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Selective attention is a core cognitive function for efficient processing of information. Although it is well known that atten-
tion can modulate neural responses in many brain areas, the computational principles underlying attentional modulation
remain unclear. Contrary to the prevailing view of a high-dimensional, distributed neural representation, here we show a sur-
prisingly simple, biased neural representation for feature-based attention in a large dataset including five human fMRI stud-
ies. We found that when human participants (both sexes) selected one feature from a compound stimulus, voxels in many
cortical areas responded consistently higher to one attended feature over the other. This univariate bias was consistent across
brain areas within individual subjects. Importantly, this univariate bias showed a progressively stronger magnitude along the
cortical hierarchy. In frontoparietal areas, the bias was strongest and contributed largely to pattern-based decoding, whereas
early visual areas lacked such a bias. These findings suggest a gradual transition from a more analog to a more abstract rep-
resentation of attentional priority along the cortical hierarchy. Biased neural responses in high-level areas likely reflect a low-
dimensional neural code that can facilitate a robust representation and simple readout of cognitive variables.
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Significance Statement

It is typically assumed that cognitive variables are represented by distributed population activities. Although this view is
rooted in decades of work in the sensory system, it has not been rigorously tested at different levels of cortical hierarchy. Here
we show a novel, low-dimensional coding scheme that dominated the representation of feature-based attention in frontoparie-
tal areas. The simplicity of such a biased code may confer a robust representation of cognitive variables, such as attentional
selection, working memory, and decision-making.

Introduction
How neural activities represent sensory and cognitive informa-
tion is a fundamental question in system and cognitive neuro-
science. A prevailing view is that the brain uses distributed
neural activities to represent information, which is best illus-
trated by studies in the sensory cortex. For example, neurons
in early visual areas have smooth tuning functions that span
a range of feature values (Hubel and Wiesel, 1962; Maunsell
and Van Essen, 1983). A single stimulus feature would evoke
a profile of population response across a group of such neu-
rons. Computational studies have demonstrated that such

population responses can be used for encoding and decoding
sensory information (Pouget et al., 2000). Consistent with
these neuronal level studies, human functional magnetic res-
onance imaging (fMRI) studies have shown that patterns of
BOLD responses can be used to decode and reconstruct vis-
ual stimulus (Kamitani and Tong, 2005; Kay et al., 2008).

Although there is a general consensus that stimulus properties
are represented via distributed population activity in sensory
areas, much less is known about how cognitive variables are rep-
resented. Cognitive functions related to task control and target
selection have been associated with activity in parietal and pre-
frontal cortical areas, collectively known as the multiple-demand
network (Duncan, 2010; Woolgar et al., 2016). Neurons in this
network can flexibly adapt to task demands (Duncan, 2001;
Jackson and Woolgar, 2018), and they have been shown to
encode task rules (Freedman, et al., 2001; Stokes et al., 2013),
attentional priority (Bisley and Goldberg, 2003), and learned cat-
egory (Swaminathan and Freedman, 2012). Consistent with these
electrophysiological studies in nonhuman primates, many
human fMRI studies have decoded these cognitive variables
using multivariate BOLD response patterns in this network (Li et
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al., 2007; Liu et al., 2011; Liu and Hou, 2013; Erez and Duncan,
2015; Bettencourt and Xu, 2016). Thus, it appears that cognitive
variables are also encoded by distributed population activities in
high-level brain areas.

Contrary to this population-based view, however, a previous
neurophysiological study reported evidence supporting a biased
neural code for cognitive variables (Fitzgerald et al., 2013). These
researchers performed detailed analysis of lateral intraparietal
area (LIP) neuronal activity from several experiments in which
monkeys performed a variety of tasks (categorization, associative
learning, perceptual decision-making). These tasks all require the
subject to respond to a visual stimulus in a discrete manner (e.g.,
Does this stimulus belong to category A or category B?). The task
design further ensured that the measured neural responses
reflected cognitive variables instead of signals related to stim-
ulus processing or motor response. Surprisingly, they found
that for a given monkey, the majority of recorded LIP neu-
rons showed similar response profiles, consistently exhibit-
ing higher response to one task condition than the other
(e.g., higher response to category A than category B). This
largely biased population response implies a low-dimen-
sional, rather than high-dimensional, neural representation
for cognitive variables.

The finding of a biased response is surprising (Chafee, 2013),
and thus it is important to know whether the biased representa-
tion can be generalized to other cognitive variables, brain areas,
and species. In previous human fMRI studies, cognitive variables
can be decoded in high-level brain areas in the absence of any
obvious biases in the univariate response. However, these results

were obtained by averaging data across subjects, which could
obscure a biased response if the direction of bias varied across
subjects. Therefore, investigating the existence of biased neural
representation requires analyses that take into account the direc-
tion of bias for each individual subject. Here, we conducted such
analyses on a large fMRI dataset to examine biased neural repre-
sentations in the human brain.

In these experiments, human subjects attended to one of the
two features in a compound stimulus that contained both fea-
tures, which allowed us to measure attentional signals through-
out the brain. We examined potential biases at multiple levels of
analysis, as follows: single brain area, multiple brain areas within
a subject, and multiple subjects at the group level (Fig. 1).
Selective attention is a core operation that enables complex task
control (Duncan, 2013) and is highly associated with activity in
the frontoparietal network (Corbetta and Shulman, 2002), which
constitutes a subset of the multiple-demand network. Thus,
attentional signals in the brain provide a good test case for possi-
ble biased representation of a cognitive variable. Our analysis
revealed a significant bias, mostly in regions within the frontopa-
rietal network, suggesting that low-dimensional neural represen-
tations are used in the higher-order areas of human brain to
encode cognitive variables such as attentional priority.

Materials and Methods
Participants
In total, 48 subjects (21 females; mean age, 25.1 years) from Michigan
State University were included across five experiments. We based our
sample size on previous studies using similar attention tasks, details of

Figure 1. Overview of the data structure and roadmap for the analyses. Bottom row, fMRI data from 48 subjects performing attentional selection tasks were analyzed. Three left hemispheres
from different subjects were shown, each overlaid with 11 predefined brain areas (dark shaded areas). Middle row, Each brain contained 22 areas (11 per hemisphere), each of which was com-
posed of individual voxels. Top row, Data structure for the analyses. For multivariate analysis (right), we obtained two matrices of response patterns, each containing BOLD response amplitude
from each voxel on each trial in each attention condition. This is an m� n matrix, where m is the number of trials and n is the number of voxels; m varied across experiments, and n was set
to be 85 for the main analysis (for voxel selection, see Materials and Methods). For the univariate analysis (left), we obtained two response vectors by averaging the response patterns for each
attention condition across voxels, resulting in an m� 1 vector that contained the average BOLD response from each trial for each condition.
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which can be found in previous publications. All had normal or cor-
rected-to-normal vision. Participants were paid for their participation at
$20/h. All participants gave informed consent according to the study
protocol approved by the Institutional Review Board at Michigan State
University (LEGACY08-211).

Experimental design and statistical analysis
Overview of the experimental procedures. We reanalyzed data from

five previously published fMRI experiments (Liu et al., 2011; Liu, 2016;
Jigo et al., 2018; Gong and Liu, 2020). The details of the methods can be
found in previous publications, so only an abbreviated description is
provided here. All experiments used a similar task design: two features
were presented in the same location, and subjects were cued to attend to
one of the features on a trial-by-trial basis. The stimulus features varied
across experiments, and we will refer to them as feature A and feature B
in this report. There are thus two experimental conditions: attend A and
attend B. The exact features are as follows. In the first experiment, six
subjects attended to a color in a superimposed red-green color display
(Liu et al., 2011). In the second and third experiment, 6 and 12 subjects
attended to a motion direction in a superimposed clockwise–counter-
clockwise rotating dot display (Liu et al., 2011; Jigo et al., 2018). In the
fourth experiment, 12 subjects attended to a linear motion direction in a
superimposed up-left/up-right moving dot field (Gong and Liu, 2020).
In the fifth experiment (Liu, 2016), 12 subjects attended to a dynamic
object in a superimposed display containing two Gabor patches (object
1 or object 2) that continuously changed their features in multiple
dimensions (color, orientation, and spatial frequency). Data for
each subject were collected in a single 1.5–2 h scanning session. In
total, the dataset contained 48 subjects. The number of trials in each
condition (attend A or attend B) varied from 29 to 136 across
experiments. The order of conditions was fully randomized.

In all experiments, subjects performed a threshold-level change
detection task on the attended feature (e.g., detecting a speedup event in
the attended motion direction). Each subject was extensively trained on
the task before the scanning session with their performance calibrated by
a psychophysical staircase procedure. The task was sufficiently challeng-
ing to engage feature selection. In all experiments, we verified that per-
formance did not differ between attend feature A and attend feature B
conditions (for details, see previous publications).

Retinotopic mapping. For each subject in each experiment, we ran a
separate scanning session of visual field mapping to define visual and pa-
rietal topographic areas. We used standard phase-encoded checkerboard
stimuli to define retinotopic visual areas (Sereno et al., 1995; DeYoe et
al., 1996; Engel et al., 1997) and a memory delay saccade task to map
topographic areas in the parietal cortex (Sereno et al., 2001; Schluppeck
et al., 2006; Konen and Kastner, 2008). All areas were defined and visual-
ized on computationally flattened representations of the cortical surface,
which were generated from high-resolution anatomical images using
FreeSurfer (http://surfer.nmr.mgh.harvard.edu) and custom MATLAB
code. Detailed descriptions of the mapping procedure can be found in
our previous publications. The following regions of interest (ROIs) in
each hemisphere were identified with this procedure: V1, V2, V3, V3A/
B, V4, V7, MT1, and subregions of the intraparietal sulcus (IPS), IPS1
to IPS4.

Univariate analysis: deconvolution. We used the deconvolution
approach by fitting the time series of each voxel with a general linear
model whose regressors modeled the two attention conditions with finite
impulse responses. The design matrix was pseudoinversed and multi-
plied by the time series to obtain an estimate of the hemodynamic
response evoked by each condition. For each voxel, we computed a
goodness-of-fit measure (r2 value), corresponding to the amount of var-
iance explained by the deconvolution model (Gardner et al., 2005). The
r2 value represents the degree to which the response of the voxel over
time is correlated with the attention task. Thus, when using the r2 value
to select voxels (see below), we essentially selected voxels based on their
overall modulation in BOLD response during the task, regardless of any
differential activity among conditions.

We also performed a permutation test to assess the statistical signifi-
cance of the r2 values to aid our voxel selection. For each subject, we

repeated the deconvolution analysis 1000 times, each time with a ran-
dom reshuffling of the trial labels. For each of the 1000 analyses, we took
the maximum r2 value across all voxels in the brain to obtain a distribu-
tion of 1000 maximum r2 values. This null distribution thus contained
the maximum possible r2 value expected by chance for all voxels and can
be used to assess the statistical significance of the observed r2 values
while controlling for familywise type I error (Nichols and Holmes,
2001). The p value of each voxel was calculated as the percentile of voxels
from the null distribution that exceeded the observed r2 value. We also
used the r2 value in conjunction with the anatomical constraints to
define the following two frontal areas as clusters of active voxels during
the attention task: frontal eye field (FEF) in the vicinity of the precentral
sulcus and superior frontal sulcus, and inferior frontal junction (IFJ) at
the intersection between inferior frontal sulcus and inferior portion of
precentral sulcus.

Voxel selection and response calculation. For each ROI, we first elim-
inated noisy voxels defined as any voxel that showed .10% signal
change. We then sorted the voxels by their r2 value in a descending order
and selected the top 85 voxels for each ROI and subject for further analy-
sis. This number of voxels was found in.95% of all ROIs (1056 in total).
For ROIs that had ,85 voxels using this criterion, we used all voxels
that satisfied the criterion (average, 70 6 12 voxels). This number of
voxels was also approximately the number of active voxels in frontopari-
etal areas, as assessed by the permutation test described above (Fig. 2).
Because of the anatomical difference, the proportion of selected voxels
was smaller in visual areas than that in frontoparietal areas, we thus
repeated the main analyses using r2 sorted voxels at 105 and 125 voxels,
which included;90% and ;85%, respectively, of all ROIs that met this
criterion.

For each voxel and each ROI, we obtained single-trial fMRI response
amplitude, resulting in anm� n instance matrix for each ROI and atten-
tion condition, where m was the number of trials and n was the number
of voxels. Taking into account the difference in study design (block vs
event-related) across experiments, we obtained the instance matrix by
averaging a time window of 10 s (5 time points) for block design in
experiments 1 and 2 and 6.6 s (three time points) for event-related
design in experiments 3–5. For each ROI and each subject, we adjusted
the start time of the averaging window to account for variable response
profiles across ROIs and subjects. Specifically, we aggregated data into
time bins with variable start times, ranging from the second to fifth time
point after the trial onset. The time bin with the largest overall response
was then used for extracting the single-trial BOLD response. For multi-
variate analysis, we averaged the time points from the selected bins to
obtain an m� n instance matrix for each ROI and attention condition.
For univariate analysis, we further averaged responses across voxels to
obtain m� 1 trialwise vectors for each ROI and each attention
condition.

Receiver operating characteristic analysis. For each subject and each
ROI, we performed a receiver operating characteristic (ROC) analysis on
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Figure 2. Number of anatomical voxels and task-related active voxels. We assessed the
responsiveness of each voxel to the task using a permutation test, which allowed us to derive
a p value for the observed r2 value in each voxel (see Materials and Methods). We labeled
voxels with p, 0.05 as active, and plotted the average number of active voxels (dark bars)
and the total number of anatomical voxels (light bars) for each predefined brain area. Three
different levels of voxel inclusion criteria (85, 105, and 125) are indicated by horizontal
dashed lines. Black vertical lines denote 95% confidence intervals across subjects.
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the trialwise response (see Voxel selection and response calculation) to
quantify the univariate discriminant information between the two atten-
tion conditions. The ROC analysis is essentially a classification analysis
based on one-dimensional, univariate response. The area under the
ROC curve (AUC) indicates the reliability with which an ideal observer
could distinguish the attended feature given the response distributions
for both conditions (Britten et al., 1992). In general, we rectified the raw
AUC values at;0.5 (e.g., an AUC of 0.45 is rectified to 0.55) to quantify
the discriminant information regardless of the direction of bias. For ease
of explanation, we refer to the rectified AUC values simply as AUC, and
the original, unrectified AUC as raw AUC. Because the AUC values
were always .0.5 (theoretical chance level), we assessed the statistical
significance of AUC using a permutation test. We shuffled the labels of
trials to obtain an AUC of the shuffled data and repeated this procedure
1000 times to obtain a null distribution of 1000 AUCs for each subject
and each ROI. To compute the group-level significance, we concatenated
the null distribution across 48 subjects to obtain a 48� 1000 matrix and
then averaged the values over subjects to obtain a group-level null distri-
bution of 1000 AUC values for each brain area. The 95th percentile of
this group-level distribution was thus defined as the statistical signifi-
cance level (corresponding to p=0.05) to determine whether an
observed AUC value significantly exceeded the chance level. For the cor-
relation analysis between behavioral difference and AUCs, we used the
raw AUCs such that the direction of neural bias (A.B vs A,B) was
represented by values .0.5 or ,0.5, respectively. We removed outliers
based on the median absolute deviation method (Williams, 2011)

separately for each brain area, which resulted in an exclusion of ,5%
data points. Finally, we used the median AUC across ROIs to label each
subject’s direction of bias (values .0.5 indicated bias for A, and vice
versa). This subject level assignment was then used to assess the distribu-
tion of bias at the group level.

Multivariate pattern analysis. For each voxel and each ROI, we
obtained a single-trial fMRI response amplitude (see Voxel selection and
response calculation). We then performed multivariate pattern analysis
(MVPA) to discriminate between the two conditions using Fisher linear
discriminant analysis. As we often have fewer trials than voxels, which
made the estimated covariance matrix noninvertible, we added a ridge
coefficient to the diagonal elements of the covariance matrix (Warton,
2008). We performed leave-one-run-out cross-validation to evaluate the
classification accuracy by dividing the dataset into test data (one run)
and training data (remaining runs). This procedure was repeated until
each run was tested once. Classification accuracy was averaged across
folds for each ROI. To assess the contribution of biased coding to
MVPA, we subtracted the grand mean of each instance matrix from the
instance matrix itself (i.e., mean removal separately for each attention
condition) before applying the same MVPAs as before. Similar to the
permutation test used for ROC analysis, we assessed the significance of
decoding accuracy by shuffling the trial labels in the training data and
calculated the decoding accuracy on the test data. We repeated this pro-
cedure 1000 times to compute a null distribution for each subject and
each ROI. We then averaged the null distributions over all subjects to
obtain a group-level distribution of decoding accuracies for each ROI.
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Figure 3. Schematic of stimuli and example results from one experiment. A, Schematic of stimuli across experiments. Data from five experiments were reanalyzed, with a total of 48 sub-
jects. All experiments used a compound stimulus containing two features, labeled as A and B, with their meaning explained in the table. B–F, Example results from experiment 4 using linear
motion (N= 12). B, Trial sequence of the attention task. C, Overall activity (r2) map visualized on an inflated atlas surface. The approximate locations of the key brain areas in occipital and fron-
toparietal cortices are indicated. D, Mean fMRI time course for two attention conditions in V1 and FEF. E, Univariate analysis: mean fMRI responses in visual and frontoparietal areas for each
attention condition. F, Multivariate analysis: decoding accuracy in visual and frontoparietal areas. Gray dashed line indicates the maximal significance threshold (corresponding to p, 0.05)
across brain areas obtained from a permutation test. Error bar denotes the standard error of the mean (SEM) across 12 subjects.
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The 95th percentile of this group-level distri-
bution was thus defined as the statistical sig-
nificance level (corresponding to p=0.05) to
determine whether an observed MVPA decod-
ing accuracy significantly exceeded the chance
level. For the correlation analysis between
AUCs and decoding accuracies, we used recti-
fied AUCs such that both indices reflected the
amount of discriminant information between
feature A and feature B. We removed outliers
based on the median absolute deviation
method (Williams, 2011) separately for each
brain area, which resulted in an exclusion of
,10% data points (range, 2–8.3%). In all anal-
yses where multiple statistical tests were con-
ducted, we corrected the p values using the
false discovery rate (FDR) method (Benjamini
and Hochberg, 1995).

Results
Overview of experiments
All experiments used a similar paradigm,
where subjects were cued to attend to one
of the two superimposed stimuli at the
same spatial location. To facilitate the
presentation of the results, we arbitrarily
named the two stimuli feature A and fea-
ture B (Fig. 3A, for details). The task of
the subjects was to report brief changes
(e.g., luminance or moving speed) contin-
gent on the attended feature (see
Materials and Methods). This task design
kept the physical stimuli constant but var-
ied attentional instruction. Thus, differ-
ential neural responses in the two experimental conditions
reflect attentional modulation, instead of stimulus-related
changes. We show representative results from one of the experi-
ments, where subjects were cued to attend to dots moving in ei-
ther the upper left or upper right direction (Fig. 3B). Figure 3C
shows the overall brain activation during the task, and Figure 3D
shows the group-averaged mean time courses of the fMRI BOLD
response in two representative regions (V1 and FEF). There was
no univariate difference between the two attention conditions in
average BOLD responses across subjects (Fig. 3E). In contrast,
the attended feature can be reliably decoded from distributed ac-
tivity patterns in both visual and frontoparietal areas (Fig. 3F).
We obtained similar results from the other experiments; details
can be found in previous publications (Liu et al., 2011; Liu, 2016;
Jigo et al., 2018; Gong and Liu, 2020). In total, the dataset con-
tained BOLD data from 48 subjects, each containing 22 brain
areas (11 areas/hemisphere).

Biased neural representation of attention across brain areas
and subjects
To explore whether neural activity showed a biased response, we
used a method similar to the one used by Fitzgerald et al. (2013).
In their work, they rank-ordered the response of each neuron for
different categories to index the direction of bias and found that
the majority of recorded neurons showed a biased response in
the same direction. Similarly, we assessed the bias in fMRI
BOLD signal by measuring the proportion of voxels showing
stronger response to feature A than to feature B. A proportion
value of 0.5 indicates no overall bias; we calculated the propor-
tional bias by subtracting 0.5 from the proportion values such

that a bias toward feature A or B would be indicated by positive
or negative values, respectively. Figure 4 summarizes the propor-
tion bias for all brain areas and subjects, with the color indicating
the direction of the bias. The color map showed many areas
exhibiting a biased response pattern across the two attention
conditions. Furthermore, within a given subject, multiple brain
areas tend to have the same direction of bias. We evaluated the
consistency of the direction of bias across brain areas with a bi-
nomial test, for which the null hypothesis is random distribution
of bias direction across brain areas (i.e., approximately half of the
brain areas showing a bias toward feature A and the other half
showing a bias toward feature B). We found that 37 of 48 sub-
jects (maximum p= 0.034, FDR corrected) exhibited a consistent
direction of bias across 22 brain areas (11 per hemisphere). The
mean proportion of brain areas that showed the same direction
of bias was ;77% across subjects (i.e., ;17 of 22 brain areas
showed the same direction of bias). These results suggest that
the bias is reliably consistent across regions for the majority of
subjects.

Biased representation in higher-order frontoparietal areas
Comparison across individual brain areas and hemispheres
To quantify the amount of bias in individual brain areas, we used
a ROC analysis using trial-level responses from two conditions
(see Materials and Methods). Note that this analysis was con-
ducted on trialwise responses instead of voxelwise responses, as
fMRI voxels within a brain area are likely nonindependent,
which could complicate statistical inference. The univariate bias
can be indexed by the AUC, which provides a standardized, non-
parametric measure of the separation between the two

Figure 4. Quantifying the neural bias in individual brain areas and subjects. Data from left and right hemispheres are
shown in separate maps. Each row represents data from an individual subject, and each column represents a single brain
area. Each cell is color coded by the proportional bias, where positive and negative values indicate bias for feature A and fea-
ture B, respectively. We arranged this map by sorting the degree of the dominant bias per subject (indexed by the number
of brain areas with the same direction of bias), such that, from top to bottom, bias progressed from feature A to feature B.
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distributions, such that a value of 0.5 indicates no separation
and a value of 0 or 1 indicates perfect separation. To assess
the bias regardless of its direction, we further rectified the
AUC values around 0.5 for individual brain areas (see
Materials and Methods). We then averaged AUCs across
subjects and performed permutation tests to determine the
significance threshold (see Materials and Methods). We
found a general trend of increasing AUC values along
the cortical hierarchy, which were statistically reliable in the
frontoparietal areas (Fig. 5A; maximal threshold, 0.547), but
not in most of the visual areas. This regional difference was
confirmed by a two-way repeated-measures ANOVA (11
brain areas� 2 hemispheres), showing a significant effect of
brain areas (F(10,470) = 4.53, p, 0.001, h 2 = 0.088) without a
significant difference between hemispheres (p = 0.593) or
interaction between hemisphere and brain areas (p = 0.596).

To further characterize the pattern of biased neural response,
we grouped the 11 areas into the following four region groups
based on anatomical considerations: V1, extrastriate visual areas
(ExS), consisting of V2, V3, V3A/B, V4, and MT1; areas in the
intraparietal sulcus (IPS), consisting of V7/IPS0, IPS12, and IPS34;
and prefrontal cortex (PFC), consisting of FEF and IFJ. Within a
region group, we averaged AUCs across constituting brain areas.
Because there was no laterality effect, we further collapsed data
across two hemispheres. Then, we conducted separate analyses on
AUCs to assess whether the biased representation varied with
region group and stimulus domain.

Comparison across region groups and stimulus domains
When grouped into four main anatomical region groups, we
observed a clear increase in AUC from V1 to extrastriate visual

areas, and further into parietal and frontal areas
(Fig. 5B, red plot). A one-way repeated-measures
ANOVA on AUCs revealed a significant effect of
region group (F(3,141) = 7.18, p, 0.001, h 2 = 0.133).
Pairwise comparisons further showed a stronger bias
in frontoparietal areas than that in V1 and ExS
(p values, 0.01), without a significant difference
between IPS and PFC (p= 0.865). To confirm that
this result was not because of our specific voxel
selection criterion, we repeated the same analysis
using different numbers of voxels (n= 105 and 125)
and found similar results (Fig. 5B, cyan and black
plots). A two-way repeated-measures ANOVA (4
region groups� 3 voxel numbers) revealed a signifi-
cant main effect of region group (F(3,282) = 6.51,
p, 0.001, h 2 = 0.122) without a main effect of num-
ber of voxels (F(2,282) = 0.59, p= 0.555) or the inter-
action effect (F(6,282) = 0.89, p= 0.501). These results
demonstrate that the attentional modulation lacks
bias in visual areas but shows a significant and stron-
ger bias in higher-order areas.

Because we used different stimuli across
experiments, it is possible that the observed bias
was primarily driven by a particular stimulus. We
thus separated AUCs according to the stimulus
domain and performed a mixed-effect ANOVA
(4 region groups� 4 stimuli), which showed only
a main effect of region group (F(3,132) = 5.23,
p = 0.002, h 2 = 0.108). There was no main effect
of stimuli (F(3,44) = 1.124, p = 0.358) or interac-
tion (F(9,132) = 0.732, p = 0.718). These results
indicated that the biased representation of atten-

tional signal was not significantly modulated by stimuli. We
do note, however, that, numerically, AUCs were the largest
for colors, intermediate for motion directions, and smallest
for the dynamic objects (Fig. 5C). When comparing with the
significance threshold obtained from the permutation tests,
AUCs for dynamic objects even dropped to chance level in
IPS. This pattern of results hints at a possible decrease of bias
along with increasing complexity of the attended informa-
tion (e.g., from simple features to complex objects).

Bias removal produces dissociable effects in sensory and
frontoparietal areas
The AUC analysis demonstrates a univariate bias between two
attention conditions in many brain areas. Previously, we have
shown significant above-chance multivariate decoding using pat-
tern classification techniques in all those areas (Fig. 3F). Given
that both methods index the neural discriminability between
conditions, this raises the question of how much the univariate
bias contributes to the multivariate decoding. We used the grand
mean of the BOLD signal from each attention condition (across
voxels and trials) as a proxy measure of this bias. We then sub-
tracted this grand mean from each attention condition and per-
formed both the ROC analysis and MVPA decoding separately
for each brain area (see Materials and Methods). As expected,
AUCs in all region groups fell below the significance threshold
(i.e., not different from chance) because mean removal essen-
tially eliminated univariate difference (Fig. 6A). If multivariate
decoding relies mostly on univariate differences, we expect that
removing the mean would diminish the decoding accuracy.
Alternatively, if multivariate decoding relies on multidimen-
sional pattern variability, we expect little impact of mean
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removal on decoding accuracy. We found that mean removal
had a progressively stronger impact on decoding accuracy
along the cortical hierarchy (Fig. 6B). This was confirmed by
a two-way repeated-measures ANOVA (region group �
mean removal), showing a main effect of mean removal
(F(1,141) = 11.46, p = 0.001, h 2 = 0.196), and, importantly, a
significant interaction between region group and mean re-
moval (F(3,141) = 4.25, p = 0.006, h 2 = 0.083). Follow-up t
tests showed that mean removal produced a significant drop
of MVPA-based decoding in ExS (p = 0.024), IPS (p = 0.043),
and PFC (p, 0.001), but not in V1 (p = 0.679). A significant
interaction was also obtained if we excluded V1 data from
the analysis (F(2,94) = 7.28, p = 0.001, h 2 = 0.134), indicating
a relatively larger drop in decoding accuracy because of
mean removal in PFC compared with IPS and ExS. These
results suggest that the progressively stronger univariate bias
along the cortical hierarchy, as shown by the ROC analysis,
contributes significantly to MVPA-based decoding. Indeed,
in the PFC, MVPA decoding appears to rely mostly on the
univariate bias. We obtained a similar pattern of results
when using 105 or 125 voxels.

To further examine the contribution of univariate bias to
MVPA-based decoding, we calculated Pearson correlations
between AUCs and MVPA decoding accuracies across subjects
for each brain area and averaged them into four region groups
(Fig. 6C). For regions where the univariate bias contributes to
MVPA-based decoding, we should expect a dependence between
these two measures. Indeed, we found a progressively stronger
relationship from sensory to frontoparietal areas. The AUC and
MVPA decoding were positively correlated in frontoparietal
areas (IPS, r=0.562; PFC, r= 0.562; p values, 0.001, FDR cor-
rected), and such correlation was also observed in extrastriate
areas (r=0.512, p values, 0.001, FDR corrected), but not for V1

(r=0.21, p values = 0.170, FDR corrected). These results further
support the possibility that attention decoding was driven in part
by the univariate bias.

Biased coding does not correlate with behavioral selection
We examined whether the observed neural bias was a conse-
quence of preferential behavioral selection. For example, a neural
bias in favor of a particular feature may result from a stronger
top-down attention to that feature, contributing to higher accu-
racy and faster reaction time, although subjects were always
instructed to attend equally to individual features. Such a prefer-
ential selection should lead to better behavioral performance in
the attention tasks. We thus tested this possibility by correlating
the difference in behavioral performance (both accuracy and
reaction time) between the two attention conditions (i.e., feature
A – feature B) and AUCs. For this analysis, we used raw AUCs
without rectification, which captured the direction of the neural
bias (see Materials and Methods). This analysis revealed no sig-
nificant correlations in any of the region groups between the
magnitude of the neural bias and the behavioral preference (Fig.
7; accuracy, p values. 0.75; reaction time, p values. 0.90; FDR
corrected), making it unlikely that the observed neural bias is
because of behavioral preferences.

Equivalent distribution of biased coding at the group level
Last, we examined the group-level distribution of the direction
(or sign) of the biased representation by assigning each subject a
preferred feature (see Materials and Methods). We grouped indi-
viduals according to the stimuli they viewed during the task (i.e.,
rotating motion, linear motion, and dynamic object). We
excluded data for the attend-color experiment because of the
small sample size in that experiment (N= 6). Figure 8 shows
approximately equal distribution of biased direction across
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subjects (x 2 test against equal proportion, p values. 0.18).
Thus, about half of the subjects showed a biased response to fea-
ture A, and the other half showed the opposite bias. This obser-
vation explains the lack of systematic univariate bias at the group
level because averaging the two opposite biases likely canceled
each other out.

Discussion
We observed a biased neural representation of the attended fea-
ture in the frontoparietal network, using a large fMRI dataset
containing 48 subjects across multiple experiments. At the level
of brain areas, we found that many brain areas showed differen-
tial univariate activity between attention conditions. Within indi-
vidual subjects, the direction of bias remained consistent among
brain areas. However, at the group level, the direction of bias var-
ied across subjects with no predominant direction, thus explain-
ing the lack of a group average univariate difference in standard
analyses. When we quantified the amount of univariate bias, we
found a progressively stronger biased response from sensory to
frontoparietal areas, with reliable above-chance bias in the latter
areas. Importantly, biased responses had a major contribution to
multivariate decoding in frontoparietal areas. We ruled out the
possibility that the results were because of a specific voxel selec-
tion criterion, stimulus domain, or behavioral preference.
Collectively, our findings provide novel evidence for a biased
neural representation of cognitive variables in the frontoparietal
network of the human brain.

The initial observation of biased representation (Fitzgerald et
al., 2013) in nonhuman primates was indeed rather surprising
(Chafee, 2013). However, it is unknown whether such bias is
present only in nonhuman primates, who typically undergo
extensive training in behavioral tasks before neural recording
experiments, in the specific cognitive tasks investigated, or in
the specific brain area examined, namely LIP. Although our

attention task and the tasks performed by the monkeys are differ-
ent, they shared some formal similarities. First, all tasks were
designed to isolate neural signals for cognitive, associative
representations without contributions from stimulus- and
motor-related processes. Second, these cognitive representa-
tions establish an association between visual input and a cat-
egorical structure as specified by the task. Our results thus
extend biased neural representation to a new class of tasks
and to humans with much less training. Here we further
leveraged the large sample size and whole-brain coverage
afforded by fMRI and show that bias occurs in a multitude of
brain areas with consistent direction among brain areas
within an individual subject, although the direction of bias
varies across subjects.

Notably, with the whole-brain coverage of fMRI data, we
found a dissociable pattern of bias between sensory areas and
frontoparietal areas. First, the magnitude of bias grows progres-
sively larger from early visual areas to frontoparietal areas, with
an absence of statistically reliable bias in most of the visual areas.
Second, the MVPA on mean removed data suggests that the
univariate bias made progressively larger contribution to
pattern-based decoding along the cortical hierarchy (Fig.
6B). The contribution of the univariate bias to pattern-based
decoding was further supported by the finding of a signifi-
cant correlation between AUC values and decoding accura-
cies, which were highest in frontoparietal areas. These
contrasting results thus support a distinction between the
following two mechanisms: distributed population represen-
tation in sensory areas and biased representation in high-
level areas.

From a computational point of view, our results likely reflect
different dimensionality of the neural signals at different levels of
cortical hierarchy. Specifically, the differential impacts of remov-
ing the grand mean on multivariate decoding suggests that sen-
sory areas contain high-dimensional neural signals whereas
frontoparietal areas contain low-dimensional neural signals.
Such a coding scheme is also consistent with general theories
of visual information processing, which typically assume that
sensory input is processed along hierarchical stages that start
with analog representations and gradually transition to task-
related, abstract representations (Riesenhuber and Poggio,
1999; Hochstein and Ahissar, 2002; Deco and Rolls, 2004).
This transition likely involves changes in the coding proper-
ties in different brain areas, and our observation of different
amount of bias (and signal dimensionality) among cortical
areas could be one manifestation of this transition.
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Analog representations are naturally implemented with sen-
sory neurons that are continuously tuned to stimulus features
(Hubel and Wiesel, 1962; Maunsell, and Van Essen, 1983;
Blasdel, 1992). Consistent with this idea, we observed a distrib-
uted population response in sensory areas without appreciable
univariate bias. Our results are also consistent with a large body
of fMRI studies that have reliably decoded the attended stimulus
features (Kamitani and Tong, 2005, 2006; Liu et al., 2011; Liu
and Hou, 2013) and memorized stimulus features (Harrison and
Tong, 2009; Serences et al., 2009; Riggall and Postle, 2012) from
activity patterns in early visual areas.

While analog representation via distributed population
response in early sensory areas is well established, how informa-
tion transitions to an abstract representation in high-level brain
areas is much less known. In our data, we found evidence for a
biased, or low-dimensional, representation for attended feature
in frontal and parietal areas, which are the likely sources of atten-
tional control (Kastner and Ungerleider, 2000; Bisley and
Goldberg, 2003) and also part of the multiple-demand network
(Duncan, 2013; Fedorenko et al., 2013; Woolgar et al., 2016). It
may seem counterintuitive that with the myriad of neurons and
their complex connections, the brain uses a low-dimensional, or
possibly scalar, code to represent an abstract cognitive variable.
Computational analyses, however, have pointed out some bene-
fits of using such a simple code. Because individual neurons are
always noisy, a biased response pattern would allow a simple
operation, such as averaging, to achieve a reliable representation
that is robust to noisy fluctuations in neural systems (Fitzgerald
et al., 2013). Furthermore, such a simple neural code can also
simplify the readout of downstream areas and the control of
behavior. A related idea was proposed in a modeling study
(Ganguli et al., 2008), in which LIP neuronal data from categori-
zation and decision-making tasks were found to obey one-
dimensional dynamics, such that slowly evolving activity
patterns are proportional to spontaneous activity. The investiga-
tors suggested that by reducing local neural signals to one-
dimensional activity, the brain achieves robust temporal control
of behavior such as the timing in shifting attention and crossing
a decision threshold during evidence accumulation. Although
these proposed benefits of low-dimensional representations
reflect different aspects of information coding, they are similar in
that unreliable and heterogeneous neural activities from individ-
ual neurons can be pooled to achieve more robust representation
of cognitive variables.

A natural question concerns how low-dimensional neural ac-
tivity is generated in the brain. While simulations with simple
network models show that local, sparse, recurrent excitatory con-
nections can generate low-dimensional neural activity, it is also
possible that coupling among cortical areas plays a role (Ganguli
et al., 2008). A limitation of previous single-unit work is that all
of the data come from a single brain area, namely LIP. Thus, it is
unknown whether low-dimensional neural activity is restricted
to one, or a few, brain areas, or is instead a network phenom-
enon. Our data showed a biased response pattern in the wide-
spread frontoparietal network, and, critically, the direction of
such bias was consistent across nodes in this network. Our
results thus suggest that network-level interaction could contrib-
ute to the generation and maintenance of low-dimensional neu-
ral activity.

It is worthwhile to consider the generality of biased neural
representation. Given that our human fMRI data and previous
monkey single-unit data were obtained from a variety of behav-
ioral paradigms, biased representation of cognitive variables

appears to be a general phenomenon. However, we should note
that a commonality shared among these behavioral paradigms is
that all tasks entail a few (often two) discrete task conditions. It
is possible that biased representation is particularly useful in this
type of regime but would be less useful with more complex task
contexts (e.g., an attention task with increased number of fea-
tures). Theoretical studies suggest that neural dimensionality
could scale with task complexity (Gao and Ganguli, 2015; Fusi et
al., 2016). This idea has found support in studies where the num-
ber of task conditions appears to drive estimates of dimensional-
ity in monkey PFC (Rigotti et al., 2013; Brincat, et al., 2018).
There is also some hint in our data supporting this notion, as the
univariate bias was numerically weaker for dynamic multifeature
objects than single features (Fig. 5C). Future studies are necessary
to systematically evaluate the influence of task and stimulus com-
plexity on the dimensionality of neural signals.

We also do not know how biased representation arises in the
first place. Each subject in our dataset only performed a task
once in a single scanning session, which does not allow us to test
the stability of the bias. It is possible that the direction of such
bias is determined by each individual’s past experience, which,
hence, is more or less fixed for that individual, or, alternatively,
that such bias arises stochastically when performing a particular
task. It would be interesting to examine the consistency and ori-
gin of the neural bias in future studies.

In conclusion, we highlight biased neural representation as a
potential mechanism for coding cognitive variables in higher-
order frontoparietal areas. Although the simplicity of this coding
scheme seems counterintuitive, it may facilitate an abstract rep-
resentation and simple readout of information critical for stimu-
lus selection and cognitive control. Together with the findings of
distributed population representation in sensory areas, our
results suggest a gradual transition from high- to low-dimen-
sional representation along the cortical hierarchy. Such a gradi-
ent of neural representation could enable information processing
at multiple levels of abstraction to support adaptive behavior.
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