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Functional connectivity (FC) studies have identified at least two large-scale neural systems that constitute cognitive control
networks, the frontoparietal network (FPN) and cingulo-opercular network (CON). Control networks are thought to support
goal-directed cognition and behavior. It was previously shown that the FPN flexibly shifts its global connectivity pattern
according to task goal, consistent with a “flexible hub” mechanism for cognitive control. Our aim was to build on this finding
to develop a functional cartography (a multimetric profile) of control networks in terms of dynamic network properties. We
quantified network properties in (male and female) humans using a high-control-demand cognitive paradigm involving
switching among 64 task sets. We hypothesized that cognitive control is enacted by the FPN and CON via distinct but com-
plementary roles reflected in network dynamics. Consistent with a flexible “coordinator” mechanism, FPN connections were
varied across tasks, while maintaining within-network connectivity to aid cross-region coordination. Consistent with a flexible
“switcher” mechanism, CON regions switched to other networks in a task-dependent manner, driven primarily by reduced
within-network connections to other CON regions. This pattern of results suggests FPN acts as a dynamic, global coordinator
of goal-relevant information, while CON transiently disbands to lend processing resources to other goal-relevant networks.
This cartography of network dynamics reveals a dissociation between two prominent cognitive control networks, suggesting
complementary mechanisms underlying goal-directed cognition.

Key words: cognitive control; cognitive flexibility; executive function; network dynamics; network interactions; task
representation.

Significance Statement

Cognitive control supports a variety of behaviors requiring flexible cognition, such as rapidly switching between tasks.
Furthermore, cognitive control is negatively impacted in a variety of mental illnesses. We used tools from network science to
characterize the implementation of cognitive control by large-scale brain systems. This revealed that two systems, the fronto-
parietal (FPN) and cingulo-opercular (CON) networks, have distinct but complementary roles in controlling global network
reconfigurations. The FPN exhibited properties of a flexible coordinator (orchestrating task changes), while CON acted as a
flexible switcher (switching specific regions to other systems to lend processing resources). These findings reveal an underly-
ing distinction in cognitive processes that may be applicable to clinical, educational, and machine learning work targeting cog-
nitive flexibility.

Introduction
Theories of cognitive control, processes supporting goal-directed
cognition and behavior, suggest the need for flexibly reconfigura-
ble neural systems to support controlled processing (Desimone
and Duncan, 1995; Miller and Cohen, 2001; Schneider and
Chein, 2003; Cole et al., 2013b). In order for an individual’s goals
to be implemented, goal-relevant information must be appropri-
ately represented across large-scale neural systems, or networks.
Importantly, goals and goal-relevant information are subject to
change over time (such as sensorimotor information that corre-
sponds to changing task conditions). Processing these dynamic
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changes must be guided among neural systems that represent
goal-relevant information. Cognitive control networks are pro-
posed to enact this guidance via network interactions that are
flexible with respect to the current task context (Waskom et al.,
2014). Thus, we focus here on the role of large-scale network dy-
namics as task goals are updated across 64 systematically-related
task contexts (Fig. 1).

The theoretical insight that large-scale network interactions
are essential to cognitive control evolved over the last several
decades, beginning with empirical observations (Fuster et al.,
1985), which then led to the biased competition theory
(Desimone et al., 1990; Desimone and Duncan, 1995). This
theory focused on lateral prefrontal cortex influencing the visual
system by biasing its competition for attentional resources to-
ward goal-relevant representations. Building on the biased com-
petition theory, the guided activation theory generalized this
prefrontal network mechanism to all task domains. This theory
proposed a general role for top-down prefrontal influences in
accomplishing task goals (Miller and Cohen, 2001). More
recently, the flexible hub theory generalized the guided activation
theory beyond prefrontal cortex to the entire frontoparietal net-
work (FPN) and formalized the importance of cross-network,
global connectivity changes in implementing cognitive control
(Cole et al., 2013b). The present study builds on this work to fur-
ther verify and expand the flexible hub theory.

Simultaneous with these advances in theory have been obser-
vations of a second major neural system supporting cognitive
control: the cingulo-opercular network (CON). Like the FPN,
the CON is active as a function of cognitive control demands
across a wide variety of tasks (Dosenbach et al., 2006; Yeo et al.,
2015; Crittenden et al., 2016). However, CON and FPN are not
equally active for all task conditions (Dosenbach et al., 2006; Yeo
et al., 2015), and they maintain distinct functional network archi-
tectures in terms of resting-state functional connectivity (rsFC;
Dosenbach et al., 2007; Power et al., 2011; Ji et al., 2019) and
task-state FC (tFC; Cole et al., 2014; Crittenden et al., 2016).
Moreover, the specific functional contributions of CON regions
have not been fully established, with some studies suggesting that
CON regions specify overall task set modes of processing
(Dosenbach et al., 2007; Sadaghiani and D’Esposito, 2015) and

others emphasizing the CON’s role in reactive (phasic) attention
(Seeley et al., 2007) and, relatedly, conflict processing (Botvinick,
2007; Cole et al., 2009; Braem et al., 2019). Ultimately, unlike the
FPN, the relationship between the CON and the flexible hub
theory (and the theories it builds on) remains unclear.

The present study builds on our prior work demonstrating
flexible hub properties in FPN regions (Cole et al., 2013b),
expanding on the characterization of these FPN network mecha-
nisms, while also investigating CON network mechanisms. We
previously found that FPN’s global tFC patterns flexibly updated
according to task demands more than any other network, includ-
ing CON (Cole et al., 2013b). However, given that large-scale
network dynamics are central to cognitive control, and given
that both the CON and FPN contain hubs (Power et al., 2011; Ito
et al., 2017), we hypothesized that CON reflects flexible hub
properties in addition to FPN. Unlike FPN’s continuous goal-
coordinating role, we expected CON to exhibit a more discrete
network switching mechanism, reflecting its proposed role in
specifying overall task-set modes of processing (Dosenbach et al.,
2007; Sadaghiani and D’Esposito, 2015). Consistent with this, we
found that FPN regions act as “flexible coordinators” and CON
regions as “flexible switchers,” providing separate but comple-
mentary network mechanisms in support of cognitive control
(Fig. 2).

Materials and Methods
Participants
Right-handed, healthy adult participants (N=106) were recruited from
Rutgers University and the surrounding Newark, New Jersey commu-
nity. Six participants were excluded from analyses because of technical
errors, leaving a total sample size of N=100 (Tables 1, 2 detail demo-
graphic characteristics). To improve replicability, we used a split-sample
validation approach (Anderson and Magruder, 2017) with a random
subset of n= 50 comprising a discovery dataset (Table 1), and the
remaining n=50 comprising a replication dataset (Table 2). All partici-
pants provided informed consent in accordance with protocols approved
by the Institutional Review Board of Rutgers University-Newark. Each
participant provided or completed the following: (1) demographic infor-
mation and intake survey questions; (2) the National Institutes of Health
Cognition Toolbox (Gershon et al., 2013), including a neuropsychological

Figure 1. The C-PRO cognitive paradigm. First, an instruction screen presented the rules for a given task (3925 ms). Participants next applied these rules to pairs of consecutively presented
audiovisual stimuli (auditory waveforms are visually depicted here but were only presented audibly to participants). Two example task-rule sets are depicted, as well as how participants were
trained to interpret the rules (e.g., rule descriptions on the right-most portion of the figure; see Materials and Methods for details). The 12 possible rules are listed on the right.
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battery; (3) behavioral training on the C-PRO task (outside the scanner);
(4) resting-state fMRI; and (5) C-PRO task fMRI. The subsets of data
assessed herein included (1), (4), and (5) (for assessment of other varia-
bles, see Schultz et al., 2019). As listed in the right-most columns of Tables
1, 2, there were no significant differences between identified genders on
the distributions of age, ethnicity, or education.

Concrete permuted rule operations (C-PRO) paradigm
The C-PRO paradigm was designed to involve rapid instructed task
learning (RITL) through compositionally combining various task rules
(Cole et al., 2010, 2013a; Ito et al., 2017). This further provided a high
demand on cognitive control across all C-PRO task states. We used a
modified version of the PRO paradigm from Cole et al. (2010), which

Figure 2. Schematic depictions of cognitive control network functional properties (details on network measures, see Materials and Methods and Results). In each panel, a “toy” version of
the control network is prominently depicted in the center (with a reduced number of regions, or nodes, and simplified within-network connections), and out-of-network exemplars are depicted
as truncated and surrounding the control network of interest (DAN: dorsal attention network, LAN: language network, DMN: default mode network, and SMN: somatomotor network). Each of
these surrounding networks also contains within-network regions and connections, but these were not depicted here for simplicity. A, Regions in the FPN acted as flexible coordinators. This
entailed high GVC and low partition deviation across task states. From example task state one to task state two, FPN regions maintained their within-network connectivity (low deviation) and
out-of-network connectivity changes were variable across states (high GVC; for details, see Results). B, Regions in the CON acted as flexible switchers. This entailed low global variability and
high partition deviation. From example task state one to task state two, CON regions dropped their within-network connectivity (high deviation) and out-of-network connectivity changes were
consistent across states (low GVC; for details, see Results).

Table 1. Demographic characteristics of the discovery dataset (n = 50)

Male (n= 19) Female (n= 31)

n % Center* SD (6) n % Center* SD (6) Test (male vs female)**

Age (years) 21.2 2.9 19.9 1.6 t(48) = 1.71, p= 0.10
18–24 17 89.5 31 100
25–34 2 10.5 0 0
35–44 0 0 0 0

Ethnicity/race White n/a Black n/a x 2(5, N= 50) = 6.29, p= 0.18
American Indian or Alaskan Native 0 0 0 0
Asian 5 26.3 10 32.3
Black or African American 3 15.8 12 38.7
Hispanic or Latino 4 21.1 2 6.5
Native Hawaiian or Pacific Islander 0 0 0 0
White or white 7 36.8 6 19.4
Other 0 0 1 3.2

Education Student n/a Student n/a x 2(2, N= 50) = 1.27, p= 0.26
Some college/Associate’s degree 15 79 28 90.3
College/Graduate degree 4 21.1 3 9.7
Not reported 0 0 0 0

There were no significant differences between identified genders on the distributions of age, ethnicity, or education (right column).
*The measure of center used for the age variable was the mean, and for categorical variables of ethnicity/race and education it was the mode. For the education variable, student refers to “some college.”
**Hypothesis testing of significant differences between males and females. Age: two-sample t test adjusted for unequal sample sizes. Ethnicity/race and education: a x 2 test of independence.
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was previously introduced by Ito et al. (2017; Fig. 1). This paradigm per-
mutes rules across three domains: four logic rules (both, not both, either,
and neither), four sensory rules (red color, vertical orientation, high pitch
sound, and constant tone), and four motor rules (left index, right index,
left middle, and right middle fingers). This amounts to 12 rule sets repre-
sented 16 times across 64 unique task states. The software for presenting
the task was E-Prime version 2.0.10.353 (Schneider et al., 2002).

In each task state, an initial instruction screen was presented for
3925ms for participants to memorize a given permuted rule set (Fig. 1).
This was followed by a jittered delay (1570–6280ms, randomized from a
uniform distribution), then three trials of paired audiovisual stimuli for
participants to adjudicate based on the given rule set (2355ms each trial;
inter-trial interval of 1570ms). Another jittered delay occurred at the end
of each task state (7850–12,560ms, randomized), which was immediately
followed by the next permuted rule set instruction screen. An example
instruction screen (Fig. 1; task state one) read: “BOTH, VERTICAL, LEFT
INDEX,” indicating: “If both stimuli are vertical, press your left index fin-
ger.” In each of the three trials that followed, participants judged whether
both paired stimuli were vertically oriented, and either pressed the left
index finger button to indicate “true” or the left middle finger button to
indicate “false” (a judgment of false was always the same hand but oppo-
site finger). Importantly, stimuli were always presented with auditory and
visual features concurrently. Thus, focusing on the sensory rule given by
the instructions was paramount (i.e., “VERTICAL” indicated that one
should ignore auditory information, color information, and only focus on
line orientation). Additionally, participants were required to remember
and apply conditional logic and nontrivial motor commands each trial.
Altogether this multitask behavioral paradigm is condition-rich and
necessitates ongoing cognitive control.

Each participant completed a training session outside the scanner and a
testing session within the scanner (task-state fMRI) 30min later. During the
training session participants equally practiced four rule sets that contained
all 12 rules. This practice set was counterbalanced among participants and
supplementary instruction was provided for training purposes (e.g., use the
same hand but opposite finger to indicate false). Task fMRI scans were per-
formed in eight runs, altogether containing 64 task state miniblocks, twice
over (e.g., 128 task miniblocks), with each block composed of a permuted
rule set (Fig. 1). Each task fMRI run was;8 min in duration, and identical
miniblocks were never presented consecutively. Overall, mean performance
was 83.47% correct (SD=9.00%). There was no significant difference in per-
formance (percent correct) between males (M=83.65%, SD=10.44%) and
females (M=83.33%, SD=7.80%); t(74.71) = 0.17, p=0.87.

Experimental design and statistical analysis
Participants were randomly allocated to either a discovery dataset
(n= 50) or replication dataset (n= 50; Tables 1, 2, respectively). The

replication dataset was not analyzed until after analyses of the discovery
dataset were complete. Analyses of replication data were identical to
analyses of discovery data (using the same code, including all chosen pa-
rameters), and additionally included measures of similarity between rep-
lication and discovery results to quantify expected generalizability
(Anderson and Magruder, 2017).

Whenever multiple comparisons were addressed, we used the Max-T
nonparametric permutation testing approach (10,000 permutations
unless otherwise specified) with maxima-derived 95% confidence inter-
vals for statistical hypothesis testing against zero (Blair and Karniski,
1993; Nichols and Holmes, 2002). To analyze the similarity of two corre-
lation (weighted adjacency) matrices, we used the Mantel permutation
test, which performs a Pearson’s correlation across the upper triangles
(off-diagonal) of the matrices (Mantel, 1967; Glerean et al., 2016). The
Mantel test is more conservative than a standard comparison between
connectivity matrices because it takes into account the fact that observa-
tions in distance/similarity matrices are not independent (an assumption
of both parametric and standard non-parametric tests). In each Mantel
analysis, we again used nonparametric permutation procedures to derive
statistics that make minimal assumptions about probability distribution
(10,000 permutations unless otherwise specified). Henceforth we will
describe these matrix similarity statistics as Mantel-r.

MRI parameters
All MRI data were collected at the Rutgers University Brain Imaging
Center (RUBIC). When possible, the best practices suggested by the
Human Connectome Project preprocessing pipelines were followed
(Glasser et al., 2013). A 3T, 32-channel head coil within a Siemens Trio
scanner was used to obtain multiband, whole-brain, and echoplanar
imaging (EPI). The repetition time (TR) was 785ms; the echo time (TE)
was 34.8ms; the flip angle was 55°; the bandwidth was 1924Hz/Px; the
in-plane field-of-view (FoV) read was 208 mm; 72 slices; 2.0 mm iso-
tropic voxels; and the multiband acceleration factor was 8. Whole-brain
and high-resolution T1-weighted and T2-weighted anatomic scans were
also acquired, with an isotropic voxel resolution of 0.8 mm. Spin echo
field maps were obtained in both the anterior-posterior and posterior-
anterior directions. Resting-state fMRI scans were 14min in duration,
amounting to 1070 TRs. Each task (i.e., C-PRO) fMRI run was ;8 min
in duration, adding up to ;1 h in the scanner for the task session (36
TRs per task miniblock; 4608 TRs altogether).

fMRI preprocessing
The open-source Human Connectome Project minimal preprocessing
pipeline (Glasser et al., 2013), version 3.5.0, was applied to all neuroi-
maging data. This included: anatomic reconstruction and segmentation;

Table 2. Demographic characteristics of the replication dataset (n = 50)

Male (n= 25) Female (n= 25)

n % Center* SD (6) n % Center* SD (6) Test (male vs female)**

Age (years) 25 5.4 23.2 3.5 t(48) = 1.44, p= 0.16
18–24 12 48 17 68
25–34 10 40 8 32
35–44 3 12 0 0

Ethnicity/race Asian n/a Asian n/a x 2(5, N= 50) = 7.23, p= 0.3
American Indian or Alaskan Native 3 12 0 0
Asian 8 32 10 40
Black or African American 5 20 3 12
Hispanic or Latino 1 4 4 16
Native Hawaiian or Pacific Islander 0 0 0 0
White or white 7 28 8 32
Other 1 4 0 0

Education Graduate n/a Student n/a x 2(2, N= 50) = 1.47, p= 0.48
Some college/Associate’s degree 9 36 12 48
College/Graduate degree 13 52 12 48
Not reported 3 12 1 4

All table features are the same as in Table 1. Note that there were no significant differences between identified genders on the distributions of age, ethnicity, or education (right column).
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EPI reconstruction, segmentation, and spatial normalization to a stand-
ard template; intensity normalization; and motion correction. The
resulting data were in CIFTI 64k-vertex grayordinate space, and all
subsequent analyses were performed in MATLAB R2014b (The
MathWorks). Following minimal preprocessing, vertices were parcel-
lated into 360 cortical regions (180 per hemisphere) per the Glasser et al.
(2016) atlas. To parcellate each of these regions, we calculated the aver-
age time series of enclosed vertices.

Next, we performed nuisance regression on parcellated resting-state
and task-state data using six motion parameters plus their derivatives
(totaling 12 motion parameters), and volumetrically-extracted ventricle
and white matter time series (via FreeSurfer; http://surfer.nmr.mgh.
harvard.edu/), plus their first derivatives (16 regressors overall). Note
that global signal was not removed because of evidence that it can artifi-
cially introduce negative relationships (Murphy et al., 2009). Task time
series were further processed to account for confounding effects intro-
duced by simultaneous sensory inputs (e.g., left and right primary visual
area, V1) and their downstream effects by fitting a general linear model
(GLM) to task activity estimated by a finite impulse response (FIR) func-
tion. This removal of cross-event mean task-locked activity has been
shown to reduce task-evoked correlation false positives while retaining
most (;90%) of the correlated variance between fMRI time series and
without inflating false negatives (Cole et al., 2019). In the task GLM,
each task run was separately demeaned, and drift was accounted for with
a per-run linear trend.

FC estimation
FC was estimated for parcellated (region-wise), pre-processed data, per
participant and per state (one resting state and 64 C-PRO task states).
Across the whole cortex, we used Fisher’s Z-transformed Pearson corre-
lation coefficients to compute interregional relationships of blood oxy-
gen level-dependent (BOLD) time series, resulting in 360 � 360
connectivity matrices. Given the complex nature of subsequent analyses
(i.e., network metrics), we chose this method of FC estimation for sim-
plicity and wide-reaching comprehension. In the present study, connec-
tivity estimates tended to decrease from rest to task, a finding that has
been observed across numerous prior studies (that used various model
species and neural recording methods; Cohen and Maunsell, 2009; He,
2013; Cole et al., 2014; Ponce-Alvarez et al., 2015) and has well-founded
neural mechanisms (Ito et al., 2019).

We chose to use FIR regression to remove cross-block mean task-
evoked activations before Pearson correlation estimation (sometimes
termed “background connectivity,” as in Norman-Haignere et al., 2012)
based on recent results demonstrating that this approach was better able
to remove confounding effects of task-evoked activity than alternative
approaches, such as psychophysiological interactions (PPIs; Cole et al.,
2019). Our prior global variability coefficient (GVC; see below, Network
metrics) results were based on generalized PPI connectivity estimates
(Cole et al., 2013b), such that the present results provided improved test-
ing of the flexible hub theory.

Network partition
We applied the cortical portion of the Cole–Anticevic brain-wide net-
work partition (CAB-NP; Ji et al., 2019; Fig. 3), which was based on pub-
licly available Human Connectome Project data. The CAB-NP was
based on resting-state fMRI data across the whole brain, and used the
Louvain community detection algorithm to assign parcellated cortical
regions (Glasser et al., 2016) into 12 functional networks. The CAB-NP
corroborated features of well-known cortical partitions (Power et al.,
2011; Yeo et al., 2011; Gordon et al., 2016), yet found novel but robust
networks. The CAB-NP was implemented for all analyses except net-
work flexibility (NF), which requires the application of community
detection (Louvain Q-modularity; see below, NF).

Given that our novel network metric (see below, Network partition
deviation) quantifies network affiliation changes from an intrinsic parti-
tion, it was important (to avoid inflated deviation estimates) to ensure
that the intrinsic partition was applicable to the present group of sub-
jects. We first partitioned resting-state data by sorting regional FC esti-
mates per the 12 CAB-NP network indices. We then found the

maximum FC estimate (i.e., the intrinsic “preference”) for each region
(per participant) and tested whether its location was equivalent to the
CAB-NP. If this index was different from the CAB-NP in over 50% of
participants, we reassigned that region to its empirically-derived prefer-
ence. We henceforth used this empirically-adjusted CAB-NP to sort
task-state data into networks (Fig. 3C,D).

In select analyses, we probed the similarity of two partitions. To ac-
complish this, we used the Jaccard index, which is a standard measure of
similarity from set theory. For example, the Jaccard index was used to
assess the similarity of the empirically-adjusted resting-state partitions of
the discovery and replication datasets. We used the MATLAB jaccard
function, which used the “intersection over union” formula on label vec-
tors A and B, with the following equation:

jaccard A;Bð Þ ¼ intersectionðA;BÞj= unionðA;BÞj:����
Per state, the intersection equaled the number of true positives (i.e.,

overlap of two partitions), and the union was the number of true posi-
tives summed with the number of false positives and false negatives.

Network metrics
Interregional connectivity was probed by three network metrics for
state-based reconfiguration properties (Medaglia et al., 2015): (1) GVC
(Cole et al., 2013b) and, relatedly, between-network variability coeffi-
cient (BVC; novel but related to Ito et al., 2017); (2) NF (Bassett et al.,
2011, 2013a); and (3) network partition deviation (deviation; novel).
Network metrics were computed across states and averaged across
regions that compose a given network, per participant. In analyses that
used standardized metrics (i.e., z scores), standardizations were per-
formed before network averages and standard errors were computed.
Figure 4 illustrates the algorithms of these metrics schematically. Table 3
summarizes the primary characteristics of these metrics, including for-
mulae, interpretations, parameter-space considerations, and reliance on
a predefined network partition. A predefined network partition is some-
times called a “hard partition,” and refers to the use of a predefined net-
work or community assignment structure, such that each parcellated
region is indexed into the partition a priori (Sporns and Betzel, 2016).

GVC
GVC was originally developed by Cole et al. (2013b) and characterizes
changing patterns of connectivity across task states by measuring the
variability of interregional connectivity (Fig. 4A; Table 3). Thus, GVC
treats spatial changes in connectivity, across states, as continuous. No
parameters are required by the user and a predefined network partition
is not necessary (aside from regional parcellation, as in the present study;
Table 3).

In Cole et al. (2013b), FPN connections exhibited the highest GVC
compared with all other networks. In that study, the FPN also main-
tained connectivity patterns that could decode task information (using
an earlier version of the C-PRO paradigm). Further, FPN connectivity
was found to vary systematically with similarity of C-PRO task states.
Taken together this suggested that (1) FPN regions exert adaptive task
control as flexible hubs, and (2) GVC results were not driven by noise.
We replicated these findings and extended the analysis to CON connec-
tions. In brief, the 64 C-PRO task states have zero to two overlapping
rules (Fig. 1). For example, one task’s rules included both, high pitch,
and left middle, and another included both, red, and left middle. These
example tasks had two overlapping rules (both and left middle). We cre-
ated a 64� 64 similarity matrix to quantify these overlap sets, and quan-
tified the Spearman’s Rho for FPN and CON connections for those sets.
Next, we restricted the same analysis by only including FPN and CON
regions with the highest GVC, in the following increments: top 10%, 8%,
6%, 4%, and 2%. This addresses whether highly variable connectivity (as
measured by GVC) relates systematically to task context (Cole et al.,
2013b).

BVC
BVC was inspired by Cole et al. (2013b) and is related to between-net-
work global connectivity in Ito et al. (2017). BVC is equivalent to GVC,
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except within-network connectivity estimates are withheld from the
computation of SD (Fig. 4A). This change from GVC accounts for the
potential confound that within-network connections might confer on
results. In Cole et al. (2013b), FPN had the highest participation coeffi-
cient compared with all other networks, suggesting that FPN regions
maintain many between-network connector hubs. BVC simply quanti-
fies this in a manner closer to GVC. BVC (unlike GVC) required the use
of a predefined network partition to define the regional bounds of each
network. All other specifications of BVC are identical to GVC (Table 3).

NF
NF was originally developed by Bassett et al. (2011, 2013a,b) to quantify
how often (i.e., for how many tasks) a region changes its network “alle-
giance” and standardizes this by all possible changes. NF is conceptually
related to GVC because both metrics quantify large-scale changes in
functional network configurations. In the present study, we specifically
tested whether NF and GVC estimate comparable aspects of network

configuration. NF characterizes the spatiotemporal dynamics related to
task-state time series by quantifying temporal variability in network par-
tition solutions. These network partitions are determined by an opti-
mized quality function for community detection termed multilayer
modularity (also termed multislice or multiplex in some studies;
Louvain Q-modularity; Mucha et al., 2010). Thus, NF does not use a pre-
defined network partition, but instead requires community detection to
be applied per dataset. Required parameters (g , v ) could be used to
tune the degree to which connections were treated as discrete versus
continuous in space (g is the spatial resolution parameter) and/or time
(v is the temporal resolution, or coupling, parameter). In the present
study, we swept a parameter space of g and v , ranged around their pro-
totypical values (Bassett et al., 2013a; Braun et al., 2015; Chen et al.,
2015; Amelio and Tagarelli, 2017). We swept the modularity function’s
parameter space by ranging v from 0 to 2.0 in steps of 0.2; and g from 0
to 5.0 in steps of 0.5. For both free parameters, 0 is the lower limit. An
upper limit of 2.0 for v was based on prior observations that task states

Figure 3. The CAB-NP adjusted by empirical rsFC, for both the discovery and replication datasets. Given that the novel metric, deviation (see below, Network partition deviation), quantified
network affiliation changes from an intrinsic partition, empirical adjustments to the CAB-NP ensured that partition was applicable to the present group of subjects and deviation scores were
not inflated. We utilized this adjusted partition for all other (applicable) network measures for consistency with deviation. A, Regional (y-axis; Glasser et al., 2016 parcels) assignments are
color-coded according to the CAB-NP (rightmost scale). The CAB-NP column depicts the original resting-state network partition by Ji et al. (2019). The empirically-derived rest preferences are
shown, unordered, for both the discovery and replication datasets, as well as their ordered counterparts (i.e., “adjusted partitions”). These adjusted partitions were used for all analyses. B,
CAB-NP by Ji et al. (2019) projected onto brain regions. C, The empirically-adjusted CAB-NP for the discovery dataset projected onto brain regions. The Jaccard similarity coefficient between the
CAB-NP and the empirically-adjusted discovery set partition was 0.6989. D, The empirically-adjusted CAB-NP for the replication dataset projected onto brain regions. The Jaccard similarity coef-
ficient between discovery and replication partitions was 0.9595, suggesting the partition method used herein will have high external validity. The Jaccard similarity coefficient between the
CAB-NP and the empirically-adjusted replication set partition was 0.6947. This suggests a relatively high similarity between each of the empirically-adjusted partitions (discovery and replication)
and the CAB-NP. The least similarity was observed in the VIS1, which was expanded to include CAB-NP secondary visual and dorsal attention regions in the empirical adjustments.

6954 • J. Neurosci., September 2, 2020 • 40(36):6949–6968 Cocuzza et al. · Flexible Coordinator and Switcher Hubs



tend to merge into one large state at higher coupling values (Bassett et
al., 2013a). At the upper limit of g (5.0), spatial resolution becomes acute
and each region develops its own network. Additionally, the temporal
dynamics conferred by v are no longer available at the upper limit of g
(Chen et al., 2015; Amelio and Tagarelli, 2017). This sweep yielded an 11
by 11 matrix of NF estimates, per region (and per participant). We
compared regional NF estimates to regional GVC estimates (both
metrics were standardized, and Spearman’s rank-order correlation
quantified similarity in these measures across participants), to assess
the point in the parameter-space wherein NF and GVC overlap
most. These comparisons were performed for both the network-
mean and regional-mean vectors. Briefly, we found that NF and
GVC characterized shared aspects of network configurations in a

specific sector of NF’s parameter-space (see Results). This motivated
the development of a novel metric (see below, Network partition
deviation) that was less linked to chosen parameters. The remaining
results are based on GVC and this novel metric (such as the cogni-
tive cartographies; see Results). Importantly, however, there are
future research questions that may be better addressed by NF.

Network partition deviation
To reconcile divergent principles and results of GVC and NF (see
Results), we created a novel metric termed network partition deviation
(or just “deviation”). The primary goal of developing deviation was to
quantify network reconfiguration in a highly principled manner. This
involved a principled definition for what it means for a region to

Figure 4. Schematic depictions of network metric algorithms. A, GVC, reproduced with permission (Cole et al., 2013b). BVC is measured equivalently, except within-network connections are
withheld. B, Network partition deviation. Per region (large yellow example node labeled “i”): each of its 359 connectivity estimates were averaged according to their CAB-NP (see Materials and
Methods; Fig. 3) networks (bar graph in top example), resulting in 12 FC estimates per region. Network “preferences” (network location of maximum FC estimate; thickest lines) were tallied
across task states. How often a given region deviated from its predefined partition (intrinsic state) was computed (tally/total number of tasks). Lower deviation: the example region deviated in
one out of two hypothetical task states (50% deviation = deviation of 0.5). Higher deviation: the example region deviated in two out of two hypothetical states (100% deviation = deviation
of 1). The colored nodes encircling the example region represent example regions from example networks, and black lines of variable width represent FC estimates (edge weights).

Cocuzza et al. · Flexible Coordinator and Switcher Hubs J. Neurosci., September 2, 2020 • 40(36):6949–6968 • 6955



“reconfigure”: a change in the network community that a
given region is most connected with (i.e., the network with
the highest mean connectivity). Deviation was the percent
of task states (more generally, the relative frequency across
time), in which a given region’s “preference” deviated from
the predefined partition. To quantify this, deviation enum-
erated network reassignments from a predefined partition
across task states (Table 3; Fig. 4B). Per task state and per
region, connectivity estimates (across the other 359
regions) were searched for the maximum value. The net-
work location of this maximum (relative to the predefined
partition) was indexed as the network assignment prefer-
ence for that given state. To illustrate how network reas-
signment was computed, we generated a video of the
regional network preferences across task states, projected
onto a standard brain schematic (Movie 1). We used the
Connectome Workbench software to generate these visual-
izations (Marcus et al., 2011).

We used the CAB-NP (Ji et al., 2019), plus adjustments
derived from the empirical resting-state fMRI data of the
participants studied herein, as the predefined reference
(Fig. 3). This a priori network partition can be thought of
as a minimal parameter space maintained by deviation in
the present study; however, future work may apply com-
munity detection (i.e., empirically-based network partition)
if appropriate. Deviation may be accompanied by its com-
plementary measure, network partition adherence, which
was the relative frequency of states in which a given region
adhered to its predefined network assignment (or 1-devia-
tion, meaning that deviation and adherence add up to 1, or
100% of task states). We further unpacked deviation by
depicting which networks were preferred by regions (when
deviating from the partition), generating reassignment
profiles.

Cognitive control cartographies
We rendered one primary mapping of cross-state network-reconfigura-
tion properties and two secondary mappings which broke up the pri-
mary mapping’s properties into within-network and between-network
scores. For the secondary mappings, within-network GVC was com-
puted by setting between-network FC estimates to “NaN” (i.e., “not a
number” in MATLAB) before inputting data into the GVC algorithm
(Fig. 5A). Likewise, between-network GVC was computed by setting
within-network FC estimates to NaN (Fig. 5B). This effectively nullified
the variability for those regions such that GVC ignored them during
computation (which principally employs SD across states; Fig. 4A; Table
3). Between-network GVC was equivalent to BVC described above.
Within-network deviation was computed by setting FC estimates of

between-network regions to the rsFC for those regions before inputting
data into the deviation algorithm (Fig. 5C). Likewise, for between-net-
work deviation, we substituted within-network estimates with corre-
sponding regions’ rsFC (Fig. 5D). We considered the use of rsFC most
appropriate given deviation’s inherent comparison to the resting-state
partition. Thus, deviation away from the resting-state partition would
always be zero for regions set to their resting-state estimates. Figure 5
visually depicts the input data schemes for each of these secondary
cartographies.

Decoding analyses
A classification analysis was performed for each functional network to
test whether network connectivity patterns could be used to significantly
decode task state. As in Cole et al. (2013b), three four-way classifications

Table 3. Summary of the network metrics for cognitive control properties across states

Metric name Formula Measures; property Parameter-space?
Relies on predefined
partition?

GVC GVCn ¼ 1
N

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
l¼1

ðFCil��x FClÞ2

T�1

s
Variable FC across tasks; flexible hubs No No

BVC BVCn ¼ 1
N9

Pn9
i9¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
l¼1

ðFCi9 l��x FCl9Þ2

T�1

s
Variable FC across tasks, between-network;
flexible hubs

No Yes

Network partition deviation
(deviation)

deviationn ¼ 1�
PT
l¼1

max

Pc

rS¼1
FCcl

C

� �� �
2rS

h i
T

" #
Network preference changes vs intrinsic (rest);
reassignment profile

Minimal Yes

GVC (Cole et al., 2013b), BVC, and network partition deviation (novel; named in column 1) are described in terms of the following. Column 2, Their mathematical or algorithmic formulae. All equation symbols are expressed
consistently. Formula terms: n = brain regions; N = number of regions; i = region 1; l = task 1; T = tasks; FC = weighted adjacency matrix; x-barr = mean; FC_il = edge weight, per region, per task; FCl = FC matrix, per
task; n’ = out-of-network regions; N’ = number of out-of-network regions; i’ = region 1, out-of-network; l’ = task 1, out-of-network regions only; FC_i’l = edge weight, per out-of-network region, per task; FCl’ = FC matrix,
out-of-network regions only, per task; c = network regions; C = number of network regions; rS = predefined partition; FC_cl = edge weights per network-region, per task. Column 3, What each metric measured. This was
how results were interpreted, and mechanisms or properties were framed. Column 4, If each metric relied on user-chosen parameters (e.g., had a parameter-space). Column 5, If each metric relied on a predefined network
partition (also see Materials and Methods).

Movie 1. Video depiction of cortical network reassignments across task states, computed via network parti-
tion deviation. The video depicts each region’s network “preference” observed during the computation of net-
work partition deviation, across all 64 C-PRO task states, and for n= 50 discovery dataset participants (see
Materials and Methods). Briefly, per task state and region, the maximum connectivity estimate was found,
and its location relative to the predefined partition (empirically adjusted CAB-NP; as in Fig. 3) was indexed
(Fig. 4B; Table 3). These network indices were then mapped back onto brain schematics to visualize how devi-
ation defines network reassignment across tasks. This video also depicts the dynamics captured by deviation.
Some patches of cortex remained stable in their network assignments across states (such as primary and sec-
ondary visual networks, shown mainly in occipital regions as blue and purple, respectively). However, some
regions and/or networks reassigned with more frequency, such as the shifts in cingulo-opercular preference.
The goal of deviation was to quantify these patterns in a systematic manner. Cortical regions on each brain
schematic represent the Glasser parcellation scheme (Glasser et al., 2016), and colors correspond to the CAB-
NP naming system (Ji et al., 2019; Fig. 3). [View online]

6956 • J. Neurosci., September 2, 2020 • 40(36):6949–6968 Cocuzza et al. · Flexible Coordinator and Switcher Hubs

https://doi.org/10.1523/JNEUROSCI.2559-19.2020.video.1
https://doi.org/10.1523/JNEUROSCI.2559-19.2020.video.1


were performed using connectivity patterns from each network sepa-
rately. Unlike Cole et al. (2013b), we extended the cohort to include
n= 50 (per discovery and replication datasets), used correlation as a clas-
sifying distance measure (Haxby et al., 2001; Mur et al., 2009; Ito et al.,
2017) and performed 8-fold cross validation. We performed within-sub-
jects classifications. Each subject had 64 samples of task-state connectiv-
ity estimates for each distinct task rule set (Fig. 1; see above, FC
estimation). Of those 64 samples, classifiers were trained on a random
subset (over 8-fold) of 56 task states and tested on the remaining (held
out) eight task states. Each task state was a combination of three rule
domains: logic, sensory, and motor. For each of the three decoding anal-
yses, we isolated specific rules from each of these domains. Therefore,
the labels associated with these states were according to: (1) logic (both,
not both, either, or neither), (2) motor (left middle, left index, right mid-
dle, or right index), and (3) sensory (vertical, red color, high pitch, con-
stant tone) rule-set domains (Fig. 1). Therefore, chance accuracy was
25% in each four-way analysis. We averaged task-state connectivity pat-
terns (i.e., features) across identical training-set labels (e.g., in the logic
rule-set classification: training-set connectivity estimates that contained
“both” were averaged). We used a minimum-distance classifier (based
on Spearman’s rank correlation score), where a test set would be classi-
fied as the rule type whose centroid was closest in multivariate space
(Mur et al., 2009). We compared these distances for each set of matched
versus mismatched training and test set labels. When a matched similar-
ity score was larger than all mismatched similarities, this was deemed an
accurate decoding. To summarize, decoding accuracy was the percent of
rules accurately decoded (in each of the three rule set domains), averaged
across 8-folds (Varoquaux et al., 2017).

In order to assess cross-subject statistical significance of the decoding
accuracies of each network, we performed right-tailed Student’s t tests

against chance accuracy. We then used the Max-T
nonparametric permutation testing approach (1000
permutations) to address multiple comparisons (for
details, see above, Experimental design and statistical
analysis). In each permutation, rule-set labels were
randomly shuffled before the classification analysis
was performed. A null distribution of decoding accu-
racies and corresponding t statistics was built and used
to assess statistical significance.

Code and software accessibility
We included all MATLAB, python, and demo code in
a publicly available platform. Data are available at the
level of FC estimation, for the use of loading into
demo scripts. Data at other levels of processing, or
data otherwise presented in this study, are available on
request. The master GitHub repository for this study
can be found here: https://github.com/ColeLab/
controlCartography.

Results
Intrinsic and task-state FC
Replicating previous findings (Cole et al., 2014),
cortex-wide rsFC (Fig. 6A) and tFC (Fig. 6B)
estimates were highly similar. This significant
similarity was observed for the average tFC taken
across all 64 C-PRO tasks (Mantel-r = 0.89,
p, 0.0001, R2 = 0.79), as well as for each C-PRO
rule individually (Table 4). This aligns with pre-
vious observations that the set of networks present
during rest are highly related to the set of networks
present during task states. In addition to the mini-
mal cognitive demands during rest providing a
cognitive baseline for a variety of tasks, this result
suggests that rest may be an appropriate intrinsic
reference state for characterizing changes in net-
works across multiple task states. The similarity
observed between rsFC and tFC (all 64 C-PRO

tasks) in the replication dataset was comparable (Mantel-r=0.90,
p, 0.0001, R2 = 0.81).

To summarize changing connectivity from the resting state to
the average task state, we created a task versus rest difference ma-
trix, and found 21% of those values to be significant differences
(max-T critical threshold=5.46, 5000 permutations). The finding
that rsFC and tFC (across multiple task states) are highly corre-
lated, yet the differences between them are nontrivial, justified
subsequent analyses of functional reconfigurations between these
two kinds of states. Findings were consistent in the replication
dataset: ;32% significant rest-to-task differences (max-T
critical = 5.67).

Network metrics: variability coefficients
Our prior work found that the FPN contains flexible hub
regions, network nodes capable of rapid reconfiguration with
changing task demands (flexible) that have extensive connec-
tivity (hubs; Cole et al., 2013b). Recent work has suggested
that the CON also contains hub-like regions (Power et al.,
2013; Ito et al., 2017), yet it is unknown if they are likewise
flexible. Accordingly, we used two related metrics to assess
whether networks contain flexible hub regions (Cole et al.,
2013b): GVC, and BVC (Fig. 4A; Table 3).

Critically, Cole et al. (2013b) only involved N=15 subjects,
compared with the n= 50 discovery and separate n=50 replica-
tion datasets in the present study. Thus, replicating the results of

Figure 5. Input data schemes used in computing measures of the secondary cognitive control cartographies. Data
refers to FC estimates (Pearson’s R; colored according to the bottom-most scale). Put another way, each panel con-
tains modified correlation matrices. The cross-state means are visually represented, but analyses included all 64 C-
PRO task states. Axes are color coded according to the empirically-adjusted CAB-NP (Fig. 3). A, Representation of
input data for within-network GVC. Between-network FC estimates were set to NaN (white). B, Input data for
between-network GVC. Within-network FC estimates were set to NaN (white). C, Input data for within-network devi-
ation. Between-network FC estimates were set to their resting-state values. D, Input data for between-network devi-
ation. Within-network FC estimates were set to their resting-state values.
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Cole et al. (2013b) would be nontrivial. Replicating
the main result of Cole et al. (2013b), regions of the
FPN had the highest GVC (Fig. 7A) and BVC
compared with the mean of all other networks
(GVC: max-T(49) = 10.94, p, 0.0001; BVC: max-
T(49) = 10.69, p, 0.0001). BVC and GVC results
were highly correlated at both the network (Fig. 7A)
and regional levels (Fig. 7B; network-wise: r=0.9912,
p, 0.00001, R2 = 0.9824 cross-network shared var-
iance; region-wise: r= 0.9972, p, 0.0001, R2 = 0.9944
cross-region shared variance), suggesting that within-
network estimates do not dominate the outcome of
GVC analyses.

These results were replicated in the replication
dataset: the FPN demonstrated the highest GVC (Fig.
7F) and BVC compared with the mean of all other
networks (GVC: max-T(49) = 7.23, p, 0.0001; BVC:
max-T(49) = 6.93, p, 0.0001). BVC and GVC results
were also tightly correlated at both the network and
regional levels in the replication dataset (network-
wise: r= 0.9925, p, 0.00001, R2 = 0.985 cross-net-
work shared variance; region-wise: r=0.9975, p,
.0001, R2 = 0.995 cross-region shared variance).
Additionally, both GVC and BVC results highly over-
lapped between discovery and replication datasets
(GVC: Rho= 0.9091, p, 0.00001; BVC: Rho= 0.881,
p=0.0002).

In conjunction with many studies reporting
increased FPN activity as a function of cognitive con-
trol demands (Yeo et al., 2015), this pattern of results
supports the notion that the FPN contains flexible
regions adaptively configured for multitask control.
Further, we compared GVC between control net-
works and each of the other networks. FPN regions
were significantly higher than each other network
(using the max-T approach, p, 0.0001), except for
the ventral multimodal network. CON regions were significantly
different (typically lower) than each other network on the mea-
sure of GVC (using the max-T approach, p, 0.0001), except for
posterior multimodal and ventral multimodal networks. Lastly, a
paired-samples t test comparing FPN and CON revealed a signif-
icant difference in GVC scores (t(49) = 11.68, p, 0.00001), sug-
gesting that the two proposed control networks exhibit distinct
variability of global connectivity. In the replication dataset, FPN
regions’ GVC scores were also significantly higher than each
other network, except for the ventral multimodal network (Fig.
7F, orange bar). CON regions were significantly different from
each other network on the measure of GVC in the replication
dataset, with no exceptions (Fig. 7F). The paired-samples t test
contrasting FPN and CON specifically also showed a significant
difference on GVC scores in the replication dataset (t(49) = 10.55,
p, 0.00001).

Despite evidence that FPN has strong global variability con-
sistent with flexible hubs, it remains unclear whether that vari-
ability is systematically related to task information content, a
prerequisite for flexible hubs to implement task-related reconfi-
gurations. Prior findings (Cole et al., 2013b) demonstrated that
FPN connections systematically vary with increasing task-state
similarity. We sought to replicate this result in FPN and, given
the current focus on cognitive control systems, we additionally
analyzed CON connections. As in Cole et al. (2013b), task-state
similarity was taken as the number of overlapping, or shared,
rules presented to participants, across all 64 tasks (Fig. 7C; also

see Materials and Methods). We then measured Spearman’s rank
correlations (as a score of similarity) among connections accord-
ing to these task-state pairings, for both FPN (Fig. 7D) and CON
regions (Fig. 7E). An approximately linear relationship was
observed, suggesting that shifts in connectivity systematically

Figure 6. FC estimation. A, rsFC across 360� 360 regions (regional parcellation as in Glasser et al., 2016),
ordered per the CAB-NP, adjusted by resting-state preferences (see Materials and Methods; Fig. 3; color-coded
along each matrix edge as in C). Discovery-set grand averages are depicted. B, tFC across 360 � 360 brain
regions, ordered and estimated as in A (grand averages: n= 50 and 64 C-PRO task states). C, Cortical sche-
matic of the CAB-NP (Ji et al., 2019), empirically adjusted by the resting-state preferences of the present par-
ticipants (see Materials and Methods; Fig. 3). LH = left hemisphere; RH = right hemisphere. Color-coding
scheme of networks and acronyms listed in parentheses are used consistently throughout the present paper.
Note that the two cognitive control networks of special interest included the CON (plum) and FPN (yellow).

Table 4. Summary of the similarities between intrinsic rsFC and multitask FC

Task FC data:
C-PRO rule
set

Correlation
with rest
(Mantel-r)

p value
(permutation
testing)

Shared
variance
(R2)

Sensory rules
Vertical orientation 0.7966 3.05 � 10–8 0.6345
Red color 0.7918 3.17 � 10–8 0.6269
High pitch sound 0.7964 3.10 � 10–8 0.6343
Constant tone 0.7864 3.24 � 10–8 0.6185

Motor rules
Left index finger 0.7847 3.26 � 10–8 0.6157
Right index finger 0.7966 3.60 � 10–8 0.6345
Left middle finger 0.7939 3.14 � 10–8 0.6302
Right middle finger 0.7844 3.33 � 10–8 0.6153

Logic rules
Both 0.7983 3.04 � 10–8 0.6372
Either 0.7934 3.74 � 10–8 0.6295
Not both 0.7833 3.28 � 10–8 0.6136
Neither 0.7966 4.62 � 10–8 0.6345

Each row lists a task-state (i.e., tFC) comparison to rsFC (Fig. 6A). These tFC estimates were based on each
of the 12 C-PRO rules (see Fig. 1) and averaged across participants. Columns list the Mantel-r statistic, corre-
sponding p value in scientific notation (nonparametric permutation testing; see Materials and Methods and
Glerean et al., 2016) and shared variance (R2). Connectivity of all C-PRO rule sets significantly correlated
with rsFC.
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Figure 7. GVC. A, Network-mean GVC, across discovery dataset participants and all C-PRO task states. Error bars: SEM. Asterisks: statistically significant t tests, using the max-T approach (see
Materials and Methods). *p, 0.05; **p, 0.005; ***p, 0.0005. Horizontal, dashed line: average GVC across networks. B, Regional-mean GVC, projected onto a cortical surface. LH = left
hemisphere, RH = right hemisphere. C, Similarity of C-PRO task states, represented by number of overlapping rules (0 overlapping rule = blue, 1 overlapping rule = green, 2 overlapping rules
= yellow). An overlap of three rules exists along the diagonal (white), but these connections were not included in analyses because connectivity similarity would be Rho= 1 (identical task
states). D, Relationship between FPN connectivity similarity and task similarity. All connectivity estimates were included. Gray dashed line: linear trend, with associated b and t test significance
listed. E, Same as D but for CON regions. The results in D, E demonstrated that control network connectivity similarity varied systematically with task similarity, suggesting that GVC results (A,
B) were not driven by network noise. F, Same as A, but replication dataset GVC results at the network level. G, Same as B, but replication dataset GVC results at the regional level. GVC results
highly overlapped between discovery (A) and replication (F) datasets: Rho= 0.9091, p, 0.00001.
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relate to shifts in task state, and are not simply a by-product of
noise. Note that at the subject level, the effect size of shifting con-
nectivity is not interpretable because it is unknown how many
connection changes are required to cognitively implement a
task-rule change (e.g., two robust connection changes may be
enough cognitively, but produce small correlation changes at the
network level). The linear regression weights of these similarity
scores were consistently different from zero across subjects
(FPN: t(49) = 35.51, p, 0.00001; CON: t(49) = 33.25, p, 0.00001).
Next, we performed the same analyses, but restricted the connec-
tions to those maintaining the highest variability (across top 2–
10% in steps of 2%) across task states (i.e., the “VC” of GVC) for
both the FPN (as in Cole et al., 2013b) and CON. Results were
similar to the main results across all thresholds, with linear
weights significantly different from zero (p, 0.05). These results
suggest that GVC results are likewise driven by systematic
changes in connectivity, and not network noise. These results
additionally reveal that CON also systematically changes its
global connectivity pattern according to task goals, although the
GVC results suggest these systematic changes are smaller in
CON (and most other networks) than FPN.

Next, we tested the hypothesis that global FPN and CON con-
nectivity patterns were specific enough to each task set that they
could be used to reliably predict the current task rules being
used. As in Cole et al. (2013b), FPN (as well as all other networks
in the present study) features were restricted by their somatomo-
tor network (SMN) connections in the tests of motor-domain
rule classification. We tested how well control network

connectivity patterns could be used to decode rule sets in the
three C-PRO domains (logic, sensory, and motor; Fig. 1) by
assessing task decodability of every CAB-NP network (Fig. 3)
with nonparametric permutation testing to address multiple
comparisons (see Materials and Methods). In each domain, there
were four distinct rules, thus chance accuracy was 25%.

Consistent with our hypothesis that FPN and CON are espe-
cially important for network-level representation of task infor-
mation, FPN and CON were the only two networks whose
connectivity patterns could be used to decode all three rule
domains across both discovery and replication datasets (Fig. 8;
p, 0.05, nonparametrically corrected for multiple comparisons).
The connectivity patterns of other networks could be used to
decode task information in a more limited manner, often for
functionally-relevant task domains (e.g., SMN for motor rules;
Fig. 8A,C). To clarify the pattern of task-rule decoding results
across control and non-control networks, we generated binarized
matrices depicting statistical significance (Fig. 8B,D). This
allowed us to more easily observe which networks’ cortical
connectivity patterns could be used to significantly decode
rule sets across all three C-PRO task domains (Fig. 8B,D,
arrows). In the discovery dataset, the cognitive control net-
works, FPN and CON, plus LAN were the only networks that
decode all rule sets. In the replication dataset, only the FPN
and CON could significantly decode all rule sets. It is worth
noting that LAN came close to maintaining decodability
across all rule types in the replication dataset as well but did
not survive correction for multiple comparisons in the

Figure 8. Decoding task rule information with task-state connectivity. A, Cross-subject (discovery dataset) network-mean decoding accuracies for logic, motor, and sensory rules (four-way
classifications where chance accuracy was 25%, represented by the horizontal, dashed line). Error bars: SEM. Asterisks: statistically significant t tests using the max-T approach (see Materials
and Methods). *p , 0.05; **p , 0.005. B, Statistical significance tallies (binarized: black = significant or 1, white = not significant or 0) for each network (y-axis, color-labeled) and each
rule set (x-axis) for the discovery dataset. Black arrows to the left of y-axis color labels mark networks that significantly decoded all three types of rules, which included the control networks,
CON and FPN, as well as the language network (LAN). C, Same as in A but for the replication dataset. D, Same as in B but for the replication dataset. The control networks, CON and FPN, were
the only networks to significantly decode all three rule types in the replication dataset. LAN came close (as in B), but its statistical significance did not survive the permutation testing procedure
for sensory rules. E, The CAB-NP color scheme used across all panels A–D (as in Fig. 3 but rearranged to highlight the cognitive control networks). Both FPN and CON connectivity patterns sig-
nificantly decoded task rules above chance, demonstrating their importance in task representation.
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sensory domain (t(49) = 1.48, p = 0.08). Decodability of task
information in the language network is consistent with all of
the C-PRO rules having been cued with words (Fig. 1). The
tendency for control networks’ global connectivity patterns
to so consistently carry task rule information in all three
domains suggests that their network interactions likely carry
information critical to task representation.

Network metric: flexibility
NF measures functional network dynamics related to task-state
time series (Mucha et al., 2010; Bassett et al., 2011, 2013a,b; Cole
et al., 2014) and is thus highly relevant to our current hypotheses
regarding control network reconfigurations. Conceptually, NF is
aligned with GVC, particularly as both quantify large-scale
changes in functional network configurations. However, it is
unknown whether these metrics capture the same aspects of net-
work reconfiguration. The computations of both GVC and NF
are oriented around a measure of network change, however, the
approaches are distinct enough to hypothesize that NF and GVC
will not entirely overlap. We hypothesized that differentiation

between NF and GVC would lend insight into the nature of con-
trol network reconfiguration. In particular, GVC assesses contin-
uous changes in connectivity strengths, while NF assesses
discrete network reassignments.

The multilayer modularity step required parameters v (tem-
poral resolution or “coupling”) and g (spatial resolution) to be
chosen. The standard values used for these parameters across
multiple studies are g = 1 and v = 1 (Bassett et al., 2013b; Braun
et al., 2015; Chen et al., 2015). NF that resulted from community
detection at g = 1 and v = 1 was termed NF-standard. Since
there is only a limited theoretical basis for those parameter
choices, we computed NF across a range of values around these
standards, such that g was varied between zero and five in steps
of 0.5; and v was varied between zero and two in steps of 0.2
(Fig. 9A,B). These sweeps resulted in 121 vectors of regional NF
estimates (per participant). It was clear that results depended
substantially on the exact values of g and v , such that we were
unable to make systematic inferences regarding flexibility of net-
work assignments using NF. To illustrate this: we identified pa-
rameters (g = 2.5 and v = 0.2) that yielded high cross-node

Figure 9. Comparison of GVC and NF, discovery dataset. A, Network-wise comparisons (Spearman’s rank order correlation) of GVC and NF swept by multilayer modularity parameters, across partici-
pants. B, Same as A but at the region-wise level. C, Regional mean GVC plotted over regional mean NF-standard (multilayer modularity parameters: g = 1 andv = 1). NF-standard results were yielded
by the standard parameter combination. Each region (mean across n=50 participants) was plotted as individual scatter points and color-coded according to the network it belongs to (as in Fig. 3). D,
Same as C but with NF-matched represented on the y-axis (g = 2.5 and v = 0.2). This parameter combination yielded NF results most correlated with GVC (or “matched”), as depicted in A, B by dark
red squares. E, Same as C, D but with NF-unmatched represented on the y-axis (g = 0.5 and v = 0.2). This parameter combination yielded NF results least correlated with GVC (or “unmatched”), as
depicted in A, B by blue squares. The variable results in panels C–E motivated the need for a new measure of network reconfiguration that was less linked to parameter selection.
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similarity to GVC, termed NF-matched [discovery dataset:
Rho=0.8169, p, 0.00001 (Fig. 9D); replication dataset: Rho=
0.6993, p=0.015] and others g = 0.5 and v = 0.2 that yielded
a negative relationship with GVC, termed NF-unmatched [dis-
covery dataset: Rho = �0.4546, p= 0.14 (Fig. 9E); replication
dataset: Rho = �0.3077, p=0.34], while the NF-standard param-
eters (g = 1 and v = 1) yielded a positive but not significant rela-
tionship with GVC [discovery dataset: Rho=0.4825, p=0.12
(Fig. 9C); replication dataset: Rho=0.3147, p= 0.32].

Network metric: partition deviation
Given that NF demonstrated inconsistent results dependent on
tuning parameters, we created a novel metric, network partition
deviation (or simply, deviation), that could quantify network recon-
figuration without the need for a parameter search. Deviation enu-
merates network reassignments across task states by quantifying the
percent of states (i.e., the relative frequency across tasks) in which a
given region deviates from a predefined partition (see Materials and
Methods; Fig. 4B; Table 3; Movie 1). We employed the CAB-NP
adjusted by the empirical resting-state data of participants herein
(Fig. 3) as the intrinsic, predefined reference. See prior work (Cole
et al., 2014; Krienen et al., 2014) and above, Intrinsic and task-state
FC, for evidence that resting state provides an appropriate intrinsic
network configuration to act as a reference for assessing network
deviations.

Of the cognitive control networks of interest here, the CON
and the FPN, the CON displayed the highest mean deviation,
which was significantly higher than the mean across all other
networks (max-T(49) = 12.74, p, 0.0001; Fig. 10A). Moreover,
the FPN demonstrated deviation that was near the mean, and
was not significantly different from the mean across all other net-
works. This contrasted from the conclusions drawn from GVC,
which showed the FPN significantly above the mean, and the
CON significantly below it. Similarly in the replication dataset,
CON regions’ deviation scores were again significantly higher
than the mean of all other networks (max-T(49) = 16.33,
p, 0.0001; Fig. 10E).

Next, we performed planned contrasts of the control net-
works’ deviation scores versus each other networks’ deviation
scores, using the max-T method to correct for multiple compari-
sons (see Materials and Methods). The CON’s deviation was sig-
nificantly higher than every other network (p, 0.0001), except for
the orbito-affective network. Deviation estimates of FPN regions
were significantly different from about half of the other networks
(p, 0.0001), including: secondary visual, somatomotor, cingulo-
opercular, auditory, posterior multimodal, ventral multimodal,
and orbito-affective. The deviation of FPN and CON regions were
significantly different (t(49) = 6.28, p, 0.00001), suggesting that
the control networks differ on how often they deviate from their
intrinsic partitions across task states. In the replication dataset,
CON regions’ deviations scores were significantly higher than
each other network, except for the orbito-affective network. Lastly,
the paired samples t test to compare the deviation of CON and
FPN in the replication dataset likewise showed a significant differ-
ence (t(49) = 9.13, p, 0.00001).

To further explore the task-state reconfiguration property
that deviation was capturing, we generated “reassignment pro-
files” at both the network (Fig. 10C) and region (Fig. 10D) levels.
Reassignment profiles showed precisely which networks were
preferred when a region was deviating from the intrinsic parti-
tion. As shown in Figure 10C, the CON deviated to many other
networks in an evenly-distributed manner (relative to other net-
works’ reconfigurations) with some bias to somatomotor

connections, whereas the FPN deviated less overall and with
more specific preferences, favoring the dorsal attention, lan-
guage, and default networks (in addition to itself). As with other
graph metric results, deviation estimates highly overlapped
between discovery and replication datasets (Rho= 0.958,
p, 0.00001), as did reassignment profiles (Rho=0.848,
p, 0.0001).

Network cartographies
We found that FPN regions expressed high GVC yet relatively
low deviation. In contrast, CON regions displayed lower GVC
yet higher deviation. Altogether, the CON and the FPN both
exhibited higher reconfiguration properties than other networks.
However, the diversity of findings across network metrics sug-
gested that composite, multidimensional profiles were warranted
to fully map out their functionalities. Careful examination of net-
work metric estimates for CON and FPN regions clarified the
pattern of results. FPN connectivity tended not to deviate (and
when it did, to only a small number of networks, as in Fig. 10C,
D), whereas CON connectivity was more uniform (or “evenly”
deviating, as in Fig. 10C,D). Figure 11A depicts prominent net-
work properties in a cartographic manner (Guimerà and Nunes
Amaral, 2005; Mattar et al., 2015), charting GVC on the y-axis
against deviation on the x-axis. The FPN can be found in the
upper right quadrant of this cartography, near the mean demar-
cation line for deviation (Fig. 11A, vertical gray line), pointing to
the high-variability yet low-deviation performance of FPN
regions in response to cognitive control task state changes. The
CON can be found in the lower right quadrant of the cartogra-
phy in Figure 11A, suggesting a low-variability yet high-deviation
complement to FPN in properties supporting cognitive control.

To expand on the primary mapping in Figure 11A, we gener-
ated two secondary cartographies that depict the quantification
of each primary measure’s within-network and between-network
scores (see Materials and Methods). Briefly, within-network dy-
namics were assessed by keeping the between-network connec-
tivity fixed across states (defined by resting state). Similarly,
between-network dynamics were assessed by keeping the within-
network connectivity fixed across states (defined by resting state;
for data input schematics, see Fig. 5). Figure 11B charts these
dimensions of GVC, showing both within-network and
between-network FPN connections to be high on global variabil-
ity and CON to be near-mean on both within-network GVC and
between-network GVC. Figure 11C depicts within-network and
between-network deviation. Both FPN and CON regions were
near the mean for between-network deviation (yet on opposing
sides of the mean; Fig. 11C, vertical gray line), yet low and high,
respectively, for within-network deviation. This suggests that
CON’s high deviation was driven primarily by changes in
within-network connectivity.

Supporting dissociation of FPN and CON in terms of net-
work dynamics, we directly compared FPN and CON regions on
each secondary cartographic metric (Fig. 11B,C), and found the
following: (1) FPN was significantly higher than CON on within-
network GVC (t(49) = 8.92, p, 0.00001); (2) FPN was signifi-
cantly higher than CON on between-network GVC (t(49) = 11.43,
p, 0.00001); (3) CON was significantly higher than FPN on
within-network deviation (t(49) = 6.55, p, 0.00001); and (4) FPN
was significantly higher than CON on between-network devia-
tion (t(49) = 4.88, p= 0.000012; see prior results sections for FPN
vs CON comparisons on GVC and deviation scores related to
Figure 11A, where all regions were included). This pattern of
results replicated in the replication dataset: (1) FPN was
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significantly higher than CON on within-network GVC
(t(49) = 8.65, p, 0.00001); (2) FPN was significantly higher than
CON on between-network GVC (t(49) = 10.26, p, 0.00001); (3)
CON was significantly higher than FPN on within-network devi-
ation (t(49) = 6.16, p, 0.00001); and (4) FPN was significantly

higher than CON on between-network deviation (t(49) = 2.13,
p= 0.03).

To explore these results further, we created a color-coded
graph of the partition reassignments captured by each version of
deviation (Fig. 12). We used the Jaccard similarity index (see

Figure 10. Network partition deviation. Mean, error bars, and hypothesis testing specifications were the same as in Figure 7. Asterisks: statistically significant t tests, using the max-T
approach (see Materials and Methods). *p, 0.05; **p, 0.005; ***p, 0.0005. A, Network-mean deviation, discovery dataset. See Discussion for interpretations of the orbito-affective net-
work (OAN). B, Regional-mean deviation, discovery dataset. C, Network-level reassignment profiles. For each intrinsic network (x-axis), adherence (or 1-deviation) is depicted as the portion of
the bar (connecting network) with the equivalent color. All other colors codify exactly which connecting networks were being preferred (see Table 3; Fig. 4) when deviating from the predefined
partition. That is to say, deviation in A is expanded in C to show frequency of reassignments, across task states. D, The same as in C, but the x-axis is depicted at the regional level (i.e., these
regional reassignments were averaged to generate C). E, Network-mean deviation, replication dataset. F, Regional-mean deviation, replication dataset. Deviation results highly overlapped
between discovery (A) and replication (E) datasets: Rho= 0.9580, p, 0.00001.
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Materials and Methods) to quantify the relationship between
reassignment patterns. We found FPN’s between-network devia-
tion (i.e., within-network connectivity held constant) was more
similar to “all-data” deviation than its within-network deviation
(i.e., between-network connectivity held constant): Jaccard indi-
ces of 0.29 and 0.18, respectively (Fig. 12B). Yet, CON’s within-
network deviation was more similar to all-data deviation than its
between-network deviation (Jaccard indices of 0.31 and 0.16,
respectively; Fig. 12A). Supporting dissociation of FPN and CON
network dynamics, the Jaccard similarity indices for CON and
FPN were significantly different (Jaccard for deviation all-data and
deviation within-network data, CON vs FPN: t(49) = 3.30,
p=0.0018; Jaccard for deviation all-data and deviation between-
network data, CON vs FPN: t(49) =�4.61, p=0.00003).

This result supports the conclusion that the high deviation
exhibited by the CON was driven by its within-network connec-
tions, indicating that CON task-related dynamics were driven
mostly by reduction in within-network intrinsic connectivity (net-
work “disbanding”) to increase the strength of between-network
connections relative to (now-reduced) within-network connections.
In contrast, FPN regions maintained their within-network connec-
tion patterns while varying their between-network connection pat-
terns across rest and task. This is consistent with FPN maintaining
its intrinsic within-network connectivity while reconfiguring its
between-network connections in a task-specific manner. Moreover,
the pattern of CON within-network decreases was task specific
(Figs. 7E, 8, 12). This is consistent with CON being a flexible hub
network like FPN, but with a distinct mechanism involving

Figure 11. Cognitive control cartographies, discovery dataset. A, GVC (as in Fig. 7A) plotted over deviation (as in Fig. 10A), with demarcation lines (dashed and crossed gray lines) indicating
the cross-network mean for each dimension (all axes are centered at these marks for ease of viewing). This allowed us to “map out” multidimensional properties at once. For example, networks
in the lower right quadrant of A (such as CON) exhibited GVC lower than the mean and deviation higher than the mean. This mapping suggests a nonlinear relationship between GVC and devi-
ation, suggesting that each measure characterized a unique network property. In all panels, control network diamonds (FPN: yellow, CON: plum) are highlighted with dark black outlines and
are larger than other network diamonds, with the sole visualization purpose of standing out as cognitive control networks. B, GVC scores (y-axis of panel A) expanded by within-network and
between-network values. C, Deviation (x-axis of panel A) scores expanded by within-network and between-network values. The far-right legend depicts the CAB-NP color scheme (as in Fig. 3)
used for the diamonds.

6964 • J. Neurosci., September 2, 2020 • 40(36):6949–6968 Cocuzza et al. · Flexible Coordinator and Switcher Hubs



“switching” from within-network to out-of-network connectivity
via dynamic reduction of within-CON connectivity.

Discussion
The chief conclusion of the current study was that combining
network science measures into network cartographies (mul-
tidimensional functional “mappings”) allowed us to charac-
terize cognitive control brain systems as either flexible

coordinators (frontoparietal regions) or flexible switchers
(cingulo-opercular regions). Network cartographies con-
sisted of two primary dimensions: (1) GVC, which measures
global FC reconfiguration across task states in a continuous
manner; and (2) deviation, which measures global FC recon-
figuration from rest to task in a discrete manner (Fig. 11).
We found that FPN exhibited high GVC but low deviation,
while CON showed the opposite pattern, consistent with
complementary mechanisms of cognitive control. FPN appeared

Figure 12. Reassignments conferred by the variants of network partition deviation in the control cartographies. Reassignment is the network index (based on the intrinsic partition) of the
highest mean connectivity estimate, per task state. In each panel, Jaccard indices are listed to indicate similarity between two partitions. Network assignments are color coded (as in Fig. 3),
and the 64 C-PRO task states are collapsed into 12 rule sets (plus Rest as a reference on each x-axis). A, left, Network reassignments of CON regions from the deviation algorithm, with all con-
nectivity data included in the input (Fig. 11A, x-axis). Middle, Within-network CON estimates used in the deviation algorithm (Fig. 11C, y-axis; see Fig. 5C). The Jaccard similarity of within-net-
work and all-data deviation is 0.31. Right, Between-network CON estimates used in the deviation algorithm (Fig. 11C, x-axis; see Fig. 5D). The Jaccard similarity of between-network and
all-data deviation is 0.16, which is lower than the within-network similarity to all-data. B, Same as panel A, except for FPN regions. The Jaccard similarity scores are: within-to-all = 0.18,
between-to-all = 0.29. Thus, FPN showed the reverse pattern to CON, where between-network deviation is more similar to all-data deviation than within-network deviation.
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to act as a flexible coordinator, based on its extensive
between-network FC reconfiguration along with mainte-
nance of its within-network connections across rest and task
states. In contrast, CON appeared to act as a flexible
switcher, based on extensively reducing its within-network
connections from rest to task to effectively switch to other
networks during tasks (Fig. 2).

The present findings are broadly consistent with the view pro-
posed by Dosenbach et al. (2006, 2007, 2008), which posited,
based on fMRI task activations and rsFC, that control networks
implement dissociable mechanisms. We used tFC along with
dynamic graph-theoretic measures to expand on Dosenbach
et al. In that work, FPN regions enacted control in a manner
described as “active, adaptive, and online.” The high tFC-
based global variability we observed in FPN regions is con-
sistent with adaptive monitoring and adjustment important
for controlled processing (Cole and Schneider, 2007;
Sadaghiani and D’Esposito, 2015; Crittenden et al., 2016). In
contrast to FPN, Dosenbach et al. (2006, 2007, 2008) pro-
posed that CON underlies “stable set maintenance, task
mode, and strategy” (also shown by Vaden et al., 2013).
While we did find CON connectivity changes to be more
consistent (across task states) than FPN (Fig. 7), we propose
that its functional switching relates to the biased competition
model put forth by Desimone et al. (1990) and Desimone
and Duncan (1995) and related theories, as described below.

The biased competition model posits that neural representa-
tions compete for resources, such that stimuli, actions, and/or
thoughts compete for attention during task performance
(Desimone and Duncan, 1995). The theory suggests that compe-
tition is biased by top-down goal-related signals from prefrontal
cortex and related areas (i.e., control networks). These top-down
control signals are thought to shift the competition in bottom-up
processing (e.g., in visual cortex), such that goal-relevant proc-
esses become more salient and more likely to “win.” For instance,
a top-down control signal could bias color-naming representa-
tions over word-reading representations to aid in Stroop task
performance. This theory was built on by the guided activation
theory (Miller and Cohen, 2001) and flexible hub theory (Cole et
al., 2013b). In line with these later theories, we recently posited
that such top-down biases to bottom-up competitive processes
are especially important for RITL paradigms (such as the C-PRO
task), and that they are implemented by tFC changes from con-
trol networks (Cole et al., 2017). In the present study, connectiv-
ity patterns of FPN and CON regions significantly decoded C-
PRO task rules (Fig. 8), suggesting that distributed interactions
implemented by cognitive control networks critically support
task representations. Further, network science measures probing
those interactions suggested that top-down biases are imple-
mented via two complementary mechanisms.

First, CON regions appeared to reduce their within-network
connectivity and flexibly switch to other networks in a task-
dependent manner. We observed this switching to occur with a
relatively uniform distribution, across tasks and switched-to net-
works (Figs. 7, 10C), and with high deviation across tasks (Fig.
10A). We posit that CON transiently disbands and switches net-
works to lend resources (“weight” or “energy”) to help goal-rele-
vant regions/networks (e.g., visual and motor regions during
visuo-motor tasks) win competitions with other regions/net-
works (or representations). Importantly, we propose that CON’s
switching property specifically helps win competitions by reduc-
ing functional interference from goal-irrelevant systems, such as
interference with distracting stimuli or among goal-relevant

representations. Second, FPN regions appeared to flexibly coor-
dinate their global patterns of goal-driven biases with each other
via maintaining within-network connectivity. This likely facili-
tates the coordination of complex task sets via facilitating inter-
actions among combinations of task representations. This
account illustrates a fundamental trade-off in controlled process-
ing: implementing goal-relevant “programs” by FPN through
coordinated (but potentially interfering) top-down biases, versus
lending of resources via independent (and therefore less likely to
interfere) top-down biases by CON to help goal-relevant brain
systems win competitions.

Interestingly, FPN’s between-network connectivity patterns
were variable, but FPN’s within-network intrinsic configuration
remained intact across task states (Figs. 2, 12). On the one hand,
between-network FC variability corroborates the notion that
FPN supports task-specific coding (Crittenden et al., 2016) and
selective attention demands (Sadaghiani and D’Esposito, 2015).
On the other hand, within-network FC preservation suggests
that FPN regions are coordinating the FC changes across FPN
regions. These dynamics are well suited to address the “variable
binding” problem (Feldman, 2013), where variable stimulus in-
formation must be linked to task rules to enact cognitive compu-
tations. In C-PRO tasks, variable rules must link via logical
operations to perform a given task, and variable stimuli must
link to those rules to produce correct behavior (Fig. 1). The
maintenance of FPN’s intrinsic organization combined with
between-network reconfigurations, suggests a coding process
that includes FPN, along with other, task-specific regions. This
computational format would allow for variable stimulus infor-
mation to be bound on a task-to-task basis. Specifically, we
propose that FPN’s role in this scheme is to flexibly coordinate
task-specific coding. Notably, this would impose high processing
demands on FPN regions, which we suggest to be facilitated by
the CON freeing up resources, pointing to a computational
trade-off across these two cognitive control networks.

Two other networks joined CON in having low variability
and high deviation: the OAN and the primary visual network
(VIS1). OAN had both the lowest GVC and the highest deviation
of all networks. This suggests that the switching mechanism pro-
posed for CON also occurs for OAN, although other studies sug-
gest distinct functionality for OAN. Anatomically, OAN is
localized to a small number of regions, ventromedial prefrontal
cortex and nearby subcortical regions (Ji et al., 2019). Human
lesion studies and animal models suggest a core role of OAN in
emotion processing and value representation (Roy et al., 2012),
and likely receives direct dopaminergic projections from the ven-
tral tegmental area (Seamans and Yang, 2004). Emotion process-
ing may seem counter to the non-emotional C-PRO paradigm,
yet evidence from human lesion studies (Koenigs et al., 2007)
and neuroimaging (Botvinick and Braver, 2015) demonstrates
that emotion, in the form of motivation, biases competition
between outcomes during complex decisions. Future research
should assess whether OAN provides a similar mechanism to
CON for top-down biasing, but via an emotional/motivational
mode of processing. In contrast to OAN and CON, VIS1 was not
diverse in its connectivity switches, primarily switching to the
secondary visual network (extrastriate cortex; Fig. 10C,D), con-
sistent with integrated processing across the two visual networks.

Aside from the high-variability/low-deviation and low-vari-
ability/high-deviation cartographic mappings of the FPN and
CON, respectively (Fig. 11A), there were two other scenarios
possible. First, high-variability and high-deviation across task
states: networks exhibiting this profile would have fluctuating
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connectivity as well as notable partition reassignment from rest
to task. The default network (Fig. 11A, red diamond) appeared
to be the only network trending in this direction. Second, low-
variability and low-deviation across task states: networks exhibit-
ing this profile would have stable connectivity estimates and
adhere to their intrinsic partition. The auditory network was the
only observed herein (Fig. 11A, pink diamond), which may relate
to sensory regions’ proposed “rigid core” organization (Bassett et
al., 2013b). Other sensory-motor networks had low deviation
compared with cognitive networks, suggesting low versus high
deviation was indicative of sensory-motor versus cognitive net-
work properties. Future work is warranted to explore this, partic-
ularly if diverse task paradigms are implemented.

An essential consideration for future studies regards the ques-
tion of timescale. Dosenbach et al. (2007, 2008) found increases
in CON activity to be sustained across tasks, while FPN activa-
tions were present at task onset then adaptively varied with
changing task demands. In the present work, we applied network
metrics across a set of dynamic task states demanding high levels
of cognitive control. While measures of global variability sum-
marized varying connectivity patterns across states, further ex-
amination could determine the timescales of control network
mechanisms. Relatedly, future studies would benefit from con-
sidering how electrophysiological signatures of neural processing
and network properties relate in terms of the instantiation of
cognitive control. In resting-state based studies, Sadaghiani et al.
(2010, 2012) found distinctions between FPN and CON based
on alpha band signatures. Spontaneous CON activity related
to increases in global power, while FPN related to increases
in long-range phase synchrony. These signatures correspond
to the functions of tonic alertness and phasic control, respec-
tively. In future work, both rest and control-related task
states should be assessed via alpha band signatures, as well as
potential changes in those signatures from rest to task. A
potential outcome is that increases in global power (CON)
and long-range synchrony (FPN) would be more apparent
from rest to task, constituting another “mappable” reconfi-
guration property of cognitive control. This would further
support the proposition that CON is suited to lend process-
ing resources, and FPN to adaptively integrate task-specific
information. Moreover, possible interactions between the
properties discovered herein (Fig. 11) and electrophysiologi-
cal properties remains an empirical question.

Taken together, constructing a functional cartography by
combining multiple network science measures allowed us to
characterize FPN and CON as complementary systems of cogni-
tive control. We demonstrated that FPN regions enacted control
via flexible coordination of reconfiguring connectivity patterns,
and CON regions enacted control via flexible switching of net-
work affiliations to lend resources to task-relevant networks. All
results replicated in a dataset with distinct subjects, and
expanded prior theories that distinct mechanisms of cognitive
control are instantiated in parallel via separate large-scale brain
systems. Looking forward, we expect the dynamic network neu-
roscience approach expanded on here will be effective for func-
tionally characterizing the relationship between neural and
cognitive dynamics in other brain systems and other cognitive
paradigms.
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