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Decisions Based on Inferred, Not Experienced Outcomes
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When direct experience is unavailable, animals and humans can imagine or infer the future to guide decisions. Behavior
based on direct experience versus inference may recruit partially distinct brain circuits. In rodents, the orbitofrontal cortex
(OFC) contains neural signatures of inferred outcomes, and OFC is necessary for behavior that requires inference but not for
responding driven by direct experience. In humans, OFC activity is also correlated with inferred outcomes, but it is unclear
whether OFC activity is required for inference-based behavior. To test this, we used noninvasive network-based continuous
theta burst stimulation (cTBS) in human subjects (male and female) to target lateral OFC networks in the context of a sen-
sory preconditioning task that was designed to isolate inference-based behavior from responding that can be based on direct
experience alone. We show that, relative to sham, cTBS targeting this network impairs reward-related behavior in conditions
in which outcome expectations have to be mentally inferred. In contrast, OFC-targeted stimulation does not impair behavior
that can be based on previously experienced stimulus–outcome associations. These findings suggest that activity in the tar-
geted OFC network supports decision-making when outcomes have to be mentally simulated, providing converging cross-spe-
cies evidence for a critical role of OFC in model-based but not model-free control of behavior.
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Significance Statement

It is widely accepted that the orbitofrontal cortex (OFC) is important for decision-making. However, it is less clear how exactly
this region contributes to behavior. Here we test the hypothesis that the human OFC is only required for decision-making
when future outcomes have to be mentally simulated, but not when direct experience with stimulus–outcome associations is
available. We show that targeting OFC network activity in humans using network-based continuous theta burst stimulation
selectively impairs behavior that requires inference but does not affect responding that can be based solely on direct experi-
ence. These results are in line with previous findings in animals and suggest a critical role for human OFC in model-based but
not model-free behavior.

Introduction
Many decisions are made based on expectations about their
likely outcomes. Such expectations can reflect what we have
experienced in the past, for instance, when ordering your favorite
dish at a familiar restaurant. For many other decisions in life,
such as deciding to try out a new restaurant or enrolling in a
PhD program, direct experience is lacking, and outcome expecta-
tions need to be mentally simulated or inferred.

Expectations arising from these two different origins, which
may compete for control over behavior (Daw et al., 2005; Lee et
al., 2014), are thought to recruit partially distinct brain circuits
(Balleine and Dickinson, 1998; Daw et al., 2011; O’Doherty et al.,
2017). Whereas much research has focused on behavior that is
based on direct experience (Schultz, 1998; Tricomi et al., 2009;
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Wunderlich et al., 2012), less is known about the neural repre-
sentations that support behavior based on inferred outcomes,
particularly in humans.

Work across animal species suggests that the orbitofrontal
cortex (OFC), together with the hippocampus, is important for
behavior based on inference (Rudebeck and Murray, 2014;
Wikenheiser and Schoenbaum, 2016). For instance, in tasks that
require mental simulation, neural activity in the rodent OFC rep-
resents inferred outcomes in almost the same way as it signals
directly experienced outcomes (Takahashi et al., 2013; Sadacca et
al., 2018). Interestingly, however, the rat OFC is not required for
behavior based on directly experienced outcomes, but it is only
necessary when responding requires inference (Jones et al., 2012;
Takahashi et al., 2013). This suggests that rodent OFC is selec-
tively required for the simulation of outcomes. Recent work in
humans has shown similar neural correlates of inferred out-
comes in the OFC (Barron et al., 2013; Wang et al., 2020), but
whether human OFC networks are required for behavior based
on such inferred outcomes is unclear.

Causal studies on human OFC function have traditionally
been limited to naturally occurring lesions (Reber et al., 2017;
Vaidya et al., 2019). However, we have recently developed a
novel network-based transcranial magnetic stimulation (TMS)
approach to noninvasively target activity in human OFC net-
works (Howard et al., 2020). Similar to previous work targeting
the hippocampal network (Wang et al., 2014), this approach uses
resting-state functional magnetic resonance imaging (rsfMRI) to
individually define stimulation coordinates in the lateral prefron-
tal cortex (LPFC) that are part of the central–lateral OFC net-
work (Kahnt et al., 2012; Zald et al., 2014). We have recently
shown that this targeted TMS protocol selectively affects connec-
tivity in lateral OFC networks, in parallel with disrupting OFC-
dependent behavior (Howard et al., 2020).

In the current study (Fig. 1A), we applied this novel OFC-tar-
geted brain stimulation approach in the context of a sensory pre-
conditioning task that was designed to isolate inference-based
behavior from responding that can be based on direct experience
(Jones et al., 2012; Wimmer and Shohamy, 2012; Wang et al.,
2020). This task consists of three phases (Fig. 1B). First, during

preconditioning, pairs of sensory cues are repeatedly presented
(A ! B, C ! D). Next, during conditioning, the second cue of
each pair is associated with reward and no reward, respectively
(B ! reward, D ! no reward). During the final probe test,
reward-related responding to each cue (A, B, C, and D) is sepa-
rately probed under extinction conditions. Reward-related
responses to cue A indicate that subjects step through the associ-
ations A! B and B! reward to infer A! reward. In contrast,
such responses to cue B do not require inference because direct
experience with the cue–outcome pairing is available. We pre-
dicted that disrupting OFC network activity with OFC-targeted
TMS will impair inference-based behavior (responding to cue
A), but not behaviors that can be based entirely on direct experi-
ence alone (responding to cue B).

Materials and Methods
Subjects
In total, 71 healthy adults participated in a screening session. Of these,
52 passed screening, were randomly assigned to the sham (SHAM group:
n=25; 13 female) or stimulation (STIM) group (STIM group: n= 27; 15
female), and participated in the experiment. All participants provided
written informed consent to participate and were compensated with
$20/h for behavioral testing and $40/h for TMS and MRI scanning. The
study protocol was approved by the Northwestern University Institutional
Review Board. One participant in the STIM group withdrew during
the experiment. Data from four participants (two per group) were
excluded from all analyses because their performance in the last run
of conditioning was not significantly above chance (p. 0.05, bino-
mial test). This left a total of 47 participants (SHAM group: n = 23; 12
female; mean age, 25.246 0.86 years (mean6 SEM); STIM group:
n = 24; 13 female; mean age, 25.306 0.70 years) from whom data were
analyzed. Of those, data from four participants (one SHAM, three
STIM) from the recognition memory test of the experiment were not
recorded because of technical problems.

Stimuli and odor delivery
Visual cues consisted of 14 abstract symbols, and 12 of them were ran-
domly grouped into six pairs for each participant. Two pairs served as
A1–B1 pairs, two served as A2–B2 pairs, and two served as C–D pairs.
The two remaining symbols were used to form two catch–trial pairs
(E–E) in which the same symbols were presented twice in a row (i.e.,
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Figure 1. Experimental design and sensory preconditioning task. A, Experimental timeline. B, Participants learned cue pairs during preconditioning (A! B, C! D). During conditioning,
they learned associations between the second cue in each pair and one of two food odors (O1 or O2) or odorless air (B! odor reward, D! odorless air). During the probe test, participants
were asked to make outcome predictions to all cues, but no outcomes were delivered. Finally, subjects completed a recognition task testing for memory of cue–cue associations. C, Top,
Targeted area in central-lateral OFC (x= 28, y= 38, z = �16). Bottom, Individual stimulation sites in LPFC, overlaid on a glass brain using BrainNet Viewer (Xia et al., 2013). For each partici-
pant, we identified a coordinate within an 8 mm LPFC sphere (centered on x= 48, y= 38, z= 20) that showed maximal rsfMRI connectivity with the intended OFC target. We stimulated these
individually determined LPFC coordinates using infrared MRI-guided stereotactic neuronavigation.
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E1–E1, E2–E2). The two symbols constituting a pair were presented in
different colors (e.g., first symbol blue, second symbol green; counterbal-
anced across participants).

As in our previous studies, the current experiment used food odors
as reward in hungry participants (Howard et al., 2015, 2020; Howard
and Kahnt, 2017, 2018; Suarez et al., 2019). Eight food odors (four sweet:
strawberry, caramel, gingerbread, and yellow cake; four savory: potato
chip, pot roast, garlic, and pizza) were provided by Kerry and
International Flavors and Fragrances. Odors were delivered to partici-
pants’ nose using a custom-built and computer-controlled olfactometer
(Howard et al., 2020; Wang et al., 2020). The olfactometer was equipped
with two independent mass flow controllers (Alicat), which allow dilu-
tion of any given odorant with odorless air. Odorless air was delivered
constantly during the experiment, and odorized air was mixed into the
airstream at specific time points. The overall flow rate was kept constant
at 3.2 L/min throughout the task, such that odor delivery did not involve
a change in overall airflow or any noticeable change in somatosensory
stimulation.

Experimental design and behavioral task
The study was conducted over 3 d (Fig. 1A) and included (1) a screening
session, (2) an MRI and TMS motor threshold (MT) session, and (3) a
main task session. The MRI and TMS MT session was conducted on av-
erage 18d (SEM, 4.16) after the screening session. And the average delay
between the TMS MT and main task sessions was 4 d (SEM, 0.94).
Participants were instructed to arrive in a hungry state (fast for at least 4
h) for the screening and main task sessions.

Screening session. After informed consent and screening for eligibil-
ity, participants rated the pleasantness of eight food odors. In each trial,
they were presented with one of the eight food odors for 2 s and were
instructed to make a medium-sized sniff. They then rated the pleasant-
ness of the delivered odor on a scale from “most disliked sensation” to
“most liked sensation.” Each food odor was presented three times in
randomized order, and ratings were averaged. We then selected one
sweet and one savory odor that were both rated as pleasant (i.e., pleas-
antness above neutral) and were as closely matched as possible. The two
selected odors were then used as a reward for that individual participant
in the main task session. If no such two odors were found, participants
were excluded from further participation in the study. Next, participants
rated the intensity and pleasantness of the two selected odors as well as
odorless air. The scale of the intensity rating was from “undetectable” to
“strongest sensation imaginable.”

MRI and TMS motor threshold session. We acquired a T1-weighted
structural MRI scan for the purpose of TMS neuronavigation and an
8.5min rsfMRI scan for individually defining OFC-targeted stimulation
coordinates (see below). We then measured resting MT by delivering
single TMS pulses over left motor cortex. MT was defined as the mini-
mum percentage of stimulator output necessary to evoke 5 visible thumb
movements in 10 stimulations.

Main task session. The main task session consisted of precondi-
tioning, conditioning, TMS, probe test, and a cue–cue recognition
memory test (Fig. 1B). In four preconditioning runs, participants
were instructed to learn the associations between the two cues in
each pair [A ! B (A1 ! B1, A2 ! B2), C ! D (C1 ! D1, C2 !
D2), E ! E (E1 ! E1, E2 ! E2)]. The cues in a given pair were pre-
sented one after another for 3 s each, separated by an interstimulus
interval of 300ms. A fixation cross appeared between trials for a vari-
able intertrial interval (ITI) between 3 and 11 s. To ensure attention
to the cue pairs, participants were instructed to memorize the cue
pairs, press a button if the second cue was different from the first
cue, and withhold a response if the two cues were identical. To facili-
tate learning, in the first two runs of preconditioning, each cue pair
was repeated three times in a row. In the remaining preconditioning
runs, the order of cue pairs was randomized across trials.

Next, participants performed three runs of conditioning, during
which the second cue of each pair [cues B (B1, B2) and D (D1, D2)] was
presented individually for 3 s. Participants were instructed to indicate by
button press which outcome [e.g., strawberry odor (SB), garlic odor
(GA), or no odor (NO)] they expected following the cue. If they expected

strawberry, they were asked to select “SB”; if they expected garlic, they
were asked to select “GA”; if they expected no odor, they were asked to
select “NO.” Participants made their prediction by pressing a button
with the index, middle, or ring fingers of their right hand corresponding
to the positions of SB, GA. and NO on the screen. The positions of the
abbreviated names were randomized across trials. Irrespective of their
selection, the outcome was presented for 2 s immediately after the cue.
However, “too slow” was displayed if participants failed to respond
within 3 s. Each cue–outcome association was repeated four times in
each run in pseudorandomized order.

After the conditioning phase, participants received OFC-targeted
continuous theta burst stimulation (cTBS; see below). The probe test fol-
lowed immediately after the stimulation. In each trial of the probe test,
cue A (A1, A2), B (B1, B2), C (C1, C2), or D (D1, D2) was presented
individually under extinction conditions (odorless air was delivered
throughout) to prevent further learning. Each cue was presented four
times in pseudorandomized order. Participants were instructed to pre-
dict the outcome after each cue, as they did during the conditioning
phase. They were further instructed to use the cue–cue associations
learned in the first phase to infer the outcomes associated with the pre-
conditioned cues (Wang et al., 2020). The durations of cue presentation
and the ITI were the same as during the conditioning phase.

Following the probe test, participants were tested for their memory
of the cue–cue associations in a recognition task. On each trial, partici-
pants were presented with either an original cue pair or with a newly
recombined pair (i.e., consisting of cues belonging to different pairs).
Pairs were presented sequentially as during preconditioning, and partici-
pants were asked to indicate using a button press whether a pair was old
(O) or recombined (R) after the second cue was presented.

MRI data acquisition
MRI data were acquired at the Northwestern University Center for
Translational Imaging using a Siemens 3 T PRISMA system equipped
with a 64-channel head coil. rsfMRI scans were acquired with an echo-
planar imaging (EPI) sequence with the following parameters: repetition
time (TR), 2 s; echo time (TE), 22ms; flip angle, 90°; slice thickness, 2
mm, no gap; number of slices, 58; interleaved slice acquisition order; ma-
trix size, 104� 96 voxels; field of view, 208� 192 mm; multiband factor,
2. To minimize susceptibility artifacts in the OFC, the acquisition plane
was tilted ;25° from the anterior commissure–posterior commissure
line. The rsfMRI scan consisted of 250 EPI volumes covering all but the
most dorsal portion of the parietal lobes. In addition, a 3D 1 mm iso-
tropic T1-weighted structural scan was also collected (TR, 2300ms; TE,
2.94ms; flip angle, 9°; field of view, 176� 256� 256 mm)

fMRI data preprocessing
Preprocessing of functional images was performed using Statistical
Parametric Mapping (SPM12; https://www.fil.ion.ucl.ac.uk/spm/). To
correct for head motion during scanning, all rsfMRI images were aligned
to the first acquired image. The mean realigned images were then core-
gistered to the anatomic image, and the resulting registration parameters
were applied to all realigned EPI images. Finally, coregistered EPI images
were resliced and smoothed with a 6� 6 � 6 mm Gaussian kernel. To
generate forward and inverse deformation fields, the anatomic image
was normalized to Montreal Neurologic Institute (MNI) space using the
six-tissue probability map provided by SPM12.

OFC-targeted TMS
We used our previously established network-based OFC-targeted
TMS protocol (Howard et al., 2020). TMS was delivered using a
MagPro X100 stimulator connected to a MagPro Cool-B65 butterfly
coil (MagVenture). We used a cTBS protocol involving a 40 s train of
three-pulse 50Hz bursts delivered every 200ms (5Hz, totaling 600
pulses), and stimulation was delivered at an intensity of 80% MT in
the STIM group and 5% MT in the SHAM group. Previous work has
shown that 40 s of this cTBS protocol at 80% MT has inhibitory after-
effects that last for 50–60min over motor cortex (Huang et al., 2005).
We applied stimulation at 5% MT as a sham control because TMS at
low intensities (0�10% MT) is not expected to have any neural effects
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(Wang et al., 2014; Hermiller et al., 2019; Hebscher and Voss, 2020).
As in our previous study (Howard et al., 2020), the target coordinate
was defined as a location in the right LPFC that showed maximal
functional connectivity with the right OFC seed coordinate (see
details below). The orientation of the coil tilted was such that the long
axis of the figure-of-eight coil was approximately parallel to the long
axis of the middle frontal gyrus. All participants were informed that
they may experience muscle twitches in the forehead, eye area, and
jaw during stimulation. We delivered two single test pulses to test for
tolerability before cTBS was delivered. Immediately after the last
pulse of cTBS, the time was noted. All subsequent testing (probe test
and recognition memory) took place within 336 1.92min of the end
of TMS, and this time did not differ between groups (t= 0.24,
p = 0.814).

Coordinate selection for OFC-targeted TMS
Stimulation coordinates on the right LPFC were determined for each
individual participant based on rsfMRI connectivity with a right central-
lateral OFC seed region using a previously described procedure (Fig. 1C;
Howard et al., 2020). We targeted the right central-lateral OFC because
activity in this region has previously been shown to correlate with out-
come-specific expectations (Klein-Flügge et al., 2013; Howard et al.,
2015; Howard and Kahnt, 2017), but we do not propose a lateralization
of OFC function and assume that bilateral OFC-targeted stimulation
would yield even larger effect sizes. Briefly, we first created two spherical
masks of 8 mm radius around an LPFC coordinate (x=48, y= 38, z=20)
and an OFC seed coordinate (x=28, y= 38, z =�16) in MNI space, both
inclusively masked by the gray matter tissue probability map provided
by SPM12 (thresholded at .0.1). These masks were then inverse nor-
malized to each participant’s native space using the inverse deformation
field generated by normalizing the anatomic image. We then estimated a
general linear model with the average rsfMRI time series in the OFC
mask as the regressor of interest and realignment parameters as regres-
sors of no interest. The voxel in the LPFC mask that had the highest
functional connectivity with the OFC seed was defined as a stimulation
coordinate. We used infrared MRI-guided stereotactic neuronavigation
(LOCALITE) to apply stimulation to this coordinate.

Statistical analysis
The main statistical analyses were conducted based on a total of 47 sub-
jects in the two groups (SHAM group: n=23, 12 female; STIM group:
n= 24, 13 female). Simple between-group effects were tested using
unpaired t tests. Results from parametric tests were confirmed using per-
mutation tests involving 10,000 random group assignments. Interactions
were tested using R (R Core Team, 2018) and the lme4 package (Bates et
al., 2012). Specifically, we performed a linear mixed-effect analysis on
odor pleasantness ratings with group (SHAM vs STIM group) and odor
(odor vs odorless) as independent variables. In addition, to test the inter-
action among group, cue type, and time on reward predictions during
conditioning, we used a generalized linear mixed model with group
(SHAM vs STIM group), cue (B vs D), and time (three runs) as independ-
ent variables. Finally, the interaction between group and cue type on
reward predictions during the probe test was tested using a generalized
linear mixed model with group (SHAM vs STIM group) and cue type (A
vs B) as independent variables. Effects of group and cue type (and their
interaction) on response times were also tested using linear mixed models.
In all analyses, subjects were modeled as random intercept effects. There
were no obvious deviations from normality or homoscedasticity based on
visual inspection of residual plots. We computed p values by likelihood ra-
tio tests (x 2) of the full model including the effect of interest against the
reduced model without the effect of interest. Statistical thresholds were set
to p, 0.05, two-tailed unless indicated otherwise.

Results
Odor ratings and learning performance
The experiment took place across 3 d (Fig. 1A). Days 1 and 2
consisted of a screening visit and an MRI session (anatomical
and rsfMRI), respectively. Day 3 involved a sensory precon-

ditioning task and network-based OFC-targeted TMS. On day
3, subjects (SHAM group, n= 23; STIM group, n = 24) in both
groups arrived fasted (they had not eaten for 116 4.27 h;
group difference, t(45) = 1.00, p = 0.321) and with similar levels
of hunger (t(45) = 1.28, p = 0.205). Subjects first learned associ-
ations between pairs of abstract visual cues during precondi-
tioning (A ! B, C ! D; Fig. 1B). Next, they learned that a
pleasant food odor followed cue B, whereas cue D was always
followed by odorless air (Fig. 1B). To measure reward expecta-
tions, participants were asked to predict the outcome associ-
ated with the presented cue via button press.

Subjects in both groups rated the food odors as significantly
more pleasant than the odorless air (SHAM group: t(22) = 11.62,
p= 7.38� 10�11; STIM group: t(23) = 12.97, p= 4.59� 10�12; Fig.
2A), demonstrating that food odors were perceived as rewarding.
Importantly, there were no differences in the pleasantness ratings
between groups (main effect of group: x 2(1) = 2.49, p=0.115;
group by odor interaction: x 2(1) = 1.34, p=0.247). During condi-
tioning, the percentage of trials in which participants expected a
food odor after cue B increased across time relative to cue D
[three-way (group� time � cue) generalized linear mixed model;
main effect of cue, x 2(1) = 1736, p, 2.2� 10�16; main effect of
time, x 2(2) = 0.98, p=0.613; cue � time interaction, x 2(2) =
254.22, p, 2.2� 10�16; Fig. 2B]. There were no significant differ-
ences between groups in learning across time (main effect of
group, x 2(1) = 0.096, p=0.757; cue � group interaction, x 2(1) =
3.22, p=0.072; time � group interaction, x 2(2) = 2.88, p=0.24;
cue � time � group interaction, x 2(2) = 0.36, p=0.834). Most
importantly, performance in the last conditioning run did not dif-
fer between groups (t(45) = 0.0045, p=0.996), demonstrating that
subjects in both groups learned the associations between the cues
and their associated outcomes equally well.

OFC-targeted cTBS disrupts inference-based responding
After conditioning and immediately before the probe test, we
applied 40 s of cTBS to a site in right LPFC that was individually
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Figure 2. Odor ratings and behavioral performance during conditioning. A, Participants
rated the pleasantness (left) and intensity (right) of food odors significantly higher than
odorless air (p, 0.001), but ratings did not differ between groups (p values. 0.14).
B, The percentage of trials in which an odor reward was expected after cue B increased rela-
tive to cue D across time during conditioning, and there were no group differences. Error
bars depict SEM (SHAM group, n= 23; STIM group, n= 24).
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selected to have maximal rsfMRI connectivity
with the central-lateral OFC, following previously
established procedures (Howard et al., 2020).
Specifically, stimulation was administered in the
STIM group at a high intensity that we have previ-
ously shown disrupts OFC network activity and
adaptive behavior in the reinforcer devaluation
task. Stimulation in the SHAM group was admin-
istered at a low intensity that was not expected to
produce any impact on neural function (Howard
et al., 2020).

We hypothesized that targeting the lateral OFC
network with cTBS would selectively disrupt
reward expectations based on inference but not
those based on direct experience. In line with this,
we found a significant interaction between cue
type and group (x2(1) = 4.95, p= 0.026), indicating
that responses to cues A and B were differentially affected by
OFC-targeted cTBS compared with the SHAM group. Indeed,
follow-up t tests showed that this interaction was driven by sig-
nificantly reduced responses to cue A in the STIM group relative
to the SHAM group (t(45) = 2.40, p=0.020; Fig. 3A), whereas
there was no significant group difference in responding to cue B
(t(45) = 1.18, p= 0.245; Fig. 3B). These results were confirmed
using permutation tests (group difference in responding to A,
p=0.012; group difference in responding to B, p= 0.127). This
demonstrates that the effects of OFC-targeted cTBS were specific
for inference-based responding.

To obtain a more fine-grained picture of the effects of cTBS
on behavior, we further analyzed response times to cues A and B.
Responses to cue A were significantly faster in the STIM group
compared with the SHAM group (STIM group: 18286 68ms;
SHAM group: 19986 56ms; t(45) = 1.88, p=0.037, one-tailed),
but there was no evidence for such a difference for cue B (STIM
group: 15626 51ms; SHAM group: 16486 38ms; t(45) = 1.33,
p=0.191). However, although these results are consistent with
the findings reported above and suggest that the effects of OFC-
targeted cTBS are selective for behavior based on inference, the
cue � group interaction was not significant (x 2(1) = 3.24,
p=0.072; main effect of group: x 2(1) = 4.06, p = 0.044; main
effect of cue: x 2(1) = 153.74, p, 2.2� 10�16).

Reward-related responding to cue A depends not only on the
ability to make an inference, but also on knowledge about the
reward predicted by cue B, which was acquired through direct
experience (B ! reward). To further examine the effects of
OFC-targeted cTBS on inference-based behavior independent of
potential effects on direct experience, we normalized responses
to cue A by responses to cue B. The resulting ratio (i.e., A/B)
reflects the ability to infer outcomes relative to the knowledge
about the directly experienced cue–reward association. This ratio
was significantly smaller in the STIM group compared with the
SHAM group (t(45) = 2.33 p= 0.024; Fig. 3C). We confirmed the
statistical significance of this difference using a permutation test
(p=0.013). Together, these results demonstrate that OFC-tar-
geted cTBS selectively impairs behavior based on inferred out-
comes but does not disrupt behavior that can be based on
directly experienced outcomes.

OFC-targeted cTBS does not disrupt memory for cue–cue
associations
Inference also depends on memory of the cue–cue associations
learned during preconditioning (Wang et al., 2020). It is
therefore possible that the findings reported above reflect a

failure of memory rather than inference. Although this is
unlikely given that the memory of directly experienced cue–
reward associations was unimpaired in the STIM group,
we measured recognition memory for cue–cue associations
after the probe test to rule out this potential explanation.
Importantly, this memory test was still within the 50 min of
presumed TMS effects. In both groups, recognition memory
was significantly above chance (SHAM group: t(21) = 5.01,
p, 0.001; STIM group: t(20) = 2.70, p = 0.013), and there
was no difference between groups (t(41) = 1.34, p = 0.188,
permutation test, p = 0.129; Fig. 4A). Moreover, as in our
previous study (Wang et al., 2020), recognition memory
was significantly correlated with inference-based respond-
ing (r = 0.51, p = 0.0005; Fig. 4B). These correlations were
significant within each group (SHAM group: r = 0.38,
p = 0.039, one-tailed; STIM group: r = 0.55, p = 0.01) and did
not differ between groups (Z = �0.93, p = 0.178). Of note,
our between-subject design does not allow us to test
whether OFC-targeted cTBS affected inference-based
responding through (nonsignificant) effects on cue–cue
memory. This would have required a within-subject design
involving repeated measures of memory and inference
with and without OFC-targeted cTBS from every partici-
pant. Together, these findings demonstrate that similar to
directly experienced cue–reward associations, OFC-tar-
geted cTBS did not significantly impair memory for cue–
cue associations, or how they were used for inference-based
behavior.

CBA ** n.s.
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Figure 3. Responses based on inferred outcomes are disrupted by OFC-targeted cTBS. A, The percentage of trials
in which participants predicted a reward for cue A was significantly larger in the SHAM group compared with the
STIM group (p=0.020). There was no difference in reward predictions for cue C (p=0.642). B, There was no
group difference in responding to cue B (p=0.245) or D (p=0.740). C, Responses to cue A relative to cue B (A/B)
were significantly stronger in the SHAM group compared with the STIM group (p=0.024). Circles depict individual
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not altered by OFC-targeted cTBS. A, Recognition memory for cue–cue pairs does not differ
between groups (p= 0.188). Error bars depict SEM (SHAM group, n= 22; STIM group, n=21).
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group), and this correlation did not differ between groups (Z =�0.93, p=0.178).
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Discussion
The current study shows that targeting the human OFC with net-
work-based cTBS impairs reward-related behaviors when out-
come expectations need to be mentally simulated, but not when
expectations can be based on direct experience. This closely par-
allels previous findings from rats (Jones et al., 2012), providing
converging cross-species evidence for a role of OFC networks in
model-based but not model-free behavior.

As such, our findings suggest that the contribution of OFC to
decision-making may be limited to situations that require
model-based planning, and that choices based on direct experi-
ence may rely on value computations in other areas, such as the
amygdala or striatum (Paton et al., 2006; Cox and Witten, 2019).
This proposal is seemingly at odds with the large number of
studies across different species that consistently report neural
correlates of both inferred and directly experienced value in OFC
(Hare et al., 2009; Schoenbaum et al., 2009; Barron et al., 2013;
Stalnaker et al., 2014; Howard et al., 2015; Padoa-Schioppa and
Conen, 2017; Suzuki et al., 2017; Klein-Flügge et al., 2019;
Lopez-Persem et al., 2020; Wang et al., 2020). Why would OFC
represent value signals if they are not required for behavior? One
potential answer is that OFC computes and represents inferred
values in all situations, even when direct experience is available,
and that these signals may bias choices at any point (Ballesta et
al., 2020). However, if direct experience is available, these signals
are typically indistinguishable from, and redundant with, cached
values represented elsewhere in the brain, such that disruption of
OFC does not affect observed behavior. In contrast, because the
contribution of OFC to computing model-based values is critical,
disrupting its function impacts behavior when outcomes must be
inferred. This proposal would explain why animals and humans
with compromised OFC function are capable of making choices,
but that these choices reflect previously learned values even if
they are no longer valid (Gallagher et al., 1999; Izquierdo et al.,
2004; West et al., 2011; Rudebeck et al., 2013; Murray et al., 2015;
Gardner et al., 2017, 2018; Reber et al., 2017; Parkes et al., 2018;
Howard et al., 2020).

In line with our previous work showing neural correlates of
inferred outcomes in OFC (Wang et al., 2020), the current find-
ings suggest that OFC networks are directly involved in stepping
through the cue–cue and cue–reward associations when infer-
ring outcomes at the time of decision-making. However, alterna-
tive explanations have been proposed that do not require
inference at this time point. For instance, cue A could be reac-
tivated at the time of conditioning, such that it also acquires
model-free value, just like cue B. Several studies have provided
correlative evidence for such mediated learning processes in
areas of the medial prefrontal cortex and temporal lobe
(Shohamy and Wagner, 2008; Wimmer and Shohamy, 2012;
Zeithamova et al., 2012; Kurth-Nelson et al., 2015). However,
it is important to note the methodological differences between
these studies and ours, which may make mediated learning
more or less likely. Instead of meaningful stimuli such as faces,
body parts, and scenes, we used abstract symbols as cues,
which are more difficult to memorize and thus perhaps less
likely to be reactivated during conditioning. In addition, we
explicitly instructed participants to learn the cue–cue pairings
during preconditioning and to use these associations to infer
outcomes in the probe test, which may have facilitated the use
of inference. However, the explicit instruction may not be crit-
ical since animal studies show similar degrees of responding
(Jones et al., 2012; Sadacca et al., 2016; Sharpe et al., 2017;
Hart et al., 2020).

At a conceptual level, compared with just-in-time simula-
tion of outcomes, it seems rather inefficient to engage in
mediated learning for all previously experienced associations
when encountering a cue. This may thus not be a general
mechanism that is used in all situations. In support of this
contention, preconditioned cues do not support conditioned
reinforcement (Sharpe et al., 2017) and responding to these
cues is sensitive to reward devaluation (Hart et al., 2020).
These two behaviors are the gold standards for assessing
model-free and model-based value, respectively. Moreover,
pharmacological inactivation of the OFC in the probe test
selectively disrupts responding to cue A without affecting
responding to cue B (Jones et al., 2012). If responding to both
A and B were based on the same neural mechanisms involving
model-free values, then presumably the two would not be dif-
ferentially affected by OFC inactivation in the final probe test
in this earlier experiment or, indeed, in the current study.

However, it is important to keep in mind that behavior can be
driven by several independent mechanisms and that inference-
based behavior supported by mechanisms in OFC may occur in
parallel with support from additional mechanisms such as medi-
ated learning (Schlichting and Preston, 2015), which may recruit
hippocampus (Shohamy and Wagner, 2008; Wimmer and
Shohamy, 2012; Kurth-Nelson et al., 2015) and perirhinal cortex
(Wong et al., 2019). Nevertheless, the susceptibility of inference-
based responding to OFC-targeted cTBS indicates that at least
some amount of behavior in our task is based on real-time
model-based computations. In this regard, it is important to note
that whereas OFC-targeted cTBS reduced subjects’ ability to
make inference-based decisions, it did not fully abolish this func-
tion. This could be related to the fact that we only applied unilat-
eral stimulation, and thus the contralateral OFC network may
have remained unimpaired. Alternatively, the remaining per-
formance could be driven by mediated learning processes men-
tioned above, dependent on areas not impacted by our OFC-
targeted manipulation.

It is also important to note that we did not target OFC
directly. Instead, we used an OFC network-targeted approach
by selecting stimulation sites in LPFC that have maximal con-
nectivity with the central-lateral OFC, as we have done previ-
ously (Howard et al., 2020). In this previous study, the effects
of cTBS were selective for the targeted central-lateral OFC net-
work and were not observed in the medial OFC network. In
addition, outside of OFC, only a few voxels in the left precentral
gyrus and the left inferior frontal gyrus showed reduced connec-
tivity. However, because the current study did not measure
rsfMRI directly after TMS, we are not able to confirm that this
was the case in our current sample. It is therefore possible that
local effects of our stimulation on LPFC drove the observed
effects. We think this is unlikely for the following reasons. First,
our TMS protocol was identical to our previous study in which
we did not observe any effects on LPFC activity (Howard et al.,
2020). Second, our results parallel previous findings with phar-
macological inactivation of OFC in animals (Jones et al., 2012).
Third, although medial PFC networks have been implicated in
inference processes (Zeithamova et al., 2012; Schlichting et al.,
2015; Schlichting and Preston, 2015), we are not aware of similar
findings related to LPFC. However, cTBS could have affected
reliability signals in LPFC that have been shown to correlate with
the arbitration of behavioral control between model-based and
model-free processes (Lee et al., 2014).

An additional limitation is our sham condition, which
involved stimulation at 5% MT. This is noticeably different from
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stimulation at 80% MT in terms of auditory and somatosensory
stimulation (i.e., discomfort at the scalp and facial muscle
twitches). These unintended peripheral effects of TMS could
have driven the observed behavioral effects, rather than the neu-
ral changes induced by cTBS. Although this concern could be
better addressed by additional control groups involving cTBS
over parts of cortex that are not part of the targeted network, we
believe peripheral effects are unlikely to be the cause of the be-
havioral impairment for two reasons. First, the effects of cTBS
were specific to inference-based behavior, and no differences
were found for behavioral responses based on direct experience
or memory for cue–cue associations. It is difficult to conceive
why the peripheral effects of the TMS would have highly dispar-
ate effects on two almost identical behaviors that only differ in
their requirement for inference. Second, our previous study
using OFC-targeted TMS involved an additional control condi-
tion that was matched for somatosensory stimulation (Howard
et al., 2020). Despite comparable peripheral effects, behavioral
and neural effects in this control condition differed significantly
from active cTBS but were similar to the 5% sham condition. We
therefore think it is unlikely that our results were driven by unin-
tended non-neuronal effects of cTBS.

In summary, our results support the idea that human OFC
networks are necessary for inference-based behavior, whereas
they are not critical to support decision-making when direct ex-
perience is available. Deficits in decision-making and altered
OFC function are hallmarks of many neuropsychiatric disorders,
including substance use disorder (Zilverstand et al., 2018) and
obsessive-compulsive disorder (Menzies et al., 2008). Our find-
ings may offer a conceptual framework for understanding how
OFC dysfunction may disrupt behavior in these conditions.

References
Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency

and incentive learning and their cortical substrates. Neuropharmacology
37:407–419.

Ballesta S, Shi W, Conen KE, Padoa-Schioppa C (2020) Values encoded in
orbitofrontal cortex are causally related to economic choices. bioRxiv.
Advance online publication. Retrieved March 10, 2020. doi:10.1101/
2020.03.10.984021.

Barron HC, Dolan RJ, Behrens TE (2013) Online evaluation of novel choices
by simultaneous representation of multiple memories. Nat Neurosci
16:1492–1498.

Bates D, Maechler M, Bolker B (2012) lme4. Linear mixed-effects models
using S4 classes. R package version 0.999999-0.

Cox J, Witten IB (2019) Striatal circuits for reward learning and decision-
making. Nat Rev Neurosci 20:482–494.

Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control. Nat
Neurosci 8:1704–1711.

Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011) Model-based
influences on humans’ choices and striatal prediction errors. Neuron
69:1204–1215.

Gallagher M, McMahan RW, Schoenbaum G (1999) Orbitofrontal cortex
and representation of incentive value in associative learning. J Neurosci
19:6610–6614.

Gardner MPH, Conroy JS, Shaham MH, Styer CV, Schoenbaum G (2017)
Lateral orbitofrontal inactivation dissociates devaluation-sensitive behav-
ior and economic choice. Neuron 96:1192–1203.e4.

Gardner MPH, Conroy JC, Styer CV, Huynh T, Whitaker LR, Schoenbaum
G (2018) Medial orbitofrontal inactivation does not affect economic
choice. Elife 7:e38963.

Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making
involves modulation of the vmPFC valuation system. Science 324:646–
648.

Hart EE, Sharpe MJ, Gardner MP, Schoenbaum G (2020) Devaluation-sensi-
tive responding to preconditioned cues requires orbitofrontal cortex

during initial cue-cue learning. bioRxiv. Advance online publication.
Retrieved June 15, 2020. doi:10.1101/2020.06.15.152991.

Hebscher M, Voss JL (2020) Testing network properties of episodic memory
using non-invasive brain stimulation. Curr Opin Behav Sci 32:35–42.

Hermiller MS, Karp E, Nilakantan AS, Voss JL (2019) Episodic memory
improvements due to noninvasive stimulation targeting the cortical-hip-
pocampal network: a replication and extension experiment. Brain Behav
9:e01393.

Howard JD, Kahnt T (2017) Identity-specific reward representations in orbi-
tofrontal cortex are modulated by selective devaluation. J Neurosci
37:2627–2638.

Howard JD, Kahnt T (2018) Identity prediction errors in the human mid-
brain update reward-identity expectations in the orbitofrontal cortex. Nat
Commun 9:1611.

Howard JD, Gottfried JA, Tobler PN, Kahnt T (2015) Identity-specific coding
of future rewards in the human orbitofrontal cortex. Proc Natl Acad Sci
U S A 112:5195–5200.

Howard JD, Reynolds R, Smith DE, Voss JL, Schoenbaum G, Kahnt T (2020)
Targeted stimulation of human orbitofrontal networks disrupts out-
come-guided behavior. Curr Biol 30:490–498.e4.

Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta
burst stimulation of the human motor cortex. Neuron 45:201–206.

Izquierdo A, Suda RK, Murray EA (2004) Bilateral orbital prefrontal cortex
lesions in rhesus monkeys disrupt choices guided by both reward value
and reward contingency. J Neurosci 24:7540–7548.

Jones JL, Esber GR, McDannald MA, Gruber AJ, Hernandez A, Mirenzi A,
Schoenbaum G (2012) Orbitofrontal cortex supports behavior and learn-
ing using inferred but not cached values. Science 338:953–956.

Kahnt T, Chang LJ, Park SQ, Heinzle J, Haynes JD (2012) Connectivity-based
parcellation of the human orbitofrontal cortex. J Neurosci 32:6240–6250.

Klein-Flügge MC, Barron HC, Brodersen KH, Dolan RJ, Behrens TE (2013)
Segregated encoding of reward-identity and stimulus-reward associations
in human orbitofrontal cortex. J Neurosci 33:3202–3211.

Klein-Flügge MC, Wittmann MK, Shpektor A, Jensen DEA, Rushworth MFS
(2019) Multiple associative structures created by reinforcement and inci-
dental statistical learning mechanisms. Nat Commun 10:4835.

Kurth-Nelson Z, Barnes G, Sejdinovic D, Dolan R, Dayan P (2015) Temporal
structure in associative retrieval. Elife 4:e04919.

Lee SW, Shimojo S, O’Doherty JP (2014) Neural computations underlying
arbitration between model-based and model-free learning. Neuron
81:687–699.

Lopez-Persem A, Bastin J, Petton M, Abitbol R, Lehongre K, Adam C,
Navarro V, Rheims S, Kahane P, Domenech P, Pessiglione M (2020)
Four core properties of the human brain valuation system demonstrated
in intracranial signals. Nat Neurosci 23:664–675.

Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore
ET (2008) Integrating evidence from neuroimaging and neuropsycholog-
ical studies of obsessive-compulsive disorder: the orbitofronto-striatal
model revisited. Neurosci Biobehav Rev 32:525–549.

Murray EA, Moylan EJ, Saleem KS, Basile BM, Turchi J (2015) Specialized
areas for value updating and goal selection in the primate orbitofrontal
cortex. Elife 4:e11695.

O’Doherty JP, Cockburn J, Pauli WM (2017) Learning, reward, and decision
making. Annu Rev Psychol 68:73–100.

Padoa-Schioppa C, Conen KE (2017) Orbitofrontal cortex: a neural circuit
for economic decisions. Neuron 96:736–754.

Parkes SL, Ravassard PM, Cerpa JC, Wolff M, Ferreira G, Coutureau E
(2018) Insular and ventrolateral orbitofrontal cortices differentially con-
tribute to goal-directed behavior in rodents. Cereb Cortex 28:2313–2325.

Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amyg-
dala represents the positive and negative value of visual stimuli during
learning. Nature 439:865–870.

R Core Team (2018) R: a language and environment for statistical comput-
ing. Vienna, Austria: R Foundation.

Reber J, Feinstein JS, O’Doherty JP, Liljeholm M, Adolphs R, Tranel D
(2017) Selective impairment of goal-directed decision-making following
lesions to the human ventromedial prefrontal cortex. Brain 140:1743–
1756.

Rudebeck PH, Murray EA (2014) The orbitofrontal oracle: cortical mecha-
nisms for the prediction and evaluation of specific behavioral outcomes.
Neuron 84:1143–1156.

8732 • J. Neurosci., November 4, 2020 • 40(45):8726–8733 Wang et al. · OFC-Targeted TMS Disrupts Inference-Based Behavior

http://dx.doi.org/10.1016/S0028-3908(98)00033-1
http://dx.doi.org/10.1016/s0028-3908(98)00033-1
https://www.ncbi.nlm.nih.gov/pubmed/9704982
http://dx.doi.org/10.1038/nn.3515
https://www.ncbi.nlm.nih.gov/pubmed/24013592
http://dx.doi.org/10.1038/s41583-019-0189-2
https://www.ncbi.nlm.nih.gov/pubmed/31171839
http://dx.doi.org/10.1038/nn1560
https://www.ncbi.nlm.nih.gov/pubmed/16286932
http://dx.doi.org/10.1016/j.neuron.2011.02.027
https://www.ncbi.nlm.nih.gov/pubmed/21435563
http://dx.doi.org/10.1523/JNEUROSCI.19-15-06610.1999
https://www.ncbi.nlm.nih.gov/pubmed/10414988
http://dx.doi.org/10.1016/j.neuron.2017.10.026
https://www.ncbi.nlm.nih.gov/pubmed/29154127
http://dx.doi.org/10.7554/eLife.38963
http://dx.doi.org/10.1126/science.1168450
https://www.ncbi.nlm.nih.gov/pubmed/19407204
http://dx.doi.org/10.1016/j.cobeha.2020.01.012
https://www.ncbi.nlm.nih.gov/pubmed/32266318
http://dx.doi.org/10.1002/brb3.1393
https://www.ncbi.nlm.nih.gov/pubmed/31568683
http://dx.doi.org/10.1523/JNEUROSCI.3473-16.2017
https://www.ncbi.nlm.nih.gov/pubmed/28159906
http://dx.doi.org/10.1038/s41467-018-04055-5
https://www.ncbi.nlm.nih.gov/pubmed/29686225
http://dx.doi.org/10.1073/pnas.1503550112
https://www.ncbi.nlm.nih.gov/pubmed/25848032
http://dx.doi.org/10.1016/j.cub.2019.12.007
https://www.ncbi.nlm.nih.gov/pubmed/31956033
http://dx.doi.org/10.1016/j.neuron.2004.12.033
https://www.ncbi.nlm.nih.gov/pubmed/15664172
http://dx.doi.org/10.1523/JNEUROSCI.1921-04.2004
https://www.ncbi.nlm.nih.gov/pubmed/15329401
http://dx.doi.org/10.1126/science.1227489
https://www.ncbi.nlm.nih.gov/pubmed/23162000
http://dx.doi.org/10.1523/JNEUROSCI.0257-12.2012
https://www.ncbi.nlm.nih.gov/pubmed/22553030
http://dx.doi.org/10.1523/JNEUROSCI.2532-12.2013
https://www.ncbi.nlm.nih.gov/pubmed/23407973
http://dx.doi.org/10.1038/s41467-019-12557-z
https://www.ncbi.nlm.nih.gov/pubmed/31645545
http://dx.doi.org/10.7554/eLife.04919
http://dx.doi.org/10.1016/j.neuron.2013.11.028
https://www.ncbi.nlm.nih.gov/pubmed/24507199
http://dx.doi.org/10.1038/s41593-020-0615-9
http://dx.doi.org/10.1016/j.neubiorev.2007.09.005
https://www.ncbi.nlm.nih.gov/pubmed/18061263
http://dx.doi.org/10.7554/eLife.11695
http://dx.doi.org/10.1146/annurev-psych-010416-044216
https://www.ncbi.nlm.nih.gov/pubmed/27687119
http://dx.doi.org/10.1016/j.neuron.2017.09.031
https://www.ncbi.nlm.nih.gov/pubmed/29144973
http://dx.doi.org/10.1093/cercor/bhx132
https://www.ncbi.nlm.nih.gov/pubmed/28541407
http://dx.doi.org/10.1038/nature04490
https://www.ncbi.nlm.nih.gov/pubmed/16482160
http://dx.doi.org/10.1093/brain/awx105
https://www.ncbi.nlm.nih.gov/pubmed/28549132
http://dx.doi.org/10.1016/j.neuron.2014.10.049
https://www.ncbi.nlm.nih.gov/pubmed/25521376


Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA (2013)
Prefrontal mechanisms of behavioral flexibility, emotion regulation and
value updating. Nat Neurosci 16:1140–1145.

Sadacca BF, Jones JL, Schoenbaum G (2016) Midbrain dopamine neurons
compute inferred and cached value prediction errors in a common
framework. Elife 5:e13665.

Sadacca BF, Wied HM, Lopatina N, Saini GK, Nemirovsky D, Schoenbaum
G (2018) Orbitofrontal neurons signal sensory associations underlying
model-based inference in a sensory preconditioning task. Elife 7:e30373.

Schlichting ML, Preston AR (2015) Memory integration: neural mechanisms
and implications for behavior. Curr Opin Behav Sci 1:1–8.

Schlichting ML, Mumford JA, Preston AR (2015) Learning-related represen-
tational changes reveal dissociable integration and separation signatures
in the hippocampus and prefrontal cortex. Nat Commun 6:8151.

Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new per-
spective on the role of the orbitofrontal cortex in adaptive behaviour. Nat
Rev Neurosci 10:885–892.

Schultz W (1998) Predictive reward signal of dopamine neurons. J
Neurophysiol 80:1–27.

Sharpe MJ, Batchelor HM, Schoenbaum G (2017) Preconditioned cues have
no value. Elife 6:e28362.

Shohamy D, Wagner AD (2008) Integrating memories in the human brain:
hippocampal-midbrain encoding of overlapping events. Neuron 60:378–
389.

Stalnaker TA, Cooch NK, McDannald MA, Liu TL, Wied H, Schoenbaum G
(2014) Orbitofrontal neurons infer the value and identity of predicted
outcomes. Nat Commun 5:3926.

Suarez JA, Howard JD, Schoenbaum G, Kahnt T (2019) Sensory prediction
errors in the human midbrain signal identity violations independent of
perceptual distance. Elife 8:e43962.

Suzuki S, Cross L, O’Doherty JP (2017) Elucidating the underlying compo-
nents of food valuation in the human orbitofrontal cortex. Nat Neurosci
20:1780–1786.

Takahashi YK, Chang CY, Lucantonio F, Haney RZ, Berg BA, Yau HJ, Bonci
A, Schoenbaum G (2013) Neural estimates of imagined outcomes in the
orbitofrontal cortex drive behavior and learning. Neuron 80:507–518.

Tricomi E, Balleine BW, O’Doherty JP (2009) A specific role for posterior
dorsolateral striatum in human habit learning. Eur J Neurosci 29:2225–
2232.

Vaidya AR, Pujara MS, Petrides M, Murray EA, Fellows LK (2019) Lesion
studies in contemporary neuroscience. Trends Cogn Sci 23:653–671.

Wang F, Schoenbaum G, Kahnt T (2020) Interactions between human orbi-
tofrontal cortex and hippocampus support model-based inference. PLoS
Biol 18:e3000578.

Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL,
Hermiller MS, Voss JL (2014) Targeted enhancement of cortical-hippo-
campal brain networks and associative memory. Science 345:1054–1057.

West EA, DesJardin JT, Gale K, Malkova L (2011) Transient inactivation of
orbitofrontal cortex blocks reinforcer devaluation in macaques. J
Neurosci 31:15128–15135.

Wikenheiser AM, Schoenbaum G (2016) Over the river, through the woods:
cognitive maps in the hippocampus and orbitofrontal cortex. Nat Rev
Neurosci 17:513–523.

Wimmer GE, Shohamy D (2012) Preference by association: how memory
mechanisms in the hippocampus bias decisions. Science 338:270–273.

Wong FS, Westbrook RF, Holmes NM (2019) Online’ integration of sensory
and fear memories in the rat medial temporal lobe. Elife 8:e47085.

Wunderlich K, Dayan P, Dolan RJ (2012) Mapping value based planning and
extensively trained choice in the human brain. Nat Neurosci 15:786–791.

Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool
for human brain connectomics. PLoS One 8:e68910.

Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR (2014)
Meta-analytic connectivity modeling reveals differential functional con-
nectivity of the medial and lateral orbitofrontal cortex. Cereb Cortex
24:232–248.

Zeithamova D, Dominick AL, Preston AR (2012) Hippocampal and ventral
medial prefrontal activation during retrieval-mediated learning supports
novel inference. Neuron 75:168–179.

Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ (2018) Neuroimaging
impaired response inhibition and salience attribution in human drug
addiction: a systematic review. Neuron 98:886–903.

Wang et al. · OFC-Targeted TMS Disrupts Inference-Based Behavior J. Neurosci., November 4, 2020 • 40(45):8726–8733 • 8733

http://dx.doi.org/10.1038/nn.3440
https://www.ncbi.nlm.nih.gov/pubmed/23792944
http://dx.doi.org/10.7554/eLife.13665
http://dx.doi.org/10.7554/eLife.30373
http://dx.doi.org/10.1016/j.cobeha.2014.07.005
https://www.ncbi.nlm.nih.gov/pubmed/25750931
http://dx.doi.org/10.1038/ncomms9151
https://www.ncbi.nlm.nih.gov/pubmed/26303198
http://dx.doi.org/10.1038/nrn2753
https://www.ncbi.nlm.nih.gov/pubmed/19904278
http://dx.doi.org/10.1152/jn.1998.80.1.1
https://www.ncbi.nlm.nih.gov/pubmed/9658025
http://dx.doi.org/10.7554/eLife.28362
http://dx.doi.org/10.1016/j.neuron.2008.09.023
https://www.ncbi.nlm.nih.gov/pubmed/18957228
http://dx.doi.org/10.1038/ncomms4926
https://www.ncbi.nlm.nih.gov/pubmed/24894805
http://dx.doi.org/10.7554/eLife.43962
http://dx.doi.org/10.1038/s41593-017-0008-x
https://www.ncbi.nlm.nih.gov/pubmed/29184201
http://dx.doi.org/10.1016/j.neuron.2013.08.008
https://www.ncbi.nlm.nih.gov/pubmed/24139047
http://dx.doi.org/10.1111/j.1460-9568.2009.06796.x
https://www.ncbi.nlm.nih.gov/pubmed/19490086
http://dx.doi.org/10.1016/j.tics.2019.05.009
https://www.ncbi.nlm.nih.gov/pubmed/31279672
http://dx.doi.org/10.1371/journal.pbio.3000578
https://www.ncbi.nlm.nih.gov/pubmed/31961854
http://dx.doi.org/10.1126/science.1252900
https://www.ncbi.nlm.nih.gov/pubmed/25170153
http://dx.doi.org/10.1523/JNEUROSCI.3295-11.2011
https://www.ncbi.nlm.nih.gov/pubmed/22016546
http://dx.doi.org/10.1038/nrn.2016.56
https://www.ncbi.nlm.nih.gov/pubmed/27256552
http://dx.doi.org/10.1126/science.1223252
https://www.ncbi.nlm.nih.gov/pubmed/23066083
http://dx.doi.org/10.7554/eLife.47085
http://dx.doi.org/10.1038/nn.3068
https://www.ncbi.nlm.nih.gov/pubmed/22406551
http://dx.doi.org/10.1371/journal.pone.0068910
https://www.ncbi.nlm.nih.gov/pubmed/23861951
http://dx.doi.org/10.1093/cercor/bhs308
https://www.ncbi.nlm.nih.gov/pubmed/23042731
http://dx.doi.org/10.1016/j.neuron.2012.05.010
https://www.ncbi.nlm.nih.gov/pubmed/22794270
http://dx.doi.org/10.1016/j.neuron.2018.03.048
https://www.ncbi.nlm.nih.gov/pubmed/29879391

	Targeted Stimulation of an Orbitofrontal Network Disrupts Decisions Based on Inferred, Not Experienced Outcomes
	Introduction
	Materials and Methods
	Results
	Discussion


