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ABSTRACT

Visual search and working memory (WM) are tightly linked cognitive processes. Theories of
attentional selection assume that WM plays an important role in top-down guided visual search.
However, computational models of visual search do not model WM. Here we show that an
existing model of WM can utilize its mechanisms of rapid plasticity and pattern completion to
perform visual search. In this model, a search template, like a memory item, is encoded into the
network’s synaptic weights forming a momentary stable attractor. During search, recurrent
activation between the template and visual inputs amplifies the target and suppresses non-
matching features via mutual inhibition. While the model cannot outperform models designed
specifically for search, it can, “off-the-shelf”, account for important characteristics. Notably, it
produces search display set-size costs, repetition effects, and multiple-template search effects,
qualitatively in line with empirical data. It is also informative that the model fails to produce
some important aspects of visual search behaviour, such as suppression of repeated distractors.
Also, without additional control structures for top-down guidance, the model lacks the ability to
differentiate between encoding and searching for targets. The shared architecture bridges
theories of visual search and visual WM, highlighting their common structure and their differences.
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The ability to find relevant objects in our visual world
relies on maintained knowledge of what to look for.
When people are asked to find a particular item, for
example with a given colour or shape, the object match-
ing the description must be selected from an array of
distracting items. At a neural level, the selection is
thought to involve resolving competition between
the target and the distractors, by biasing selectivity of
feature-sensitive neurons (Bundesen et al., 2005; Desi-
mone & Duncan, 1995; Reynolds & Desimone, 1999).
These selection biases are assumed to be established
by a mental representation of the item to be searched
for, termed an “attentional template”. The template
information then propagates down the cortical hierar-
chy through top-down feedback connections, down
the cortical hierarchy, pre-activating the template’s fea-
tures (Desimone & Duncan, 1995; Duncan & Hum-
phreys, 1989). This way, stimuli matching the template
are selectively amplified for further processing.

A crucial feature of top-down guided search is its
flexibility, as a selection is being guided by contexts
spanning multiple timescales (Nobre & Stokes, 2019;

Woodman & Chun, 2006). Over short time scales,
visual working memory (WM) guides visual search
behaviour (e.g., Desimone & Duncan, 1995; Pashler &
Shiu, 1999). WM allows for the maintenance and
manipulation of representations in mind (Baddeley,
1992; D'Esposito & Postle, 2015). To support goal-
directed behaviour, it may proactively set up the
brain’s state to be ready for certain kinds of input-trig-
gered responses (Myers et al., 2017; Olivers et al.,
2011), for example, by biasing perceptual selection
by automatically amplifying matching perceptual
input (e.g., Downing, 2000; Olivers et al., 2006; Soto
et al.,, 2005; Woodman & Luck, 2002). Through these
mechanisms, items held in visual WM can act as tem-
plates guiding attention. Accordingly, perceptual
selection obeys similar laws to a selection of items
from WM (Kong & Fougnie, 2019; Kuo et al., 2009;
Olivers, 2008) suggesting that they could be features
of one and the same neural architecture (e.g., Emrich
et al., 2009; Mayer et al., 2007).

Indeed in certain situations, visual search and WM
appear to overlap. When visual search must be
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performed while maintaining a visual object in WM,
search is slower when one of the distractors matches
the information held in WM (e.g., Moores et al., 2003;
Olivers et al., 2006; Pashler & Shiu, 1999). In contrast,
this memory-driven interference is absent when mul-
tiple objects are held in WM (e.g., Downing & Dodds,
2004; Woodman & Luck, 2007). One way to reconcile
these findings is if not all representations in WM are
created equal. Specifically, only items that are cur-
rently in the focus of attention (FOA) may interact
with perceptual information to generate behaviour,
and thus drive visual search (Olivers et al., 2011).

While some dedicated models of visual search
include working memory as a component (e.g., Bunde-
sen, 1990; Bundesen et al., 2005; Wolfe, 1994), these
models do not actually model WM beyond assuming
the presence of a biasing representation. Here we
take the opposite approach, by starting from the
other end and testing a neural model designed exclu-
sively for WM, and assessing how it fares, without
modification, on visual search tasks. The correspon-
dence between WM and visual search that emerges
from the literature predicts that an architecture built
to model WM should in principle generalize to visual
search. While taking an off-the-shelf model drastically
limits the tasks and effects that can be simulated, it
has the benefit of providing a simple, transparent
neural mechanism common to both processes.

A recent dynamic model of WM invokes rapid
neural plasticity and pattern completion to produce
cued recall (Manohar et al., 2019). This model is com-
posed of two kinds of units corresponding to popu-
lations of neurons in the brain: a pool of freely-
conjunctive neurons - putatively in the prefrontal
cortex - rapidly forming associations between the fea-
tures of an object held in feature-selective neurons
(Figure 1A). Even though multiple conjunctive units
may initially become responsive to new input,
mutual inhibition between conjunction units results
in one winning unit eventually becoming selective
for the current stimulus. Concurrent activation
between the winning conjunction unit and the
active feature units drives rapid Hebbian synaptic plas-
ticity, encoding the feature pattern into synaptic con-
nections connecting these units. This produces a
stable momentary attractor state which can fall silent
when new information is encoded into the network
but can be re-activated by a partial cue to recall the
object’s features via pattern completion. The model’s

dynamics only allow one attractor to be in active
state at a time; however, the activation state can
switched between different attractors corresponding
to different memory representations. The attractor
landscape, encoded in the network's synaptic
weights, is continuously updated: Synaptic weights
become more selective for the active pattern of fea-
tures (corresponding to the item in the FOA),
whereas for objects whose attractor has fallen into a
silent state (the currently unattended items), the
weights are slowly eroded. This model can successfully
emulate the capacity limits, decay, primacy and
recency effects observed in visual WM.

Can this kind of architecture be harnessed to also
implement top-down, template-based visual search?
In its current implementation, the activation brought
about by sensory stimuli resonates with higher-order
areas if the features match an item in memory. In this
sense, setting up a template would correspond to
encoding information into WM, and visual search
would correspond to cued recall in which the test
display also contains non-remembered features at
non-target locations. To search for a single feature,
the template feature is encoded by associating it
with the possible locations to be searched, via synaptic
plasticity (Figure 1B). During search, recurrent feedback
between the prefrontal neurons and the incoming fea-
tures triggers pattern completion that acts to selec-
tively amplify template-matching features while
mutual inhibition suppresses distracting information
at non-target locations (Figure 1C). Thus, without any
modification, attractor-based working memory
models could in principle perform visual search.
Indeed other WM models of this class (Fiebig et al.,
2020; Fiebig & Lansner, 2017; Mongillo et al., 2008), or
the binding-pool model (Swan & Wyble, 2014) which
proposes the same general idea, but without the com-
mitment to synaptic plasticity, may also suffice.

To test this possibility, we used the Manohar et al.
(2019) model to simulate a set of visual search
effects. First, we assessed whether an item in
memory (i.e., template) would, via pattern completion,
amplify target features and resist distraction from non-
target features. Secondly, we examined whether trial
history effects stemming from the network’s rapid
plasticity could simulate benefits related to target rep-
etition effects. Lastly, we asked whether competition
between items in memory could account for costs
related to the preparation of multiple templates for
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Figure 1. WM model relying on rapid neural plasticity to form object memories can utilize pattern completion and mutual inhibition to
implement cued recall and visual search. (A) Depiction of the model’s architecture. For the purpose of visual search simulations, the
three dimensions within the feature layer were designated to correspond to three searched locations and each unit within a dimension
to represent a different colour (as occurs in the primary visual cortex). During memory encoding, the stimulus activates correspondingly
tuned units in the feature-selective neurons (posterior cortex). The activation drives activity in the conjunction layer (anterior cortex)
where, via mutual inhibition, the conjunctive units compete to encode the combination of active features. The winning conjunctive unit
then mutually activates the feature units, and this recurrent activation encodes the information into the synapses via rapid Hebbian
plasticity. (B) The same mechanism can be utilized to encode a visual search template into WM. In this case, the association
between template colour at all locations is encoded into a conjunction unit. The conjunction unit can be driven by visual inputs to
provide recurrent amplification of that colour within the network. (C) The resulting bias within the network guides the activation
from the features within the visual search display enhancing the target feature. A successful activation of the template conjunction
unit triggers pattern completion that leads to selection of the target and inhibition of the distractors via mutual inhibition. (D) The
relative position of feature units within the feature layer can be rearranged to reveal their spatial arrangement within a feature map.

visual search (preparation cost) and costs related to
these multiple different templates concurrently
guiding the selection of targets (selection cost). Criti-
cally, we were interested in the ways in which the
model might fail, which would shed light on how
WM and search processes differ.

General methods

All simulations used the model’s original parameters
(Manohar et al., 2019). The data and scripts that
support the findings of this study are openly available
at https://osf.io/6c9uj. To summarize, the model con-
tains 12 feature-selective units, represented by their
activity level (f), arranged in three groups of 4, each

connected to 4 freely-conjunctive units (c). The activity
of each unit is constrained between 0 and 1. Each
neuron is self-excitatory and there is a blanket lateral
inhibition within each group of units. In its simplest
form, the units’ activity update equation is as follows

(o] —samoia([ e we ][]+ [1ue )

where W s and Wy, are conjunctive-feature synapses
and Wg and W, are fixed inter-feature and inter-con-
junction synapses respectively. The synapses between
the feature and conjunctive neurons are continuously
updated by a Hebbian covariance rule, to allow
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patterns of inputs to be encoded into a conjunctive
unit:

A=(c-p)-F -p
WS oW 4 v, A)
wa < 0_(wa+ ,YZAT)

where A is the change in firing rate, 8 is the
units’ baseline activity, y are the learning rates and o
is a function that constrains values to lie between 0
and 1.

The original feature arrangement was designed to
showcase a general feature-binding mechanism and
does not treat space as special. In order to model
visual search, the feature-selective units were rela-
belled to represent a spatial feature map, with four
colours appearing at three possible locations (Figure
1D). Spatial information is integral to visual search,
so here we incorporate it into colour features in the
form of a map. In fact, it is impossible to present a
search array without spatially-specific neurons, and
accordingly all previous models of visual search have
used spatial feature maps. This exactly preserves the
structure of the original plastic attractor network. To
encode a template into the network, the target
colour was presented simultaneously at all possible
locations, creating an attractor state for that colour
via a flexible conjunction unit. This unit could then
function like a top-down rule, signalling the need to
search for a specific target colour.

Simulation 1: Distractor effects

The efficiency of visual search is limited by the amount
of competition between the target and distractors.
First, this competition is typically expressed as a set
size effect, i.e., the time necessary to locate the
target as a function of the number of distractors
present (Wolfe, 1994, 1998). Second, competition
varies as a function of target-distractor similarity, as
well as distractor-distractor similarity (e.g., Bauer
et al., 1996; Duncan & Humphreys, 1989; Humphreys
et al,, 1989; Pashler, 1987; Wolfe et al., 1992). Third, dis-
tractor competition has been shown to be reduced by
repetitions in distractor locations and identity,
suggesting that search is aided by distractor suppres-
sion (Hout & Goldinger, 2010; Kristjansson & Driver,
2008).

The primary goal of the first simulation was to assess
whether the model can perform visual search, i.e.,
select targets among distractors. In addition, we evalu-
ated how changes in distractor-related factors affect
the model’s ability to select targets. We first manipu-
lated the number of distractors presented with target
(0, 1 and 2 distractors) to assess any basic set size
effects. Second, we tested whether distractor-distractor
similarity (i.e, a homogeneous versus heterogeneous
distractor set) increases search times. Finally, we
assessed how the repetition of distractor location and
colour from trial to trial reduced search times.

Method

Simulation

To simulate the visual search set size effect, the target
colour was presented with zero, one or two distractors.
The simulated trial sequences for these three different
experimental conditions are shown in Figure 2A. Each
trial started with a pre-stimulus period lasting 200 time
steps [ts] with all features under maximal inhibition
(input i=-1). During the following encoding epoch,
the template was encoded by activating the corre-
sponding feature units, by maximally activating the
features corresponding to the template search-
defining feature (i.e., colour) and its possible locations
(i=+1) while suppressing all the other features (i=-1).
A delay period (i=0) of 300 ts followed template
encoding. The visual search display (120 ts) was simu-
lated by activating the template search-defining
feature unit at a target location (i=+1, i=—1 for all
other feature units). The search display was followed
by a short period of feature layer inhibition (5 ts)
and a response period (400 ts). The inhibition period
served to temporarily suppress the activation related
to the visual search display and allow the dynamics
of the network to generate a response. Without this
suppression, the responses would be driven by the
external input rather than the workings of the
model. To simulate the set size effect, the target was
presented either on its own or together with one or
two other colours presented at the remaining
locations. The number of distractors varied between
0 and 2 on a trial-to-trial basis. The model was
exposed to the trial sequences in blocks with each
block consisting of 300 randomized trials (100 trials
for each distractor number). A total of 100 simulations
were performed.
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Figure 2. Simulation 1: Visual search set size effect, distractor repetition and distractor similarity. (A) Time course of feature activity
traces of a representative trial for the three experimental conditions. Each trial started with a 200 ts inhibition period followed by encod-
ing of the template (120 ts). Following a delay period of 300 ts, visual search display was presented for 120 ts. Responses were recorded
over the following response period of 400 ts. A variable number of distractor colours were presented at the two non-target locations
(zero- top, one- middle, two- bottom). For visualization, a small vertical shift was added to the feature neuron firing rate traces. (B) The
model reproduced the visual search set size effect. Increasing the number of items presented during visual search led to an increase in
RTs (set size 1 = zero distractors). Data were reproduced from Wolfe (1994). (C) Search was more efficient for homogeneous compared
to heterogeneous distractors. Data were reproduced from Kong et al. (2016). (D) The model, however, did not replicate the distractor
repetition effect. In the 1TTGT-1DIST condition, repetition in the distractor’s location or its location and colour in addition to the target
location did not improve RTs compared to trials in which the distractor changed its location (i.e., zero distractor repeated). Data were
reproduced from Kristjdnsson and Driver (2008).

In the above simulation, there is no hard-wired  distractors (e.g., green at two locations) or heteroge-
relation between the same colour at different  nous distractors (e.g. green and purple).
locations, and so the network cannot recognize dis-
tractor colour similarity. To train the model to recog-  Behavioural performance from simulated data
nize colour similarity, in a separate simulation the  Performance was measured in two ways: accuracy and
model was exposed to 100 trials during which, for  response time. The model’s response was considered
each colour, the units at all three locations were  correct if the most active unit within the target
associated with each other (e.g., green-left, green-  location (i.e, dimension) corresponded to the tem-
right and green-bottom were co-activated). Following  plate’s colour. Response time (RT) was established as
the training, the model was exposed to a mixture of  the time point during the response period at which
two types of trials: trials with either homogeneous  the most active unit reached its maximum level of
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activation. Qualitatively similar results were obtained
when all feature units were considered, ie., if a
response was considered correct when the most
active unit out of all 12 feature units (or two most
active units of all 12 features for two-target conditions)
corresponded to the colour and location of the target.

Distractor repetition effect was only evaluated with
a set size of 2 items (1TGT-1DIST). Because the model
architecture only includes three locations, if all were
occupied in the display as was the case in set size of
3 items (1TGT-2DIST), it would not be possible to
evaluate the benefit of a single distractor repetition
independently of the cost associated with target
location switch (i.e., any change in the location of a
distractor in this condition would produce a change
in the target location). If locations of both distractors
were repeated, the target location would necessarily
have to be repeated as well, making it impossible to
compare this condition to the single distractor
repeat condition.

Results

As shown in Figure 2B, the model produced a set size
effect, showing an increase in RTs as more distractors
were presented during visual search. The zero-distrac-
tor condition (set size one) represents the time necess-
ary for the model to perform a cued recall. In line with
empirical findings, the more distracting features that
were added to the search display, the more time
was necessary for the target to become active.
Because accuracy was at ceiling, no accuracy differ-
ences were observed between conditions. After the
model was trained to recognize distractor colour simi-
larity, the model produced longer RTs for trials with
heterogeneous distractors compared to homo-
geneous distractors (Figure 2C).

The model did not reproduce the distractor rep-
etition effect. In contrast to human data demonstrat-
ing faster search with more repeated distractors
(Kristjdnsson & Driver, 2008), the model was slower
to search when there was repetition of a distractor
in addition to the target (Figure 2D).

Interim discussion

The goal of the first simulation was to establish that
the WM model can in principle perform visual
search. We assessed whether pattern completion -

the tendency to re-activate recently-encountered pat-
terns of input — could be utilized to select targets and
overcome distraction during visual search. To do so,
we explored how well the model matches human
performance by manipulating distractor-related
factors (the number of distractors, distractor rep-
etition, distractor similarity). In line with the empirical
data, the model was worse at selecting a target when
more distractors were present (Wolfe, 1994, 1998).
This was because each distractor decreased the selec-
tivity of the signal produced by the target unit acti-
vation by indiscriminately activating non-template
conjunction units. This competition led to a delay in
the recurrent activation between the target and the
template.

Additionally, the model was worse at rejecting dis-
tractors when the distractor was repeated from one
trial to another, failing to produce distractor repetition
benefit (Hout & Goldinger, 2010; Kristjdnsson & Driver,
2008). This is because distractor information was erro-
neously encoded into the template’s conjunction unit
when concurrently presented with the target during
trial n search making the competition for the targer
unit stronger on trial n+1. Since the model does not
have any gating or executive control mechanisms, it
does not distinguish between phases of the tasks,
and treats encoding and search identically. As such,
the network cannot prevent distractors from becom-
ing integrated into the template representation fol-
lowing a search.

The failure of the model, where distractors erro-
neously get associated with the template, highlights
that true visual search may involve an additional
mechanism not present in WM. Non-matching infor-
mation may be suppressed, perhaps through heigh-
tened lateral inhibition between features, driven by
contextual knowledge about the task.

It could be argued that, because the model’s
current architecture does not allow true conjunction
search, which is typically associated with set size
effects (Wolfe, 1994), a visual search slope should
not be observed in our simulation. However, simple
feature search is less efficient when the similarity
between distractors decreases (Bauer et al, 1996;
Humphreys et al., 1989; Wolfe et al.,, 1992). Because
the model does not have any a priori colour knowl-
edge, e.g. it cannot know when the blue-left unit
matched the blue-right unit, it naturally performs a
visual search involving heterogeneous distractors. To



test whether the model is more efficient at selecting a
target among homogeneous distractors, we associ-
ated feature units coding for the same colour across
the three locations which allowed the model to recog-
nize when the same colour distractor was presented at
two different locations. Following this training, the
model was more efficient at selecting a target
among homogeneous compared to heterogeneous
distractors. This may explain why the simple feature
search produced a visual search set size effect.

Encoding colour associations into the network’s
synapses to model distractor similarity led to slower
search. After colour associations were created, distrac-
tors could activate a conjunction unit corresponding
to their colour in the same way as the target colour
activated the template conjunction unit, which
resulted in stronger competition with the template
colour. This apparent idiosyncrasy of the model may
actually correspond to empirical findings suggesting
that it is very difficult to use a template to ignore
rather than facilitate matching input (Noonan et al.,
2016, 2018).

Simulation 2: Target repetition effect

Simulation 1 showed that distractor repetition allows
the distractors to establish biases within the
network, which are detrimental to performance.
However, repetition of target identity has been
shown to aid search (target repetition effect; Hillstrom,
2000; Maljkovic & Nakayama, 1994). The model is par-
ticularly well adapted to produce task-relevant rep-
etition benefits due to its rapidly plastic synapses.
The longer a template is represented by an active con-
junction unit, the stronger it is encoded. Because the
strength of the synapses evolves over time, history
influences the behaviour of the network across trials.
Simulation 2 aimed to test whether target repetition
aids performance.

Method

Simulation

To simulate target repetition effects, two templates
were encoded sequentially (encoding period of 120
ts, followed by an inter-stimulus interval of 500 ts
with no input i=0) followed by two visual searches
(Figure 3A). The targets used in the two searches
were either of the same colour (repeat trial) or the

VISUAL COGNITION e 7

templates switched colour from trial one to trial two
(switch trial). Each simulation consisted of 200 ran-
domized trials for each condition. A total of 100 simu-
lations were performed.

Result

In line with empirical findings, repetition in the tem-
plate colour in two consecutive visual searches led
to lower error rates and faster RTs compared to
when the template colour was switched between
trials (Figure 3B). Repetition of the location of the
target in addition to its colour improved accuracy of
target selection, as expected, however, it prolonged
RT (Figure 3C). When the target colour changed on
the next trial, then location repetition had the oppo-
site effect: it produced faster, more erroneous
responses.

Interim discussion

Simulation 2 successfully replicated the target rep-
etition effect showing fewer errors and faster
responses when a template was repeated across two
searches. The benefit of target repetition was driven
by repetition of the template’s colour (Hillstrom,
2000; Maljkovic & Nakayama, 1994), because the rep-
etition strengthened the amplification produced by
the conjunction unit across all searched locations.
Repeating the target location did not consistently
facilitate search on same-target trials, in contrast to
location priming findings (Maljkovic & Nakayama,
1996; Rabbitt et al., 1979; Treisman, 1992). After the
first search, the selected template is more strongly
associated with its colour at the target location. But
also, the non-selected template colour is more
strongly associated with its colour at that location
because of mutual inhibition in both feature and con-
junction layers. This double effect results in increased
competition from the other template colour, but also a
bias to report the same colour, for that same location.
At the other locations, however, the associations are
not affected as much by the first search. Together,
this generates the counterintuitive pattern of errors
and reaction times.

The failure to reproduce location priming suggests
that visual search may also include an additional
feature-general spatial map - for instance a global sal-
ience map - which is missing from our model.
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Figure 3. Simulation 2: Visual search target repetition effect. (A) Time course of feature activity traces of a representative trial for the
two experimental conditions. Each trial started with a 200 ts inhibition period followed by the encoding of the first template (120 ts).
Following a delay period of 300 ts, the first visual search display was presented for 120 ts. This sequence was repeated for the second
template (template repeat- top, template switch- bottom). Responses to the second visual search were recorded over the response
period of 400 ts. Two distractor colours were always presented at the two non-target locations. For visualization a small vertical sep-
aration has been added to the feature firing rate traces. (B) Target repetition leads to improved performance compared to template
switch. Both the number of errors (top) and RTs (bottom) were higher on trial pairs in which the template switched its colour compared
to trials pairs in which the template stayed the same. Data were reproduced from Maljkovic and Nakayama (1994). (C) Location priming
in target repetition and target switch trials. Repetition of target location in addition to its colour resulted in higher accuracy, but target
selection was delayed compared to when the target was presented at a different location. In contrast, when target colour was switched
from one trial to another, the model produced more errors, however when the correct target colour was selected, it was selected faster.

Simulation 3: Differences in costs related to
preparing multiple templates and using
multiple templates to select targets during
search

driven by multiple templates (Bahle et al., 2018; Hol-
lingworth & Beck, 2016; Zhang et al., 2018).

One possible resolution of this dilemma could be
that different capacity bottlenecks act on different
A WM model may be particularly apt for simulating the  stages of visual search. According to a study by Ort
capacity limits related to the number of items thatcan ~ and colleagues (2019), the limit imposed on the
currently serve as an attentional template, i.e, the  number of items that can be concurrently prepared
number of targets that one can search for. WM  for visual search (i.e,, prior to display onset) may be
capacity is limited to a few (nominally 3-5) objects  different from the limit imposed on the number of
(Bays, 2015; Cowan, 2001; Luck & Vogel, 1997; Ober-  templates that can be used to concurrently select
auer et al., 2016), but only a subset of these items is  targets (i.e., extracting those targets from the actual
prioritized for action (Cowan, 1999; Cowan et al, display). In other words, they proposed a distinction
2005; Oberauer, 2002; Souza & Oberauer, 2016). between the question of multiple template prep-
Indeed, most WM tasks require only one item to be  aration and multiple template-based selections. In
activated at once, at the time of response. this study, participants remembered either one or

Similarly, in visual search literature, this same ques-  two templates (1TTMP vs 2TMP) and searched for two
tion arises with respect to the number of templates  targets which either both matched one of the tem-
that can concurrently guide target selection. Prior  plates (1TGT, so both targets were the same), or
visual search studies report conflicting results, some-  each matched one of the two templates (2TGT, so
times favouring a strict limit of a single item template  the targets differed). The results showed only a small
(Olivers et al,, 2011; van Moorselaar et al., 2014) or at  decrement in behavioural performance resulting
other times providing support for attentional selection ~ from maintaining an additional search template



(multiple template preparation cost: 1TTMP-1TGT vs
2TMP-1TGT). Crucially, behavioural performance
suffered considerably more when the two templates
both had to be matched to the search targets, com-
pared to when only one of the two remembered tem-
plates had to be used to find the targets (multiple
target selection cost: 2TMP-2TGT vs 2TMP-1TGT).
Based on these results, the authors argued that the
crucial capacity limitation during visual search arises
due to a selection bottleneck during template-
guided prioritization (i.e., the selection stage) rather
than due to limitations imposed on the number of
items serving as attentional templates (i.e., the tem-
plate activation stage). In their account of the neural
underpinnings of these capacity limitations, they
hypothesized that even if two coexisting templates
successfully establish two different bias signals, the
concurrent activation of the templates is slowed
down via mutual inhibition when the input contains
features from two different templates.

The goal of Simulation 3 was to test whether com-
petition between the model’s units can account for
the differences in cost related to the number of pre-
pared templates (multi-item template) and the
number of templates used concurrently to select
targets (multi-template search). The first question we
wanted to address in Simulation 3 was whether
there is a cost to preparing multiple search templates
and whether attended as well as unattended tem-
plates can guide attention. To allow separation of
object representations within the model (i.e.,, encod-
ing of a single object into a single conjunction unit),
the model requires information to be encoded into
memory sequentially. As a consequence of serial
encoding, the conjunction unit for the first encoded
template falls silent to allow the second template to
be encoded. Even though the unit falls silent, the
biases established by the first template persist in the
network’s synapses. Thus, even though the two tem-
plates are not co-active, they are both still able to
guide selection during visual search, but at different
levels of preparation. The cost in performance
caused by increasing the number of templates
emerges from competition between the conjunction
units encoding the templates, and the effect this com-
petition has on their bias signals during their reten-
tion. The second question we wanted to address
was whether there is a cost to target selection
driven by multiple templates compared to a single
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template and whether this is achieved through a par-
allel activation of the templates.

Method

Simulation

Trial sequences were simulated as described in Simu-
lation 2. A period of inhibition (50 ts) was added prior
to the visual search (Figure 4A). This served to bring
down the activation level of the second encoded tem-
plate and allow the first template to become activated
by the features in the visual search display.

The simulation included four possible experimental
conditions. We varied the number of templates (1 or 2
TMP, multiple template cost) that were encoded into
the network and the number of templates used to
select the two targets (1 or 2 TGT, multiple template-
based selection cost). For condition TTMP-1TGT, the
template was encoded twice in a row to temporally
match the other two conditions containing two tem-
plates, 2TMP-1TGT and 2TMP-2TGT. For the 2TMP-
1TGT condition, 50% of trials probed the first
encoded item, 50% of trials probed the second
encoded item. The model was exposed to the trial
sequences in blocks with each block consisting of
100 trials of one condition type (2 blocks per con-
dition). The same template(s) was used across all
trials within a block as in the original design (Ort
et al., 2019). A total of 100 simulations was performed.

Behavioural performance from simulated data

A trial was considered correct if the most active units
at the two target locations corresponded to the tem-
plate colour and RTs were measured as the time
point at which both units reached their maximum
level of activation. RTs were calculated for correct
trials only.

Results

In line with the empirical findings, the simulated data
shown in Figure 4B provided evidence for different
costs associated with setting up two versus one atten-
tional template (multiple template preparation: 1TTMP-
1TGT vs 2TMP-1TGT) and selecting targets based on
one or two templates (multiple template-based selec-
tion: 2TMP-1TGT vs 2TMP-2TGT). In particular, the
results showed a relatively small cost associated with
preparing two versus one template for search



10 (& A.BOCINCOVAETAL.

TEMPLATE i1 TEMPLATE DELAY  VISUALSEARCH  RESPONSE 100 € 1200

@ 11004
95 £ 1000

9004

& 800
IR Q.

2 6004
S &

TTMPITGT 2TMP1TGT 2TMP2TGT ITMP-1TGT 2TMP-1TGT 2TMP-2TGT

) 30

00{ ———

- £ 254
]

m
=
[}
£
=
Q
w
80 S 204
&
70 & -

15
1TMP-1TGT 2TMP-1TGT 2TMP-2TGT 1TMP-1TGT 2TMP-1TGT 2TMP-2TGT

L]
mmem| |

Accuracy (%)

ee o
-

a8
IR

MODEL

Accuracy (%)

el
[
]
L]
(@)
|

MULTIPLE TARGET SELECTION COST
(blue and orange vs pink)

\1 = 1TMP-1TGT

- L -
= L N—— - E
O] ¥ ¥ == 2TMP-1TGT (Template 1 use:
= 4 2 — 2TMP-1TGT (Template 2 user
= ®os o i —=2TMP2TGT
- = < << TEMPLATE 1 UNIT
o | | > | == TEMPLATE 2 UNIT
s ® oL J = :
'
g i r O - -
o~ ®cs \ < N '(f,‘\&
o H 4 pinsiont
- l ‘ E o b4 \ i
- i
e Z 5 oo i MULTIPLE TEMPLATE PREPARATOIN COST
) z i (blue vs pink and orange) &
; -
&) s
=

i
od i ' S 3
. 0 200 400 600 800 1000 1200 1400 1600 1800 2000

B
[l

= 1TMP-1TGT
— 2TMP-1TGT
— 2TMP-2TGT

I

LA N ]
Activation

2TMP-2TGT

el

o
N
S
3
s
3
38

——
600 800 1000 1200 1400 1600 1800 2000 T 5w o 6 0 50 100
Time (ts) Time (s) Time (ts)

Figure 4. Simulation 3: Multiple template preparation cost and multiple template-based selection cost. (A) Time course of feature
activity traces of a representative trial for the three experimental conditions. Each trial started with a 200 ts inhibition period followed
by a serial encoding of one or two templates (120 ts; ISI 500 ts). Following a delay period of 300 ts, all features were inhibited (50 ts)
before and after (5 ts) visual search display was presented for 120 ts. A distractor colour was always presented at a non-target location.
For visualization a small vertical separation has been added to the feature unit activity traces. (B) Multiple template preparation cost: the
activation of a second template in preparation for search resulted in reduced accuracy: TTMP-1TGT (blue) vs 2TMP-1TGT (green). Accu-
racy was worsened even more when both templates had to be engaged during search: 2TMP-1TGT (green) vs 2TMP-2TGT (red). Decre-
ments in accuracy were accompanied by increases in RTs. The violin plots represent the distribution of accuracy (A) and RTs (B) derived
from empirical data (top) and simulated data (bottom). The boxes represent the median (central horizontal bar) and quartile range
(upper and lower horizontal bar). The vertical lines represent the minimum and maximum (lower and upper quartile + 1.5 * interquar-
tile range, respectively). Outliers are depicted as single unfilled dots. (C) Single unit and average conjunction unit activity representing
the templates for the different experimental conditions. Multiple template preparation cost: During preparation for visual search, there
was a small cost associated with preparing two templates each encoded in a separate unit compared to only preparing one template
(blue vs green). When currently active template had to be switched to perform search, as was the case when the target matched the
first encoded template, there was a slight delay in the template unit’s activation during search. Multiple target selection cost: There was a
more significant cost associated with an increased number of templates (and conjunction units) engaged to guide visual search. In the
2TMP-2TGT condition (red), the search-guiding conjunction unit took longer to reach its peak activation due to competition with other
conjunction units. The average trace suggests concurrent and weaker activation of both templates (red dashed and dotted lines).
However, the examination of single unit traces showed activation of only one of the two conjunction units (different unit on
different trials). (D) Similarly to empirically recorded neural data, average activation traces of template conjunction units showed a
smaller template preparation cost (1TTMP-1TGT vs 2TMP-1TGT). However, the average activation of the templates’ neural represen-
tations in the 2TMP-2TGT condition was significantly delayed corresponding to the added cost of target selection based on two
different templates.

(2TMP-1TGT vs 1TMP-1TGT) in both accuracy and RT.  data of Ort et al. (2019) also showed that the cost
Average template conjunction unit activation during  associated with preparing two templates was stronger
template preparation showed less activation in the  when the target matching template changed from
two-template condition compared to the one-tem-  one trial to another, compared to repetitions. This
plate condition (Figure 4C). Additionally, the empirical ~ was replicated in the simulated data, as repetition in



the colour of the target increased the stability of the
template’s stable attractor state, improving accuracy
and RT compared to switch trials (see also the previous
simulation for repetition benefits).

Crucially, an even larger decrement in performance
was observed as a result of multiple template compe-
tition during target selection, i.e.,, when the number of
templates matching targets increased from one to two:
2TMP-1TGT versus 2TMP-2TGT. This is again in line with
the empirical results of Ort et al. (2019) and suggests
that simultaneously selecting the search targets based
on two different templates slows down RTs and impairs
the accuracy with which the targets are selected.

Interim discussion

The goal of Simulation 3 was to test whether mutual inhi-
bition implemented in the model to separate object rep-
resentations could also produce competition between
multiple templates during preparation for search as
well as during search itself (Ort et al., 2019). Simulation
showed a small cost to accuracy and RTs when maintain-
ing two versus one template. This cost arose from com-
petition between the conjunction units corresponding
to the two templates. It can be likened to the set size
effect observed in WM tasks when performance
decreases with the number of objects maintained in
WM. Competition between templates arises at the
time of template encoding and maintenance, resulting
in the multiple template preparation cost.

The current model has an FOA limited to a single
item. The fact that it can replicate a visual search task
that requires the preparation of multiple templates
means that, in the model, unattended items can still
also guide attentional selection. Ort and colleagues
(2019) reported improved performance for 2TMP-
1TGT trials when the template used to select the
target was repeated between two trials. It could be
the case that the most recently used template
remains in the FOA and so is more efficient at guiding
visual search. Such intertrial effects were also present
in the simulated data and were related to the amount
of time a particular template spent in the FOA. Even
though the template might not be in the FOA at the
time of visual search, if this template was used on the
previous trial to select the target and so was attended
for longer on a previous trial, the strengthened bias
signal creates an implicit guidance in addition to the
explicit guidance driven by the current FOA. So, one
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might say that the bottleneck in search template acti-
vation is due to one and the same mechanism as the
bottleneck of prioritizing a single item in WM.

In line with the empirical data, even when the
number of active templates was kept constant (equal
multiple template preparation cost), actually searching
for two targets matching different templates was
costly. This multiple template search cost was driven
by competition during pattern completion when
input engaging both templates at the same time led
to slower activation of the conjunction unit (Figure 4
(Q)). An initial examination of the average conjunction
unit activity on correct trials suggested that both tem-
plates were activated concurrently during visual
search. However, single-trial activity showed that only
one of the template conjunction units remained
active after overcoming the initial competition. But
how, then, can the model select two different colour
targets simultaneously? To address how the model suc-
ceeded in this, we examined the synaptic weights.
Unlike in any other condition, the conjunction unit
representing the first template had stronger synaptic
connections with targets associated with the second
template, and vice versa. This allowed the model to cor-
rectly select two different coloured targets at two
different locations even if only one conjunction unit
was active. Such shared selectivity between the two
conjunction units representing templates suggests
that simultaneously driving both templates caused
them to partially merge into a joint template. Indeed,
it is possible that, due to the blocked nature of the
experimental design, participants in the experiment
also formed a partially overlapping representation of
the two template colours when both colours were
needed to select targets.

General discussion

The goal of the current study was to test whether an
existing model of WM can be generalized to model
behaviours that it was not designed to perform.
Specifically, we tested whether a single architecture
could support WM and visual search, two processes
that carry a significant overlap in their mechanisms.
Despite their commonalities, these processes differ.
Here we addressed a gap in the current literature by
modelling both within one architecture, and we find
that this difference is non-trivial.
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We show that an existing neural model, relying on
rapid plasticity to form WM representations and
pattern completion to produce cued recall, was able
to employ these same mechanisms to execute visual
search. In this model, a search template is encoded
into the network as synaptic weights, connecting a
flexibly-conjunctive unit with feature units represent-
ing the template feature at searched locations. These
weights generate a bias that guides recurrent acti-
vation during visual search, amplifying feature units
containing the target while suppressing distractors.
Without modification, still using parameters fitted to
match WM data, the model reproduces patterns of
results in visual search data it was never designed to
model. Particularly, the model produced the set size
effect (Wolfe, 1994), target repetition effect (Hillstrom,
2000; Maljkovic & Nakayama, 1994) and showed how
mutual inhibition, originally implemented to separate
items in WM, can also operate between templates to
resolve competition during visual search (Ort et al.,
2019). In addition to simulating behaviour, the
model can also provide insights and predictions
about the neural activity behind it.

One key difference between WM and search is the
direction of bias at the time of test. Visual search
involves a bias generated by the search template
that allows participants to find task-relevant features
in the display, whereas in WM, a test cue biases the
re-activation of associated WM representations. Our
model’s bidirectional interactions allow both effects,
but also make predictions about situations when
there are multiple search templates. Traditional
accounts of search emphasize top-down guidance
and bottom-up salience but do not incorporate
mechanistic accounts of selecting between multiple
templates. Our model allows for maintained represen-
tations to exist in different levels of prioritization.
Thus, a search array can help select one of the tem-
plates by bringing it into FOA, much like in WM
recall, while the templates simultaneously guide
search through their synaptic biases even if currently
in a passive state.

Although the model was able to simulate crucial
aspects of visual search, it fails to capture other charac-
teristics. The interpretations of these failures can be
grouped into two types: some reflect mechanisms
common to WM and search that could be
implemented in future; whereas others might reflect
true differences between WM and search.

Failures reflecting unimplemented common
aspects

One problem is that the model does not implement
feature-based attention. To simulate visual search,
each target-defining feature first had to be encoded
together with the response-defining features (e.g.,
the possible locations at which this feature could
appear during search). Additionally, due to its small
number of units, the model's current architecture
can only simulate single-feature templates and three
possible target locations, which limits the model’s
ability to perform certain types of visual search (e.g.,
classic conjunction search). The current arrangement
of features also does not allow the model to recognize
colour similarity between different locations (i.e., the
presence of the same colour at two locations). A paral-
lel limitation for WM would be that the spatial arrange-
ment of features adopted here would abolish
misbinding of spatial features. Including long-term
plasticity or non-spatial feature neurons could fulfil
this role. It could be the case that in V1, colours are
coded in location-specific colour-selective neurons,
whereas in higher visual areas there are location-
general colour-selective neurons that are activated
by a colour wherever it appears.

Furthermore, the current WM model ignores low-
level bottom-up visual processing that is of great
importance in visual search. Pop-out and singleton
detection presumably require additional visual
domain-specific circuits, which are ignored in our
model but could also influence WM encoding. The
omission reflects a tendency of some WM research
to focus on high level binding and retrieval mechan-
isms, of a domain-general kind.

Failures reflecting underlying differences between
WM and search

The second set of limitations is informative regarding
the differences between WM and search. For example,
the model was unable to take advantage of repeated
distractors to speed up the detection of the target.
Previous literature suggests that observers store con-
textual information (e.g., distractors and their location)
and that this information affects future search (Chun &
Jiang, 1998; Geyer et al, 2006; Hout & Goldinger,
2010). Despite the ability of the model to store infor-
mation about prior distractors, the model was



unable to use this information in an effective way, i.e.,
the model was not able to reject distractors if they
were repeated. This is because the distractors were
encoded into the template representation, which
caused them to become facilitated during search.
Note that empirical findings suggest that it is in fact
very difficult to use a template to ignore rather than
facilitate matching input (Noonan et al., 2016, 2018).

A second distinction highlighted by the model is
that visual search may entail a degree of understand-
ing of the task structure, to unambiguously distinguish
cue encoding (setting up the template) from search
(applying the template). The model has no such dis-
tinctions, and the simple attractor dynamics are con-
sistent throughout the task. In working memory
recall, a single feature is activated to probe the
network, drawn from one of the previously encoded
objects. This engages a conjunction unit and,
through pattern completion, activates one of the net-
work’s stable attractor states. However, to simulate
visual search, instead of providing the model with a
single cue to trigger recall, the memory test (i.e., the
visual search display) consists of a new combination
of features, corresponding to both template and dis-
tractors. Similarly to a recall cue, the target feature
tries to re-activate one of the stable states, corre-
sponding to the templates, opening up a possibility
that visual search could also be framed in terms of
pattern completion. However, because the model
lacks a gating mechanism, it currently cannot differen-
tiate between the need to engage in visual search and
the need to encode a template. As a result, the novel
combination of features in the visual search display
sometimes becomes encoded into a new conjunction
unit instead of triggering pattern completion. We con-
clude that human visual search may employ an
additional gating mechanism that is unnecessary for
basic WM tasks. Our results highlight that simple
lateral inhibition alone would not account for distrac-
tor gating, although gating mechanisms proposed for
WM could potentially achieve this (Frank et al., 2001;
O'Reilly & Frank, 2006).

Due to these inherent limitations, the WM model
cannot outperform dedicated models of search. The
value of this study lies in demonstrating that a WM
model can generalize to a task it was not designed
to perform. Furthermore, its failures critically help to
demarcate where the processes of visual search
differ from those of memory recall. There are
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Table 1. Brief descriptions of a selection of prior visual search
findings and the ability of the model to simulate them.
Effect Data Model

Search Steeper RT slope for Slower reaction times for
Efficiency inefficient visual inefficient search (visual search
search with heterogenous distractors
- Simulation 1)
Distractor Faster search RT for (X] Repetition of distractor led to
Repetition consecutive trials RT slowing due to distractor
containing encoding (Simulation 1)
distractors at the
same locations
Bottom-Up Unique (singleton) or  (x] Model lacks low level sensory
Search salient (pop-out) processing and cannot account
items are detected for low-level visual factors in
faster visual search
Top-Down WM template guided (@ The model produces facilitation
Guidance search and of features matching an item in

attentional capture WM (Simulation 1-3). Despite
not being directly tested, items
maintained in WM should
automatically capture attention

(i.e., elicit a shift of FOA)

LTM representations ® The model currently only relies

influence visual on short-term synaptic

search plasticity, however, training the
model to represent colour
similarity through repeated
exposure prior to simulation
showed the potential of the
model to incorporate longer-
term memory components
(Simulation 1). Adding LTM
plasticity could account for
LTM-based effects in visual
search

Visual Search  There is a limit to the Mutual inhibition within the
Capacity number of items model can account for
Limitations that can serve as an limitations related to the

attention template number of items that can
concurrently serve as an
attentional template as well as
for the limits in the number of
targets that can be
concurrently selected
(Simulation 3)

Visual Search
History

Repetition of target-
defining feature
speeds up target
detection

Repetition of target colour
facilitated target detection
(Simulation 2)

(x] The model currently cannot
account for target location
priming (Simulation 2). This
could suggest that visual search
additionally recruits a feature-
general salience map

Notes: Tick marks correspond to successfully replicated effects, cross marks
correspond to effects that the model currently cannot simulate or failed
to replicate, and question marks correspond to untested effects that the
model is likely to reproduce.

additional visual search effects that the model
cannot currently account for (see Table 1), but expand-
ing this model to simulate other currently missing
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aspects of WM might allow it to model visual search
better as well. Bringing WM and visual search under
one common architecture is an important step in
modelling flexible behaviour. Future efforts should
be focused on improving the ability of cognitive
models to incorporate multiple cognitive processes
that share common mechanisms within one frame-
work. During this integration, it will, however, be
important to consider the true overlap between the
functions in question, and separately model com-
ponents that can be accounted for by other
mechanisms.
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