of ±0˚–5˚ added to stimulus on each trial, and another ran-

dom, fixed jitter of 1˚–10˚ to each participants’ 9 target orientations. Color patches were circu-

lar patches (radius = 2˚) filled with 1 color drawn from a pool of 9 colors that were equidistant

in CIEL�a�b color space (L = 70, a = 20, b = 38, radius = 60˚), with a random jitter of 1˚–5˚.

Luminance patches were rendered as a gray circular patch (radius = 0.83˚) inside a white

annulus (radius = 2˚), and the luminance of the patches were drawn from 9 grayscale values

from (0.03, 0.03, 0.03) to (0.97, 0.97, 0.97), in steps of 0.1175. Throughout the experiment, the

background screen color was gray (0.5, 0.5, 0.5).

There were 3 different trial types. On “1O” trials, 1 oriented bar was presented at 1 of 4 pos-

sible locations (45˚, 135˚, 225˚, 315˚ relative to central fixation, with an eccentricity of 5˚) for 4

seconds. Stimulus offset was followed by a mask (white circle [radius = 2˚] bisected by 18 black

bars [width = 0.08˚] intersecting at their midpoints and each differing in orientation from its

neighbors by 10˚; 0.25 seconds) and a delay period (7.75 seconds) during which subjects main-

tained central fixation. Recall was prompted by the onset of a stimulus circle appearing at the

same location as the sample, a response wheel centered on fixation (inner radius = 7.2˚, outer

radius of 9.2˚), and a cursor (a conventional “mouse” arrow) located at central fixation.

Twenty oriented lines (radius = 1.8˚, width = 0.05˚, ranging in orientation from 0˚ to 171˚ in

steps of 9˚) were displayed with equal spacing along the response wheel, and subjects registered

their memory of the sample orientation by moving the cursor to the appropriate location on

the response wheel and registering that location with a button press. At the onset of the recall

display, the stimulus patch was rendered with a randomly determined value rendered in the

format of the sample stimuli, and as soon as the subject began to move the cursor (with the

trackball) the stimulus patch took on the value corresponding to the location on the response

wheel that was nearest to the cursor. Responses were required within 4 seconds, while the cir-

cle and wheel remained on the screen. The angle of rotation of the response wheel was
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randomized across trials, to prevent subjects from preparing their response during the delay

period.

“3O” trials were similar to “1O” trials, except 3 oriented bars, each with a different orienta-

tion, were displayed in 3 of the 4 possible sample locations, and at time 12 seconds, the sample

to be recalled was indicated by the location of the stimulus circle in the recall array. For each

3O trial, sample values were selected randomly, without replacement, from the pool of 9 possi-

ble orientations (Fig 1A).

On “1O1C1L” trials, 1 oriented bar, 1 color patch, and 1 luminance patch were presented,

and during the response stage, subjects were tested, unpredictably, on their memory for 1 of

these stimuli. The response wheel for color and luminance was the same size as the orientation

wheel but displayed 180 possible color or luminance values.

The behavioral session contained 2 blocks of 1O and 3O trials and 3 blocks of 1O1C1L tri-

als. Each block contained 50 trials, and block order was counterbalanced across subjects. The

1O and 3O blocks contained 25 trials each for 1O and 3O, and the 1O1C1L blocks contained

17 probes of 2 of the 3 categories, and 16 of the remaining one. The selection of the categories

was randomized across blocks, yielding 50 trials for each category across 3 blocks.

There were 2 fMRI scanning sessions. The first scanning session included four 18-trial

blocks of 9 3O trials and 9 1O1C1L trials (with 3 probes each for orientation, color, and lumi-

nance), yielding a total of 36 trials for each of these load-of-3 trial types. These 4 blocks were

followed by eight 18-trial blocks of 1O trials. The second session included 12 blocks of 1O tri-

als. To match the number of trials between conditions in fMRI data, 2 of the twenty 1O blocks

were randomly selected for each subject for further analyses.

We introduce the 1O1C1L condition here only for the completeness of experimental

design. All subsequent analyses focused on 1O and 3O trials for load-related changes in behav-

ioral and neural data.

Behavioral modeling

We fit the data from the behavioral session using a discrete attractor model [16]. This model

assumed that memories evolve over time according to 2 distinct processes: random noise (dif-

fusion) and systematic drift toward attractor states in the stimulus space. Specifically, the tem-

poral evolution of a remembered stimulus orientation θ is modeled using the partial

differential equation:

dy ¼ bLGðyÞdt þ sLdW

where G is a function describing the direction and magnitude of drift across stimulus space, βL
defines the gain of the drift for a given load L, and W is an additive white noise process with

variance σL. Thus, βLG(θ)dt describes the influence of drift and σLdW, the influence of random

noise on memory. By analogy with the decision-making literature, in which drift–diffusion

models are often used to model latent evidence for a behavioral choice in a linear 1-D space,

this DDM describes the latent value of the subject’s memory in a circular 1-D space. Both the

drift (βL) and diffusion (σL) parameters are rates, with a unit of rad/s indicating the rate of dif-

fusion and the maximum instantaneous drift rate. Unlike the previous study [16], here we fit

behavioral data without separating out encoding and delay processes, because the length of

memory delays was not manipulated in this experiment.

The model also captures variance due to random responses and reports of nontarget items

(following [20,30], see [16] for details). We identified the maximum likelihood estimates of βL
(drift) and σL (diffusion) for each subject and analyzed these fit parameters as described in the

main text. Notably, when the drift parameter is removed, the remaining DOM is equivalent to
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a classic mixture model [20]. The comparison between performance of the DDM and DOM

models was evaluated by combining data from all subjects and computing the average differ-

ence in cross-validated log-likelihood value across 10 folds.

Model simulation on discrete target values

To illustrate whether the DDM could be successfully fit to datasets with discrete target values,

we generated simulated data from the DDM using known parameters and tested the ability of

our fitting procedure to recover these parameters when targets in these simulated datasets

were discrete and uniform. Simulated datasets were matched to the experimental behavioral

datasets: each consisted of 50 1O and 50 3O trials with an 8-second delay. The orientation of

targets and nontargets were either (1) drawn from a pool of 9 orientations ranging from 0˚ to

160˚ in 20˚ increments with a random jitter of 1˚–10˚ added to each participant’s targets

and ± 0˚–5˚ added to stimulus on each trial (discrete condition) or (2) drawn uniformly from

values ranging from 0˚ to 180˚ (continuous condition). The parameters of the model were set

to be similar to those observed empirically: 1O drift, 1O diffusion, 3O drift, and 3O diffusion

were set to 0.04, 0.01, 0.10, and 0.03, respectively. The drift function was parameterized such

that values were biased toward approximately 45˚ and 135˚, consistent with our observations

here and with previous reports in the literature. For each trial, a simulated report was drawn

from the probability distribution over reports generated by the model (given the chosen

parameters, target value, nontarget values, delay, and set size).

A total of 1,000 discrete and 1,000 continuous datasets with randomly generated target and

nontarget values were created. For each dataset, we fit the DDM model and recovered the max-

imum likelihood parameters, exactly as for the empirical data, and compared the recovered

parameters to the known, generative parameters (S1 Fig and S2 Fig).

A similar simulation procedure was also used, based on parameters from model fits of each

subject, when plotting the model fits in S3 Fig, to simulate a larger number of trials for more

stable model performance (trial number = 1,000).

fMRI data acquisition

Whole-brain images were acquired with a 3 Tesla GE MR scanner (Discovery MR750; GE

Healthcare, Chicago, IL) at the Lane Neuroimaging Laboratory at the University of Wiscon-

sin–Madison HealthEmotions Research Institute (Department of Psychiatry). Functional

images were acquired with a gradient-echo echo-planar sequence (2-second TR, 25-millisec-

ond echo time [TE], 60˚ flip angle) within a 64 × 64 matrix (40 sagittal slices, 3.5-mm isotro-

pic). Each of the fMRI scans generated 215 volumes. A high-resolution T1 image was also

acquired for each session with a fast-spoiled gradient-recalled-echo sequence (8.2-millisecond

TR, 3.2-millisecond TE, 12˚ flip angle, 172 axial slices, 256 × 256 in-plane, 1.0 mm isotropic).

fMRI data preprocessing

Functional MRI data were preprocessed using AFNI (afni.nimh.nih.gov) [31]. The data were

first registered to the first volume of the first run and then to the T1 volume of the first scan

session. Six nuisance regressors were included in GLMs to account for head motion artifacts in

6 different directions. The data were then motion corrected, detrended (linear, quadratic,

cubic), converted to percent signal change, and spatially smoothed with a 4-mm FWHM

Gaussian kernel. For the whole-brain analysis, the data were further aligned to the MNI-ICBM

152 space [32].
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ROI definition

We first defined anatomical ROIs using existing anatomical atlases and warped them back to

each subject’s structural scan in native space. Parietal anatomical ROIs were created by extract-

ing IPS masks IPS0-5 from the probabilistic atlas of Wang and colleagues [33], merging them,

and collapsing over the right and left hemispheres. Lateral PFC anatomical ROIs were created

by extracting masks of the superior, middle, and inferior frontal gyri supplied by AFNI, merg-

ing them, and collapsing over the right and left hemispheres. Lateral occipital anatomical ROIs

were created by extracting masks for LO1 and LO2 from the probabilistic atlas of Wang and

colleagues [33], merging them, and collapsing over the right and left hemispheres.

To find the functionally activated voxels within the anatomical atlases, a conventional

mass-univariate general linear model (GLM) analysis was implemented in AFNI, with sample,

delay, and probe periods of the task modeled with boxcars (4 seconds, 8 seconds, and 4 sec-

onds in length, respectively) that were convolved with a canonical hemodynamic response

function. Across the whole brain, we identified the 2,000 voxels displaying the strongest load-

ing on the contrast (delay–baseline), collapsing over all 3 conditions. The intersection of these

2,000 voxels and the 2 anatomical masks defined the 2 functional ROIs in subsequent analyses:

the IPS ROI and the PFC ROI. On average, the IPS functional ROI contained 463 ± 177 voxels,

the PFC functional ROI contained 314 ± 86 voxels, and the 2 anatomical LO ROIs contained

404 ± 57 and 456 ± 69 voxels, respectively.

Univariate analyses

We calculated the percent signal change in BOLD activity relative to baseline for each time

point during the working memory task; baseline was chosen as the average BOLD activity of

the first TR of each trial. The BOLD signal change was averaged across trials within each con-

dition, and across all voxels within each ROI. Statistical significance of BOLD activity against

baseline was assessed using 2-tailed, 1-sample t-tests against 0, and the obtained p-values were

corrected across loads and time points using false discovery rate (FDR) [34]. Statistical differ-

ence of BOLD activity between 1O and 3O at each time point was assessed using 2-tailed

paired t-tests, and similarly, the obtained p-values were FDR corrected across time points.

Brain-behavior correlation and model comparisons

Following previous work [8–10], we used an analysis of covariance (ANCOVA) method to

evaluate the correlated sensitivity to trial type (i.e., 1O versus 3O) across pairs of task-related

variables (i.e., BOLD activity versus behavioral parameter). Unlike simple correlations,

ANCOVA accommodates the fact that each subject contributes a value for each level of trial

type. It removes between-subject differences and assesses evidence for “within-subject correla-

tion” between the 2 task-related variables [35].

Mathematically, within-subject correlations were implemented as linear regression models

and were calculated for drift and diffusion separately, where subject is a dummy variable for

trial types (1O and 3O) of each subject, and BOLD is BOLD signal from time 12 second (“late

delay-period” activity), βs are the regression coefficients, and ε is the error term.

Model 1 : BOLD ¼ b2 � driftDDM þ b1 � subject þ b0 þ ε;

Model 2 : BOLD ¼ b2 � diffusionDDM þ b1 � subject þ b0 þ ε;
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The within-subject correlation r for drift or diffusion was calculated as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSdrift or diffusion

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSdrift or diffusion þ SSerror

p

where SS stands for sum of squares.

To compare between the performance of different regression models, we included 2 more

models, one full model that took both drift and diffusion into account, and one control model

that used diffusion from the DOM model:

Model 3 : BOLD ¼ b3 � driftDDM þ b2 � diffusionDDM þ b1 � subject þ b0 þ ε;

Model 4 : BOLD ¼ b2 � diffusionDOM þ b1 � subject þ b0 þ ε:

Model performance was evaluated by comparing AIC, BIC, and adjusted R2 (explained var-

iance of the model after adjusting for the number of predictors) of each model.

Lastly, we performed stepwise regression to evaluate the contribution of the drift and diffu-

sion parameters to the prediction of BOLD activity. The regression model started with Model

3, after the initial fit, the predictors in the model were examined one by one, and the predictor

with a p> 0.10 in the F-test after removal was removed.

Whole-brain regression analysis

To explore brain areas that showed activity sensitive to either the drift or diffusion parameter,

we used a whole-brain exploratory analysis to find voxels with activity that can be best

explained by either drift or diffusion. To this end, all subjects’ data were first normalized to the

MNI-ICBM 152 space [32], and for each voxel, we fit Models 1 and 2 to the BOLD activity of

that voxel. The model with a higher adjusted R2 for each voxel was selected as the best fitting

for that voxel, and we used the p-value of the selected model (F-test on regression versus con-

stant model) for statistical significance. To correct for multiple comparisons, we applied the

FDR method to the p-values of the selected model across voxels. To avoid overinterpretation,

we also applied a threshold in model selection using BIC [36], such that only voxels with a sig-

nificant p-value after correction, and in which the drift or diffusion model outperformed the

other by a BIC� 2, remained in the final report. Therefore, we identified voxels with load-

dependent BOLD activity that could be better explained by load-dependent changes in drift,

or in diffusion, at the whole-brain level. Results from the whole-brain analysis were displayed

on the cortical surface reconstructed with FreeSurfer (surfer.nmr.mgh.harvard.edu; [37,38])

and visualized with SUMA in AFNI (afni.nimh.nih.gov) [31].

Supporting information

S1 Fig. Distribution of recovered parameters across 1,000 datasets (histogram) and genera-

tive values (lines). Pink: 1O condition. Green: 3O condition. Note that although we observe

some bias in the estimate of drift when load = 3 due to the relatively modest number of trials

per condition (50), the models fit to the empirical data nevertheless capture behavioral well

(S3A Fig) and because this bias is a constant factor in our analyses across regions it cannot

explain our neural results. Data are available at osf.io/ajq3z. 1O, 1 orientation; 3O, 3 different

orientations.

(TIF)

S2 Fig. Mean recovery error for known generative parameters of the DDM (values in

parentheses). Violin plots show distribution over 1,000 simulated datasets. Red crosses

PLOS BIOLOGY Neural correlates of imprecision in visual working memory

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000854 September 8, 2020 14 / 17

http://surfer.nmr.mgh.harvard.edu
http://afni.nimh.nih.gov
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000854.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000854.s002
https://doi.org/10.1371/journal.pbio.3000854


indicate mean values. Pink: 1O condition. Green: 3O condition. Data are available at osf.io/

ajq3z. 1O, 1 orientation; 3O, 3 different orientations; DDM, drift–diffusion model.

(TIF)

S3 Fig. Response bias as a function of sample orientation for 1O and 3O conditions

(n = 30). Sample orientations were categorized in 10˚ bins. Solid lines demonstrate the experi-

mental data (shaded areas indicate ± 1 SEM), and dashed lines demonstrate model fits. A.

behavioral data with DDM model fits. B. behavioral data with DOM model fits. Data are avail-

able at osf.io/ajq3z. 1O, 1 orientation; 3O, 3 different orientations; DDM, drift–diffusion

model; DOM, diffusion-only model.

(TIF)

S4 Fig. Distribution of fitted attractor locations (in 20˚ bins; n = 30). Data are available at

osf.io/ajq3z.

(TIF)

S5 Fig. Time course of difference in BOLD activity between 1O and 3O (3O – 1O, gray)

and of within-subject correlation for drift (orange) and diffusion (blue; correlations are

shown in absolute values for comparisons). Error bars indicate ± 1 SEM. A. IPS. B. PFC. C.

LO1. D. LO2. Data are available at osf.io/ajq3z. 1O, 1 orientation; 3O, 3 different orientations;

IPS, intraparietal sulcus; LO, lateral occipital cortex; PFC, prefrontal cortex.

(TIF)

S6 Fig. Same as S5 Fig, except that difference in correlation (diffusion–drift, purple) was

shown. Positive difference in correlation indicates higher correlation for diffusion, and nega-

tive difference indicates higher correlation for drift. A. IPS. B. PFC. C. LO1. D. LO2. Data are

available at osf.io/ajq3z. 1O, 1 orientation; 3O, 3 different orientations; IPS, intraparietal sul-

cus; LO, lateral occipital cortex; PFC, prefrontal cortex.

(TIF)

S7 Fig. Time course of difference in BOLD activity between 1O and 3O (3O – 1O, gray)

and of explained variance for Model 1 (orange) and Model 2 (blue). Error bars indicate ± 1

SEM. A. IPS. B. PFC. C. LO1. D. LO2. Data are available at osf.io/ajq3z. 1O, 1 orientation; 3O,

3 different orientations; IPS, intraparietal sulcus; LO, lateral occipital cortex; PFC, prefrontal

cortex.

(TIF)

S8 Fig. Same as S7 Fig, except that difference in explained variance (Model 2 –Model 1,

purple) was shown. Positive difference in explained variance higher model fit for Model 2

(diffusion model), and negative difference indicates higher model fit for Model 1 (drift

model). A. IPS. B. PFC. C. LO1. D. LO2. Data are available at osf.io/ajq3z. 1O, 1 orientation;

3O, 3 different orientations; IPS, intraparietal sulcus; LO, lateral occipital cortex; PFC, prefron-

tal cortex.

(TIF)
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