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Neural oscillations are widely studied, with tens-of-thousands 
of publications to date. Nearly a century of research has 
shown that oscillations reflect a variety of cognitive, percep-

tual and behavioral states1,2, with recent work showing that oscil-
lations aid in coordinating interregional information transfer3,4. 
Notably, oscillatory dysfunction has been implicated in nearly every 
major neurological and psychiatric disorder5,6. Following historical 
traditions, the vast majority of the studies examining oscillations rely 
on canonical frequency bands, which are approximately defined as: 
infraslow (<0.1 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), 
beta (12–30 Hz), low gamma (30–60 Hz), high-frequency activity 
(60–250 Hz) and fast ripples (200–400 Hz). Although most of these 
bands are often described as oscillations, standard approaches fail to 
assess whether an oscillation—meaning rhythmic activity within a 
narrowband frequency range—is truly present (Fig. 1a,b).

In the frequency domain, oscillations manifest as narrow-
band peaks of power above the aperiodic component (Fig. 1a)7,8. 
Examining predefined frequency regions in the power spectrum, or 
applying narrowband filtering (for example, 8–12 Hz for the alpha 
band) without parameterization, can lead to a misrepresentation 
and misinterpretation of physiological phenomena, because appar-
ent changes in narrowband power can reflect several different phys-
iological processes (Fig. 1c,d). These include: (1) reductions in true 
oscillatory power9,10; (2) shifts in oscillation center frequency11,12; 
(3) reductions in broadband power13–15; or (4) changes in aperiodic 
exponent8,16–19. When narrowband power changes are observed, the 
implicit assumption is typically a frequency-specific power change 
(Fig. 1c(i)); however, each of the alternative cases can also manifest 
as apparent oscillatory power changes, even when no oscillation is 

present (Fig. 1d). That is, changes in any of these parameters can 
give rise to identical changes in total narrowband power (Fig. 1c,d).

Even if an oscillation is present, careful adjudication between 
different oscillatory features—such as center frequency and 
power—is required. Variability in oscillation features is ignored by 
many approaches examining predefined bands and, without careful 
parameterization, these differences can easily be misinterpreted as 
narrowband power differences (Fig. 1c). For example, there is clear 
variability in oscillation center frequency across age20 and cogni-
tive/behavioral states11,12. Oscillation bandwidth may also change, 
but this parameter is underreported in the literature. Thus, what is 
thought to be a difference in band-limited oscillatory power could, 
instead, reflect center frequency differences between groups or con-
ditions of interest21,22 (Fig. 1c(ii)).

Interpreting band-limited power differences is further con-
founded by the fact that oscillations are embedded within aperiodic 
activity (represented by the dotted blue line in Fig. 1a). This com-
ponent of the signal stands in contrast to oscillations in that it need 
not arise from any regular, rhythmic process23. For example, signals 
such as white noise, or even a single impulse function, have power at 
all frequencies despite there being, by definition, no periodic aspect 
to the signal (Extended Data Fig. 1b). Due to this aperiodic activity, 
predefined frequency bands or narrowband filters will always esti-
mate nonzero power, even when there is no detectable oscillation 
present (Fig. 1b and Extended Data Fig. 1).

In neural data, this aperiodic activity has a 1/f-like distribu-
tion, with exponentially decreasing power across increasing fre-
quencies. This component can be characterized by a 1/fχ function,  
whereby the χ parameter, hereafter referred to as the aperiodic 
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exponent, reflects the pattern of aperiodic power across frequen-
cies, and is equivalent to the negative slope of the power spectrum 
when measured in log–log space24. The aperiodic component is 
additionally parameterized with an ‘offset’ parameter, which reflects 
the uniform shift of power across frequencies. This aperiodic com-
ponent has traditionally been ignored, or is treated either as noise or 
as a nuisance variable to be corrected for, such as is done in spectral 
whitening25, rather than a feature to be explicitly parameterized.

Ignoring or correcting for the aperiodic component is prob-
lematic, as this component also reflects physiological information. 
The aperiodic offset, for example, is correlated with both neuronal 
population spiking13,14 and the blood-oxygen-level-dependent sig-
nal from functional MRI15. The aperiodic exponent, in contrast, 
has been related to the integration of the underlying synaptic cur-
rents26, which have a stereotyped double-exponential shape in the 
time-domain that naturally gives rise to the 1/f-like nature of the 
power spectral density (PSD)19. Currents with faster time constants, 
such as excitatory (E) AMPA, have relatively constant power at 
lower frequencies before power quickly decays, whereas for inhibi-
tory (I) GABA currents power decays more slowly as a function of 
frequency. This means that the exponent will be lower (flatter PSD) 
when E » I, and larger when E « I (ref. 19). Thus, treating the aperi-
odic component as ‘noise’ ignores its physiological correlates, which 
in turn relate to cognitive and perceptual17,27 states, while trait-like 
differences in aperiodic activity have been shown to be potential 

biological markers in development28 and aging18 as well as disease, 
such as ADHD29 or schizophrenia30.

To summarize, periodic parameters such as frequency11,12, power9,10 
and potentially bandwidth, as well as the aperiodic parameters of 
broadband offset13–15 and exponent8,16–19, can and do change in behav-
iorally and physiologically meaningful ways, with some emerging 
evidence suggesting that they interact with one another31. Reliance on 
a priori frequency bands for oscillatory analyses can result in the inclu-
sion of aperiodic activity from outside the true physiological oscilla-
tory band (Fig. 1c(ii)). Failing to consider aperiodic activity confounds 
oscillatory measures, and masks crucial behaviorally and physiologi-
cally relevant information. Therefore, it is imperative that spectral fea-
tures are carefully parametrized to minimize conflating them with one 
another and to avoid confusing the physiological basis of ‘oscillatory’ 
activity with aperiodic activity that is, by definition, arrhythmic.

To better characterize the signals of interest, and overcome 
the limitations of traditional narrowband analyses, we introduce 
an efficient algorithm for parameterizing neural PSDs into peri-
odic and aperiodic components. This algorithm extracts putative 
periodic oscillatory parameters characterized by their center fre-
quency, power and bandwidth; it also extracts the offset and expo-
nent parameters of the aperiodic component (Fig. 2). Importantly,  
this algorithm requires no specification of narrowband oscillation 
frequencies; rather, it identifies oscillations based on their power 
above the aperiodic component.
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Fig. 1 | overlapping nature of periodic and aperiodic spectral features. a, Example neural power spectrum with a strong alpha peak in the canonical 
frequency range (8–12 Hz, blue-shaded region) and secondary beta peak (not marked). b, Same as a, but with the alpha peak removed. c,d, Apparent 
changes in a narrowband range (blue-shaded region) can reflect several different physiological processes. Total power (green bars in the inset) reflects 
the total power in the range, and relative power (purple bars in the insets) reflects relative power of the peak, over and above the aperiodic component. 
c, Measured changes, with a peak present, including: oscillatory power reduction (i); oscillation center frequency shift (ii); broadband power shift (iii); or 
aperiodic exponent change (iv). In each simulated case, total measured narrowband power is similarly changed (inset, green bar), while only in the true 
power reduction case (i) has the 8–12-Hz oscillatory power relative to the aperiodic component actually changed (inset, purple bar). d, Measured changes, 
with no peak present. This demonstrates how changes in the aperiodic component can be erroneously interpreted as changes in oscillation power when 
only focusing on a narrow band of interest. r, relative; T, total.
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We test the accuracy of this algorithm against simulated power 
spectra where all of the parameters of the periodic and aperiodic 
components are known, providing a ground truth against which to 
compare the algorithm’s ability to recover those parameters. The 
algorithm successfully captures both periodic and aperiodic param-
eters, even in the presence of substantial simulated noise (Fig. 3). 
Additionally, we show that the algorithm performs comparably to 
expert human raters who manually identified peak frequencies in 
both human electroencephalography (EEG) and nonhuman local 
field potential (LFP) spectra (Fig. 4). Finally, we demonstrate the 
utility of algorithmic parameterization in three ways. First, we rep-
licate and extend previous results demonstrating spectral parameter 
differences between younger and older adults at rest (Fig. 5). Next, 
we find a link between the aperiodic component and behavioral 
performance in a working memory task (Fig. 6). Finally, by leverag-
ing large-scale analysis of human magnetoencephalography (MEG) 
data, we map the spatial patterns of oscillations and aperiodic activ-
ity across the human neocortex, demonstrating how this method 
can be used at scale (Fig. 7).

Results
Algorithm performance against simulated data. To investigate 
algorithm performance, we simulated realistic neural PSDs with 

known ground truth parameters. These simulated spectra consist 
of a combination of Gaussians, with variable center frequency, 
power and bandwidth; an aperiodic component with varying offset 
and exponent; and noise. Algorithm performance was evaluated in 
terms of its ability to reconstruct the individual parameters used to 
generate the data (Fig. 3 and Methods). Individual parameter accu-
racy was considered, since the algorithm, without using the settings 
to limit the number of fitted peaks, can arbitrarily increase the pro-
portion of explained variance, R2, and reduce error. Thus, overall fit 
error should not be the sole method by which to assess algorithm 
performance, and should be considered together with the number 
of peaks fit. This is because, in the extreme, if the algorithm fits 
a peak at every frequency then the error between the center fre-
quency of the true peak and the closest identified peak will be artifi-
cially low. In addition, global goodness-of-fit measures such as R2 or 
mean squared error are not directly related to accuracy of individual 
parameter estimation.

Common analyses seek to identify and measure the most promi-
nent oscillation in the power spectrum. To assess algorithm perfor-
mance at this task, we began by simulating a single spectral peak 
with varying levels of both noise and aperiodic parameters (Fig. 3a). 
Algorithm performance is assessed by the absolute error of each  
of the reconstructed parameters: aperiodic offset and exponent  
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Fig. 2 | Algorithm schematic on real data. a, The PSD is first fit with an estimated aperiodic component (blue). b, The estimated aperiodic portion of the 
signal is subtracted from the raw PSD, the residuals of which are assumed to be a mix of periodic oscillatory peaks and noise. c, The maximum (peak) of 
the residuals is found (orange). If this peak is above the noise threshold (dashed red line), calculated from the standard deviation of the residuals, then 
a Gaussian (solid green line) is fit around this peak based on the peak’s frequency, power and estimated bandwidth (Methods). The fitted Gaussian is 
then subtracted, and the process is iterated until the next identified point falls below a noise threshold or the maximum number of peaks is reached. The 
peak-finding at this step is only used for seeding the multi-Gaussian in d, and, as such, the output in d can be different from the peaks detected at this 
step. d, Having identified the number of putative oscillations, based on the number of peaks above the noise threshold, multi-Gaussian fitting is then 
performed on the aperiodic-adjusted signal from b to account for the joint power contributed by all of the putative oscillations together. In this example, 
two Gaussians are fit with slightly shifted peaks (orange dots) from the peaks identified in c. e, This multi-Gaussian model is then subtracted from the 
original PSD from a. f, A new fit for the aperiodic component is estimated—one that is less corrupted by the large oscillations present in the original PSD 
(blue). g, This re-fit aperiodic component is combined with the multi-Gaussian model to give the final fit. h, The final fit (red)—here parameterized as 
an aperiodic component and two Gaussians (putative oscillations)—captures >99% of the variance of the original PSD. In this example, the extracted 
parameters for the aperiodic component are: broadband offset = −21.4 a.u.; exponent = 1.12 a.u. Hz−1. Two Gaussians were found, with the parameters: (1) 
frequency = 10.0 Hz, power = 0.69 a.u., bandwidth = 3.18 Hz; (2) frequency = 16.3 Hz, power = 0.14 a.u., bandwidth = 7.03 Hz.
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(Fig. 3b), as well as center frequency, power and bandwidth of the 
largest peak (Fig. 3c). Note that power as returned by the algorithm 
always refers to aperiodic-adjusted power—that is, the magnitude of 
the peak over and above the aperiodic component.

Simulated aperiodic exponents ranged between [0.5, 2.0] a.u. Hz−1 
(a.u., arbitrary units of power), and the median absolute error 
(MAE) of the algorithmically identified exponent remained below 
0.1 a.u. Hz−1, even in the presence of high noise, with MAE increas-
ing monotonically across noise levels (Fig. 3b). Spectral peaks were 
simulated with center frequencies between [3, 34] Hz, with peak 
power between [0.15, 0.4] a.u. above the aperiodic component, and 

bandwidths between [1, 3] Hz (see Methods for full details). When 
identifying center frequency, MAE was within 1.25 Hz of the true 
peak for all tested noise levels. For peak power MAE remained 
below 0.1 a.u., and for bandwidth MAE was within 1.25 Hz, for even 
the largest noise scenarios. In both cases MAE increased monotoni-
cally with noise (Fig. 3a). Note that for bandwidth, a default algo-
rithm parameter limits maximum bandwidth to 8.0 Hz (Methods), 
which likely reduces MAE.

Another use case for the algorithm is to identify multiple oscil-
lations (Fig. 3d–f). Here we assess performance as overall fit error, 
considered in combination with whether the algorithm finds the 
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Fig. 3 | Algorithm performance on simulated data. a–c, Power spectra were simulated with one peak (Methods), at five distinct noise levels (1,000 
spectra per noise level). a, Example power spectra (black) with spectral fits (red) are shown, with simulation parameters as aperiodic [offset, exponent] 
and periodic [center frequency, power, bandwidth], for the one-peak simulations in low- and high-noise scenarios. Simulation parameters for plotted 
example spectra are noted. b, MAE of the algorithmically identified aperiodic offset and exponent, across noise levels, as compared with ground truth. 
c, MAE of the algorithmically identified peak parameters—center frequency, power and bandwidth—across noise levels. In all cases, MAE increases 
monotonically with noise, but remains low. d–f, A distinct set of power spectra were simulated to have different numbers of peaks (0–4, 1,000 spectra 
per number of peaks) at a fixed noise level (0.01; Methods). d, Example simulated spectra, with fits, for the multi-peak simulations. Conventions as in a. 
e, Absolute model fit error for simulated spectra, across number of simulated peaks. f, The number of peaks present in simulated spectra compared with 
the number of fitted peaks. All violin plots show full distributions, where small white dots represent median values, and small boxes show median, first and 
third quartiles, and ranges. The algorithm imposes a 6.0-Hz maximum bandwidth limit in its fit, giving rise to the truncated errors for bandwidth in c. Note 
that the error axis is log-scaled in b, c and e.
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correct number of oscillations. In the presence of multiple simulated 
peaks (Fig. 3d), the median fit error increases monotonically as the 
number of peaks increases (Fig. 3e). Multiple simulated peaks can 
differ substantially in power and can overlap, increasing fit error. 
Despite this, the modal number of fit peaks matches the number of 
true simulated peaks (Fig. 3e,f).

Additional simulations tested algorithm performance across 
broader frequency ranges (Extended Data Fig. 2). For the frequency 
range of 1–100 Hz, MAE was below 1.5 Hz for low-frequency peaks 
(3–34 Hz), and below 4 Hz for high-frequency peaks (50–90 Hz), 
across noise levels (Extended Data Fig. 2b). Across larger frequency 
ranges, spectra often exhibit a ‘knee’, or bend in the aperiodic 
component of the data24,32 (Methods). Knee values were simulated 
between [0, 150] a.u., and MAE for the recovered parameters was 
below 15 a.u., while maintaining good performance for offset (MAE 
below 0.2) and exponent (MAE below 0.15) (Extended Data Fig. 
2c). Finally, the robustness of the algorithm was assessed against 
violations of model assumptions, including fitting no knee when a 
knee is present, non-Gaussian peaks and nonsinusoidal oscillations 
(Extended Data Fig. 3).

Algorithm performance against expert human labeling.  
Next, we examined algorithm performance against how experts 

identify peaks in PSDs. Because it is uncommon for human raters to 
manually measure the other spectral features parameterized by the 
algorithm, human raters experienced in oscillation research (n = 9) 
identified only the center frequencies of peaks in human EEG and 
nonhuman primate LFP PSDs (Fig. 4a,b). For many spectra there 
was strong consensus (Fig. 4a), but not for all (Fig. 4b). Performance 
was quantified in terms of precision, recall and F1 score, the last of 
which combines precision and recall with equal weight (Methods). 
This is a conservative approach that underestimates the abilities of 
the algorithm (which is optimized to best fit the entire spectrum, 
not just a peak’s center frequency). Also important is that the defini-
tion of surrogate ground truth used here means that when human 
raters show disagreement regarding the center frequency of putative 
oscillations, the algorithm will be marked as incorrect (Fig. 4b).

Human labelers were relatively consistent in peak labeling for 
both EEG and LFP datasets, as evidenced by above-chance recall 
for each rater with the majority (Fig. 4c). Despite the disadvan-
tages outlined above, the algorithm identified a similar number of 
peaks as the raters for both EEG (n = 64 PSDs; humans, algorithm: 
1.81, 1.71; t63 = 0.77, P = 0.44, paired t-test) and LFP (n = 42 spec-
tra; humans, algorithm: 1.05, 1.10; t41 = −0.47, P = 0.64). The algo-
rithm had comparable precision as humans for both EEG (humans, 
algorithm: 0.77, 0.81; z-score = 0.18, P = 1.0; see Methods) and LFP 
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(humans, algorithm: 0.83, 0.63; z = −1.44, P = 0.38). The algorithm 
had slightly lower recall compared with humans for EEG (humans, 
algorithm: 0.87, 0.68; z = −2.15, P = 0.092), and comparable recall 
for LFP (humans, algorithm: 0.86, 0.84; z = −0.22, P = 0.99).

Raters also demonstrated a strong precision/recall tradeoff 
(Spearman ρ = −0.91, P = 2.2 × 10−7) (Fig. 4c). Such a tradeoff is 
common in search and classification, as most strategies to improve 
recall come at the cost of precision, and vice versa. For example, one 
could achieve perfect precision by marking only the most obvious, 
largest power peak, but at the cost of failing to recall all other peaks. 
Or one could achieve perfect recall by marking every frequency 
as containing a peak, but at the cost of precision. For this reason, 
we assessed overall performance using the F1 score, which equally 
weights precision and recall. The algorithm had comparable F1 
scores as humans for EEG (humans, algorithm: 0.79, 0.74; z = −0.44, 
P = 0.96), and slightly lower F1 scores for LFP (humans, algorithm: 
0.83, 0.72; z = −2.16, P = 0.087) (Fig. 4d).

Age-related differences in spectral parameters. The practical 
utility of the algorithm was assessed across several EEG and MEG 
applications. First, we replicated and extended previous work look-
ing at age-related differences in spectral parameters, such as alpha 
oscillations and aperiodic exponent, including how individualized 
parameters differ with aging (Fig. 5); then we examined whether 
task-related parameters are altered by working memory and aging 

(Fig. 6). To test this, we analyzed scalp EEG data from younger 
(n = 16; 20–30 yr; 8 female) and older adults (n = 14; 60–70 yr; 7 
female) at rest and while performing a lateralized visual working 
memory task (Methods).

Resting-state analyses. Resting-state alpha oscillations and ape-
riodic activity, as parameterized by the algorithm, were compared 
between age groups. First, we quantified how much individual-
ized alpha parameters differed from canonical alpha. To do this, 
participant-specific alpha oscillations were reconstructed based on 
individual peak frequencies from channel Oz and were compared 
against a canonical 10-Hz-centered band. We observed consider-
able variation across participants (Fig. 5a,b and Methods), as well 
as a significant difference between groups (overlap with canonical 
alpha: younger = 84%, older = 71%; t28 = 2.27, P = 0.031; Cohen’s 
d = 0.83) (Fig. 5b). Note that this manifests as a difference in alpha 
power between groups when using the canonical band analyses, 
although this is partly driven by more of the older adults’ alpha lying 
outside the canonical 8–12-Hz alpha range.

Older adults had lower (slower) alpha center frequencies than 
younger adults (younger = 10.7 Hz, older = 9.6 Hz; t28 = 2.20, 
P = 0.036; Cohen’s d = 0.79) and lower aperiodic-adjusted alpha 
power (younger = 0.78 μV2, older = 0.45 μV2; t28 = 2.52, P = 0.018; 
Cohen’s d = 0.93), although bandwidth did not differ between 
groups (younger = 1.9 Hz, older = 1.8 Hz; t28 = 0.48, P = 0.632; 

Younger Older

BandwidthCenter
frequency

Adjusted
power

a

c

b

P
ow

er
 (

µV
2 )

P
ow

er
 (

µV
2 )

0.4

0.8

1.2

1.6

Frequency (Hz)

6 8 10 12 14 16

0.4

0.8

1.2

1.6

Frequency (Hz)

6 8 10 12 14 16

You
ng

er

Olde
r

You
ng

er

Olde
r

You
ng

er

Olde
r

You
ng

er

Olde
r

You
ng

er

Olde
r

F
re

qu
en

cy
 (

H
z)

8

10

12

14

0.2

0.6

1.0

1.4

B
an

dw
id

th
 (

H
z)

1.0

2.0

3.0

4.0* * NS

Frequency (Hz)

P
ow

er
 (

a.
u.

)

ExponentOffset

O
ffs

et
 (

µV
2 )

–12.5

–12.0

–11.5

–11.0

–10.5
*

E
xp

on
en

t (
µV

2  H
z–1

)

0.25

0.75

1.25

1.75 *

O
ve

rla
p 

(%
)

Alpha
overlap

You
ng

er

Olde
r

40

60

80

100 *

Frequency (Hz)

Reconstructed
aperiodic

P
ow

er
 (

a.
u.

)

5 15 25 35 45

Group P < 0.05

d e

Younger Older

Frequency (Hz)

0.05

0.10

0.15

0.20

0 5 10 15 20

Overlap
Missed

0 5 10 15 20

0.05

0.10

0.15

0.20
Overlap
Missed

20

‘F
latter’
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Cohen’s d = 0.17) (Fig. 5c). The mean aperiodic-adjusted alpha 
power difference between groups was 0.33 μV2 Hz−1, whereas, when 
comparing total (nonaperiodic-adjusted) alpha power, the mean 
difference was 0.45 μV2 Hz−1. This demonstrates that, although 
alpha power changes with age, the magnitude of this change is exag-
gerated by conflating age-related alpha changes with age-related 
aperiodic changes.

Regarding aperiodic activity, older adults had lower aperi-
odic offsets (younger = −11.1 μV2, older = −11.9 μV2; t28 = 6.75, 
P < 0.0001; Cohen’s d = 2.45) and lower (flatter) aperiodic expo-
nents (younger = 1.43 μV2 Hz−1, older = 0.75 μV2 Hz−1; t28 = 7.19, 
P < 0.0001; Cohen’s d = 2.63) (Fig. 5e). Participant-specific ape-
riodic components were reconstructed based on individual offset 
and exponent parameter fits from channel Cz, and used to compare 
frequency-by-frequency differences between groups (Fig. 5d). From 
reconstructions, significant differences were found between groups 
in the frequency ranges 1.0–10.5 Hz and 40.2–45.0 Hz (P < 0.05, 

uncorrected t-tests at each frequency). This demonstrates, in real 
data, how group differences in what would traditionally be consid-
ered to be oscillatory bands can actually be caused by aperiodic—
nonoscillatory—differences between groups (compare with Fig. 1).

Working memory analyses. To evaluate whether parameterized 
spectra can predict behavioral performance, we analyzed a work-
ing memory task from the same dataset, in which participants had 
to remember the color(s) of briefly presented squares over a short 
delay period. We then attempted to predict behavioral performance, 
measured as dʹ, from periodic and aperiodic parameters calculated 
as difference measures between the baseline and delay periods (see 
Methods for task and analysis details). Ordinary least squares linear 
regression models were fit to predict performance, and model com-
parisons were done to examine which spectral parameters and esti-
mation approaches best predicted behavior (Fig. 6a–c). The most 
consistent model for predicting behavior across groups (adjusting  
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for the number of parameters in the model) was one using only 
the two aperiodic parameters (offset and exponent; younger:  
F(4, 46) = 3.94, P = 0.0078, adjusted R2 (Radj

2) = 0.19; older: F(4, 37) = 5.10, 
P = 0.0023, Radj

2 = 0.29, F-test for model significance). In the older 
adult group, the aperiodic-adjusted alpha power model was also 
a significant predictor (F(3, 38) = 7.70, P = 0.0004, Radj

2 = 0.33), per-
forming better than a model using canonical alpha measures  
(F(3, 38) = 5.18, P = 0.0042, Radj

2 = 0.23). In the younger adult group, 
neither measure of alpha power significantly predicted behavior 
(Fig. 6e). This result highlights that, while traditional analyses of 
such tasks typically focus on alpha activity33, we find that the more 
accurate prediction of behavior is from aperiodic activity, a pattern 
that may be misinterpreted as alpha dynamics in canonical analyses, 
in particular when there are spectral parameter differences between 
groups.

Spatial analysis of periodic and aperiodic parameters in 
resting-state MEG. Finally, we parameterized a large dataset 
(n = 80, 600,080 spectra) of source-reconstructed resting-state MEG 
data to quantify how spectral parameters vary across the cortex. 
When collapsed across all participants and all cortical locations, the 
distribution of center frequencies for all algorithm-extracted oscil-
lations partially recapitulates canonical frequency bands, wherein 
the most common frequencies are centered in the theta, alpha and 
beta ranges (Fig. 7b). Notably, however, there are extracted oscilla-
tions across all frequencies, so while canonical bands do capture the 
modes of oscillatory activity, they are not an exhaustive description 
of periodic activity in the human neocortex.

Because extracted peaks are broadly consistent with canoni-
cal bands, we clustered them post hoc into theta (3–7 Hz), alpha 
(7–14 Hz) and beta (15–30 Hz) bands. When examined across the 

cortex, we find that the aperiodic-adjusted oscillation band power 
also recapitulates well-documented spatial patterns34, where theta 
power is concentrated at the frontal midline, alpha power is predom-
inantly distributed over posterior and sensorimotor areas, and beta 
power is focused centrally, over the sensorimotor cortex (Extended 
Data Fig. 4b). However, earlier reports using canonical methods 
may be at least partially driven by aperiodic activity, because they 
do not separate or quantify whether, or how often, oscillations are 
present over and above the aperiodic component. To address this, 
we quantified how often an oscillation was observed, for each band, 
across the cortex (Extended Data Fig. 4a). These two metrics were 
then combined into an ‘oscillation score’ measure (Methods), which 
is a composite of the group-level oscillation occurrence probability 
weighted by the relative power of algorithmically identified param-
eters (Fig. 7a).

The oscillation score allows us to examine the variability of peri-
odic activity across participants. For example, the oscillation scores 
approaching 1.0 in both alpha and beta indicate a very high degree 
of consistency in these bands (a maximum score of 1.0 tells us that 
every participant has an oscillation of maximum relative power in 
the same location). We find that alpha and beta are ubiquitous across 
the cortex, although their relative power is concentrated in specific 
regions (Extended Data Fig. 4). By contrast, theta is more variable, 
with max oscillation scores <0.4 indicating substantial variability 
in theta presence, and its relative power. Theta oscillations are only 
sometimes observed in frontal regions at rest (Extended Data Fig. 4) 
and are almost entirely absent in visual regions.

The explicit parametrization of each feature allows us to examine 
how each parameter varies across the cortex. Note, for example, that 
the consistency of oscillation presence and relative power does not 
imply that these oscillations are consistent in their center frequency, 
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because we also see substantial variation of peak frequencies  
(Fig. 7b). We also show that, while the aperiodic exponent has a 
mean value of 0.828 (Fig. 7c), there is spatial heterogeneity such 
that highest exponent values are found in posterior regions, and 
the exponent gets gradually smaller (flatter) as it moves anteriorly  
(Fig. 7a). We also examined relationships between parameters, 
calculated as correlations between the spatial topographies of 
oscillation scores per parameter (Fig. 7d). The strongest observed 
relationships were a negative correlation between theta and alpha 
(r = −0.60, P < 0.0001) and a positive correlation between alpha and 
the aperiodic exponent (r = 0.83, P < 0.0001). Collectively, these 
analyses allow us to verify patterns of aperiodic-adjusted periodic 
activity, and quantify, for the first time to our knowledge, the consis-
tency of occurrence of oscillations. In addition, the spatial topogra-
phy of the aperiodic exponent is important to note when exploring 
topographies of presumed oscillations derived from narrowband 
analyses, given that the aperiodic component can drive observed 
spatial differences.

Discussion
Despite the ubiquity of oscillatory analyses, there are several ana-
lytic assumptions that impact the physiological interpretation of 
previous oscillation research. Standard approaches for quantifying 
oscillations presume that oscillations are present, which may not be 
true (Extended Data Fig. 1), and often rely on canonical frequency 
bands that presume that spectral power implies oscillatory power. 
These assumptions overlook the existence of aperiodic activity, 
which is itself dynamic, and so cannot be simply ignored as sta-
tionary noise. Aperiodic activity also has interesting demographic, 
cognitive and clinical correlates, as well as physiological relevance, 
and so should also be explicitly parameterized and analyzed. Here 
we introduce a method for algorithmically extracting periodic and 
aperiodic components in electro- and magnetophysiological data 
that addresses these often-overlooked issues in cognitive and sys-
tems neuroscience.

We demonstrate this method with a series of applications, and 
highlight methodological points and findings. We show how appar-
ent age-related differences in oscillatory power can be partially 
driven by shifts in oscillation center frequency (Fig. 1c). Specifically, 
we find that canonical alpha band analyses (for example, analyz-
ing the 8–12-Hz range) fail to capture all of the oscillatory power 
within individual participants, and are systematically biased 
between groups22 (Fig. 5b). In our data, canonical alpha analyses 
miss a greater proportion of power in older adults’ true alpha activ-
ity compared with younger adults’ alpha, due to the fact that older 
adults tend to have slower (lower frequency) alpha20 (Fig. 5a,b). 
This is important, as traditional analyses using fixed bands fail to 
address interindividual differences, which has methodological 
consequences, and also ignores that variations in peak frequencies 
within oscillation bands have functional correlates and are of theo-
retical interest12.

We also show how apparent oscillation power can be influenced 
by changes in the aperiodic exponent; for example, in the case of 
age-related changes in the aperiodic exponent (Fig. 5d,e). Thus, 
although we replicate often-described age-related alpha power 
changes20, we find the magnitude of this effect, when analyzed for 
alpha power specifically, is more subtle than previously reported. 
This is because age-related changes in the aperiodic component also 
shift total narrowband alpha power, despite the fact that power in a 
narrowband oscillation has not changed relative to the aperiodic pro-
cess6 (Extended Data Fig. 1a). We conclude that periodic activity is 
not the sole driver of the apparent ~10-Hz power differences in aging, 
and that the magnitude of alpha power differences has been systemi-
cally confounded by concomitant differences in aperiodic activity.

We also examined the utility of spectral parameterization  
in a cognitive context, analyzing EEG data from a visual working 

memory task (Fig. 6). While such studies often focus on oscillatory 
activity, in particular visual cortical alpha33, recent computational 
work shows the importance of excitation/inhibition balance in 
working memory maintenance35. Given that the aperiodic exponent 
partially reflects excitation/inhibition balance19, and is systemati-
cally altered in aging18, we hypothesized that the aperiodic compo-
nent would predict working memory performance. We find that, 
across groups, event-related changes in the aperiodic parameters, 
rather than just oscillatory alpha, most consistently predict indi-
vidual working memory performance. In contrast, delay period 
alpha parameters tracked behavior among older, but not younger, 
adults. This suggests that there are categorical differences between 
groups regarding which spectral parameters track working memory 
outcomes, and that these features are easy to conflate—or miss—
without explicit spectral parameterization, and highlights a finding 
of aperiodic activity predicting working memory performance in 
human EEG data.

Finally, we applied the algorithm to a large collection of MEG 
data, mapping periodic and aperiodic activity across the cortex  
(Fig. 7). Notably, while these results broadly recapitulate expected 
patterns of activity36,37, the explicit parameterizations reveal features 
not possible with traditional approaches. For example, we show 
that: (1) there is a large amount of variability, for example, of oscilla-
tory peak frequencies (Fig. 7b); (2) there are band-specific patterns 
of the detectability of oscillatory peaks (Extended Data Fig. 4a) and 
aperiodic-adjusted power (Extended Data Fig. 4a); and (3) there is 
a gradient across the cortex of the aperiodic exponent36. These find-
ings highlight how traditional analyses are not adequately account-
ing for the rich variation present in neural data because they use 
fixed frequency bands, they do not account for the presence of ape-
riodic activity and they overlook variability in oscillation presence 
and in oscillatory features.

This work raises interesting possibilities for how to interpret 
common findings. Intriguingly, when examined in the time-domain, 
differences in the aperiodic exponent manifest as raw voltage differ-
ences (Extended Data Fig. 1a). It may be that observed differences 
between conditions, for example, in event-related spectral perturba-
tions or evoked potentials, are partially explainable by, or related to, 
differences in aperiodic exponent. This consideration is particularly 
important when comparing between groups, given that the aperi-
odic exponent varies across groups, including aging18 (Fig. 5d,e) and 
disease29,30.

The observation of within-subject changes of the aperiodic 
exponent also has implications regarding the ubiquitous negative 
correlation between low-frequency (<30 Hz) and high-frequency 
(>40 Hz) activity38, observed here in the EEG data (Fig. 5d). This is 
often interpreted as a push/pull relationship between low-frequency 
oscillations and gamma; however spectral parameterization offers 
a different interpretation: a see-saw-like rotation of the spectrum 
at around 20–30 Hz due to a change in aperiodic activity. This 
results in decreased power in lower frequencies with a simultane-
ous increase in higher-frequency power. Here it would be a mis-
characterization to say that there was a task-related decrease in 
low-frequency oscillations, because that need not be the feature that 
was truly altered; instead, the aperiodic exponent changed, mani-
festing as the spectrum ‘rotating’ around a specific frequency point. 
This has been observed to occur in a task-related manner in human 
visual cortex17.

Across the gamma range, there can be both narrowband activ-
ity and broadband shifts39. There may also be high variability of 
narrowband frequencies within participants such that averag-
ing across those bands decreases detectability of overall statistical 
power40. Parameterizing spectra allows for detecting narrowband 
peaks, and inferring whether narrow- and/or broadband aspects 
of the data are changing. This may also be useful for analyses such 
as phase-amplitude coupling, which have provided a powerful 
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means for probing the potential mechanisms of neural communi-
cation4,41,42. These analyses typically rely on fixed frequency bands, 
which is problematic given that multiple-oscillator phase-amplitude 
coupling exhibits different phase-coupling frequencies by cortical 
region42. Using spectral parameterization to characterize oscilla-
tory components may allow for better identifying of phase-coupling 
modes across brain regions, task and time, thus increasing the spec-
ificity and accuracy of cross-frequency coupling analyses.

Altogether, the parameterization algorithm provides a principled 
method for quantifying the neural power spectrum, increasing ana-
lytical power by disentangling periodic and aperiodic components. 
This allows researchers to take full advantage of the rich variabil-
ity present in neural field potential data, rather than treating that 
variability as noise. These spectral features reflect distinct proper-
ties of the data, but may also be inter-related, given the evidence 
that the aperiodic exponent and band powers can be correlated43,44. 
This highlights the need for careful parameterization to adjudicate 
between individual spectral features and their relationship to cogni-
tive, clinical, demographic and physiological data.

Although the algorithm itself is agnostic to underlying physio-
logical generators of the periodic and aperiodic components, it can 
be leveraged to investigate theories and interpretations of them. For 
example, changes in the aperiodic exponent may relate to a shift in 
the balance of the transmembrane currents in the input region, such 
as a shift in excitation/inhibition balance19. For oscillations, tradi-
tional canonical frequency band analyses commit researchers to the 
idea that those predefined bands have functional roles, rather than 
considering the underlying physiological mechanisms that generate 
different spectral features. Spectral parameterization across scales, 
and in combination with other measures, may allow us to better 
link macroscale electrophysiology to microscale synaptic and firing 
parameters45, providing a better understanding of the relationship 
between microscale synaptic dynamics and different components in 
field potential signals, from microscale LFP, to mesoscale intracra-
nial EEG, to macroscale EEG and MEG26.

While there are other methods for measuring periodic and 
aperiodic activity, none jointly parameterize aperiodic and peri-
odic components. Some methods focus on identifying individual 
differences in oscillations; however, they are mostly restricted 
to detecting the peak frequency within a specific sub-band11. 
This has resulted in a broad literature looking at variation within 
canonical bands, most commonly peak alpha frequency within and  
across individuals11,12. However, such approaches often assume only 
one peak within a band, do not generalize across broad frequen-
cies and/or ignore aperiodic activity46, perpetuating the conflation 
of aperiodic and periodic processes. Other approaches attempt to 
control for the aperiodic component when identifying oscillations, 
but do not parameterize both the aperiodic and periodic features 
together. Often, these methods treat the aperiodic component as 
a nuisance variable, for example, by correcting for it via spectral 
whitening25, rather than as a feature to be explicitly modeled and 
parameterized.

A time-domain approach called BOSC (Better OSCillation 
Detector)47 uses a simple linear fit to the PSD to determine a power 
threshold in an attempt to isolate oscillations, although this does 
not explicitly parameterize the aperiodic component for analysis. 
The irregular-resampling auto-spectral analysis (IRASA) method 
is a decomposition method that seeks to explicitly separate the 
periodic component from self-similar aperiodic activity through 
a resampling procedure48. This approach does not parameter-
ize aperiodic or periodic components, but can be combined with 
model fitting of the isolated components. However, as the original 
authors noted, IRASA smears multi-fractal components48 (knees). 
Neither of these methods (BOSC, IRASA) currently allows for the 
same range of measurements as power spectrum parameteriza-
tion (Supplementary Modeling Note), although future work could 

seek to integrate these different methods. In direct comparisons of 
comparable measures, we find that spectral parameterization is at 
least as performant as, and typically better and more generalizable 
than, BOSC or IRASA (Extended Data Fig. 5 and Supplementary 
Modeling Note). Other methods, such as principal component 
variants, require manual component selection14. Collectively, the 
current method addresses existing shortcomings by explicitly 
parameterizing periodic and aperiodic signals, flexibly fitting mul-
tiple peaks and different aperiodic functions, without requiring 
extensive manual tuning or supervision.

There are some practical considerations to keep in mind when 
applying this method. The model, as proposed, is applicable to mul-
tiple kinds of datasets, ranging from LFP to EEG and MEG. Different 
modalities, and different frequency ranges, may require different 
settings for optimal fitting, and fits should always be evaluated for 
goodness of fit. In particular, we find that it is important for the ape-
riodic component to be fit in the correct aperiodic mode, reflecting 
if a knee should be fit (Extended Data Figs. 2 and 3). Detailed notes 
and instructions for applying the algorithm to different modali-
ties, assessing model fits and tuning parameters are all available in 
the online documentation (https://fooof-tools.github.io/). There 
are also caveats to consider when interpreting model parameters. 
Notably, while the presence of power above the aperiodic compo-
nent is suggestive of an oscillation, a spectral peak does not always 
imply a true oscillation at that frequency49. For example, sharp 
wave rhythms, such as the sawtooth-like waves seen in hippocam-
pus or the sensorimotor mu rhythm, will manifest as narrowband  
power at harmonics of the fundamental frequency49 (Extended Data 
Fig. 3g–i). Similarly, the lack of an observed peak over and above 
the aperiodic component does not definitively imply the complete 
absence of an oscillation. There could be very-low-power oscilla-
tions, highly variable oscillatory properties and/or rare burst events 
within a long time series that do not exhibit as clear spectral peaks. 
To address these possibilities, spectral parameterization can be 
complemented with time-domain analysis approaches21.

In conclusion, application of our algorithm shows that differ-
ent physiological processes, including changes in the exponent or 
offset of the aperiodic component or periodic oscillatory changes, 
are often conflated50. Our approach allows for disambiguating dis-
tinct changes in the data by parameterizing aperiodic and periodic 
features, allowing for investigations of how these features relate to 
cognitive functioning in health, aging and disease, as well as their 
underlying physiological mechanisms. The proposed algorithm is 
validated on simulated data, and demonstrated with a series of data 
applications. Because of the speed and ease of the algorithm and 
the interpretability of the fitted parameters, this tool opens avenues 
for the high-throughput, large-scale analyses that will be critical for 
data-driven approaches to neuroscientific research.
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Methods
Algorithm development and analyses for this manuscript were done with the 
Python programming language. Code for the algorithm and for the analyses 
presented in this paper is openly available (https://github.com/fooof-tools/fooof; 
see the Code availability statement). The name of the Python module stands for 
‘fitting oscillations and one-over f ’.

Algorithmic parameterization. The parameterization method presented herein 
quantifies characteristics of electro- or magnetophysiological data in the frequency 
domain. While many methods can be used to calculate the power spectra for 
algorithmic parametrization, throughout this investigation we use Welch’s 
method51. The algorithm conceptualizes the PSD as a combination of an aperiodic 
component19,52 with overlying periodic components, or oscillations7. These 
putative oscillatory components of the PSD are characterized as frequency regions 
of power over and above the aperiodic component, and are referred to here as 
‘peaks’. The algorithm operates on PSDs in semilog-power space, which is linearly 
spaced frequencies, and log-spaced power values, which is the representation of 
the data for all of the following, unless noted. The aperiodic component is fit as a 
function across the entire fitted range of the spectrum, and each oscillatory peak 
is individually modeled with a Gaussian. Each Gaussian is taken to represent 
an oscillation, whereby the three parameters that define a Gaussian are used to 
characterize the oscillation (Fig. 2).

This formulation models the power spectrum as:

PSD ¼ Lþ
XN

n¼0

Gn ð1Þ

where the PSD is a combination of the aperiodic component, L, and N total 
Gaussians, G. Each Gn is a Gaussian fit to a peak, for N total peaks extracted from 
the power spectrum, modeled as:

Gn ¼ a ´ exp
� F � cð Þ2

2w2

� �
ð2Þ

where a is the power of the peak, in log10(power) values; c is the center frequency, 
in Hz; w is the standard deviation of the Gaussian, also in Hz; and F is the vector of 
input frequencies.

The aperiodic component, L, is modeled using a Lorentzian function,  
written as:

L ¼ b� log kþ Fχð Þ ð3Þ

where b is the broadband offset, χ is the exponent and k is the ‘knee’ parameter, 
controlling for the bend in the aperiodic component24,32, with F as the vector of 
input frequencies. Note that when k = 0, this formulation is equivalent to fitting a 
line in log–log space, which we refer to as the fixed mode. Note that there is a direct 
relationship between the slope, a, of the line in log–log spacing, and the exponent, 
χ, which is χ = −a (when there is no knee). Fitting with k allows for parameterizing 
bends, or knees, in the aperiodic component that are present in broad frequency 
ranges, especially in intracranial recordings24.

The final outputs of the algorithm are the parameters defining the best fit 
for the aperiodic component and the N Gaussians. In addition to the Gaussian 
parameters, the algorithm computes transformed ‘peak’ parameters. For these 
peak parameters, we define: (1) center frequency as the mean of the Gaussian; 
(2) aperiodic-adjusted power—the distance between the peak of the Gaussian 
and the aperiodic fit (this is different from the power in the case of overlapping 
Gaussians that might share overlapping power); and (3) bandwidth as 2 s.d. of the 
fitted Gaussian. Notably, this algorithm extracts all of these parameters together in 
a manner that accounts for potentially overlapping oscillations; it also minimizes 
the degree to which they are confounded and requires no specification of canonical 
oscillation frequency bands.

To accomplish this, the algorithm first finds an initial fit of the aperiodic 
component (Fig. 2a). This first fitting step is crucial and not trivial, as any 
traditional fitting method, such as linear regression, or even robust regression 
methods designed to account for the effects of outliers on linear fitting, can 
still be substantially pulled away from the true aperiodic component due to the 
overwhelming effect of the high-power oscillation peaks. To account for this, we 
introduce a procedure that attempts to fit the aperiodic aspects of the spectrum 
only. To do so, initial seed values for offset and exponent are set to the power of 
the first frequency in the PSD and an estimated slope, calculated between the first 
and last points of the spectrum (calculated in log–log spacing, and converted to a 
positive value, since χ = −a). These seed values are used to estimate a first-pass fit. 
This fit is then subtracted from the original PSD, creating a flattened spectrum, 
from which a power threshold (set at the 2.5 percentile) is used to find the 
lowest-power points among the residuals, such that this excludes any portion of 
the PSD with peaks that have high-power values in the flattened spectrum. This 
approach identifies only the data points along the frequency axis that are most 
likely to not be part of an oscillatory peak, thus isolating parts of the spectrum 
most likely to represent the aperiodic component (Fig. 2a). A second fit of the 
original PSD is then performed only on these frequency points, giving a better 

estimate of the aperiodic component. This is, in effect, similar to approaches that 
have attempted to isolate the aperiodic component from oscillations by fitting only 
to spectral frequencies outside of an a priori oscillation18, but does so in a more 
unbiased fashion. The percentile threshold value can be adjusted if needed, but in 
practice rarely needs to be.

After the estimated aperiodic component is isolated, it is regressed out, leaving 
the non-aperiodic activity (putative oscillations) and noise (Fig. 2b). From this 
aperiodic-adjusted (that is, flattened) PSD, an iterative process searches for peaks 
that are each individually fit with a Gaussian (Fig. 2c). Each iteration first finds 
the highest-power peak in the aperiodic-adjusted (flattened) PSD. The location of 
this peak along the frequency axis is extracted, along with the peak power. These 
stored values are used to fit a Gaussian around the central frequency of the peak. 
The standard deviation is estimated from the full-width, half-maximum (FWHM) 
around the peak by finding the distance between the half-maximum powers on 
the left and right flanks of the putative oscillation. In the case where there are two 
overlapping oscillations, this estimate can be very wide, so the FWHM is estimated 
as twice the shorter of the two sides. From FWHM, the standard deviation of the 
Gaussian can be estimated via the equivalence:

s:d: ¼ FWHM

2
ffiffiffiffiffiffiffiffiffi
2ln2

p ð4Þ

This estimated Gaussian is then subtracted from the flattened PSD, the next 
peak is found and the process is repeated. This peak-search step halts when it 
reaches the noise floor, based on a parameter defined in units of the standard 
deviation of the flattened spectrum, re-calculated for each iteration (default = 2 s.d.). 
Optionally, this step can also be controlled by setting an absolute power threshold, 
and/or a maximum number of Gaussians to fit. The power thresholds (relative 
or absolute) determine the minimum power beyond the noise floor that a peak 
must extend to be considered a putative oscillation. Once the iterative Gaussian 
fitting process halts, to handle edge cases, Gaussian parameters that heavily overlap 
(whose means are within 0.75 s.d. of the other), and/or are too close to the edge 
(≤1.0 s.d.) of the spectrum, are then dropped. The remaining collected parameters 
for the N putative oscillations (center frequency, power and bandwidth) are used as 
seeds in a multi-Gaussian fitting method (Python: scipy.optimize.curve_fit). Each 
fitted Gaussian is constrained to be close to (within 1.5 s.d. of) its originally guessed 
Gaussian. This process attempts to minimize the square error between the flattened 
spectrum and N Gaussians simultaneously (Fig. 2d).

This multi-Gaussian fit is then subtracted from the original PSD, to isolate 
an aperiodic component from the parameterized oscillatory peaks (Fig. 2e). 
This peak-removed PSD is then re-fit, allowing for a more precise estimation 
of the aperiodic component (Fig. 2f). When combined with the equation 
for the N-Gaussian model (Fig. 2g), this procedure gives a highly accurate 
parameterization of the original PSD (Fig. 2h; in this example, >99% of the 
variance in the original PSD is accounted for by the combined aperiodic plus 
periodic components). Goodness of fit is estimated by comparing each fit with the 
original power spectrum in terms of the MAE of the fit as well as the R2 of the fit.

The fitting algorithm has some settings that can be provided by the user, one of 
which defines the aperiodic mode, with options of ‘fixed’ or ‘knee’, which dictates 
whether to fit the aperiodic component with a knee. This parameter should be 
chosen to match the properties of the data, over the range to be fit. The algorithm 
also requires a setting for the relative threshold for detecting peaks, which defaults 
to 2, in units of standard deviation. In addition, there are optional settings, 
which can be used to define: (1) the maximum number of peaks; (2) limits on 
the possible bandwidth of extracted peaks; and (3) absolute, rather than relative, 
power thresholds. The algorithm can often be used without needing to change 
these settings. Some tuning may be useful for tuning algorithmic performance 
to different datasets with potentially different properties, for example, data from 
different modalities, data with different amounts of noise and/or for fitting across 
different frequency ranges. Detailed descriptions and guidance on these settings 
and whether and how to change them can be found in the tool’s documentation. 
All parameter names, as well as their descriptions, units, default values and 
accessibility to the user through the code’s application programming interface 
(API), are also presented in Supplementary Table 2.

Code for this algorithm is available as a Python package, licensed under 
an open-source-compliant Apache-2.0 license. The module supports Python 
version 3.5 or later, with minimal dependencies of numpy and scipy (version 0.19 
or later), and is available to download from the Python Package Index (https://
pypi.python.org/pypi/fooof/). The package is openly developed and maintained 
on GitHub (https://github.com/fooof-tools/fooof/). The project’s repository 
includes the codebase, a test-suite, instructions for installing and contributing to 
the package, and the documentation materials. The documentation is also hosted 
on the documentation website (https://fooof-tools.github.io/), which includes 
tutorials, examples, frequently asked questions, a section on motivations for 
parameterizing neural power spectra and a list of all of the functionality available. 
On contemporary hardware (3.5 GHz Intel i7 MacBook Pro), a single PSD is fit 
in approximately 10–20 ms. Because each PSD is fit independently, this package 
has support for running in parallel across PSDs to allow for high-throughput 
parameterization.
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Simulated PSD creation and algorithm performance analysis. Power spectra 
were simulated following the same underlying assumption of the fitting 
algorithm—that PSDs can be reasonably approximated as a combination of 
an aperiodic component and overlying peaks that reflect putative periodic 
components of the signal. The equations used in the algorithm and described in 
the methods for the fitting procedure were used to simulate power spectra, such 
that for each simulated spectrum, the underlying parameters used to generate it are 
known. On top of the simulated aperiodic component with overlying peaks, white 
noise was added, with the level of noise controlled by a scaling factor. The power 
spectra were therefore simulated as an adapted version of equation (1):

sPSD ¼ Lþ
XN

n¼0

Gn þmε ð5Þ

where sPSD is a simulated power spectrum; L and Gn are the same as described in 
equations (2) and (3), respectively; ε is white noise, applied independently across 
frequencies; and m is a multiplicative scaling factor of that noise.

For all simulations, the parameterization algorithm was used with settings 
of {peak_width_limits = [1,8], max_n_peaks = 6, min_peak_height = 0.1, peak_
threshold = 2.0, aperiodic_mode = ‘fixed’}, except where noted. For each set of 
simulations, 1,000 power spectra were simulated for each condition. The algorithm 
was fit to each simulated spectrum, and estimated values for each parameter 
were compared with ground truth values of the simulated data. Deviation of the 
parameter values was calculated as the absolute deviation for the fit value from the 
ground truth value. We also collected the goodness-of-fit metrics (error and R2) 
and the number of fit peaks from the spectral parameterizations.

For the first set of simulations, power spectra were generated across the 
frequency range of 2–40 Hz, with a frequency resolution of 0.25 Hz (Fig. 3a–f). 
The aperiodic component was generated with y-intercept (offset) parameter of 
0, and without a knee (k = 0). Exponent values were sampled uniformly from 
possibilities {0.5, 1, 1.5, 2}. Oscillation center frequencies came from the range 
of 3–34 Hz (1-Hz steps), with each center frequency sampled as the observed 
probability of center frequencies at that frequency in real data, namely the MEG 
dataset described in this study. For simulations in which there were multiple peaks 
within a single spectrum (Fig. 3d–f), center frequencies were similarly sampled at 
random, with the extra constraint that a candidate center frequency was rejected 
if it was within 2 Hz on either side of another center frequency already selected for 
the simulated spectrum, such that individual spectra could not have superimposed 
peaks. Peak powers and bandwidths were sampled uniformly from {0.15, 0.20, 0.25, 
0.4} and {1, 2, 3}, respectively, independent of their center frequency.

A set of power spectra were generated with one peak per spectrum across five 
noise levels {0.0, 0.025, 0.05, 0.10, 0.15} (Fig. 3a–c). In these simulations, the center 
frequency, power and bandwidth of the fit peak, as well the aperiodic exponent, 
were compared with the ground truth parameters. To compare ground truth 
parameters with the spectral reconstructions, which potentially included more 
than one peak, the highest-power peak was extracted from the spectral fit to use 
for comparison. In another set of simulations, PSDs were created with a varying 
number of peaks—between 0 and 4—with a fixed noise value of 0.01 (Fig. 3d–f). 
For these simulations, the performance of the algorithm was examined in terms 
of the fit error across the number of peaks, as well by comparing the number of 
simulated peaks with the number of peaks in the spectral fit.

Simulated power spectra to test across a broader frequency range were 
generated across the frequency range of 1–100 Hz, with a frequency resolution of 
0.5 Hz (Extended Data Fig. 2a–c). These spectra were created with knees, using 
knee values of {0, 10, 25, 100, 150}, sampled with equal probability, with offset 
and exponent values sampled as done previously. For these spectra two peaks 
were added, one in the low-frequency range, sampled as previously described, 
with an additional peak with a center frequency sampled, with even probability, 
from between 50 and 90 Hz (in 1-Hz steps), with the same sampled power and 
bandwidth values as used previously. These spectra were generated across different 
noise levels, as before. Spectra were fit using the same algorithm settings as before, 
except for aperiodic mode being set to ‘knee’. Parameter reconstruction was 
evaluated, with the addition of calculating the accuracy of the reconstructed knee 
parameter.

Additional simulations were created to evaluate the model performance with 
respect to violations of model assumptions (Extended Data Fig. 3a–i). To examine 
violations of the aperiodic model assumptions, a set of spectra were also simulated 
with knees (Fig. 3a–c) but were fit in the ‘fixed’ aperiodic mode, using the same 
settings as before. Simulations were created as described above for simulations 
including knees, except that to evaluate the influence of knee parameters, spectra 
were simulated and grouped by knee values, for values of {0, 10, 50, 100, 150}, 
using a fixed noise level of 0.01. For these simulations, performance was primarily 
evaluated in terms of reconstruction accuracy of the aperiodic exponent and the 
number of fit peaks.

To examine model violations of the periodic component, power spectra were 
also simulated using asymmetric peaks in the frequency domain (Extended Data 
Fig. 3d–f). For these simulations, peaks were simulated as skewed Gaussians, in 
which an additional parameter is used that controls the skewness of the peaks 
(simulated in code with ‘scipy.stats.skewnorm‘). These simulations were created 

across the frequency range of 2–40 Hz, with a fixed noise value of 0.01. Each 
spectrum contained a single peak, with peak parameters sampled as in the previous 
simulations for this range. A skew value was added to the peak, across conditions 
with skew values of {0, 5, 10, 25, 50}. For these simulations, performance was 
primarily evaluated in terms of reconstruction accuracy of the peak center 
frequency and the number of fit peaks.

In addition, time-series simulations were created with nonsinusoidal 
oscillations (Extended Data Fig. 3g–i) to investigate how the algorithm performs 
with asymmetric cycles and the resulting power spectra. Simulations were 
created as time-series signals of oscillations of asymmetric cycles combined with 
aperiodic activity, using the simulation tools in the NeuroDSP Python toolbox53. 
Time series were simulated as 10-s segments at a sampling rate of 500 Hz. The 
aperiodic component of the signal was simulated as a 1/f signal, with exponent 
values sampled from the same values as above. The periodic component of the data 
was an asymmetric oscillation, with a peak frequency sampled as above. These 
oscillations were created with varying across rise–decay symmetry values49 of {0.5, 
0.625, 0.75, 0.875, 1.0}. Note that a value of 0.5, with a symmetric rise and decay, is 
a sinusoid, whereas values approaching 1 are increasingly sawtooth-like. The full 
signal was a combination of the two components, from which power spectra were 
calculated using Welch’s method (2-s segments, 50% overlap, Hanning window). 
The power spectrum models were then fit across the frequency range of [2, 40], 
using the same settings as above. For these simulations, performance was primarily 
evaluated in terms of reconstruction accuracy of the peak center frequency and the 
number of fit peaks.

Finally, simulated data were also used to compare spectral parameterization 
with other related methods (Extended Data Fig. 5), which are described and 
reported in the Supplementary Modeling Note. For the method comparison 
simulations, we considered three test cases: signals with an aperiodic component 
and one oscillation over the frequency range of 2–40 Hz; signals with aperiodic 
activity and multiple (three) oscillations, also across 2–40 Hz; and signals with 
two peaks over a broader frequency range (1–100 Hz), in which the aperiodic 
component included a knee. For all comparisons between methods, paired 
samples t-tests were used to evaluate the difference between the distributions of 
errors for each method, and effect sizes were calculated with Cohen’s d. Statistical 
comparisons were computed on log-transformed errors, because the distributions 
are approximately log-normal.

Spectral parameterization was first compared with the aperiodic fit as 
performed using the BOSC method47, which is a linear fit of the log–log power 
spectrum (Extended Data Fig. 5a–c). For these measures, power spectra were 
directly simulated, with parameters sampled as previously described. We also 
compared measurements of aperiodic fitting with IRASA48 (Extended Data Fig. 
5d–f). Since IRASA operates on time series, simulated data in this case were created 
as time series, as previously described, creating 10-s signals with a sampling rate 
of 1,000 Hz. Aperiodic time series with a knee were created using a previously 
described physiological time series model19. Periodic and aperiodic parameters 
were sampled as previously described, except for the knee time series, for which the 
aperiodic exponent is always 2, due to the time series model. IRASA decomposition 
was applied directly to the simulated time series. Spectral parameterization 
was applied to power spectra computed from the simulated time series using 
Welch’s method (1-s segments, 50% overlap, Hanning window). Finally, as an 
example real data case, we used an example real data spectrum of LFP data from 
rat hippocampus, available from the openly available HC-2 database54, to which 
spectral parameterization and IRASA were applied (Extended Data Fig. 5g–i).

Human labelers versus algorithm. In addition to simulated power spectra, 
randomly selected EEG (n = 64) and LFP (n = 42) PSDs were labeled by the 
algorithm and by expert human raters (n = 9). PSDs were calculated using 
Welch’s method51 (1-s segments, 50% overlap, Hanning window). These PSDs 
were then fit and labeled from 2 to 40 Hz. Note that human labeling was done 
only for the center frequencies of putative oscillations on the PSDs that had 
the aperiodic component still present, as this is the most common human PSD 
parameterization approach. This misses all other features that the algorithm can 
also parameterize (power, bandwidth, offset and exponent). Raters gave a high-/
low-confidence rating to their labels, to provide a human analog for overfitting, 
and all plots and analyses use only results from the high-confidence ratings 
(including low-confidence ratings substantially impairs human label performance). 
Comparisons of the average number of peaks fit to each spectrum were done using 
independent-samples t-tests, where for each spectrum we counted the number of 
peaks identified by the algorithm, and compared that number across all spectra 
with the average number of peaks the human raters found per spectrum.

To estimate a putative ‘truth’ for real physiological data where ground truth is 
unknown, we used a majority rule approach wherein a ‘consensus truth’ criterion 
was calculated for each PSD separately by estimating the majority consensus 
for each identified peak. Specifically, for each PSD, all peaks identified by every 
human labeler were pooled, and the frequency of identification was established 
for each peak. Those peaks that were identified by the majority of labelers (n > 4) 
within 1.0 Hz of one another were set as the putative truth for that PSD. All human 
labelers, and the algorithm, were then scored against this putative truth. Precision, 
recall and F1 scores for human raters and the algorithm were calculated for each 
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rater across all PSDs. Accuracy measures were then averaged across human 
labelers and compared with the those of the algorithm. Normally, precision is 
calculated as the number of true positives divided by the total of true positives 
and false positives. However, because ground truth is unknown, ‘true positive’ and 
‘false positive’ here are defined relative to the consensus truth. Similarly, recall is 
calculated as the number of true positives divided by the total of true positives 
and false negatives. The F1 score is a weighted measure of accuracy that combines 
precision and recall. This metric is used because precision can be artificially very 
high while recall is very low. For example, it is possible to inflate precision by 
simply identifying a peak at every point along the frequency axis; thus, no peaks 
would ever be missed, but recall would be severely impacted. If no peaks were 
found, precision and recall were all set to 0. Correct rejections were not included in 
performance estimates; had they been included, every nonpeak that was correctly 
identified as such (most of the power spectra) would be marked as a correct 
rejection, skewing performance results. For those instances when a human labeler 
or the algorithm identified no peaks in the PSD, precision and recall values were 
set to 0 if the putative truth contained any peaks, and to 1 if there was no consensus 
among human labelers on any of the peaks (that is, the putative truth criterion was 
0 peaks). Thus, the majority rule scoring system did not penalize either human 
labelers or the algorithm for correctly rejecting false positives. All reported P 
values are Bonferroni-corrected for the three correlated comparisons (precision, 
recall and F1) performed for each modality (EEG and LFP). Comparisons of these 
measures across PSDs were assessed using the z-score, where the algorithm’s 
precision, recall and F1 scores were compared with the distribution of the raters’ 
scores. For the Spearman correlation, rater precision and recall on both EEG and 
LFP data were included.

Algorithmic analysis of EEG, LFP and MEG data. Analyzed data are from openly 
available and previously reported datasets. Sample sizes were determined by the 
sizes of available datasets, without using power analyses, but our sample sizes are 
similar to those reported in previous publications for the EEG18,33,55, LFP56,57 and 
MEG31,34,36 datasets. In the analyzed datasets, there were no experimentally defined 
groups requiring assignment, and thus no randomization or blinding procedures 
were used. Where relevant, analyzed distributions were tested for normality, to test 
validity of the applied statistical tests, and full distributions of data are also shown.

Scalp EEG data. EEG data from a previously described study33 were re-analyzed 
here. Briefly, we collected 64-channel scalp EEG data from 17 younger (20–30 yr 
old) and 14 older (60–70 yr old) participants while they performed a visual 
working memory task as well as during a resting-state period. All participants gave 
informed consent approved by the University of California, Berkeley Committee 
on Human Research. Participants were tested in a sound-attenuated EEG recording 
room using a 64 + 8-channel BioSemi ActiveTwo system. EEG data were amplified 
(−3 dB at ~819-Hz analog low-pass, DC coupled), digitized (1,024 Hz) and stored 
for offline analysis. Additional electro-oculography (EOG) electrodes were used 
to record eye-related activity. Horizontal eye movements were recorded at both 
external canthi and vertical eye movements were monitored with a left inferior 
eye electrode and a superior eye or frontopolar electrode. All data were referenced 
offline to an average reference. All EEG data were processed with the MNE 
Python toolbox58, the algorithm described herein and custom scripts. These data 
have previously been reported33 and are re-analysed here using our algorithmic 
approach.

EEG task and stimuli. Participants performed a visual working memory task. They 
were instructed to maintain central fixation and were asked to respond using the 
index finger of their right hand. The visual working memory paradigm was slightly 
modified from the procedures used by Vogel and Machizawa (2004)55 as previously 
outlined59, where additional task details can be found. Participants were visually 
presented with a constant fixation cross in the center of the screen throughout the 
entire duration of the experiment. At the beginning of each trial, this cross would 
flash to signal the beginning of the trial. This was followed 350 ms later by one, two 
or three (corresponding to the load level) differently colored squares for 180 ms, 
lateralized to either the left or right visual hemifield. After a 900-ms delay, a test 
array of the same number of colored squares appeared in the same spatial location. 
Participants were instructed to respond with a button press to indicate whether or 
not one item in the test array had changed color compared with the initial memory 
array. Each participant performed 8 blocks of 40 trials each, with trials presented in 
random order in terms of side and load.

EEG behavioral data analysis. Behavioral accuracy was assessed using a dʹ measure 
of sensitivity which takes into account the false alarm rate to correct for response 
bias (dʹ = Z(hit rate) − Z(false alarm rate), where Z is the z-transform). To avoid 
mathematical constraints in the calculation of dʹ, we applied a standard correction 
procedure, wherein, for any participants with a 100% hit rate or 0% false alarm 
rate, performance was adjusted such that 1/(2N) false alarms were added or 1/(2N) 
hits subtracted where necessary.

EEG preprocessing. Each participant’s EEG data were first filtered with a highpass 
filter at 1 Hz, and then decomposed using independent component analysis 

(ICA)60. Any ICA components that significantly correlated with EOG activity 
were automatically identified and rejected. A 2-min segment of data from the 
beginning of the recording was extracted and analyzed as resting-state data. Trials 
were epoched from −0.85 to 1.10 s relative to stimulus onset. All incorrect trials 
and trials with artifacts were excluded from subsequent analysis. The AutoReject 
procedure was used to estimate thresholds and automatically reject any trials with 
artifacts, as well as to interpolate bad channels61.

EEG resting-state data analysis. Power spectra were calculated for all channels, using 
Welch’s method51 (2-s windows, 50% overlap), for a 2-min segment of extracted 
resting-state data from the beginning of the recording. These power spectra were fit 
using the algorithm, using the settings {peak_width_limits = [1,6], max_n_peaks = 6, 
min_peak_height = 0.05, peak_threshold = 1.5, aperiodic_mode = ‘fixed’}. The 
average R2 of spectral fits was 0.96, reflecting good fits, although one participant 
from the younger group was considered an outlier, with R2 and absolute error of the 
fit more than 2.5 s.d. away from the mean; this participant was dropped from further 
analyses in the resting condition. Estimated periodic spectral parameters were 
analyzed from a posterior channel of interest, Oz, chosen to capture visual cortical 
alpha activity. Aperiodic parameters were analyzed from channel Cz.

To evaluate differences between age groups, t-tests were performed. For 
visualization purposes, periodic and/or aperiodic components were reconstructed 
for each participant’s fitted parameters. To explore whether aperiodic differences 
could drive frequency-specific power differences, t-tests were run at each 
frequency, comparing between the younger and older adult groups, for the 
power values from the reconstructed aperiodic-only signal. To compare 
participant-specific fits with canonical band analyses, the overlap of a Gaussian 
centered at 10 Hz with a ±2-Hz bandwidth (reflecting the common 8–12-Hz alpha 
range) was calculated with the individualized center frequency per participant, 
using a fixed ±2-Hz bandwidth range. All t-tests are two-tailed.

EEG task data analysis. For task analyses, data were analyzed from visual cortical 
alpha electrodes contralateral to the hemifield of visual stimulus presentation 
(right hemifield stimuli: {P3, P5, P7, P9, PO3, PO7, O1}; left hemifield stimuli: {P4, 
P6, P8, P10, PO4, PO8, O2}). Only correct trials were analyzed, and trials were 
collapsed across the presentation side. Trials were split into the three segments 
of interest: baseline (−0.85 to −0.35 s), early-trial segment (0.10 to 0.60 s) and 
late-trial segment (0.50 to 1.00 s).

For spectral parameterization analyses, PSDs were calculated across each 
segment, for each channel, and spectra were fit, using the same settings as the 
rest data. Fitted parameters were then averaged across channels, to arrive at 
one set of parameters per trial, per participant. For comparison, two canonical 
alpha band analyses were run, one in which trial data were filtered to the alpha 
range (8–12 Hz), and another in which the data were filtered ±2 Hz around an 
individualized alpha center frequency62, identified as the frequency of peak power 
between the range 7–14 Hz. These filtered copies of the data were then epoched 
and Hilbert-transformed to calculate analytic alpha amplitude. Average analytic 
alpha was calculated across each time segment. Evoked measures of each parameter 
(that is, canonical alpha, aperiodic-adjusted alpha power, and aperiodic offset and 
exponent) were calculated, in which the value of the parameter in the late trial 
was baseline-corrected by the measure of the parameter from the pretrial baseline 
period for each investigated parameter.

To investigate which estimation technique (canonical band estimation versus 
spectral parameterization) and which spectral parameter(s) best predicted 
behavior, regression models were used to predict dʹ, per load, from canonical or 
spectral parameterization output measures, separately for each age group. We used 
a baseline behavioral model, predicting dʹ from the memory load (the number 
of presented items in the trial), and all models also used load as a covariate. To 
compare which features best predicted behavior, we predicted separate models, 
using (1) canonical alpha; (2) canonical alpha measured at an individualized 
frequency; (3) parameterized alpha; and (4) parameterized aperiodic features. 
These models are described as:

d0 ¼ b0 þ b1 loadð Þ þ ε
I

 (baseline model)
d0 ¼ b0 þ b1 loadð Þ þ b2 αpw cð Þ

� �
þ ε

I
 (canonical alpha model)

d0 ¼ b0 þ b1 loadð Þ þ b2 αpw cifð Þ
� �

þ ε
I

 (individualized canonical alpha model)
d0 ¼ b0 þ b1 loadð Þ þ b2 αpw pð Þ

� �
þ ε

I
 (parameterized alpha model)

d0 ¼ b0 þ b1 loadð Þ þ b2 apexp

� �
þ b3 apoff

� �
þ ε

I

 (aperiodic model)
In the above, αpw represents alpha power; c, cif and p represent ‘canonical’, 

‘canonical with individualized frequency’ and ‘parameterized’, respectively; and ap 
represents aperiodic, with exp and off denoting exponent and offset, respectively. 
All models were fit as ordinary least squares linear models. Model fitting and 
comparisons were done using the statsmodels module in Python. The F-test 
for overall significance of the model was used to evaluate whether each model 
provided a significant fit.

LFP data. LFP data used for algorithm validation came from two male rhesus 
monkeys (Maccaca mulatta) 4–5 yr of age, collected for a previously reported 
experiment (methodological details can be found in the corresponding 
manuscript56). All procedures were carried out in accord with the US National 
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Institutes of Health guidelines and the recommendations of the University of 
California, Berkeley Animal Care and Use Committee. Neuronal responses were 
recorded from PFC using arrays of 8–32 tungsten microelectrodes. LFPs were 
recorded with a 1-kHz sampling frequency and analyzed offline. LFPs were isolated 
from the band-passed (0–100 Hz) recordings, and spectral fits were done on a 
channel-by-channel basis using Welch’s method and the same settings used for the 
EEG analyses described above.

MEG data. Open-access resting-state MEG data, as well as corresponding 
anatomical MRI scans for each participant, were accessed from the young adult 
dataset from the Human Connectome Project (HCP) database63. Briefly, a subset of 
95 participants from the HCP had MEG recordings. Of this group, 80 participants 
met our quality control procedures and were included in the analyses here 
(ages 22–35; 35 female). Participants were excluded due to missing resting-state 
recordings, missing anatomical scans needed for source projection or due to 
excessive artifacts. One participant was rejected post fitting due to being an outlier 
on goodness-of-fit and/or aperiodic parameters (more than 3 s.d. from the group 
mean). For each participant, the first available rest recording was used, comprising 
approximately 6 min of eyes-open, resting-state data. Full details of the data 
collection are available elsewhere64.

MEG data were preprocessed following best-practice guidelines65, using the 
Brainstorm software toolbox66. Cardiac- and eye-related artifacts (blinks and 
saccades) were automatically detected from electrocardiography (ECG) and EOG 
traces, respectively, and removed from the data using signal-space projections 
from data segments selected from around each artifactual event67 using default 
parameters in Brainstorm. All MEG data were manually inspected for any 
remaining artifacts, and any contaminated segments were marked as bad, and not 
included in any further analysis. Cleaned, preprocessed resting-state data were then 
epoched into 5-s segments.

Using the segmentation procedures available in Freesurfer68, each participant’s 
T1-weighted anatomical MRI scan was used to construct scalp and cortical 
surfaces. Individual high-resolution surfaces were downsampled to 7,501 vertices 
using Brainstorm to serve as cortical reconstructions for MEG source imaging. 
Structural MRI images were co-registered with the MEG recordings using 
anatomical landmarks (nasion, and preauricular points) and digitized head points 
available from the recording, which were automatically aligned in Brainstorm, and 
then manually checked and tuned, as needed.

For source projection, the overlapping-sphere technique69 for forward 
modeling of the neural magnetic fields was used, using perpendicularly oriented 
current dipoles for each individual’s anatomy70. Source projections were calculated 
using Brainstorm’s weighted minimum norm estimate applied to the preprocessed 
sensor data. Empty room recordings, also available from the HCP, were used as an 
empirical estimate of the noise for each MEG sensor, in the weighted minimum 
norm estimate projection. For group analysis, individual source maps were then 
geometrically registered to the ICBM152 brain template, a nonlinear average of 152 
participants71, using Brainstorm’s multilinear registration technique.

For each epoch, a PSD was estimated using an adapted version of Welch’s 
method, which averaged across the individual windows using the median72, as 
opposed to the mean, to deal with the skewed nature of power value distributions72, 
using a window size of 2 s. For each participant, at every vertex, a PSD was 
calculated from source-projected data, on the group template brain. Power values 
were then averaged across all available epochs to obtain one PSD per vertex, per 
individual.

Following preprocessing, source projection and spectral analysis, we had PSD 
representations of resting-state activity at each of 7,501 vertices for each of the 
80 participants, projected on a template brain. Each of these spectra was then 
fit across the frequency range [2, 40], with settings {peak_width_limits = [1,6], 
max_n_peaks = 6, min_peak_height = 0.1, peak_threshold = 2, aperiodic_
mode = ‘fixed’}, providing an aperiodic exponent and offset value per vertex as well 
as a list of extracted peaks (if found) per vertex, per participant. In rare cases, the 
algorithm can fail to converge on a solution and thus does not provide a fit. This 
was the case for a total of 4 spectra of 600,080. For any spectrum for which this 
happened, that vertex for that participant was set as having no detected peaks, and 
the aperiodic exponent was interpolated as the mean value of all successful fits 
from that participant.

To analyze and visualize the putative oscillation results, all extracted peaks were 
post hoc sorted into predefined oscillation bands of theta (3–7 Hz), alpha (7–14 Hz) 
and beta (15–30 Hz). These ranges were chosen to capture the approximate clusters 
of peaks in the extracted data (see Fig. 7b). To do so, per vertex and per participant, 
peak output parameters were selected, for each band, if they corresponded to a 
peak with a center frequency within the band limits. If there was no peak within 
that range, that vertex was set as having no oscillation in that band. If more than 
one peak was found for the given range, the highest-power peak was selected. 
From this band-specific data, we then created group maps for each oscillation band 
across all vertices. For each band we extract two maps: an oscillation power map as 
well as an oscillation probability map, which is the percentage of the group that had 
a peak within that band at that vertex.

We then calculated a power-normalized ‘oscillation score’. To do so, for each 
band, the average peak power value at each vertex, across all participants, was 

divided by the maximum average power value from the distribution of all vertices, 
such that the vertex that displays the highest band power across the group receives 
a score of 1, and every other vertex receives a normalized score between 0 and 1.  
This power ratio was then multiplied, vertex-by-vertex, with the oscillation 
probability topography. The resultant oscillation score is a bounded measure that 
can take values between 0 and 1, whereby a maximal score of 1 reflects that every 
participant has an oscillation in the specified band at the specified vertex, and that 
oscillation has the greatest average power at that vertex. Scores lower than 1 reflect 
increased variation in the presence and/or relative power of oscillations across  
the group.

Note that oscillation scores lower than 1 cannot, by themselves, be 
disambiguated in terms of where the variability lies. For example, an oscillation 
score of approximately 0.5 could reflect either a location in which oscillations 
tend to be of maximal power, but are only observed across approximately half the 
group, or oscillations that are consistent across the entire group, at about half the 
maximal power, or some middle ground between the two. These situations can 
be disambiguated by examining both the oscillation probability and the power 
ratio maps separately. We then calculated the Pearson correlation between the 
topographies of oscillation scores for each band as well as the correlation between 
each band’s oscillation score and the aperiodic exponent topography.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All empirical behavioral and physiological data reported and analyzed in this 
manuscript are secondary uses of data that have previously been published and/
or were accessed from openly available data repositories. A copy of the simulated 
data, as well as the code to regenerate it, is available in the GitHub repository 
(https://github.com/TomDonoghue/SimFOOOF). EEG data were analyzed from 
a previously described study33. Open-access MEG data were analyzed from the 
Human Connectome Project63,64, which is described on the project site (https://
www.humanconnectome.org/), and are available through the data portal (https://
db.humanconnectome.org/). LFP data were analyzed from rhesus monkeys from 
a previously described study56. Additional LFP data from rats were accessed 
from the HC-2 dataset54, which is available from the Collaborative Research in 
Computational Neuroscience (CRCNS) data sharing portal (https://crcns.org/).

code availability
Custom code used in this manuscript is predominantly using the Python 
programming language, v.3.7. In addition, some preprocessing of MEG data was 
done in MATLAB (R2017a), using the Brainstorm package (https://neuroimage.
usc.edu/brainstorm/). The algorithm code is openly available and released under 
the Apache-2.0 open-source software license. The code for the algorithm is 
available on GitHub (https://github.com/fooof-tools/fooof), and from PyPi (https://
pypi.org/project/fooof/), and includes a dedicated documentation site (https://
fooof-tools.github.io/). All of the code used for the analyses is openly available, and 
indexed on Github (https://github.com/fooof-tools/Paper). This includes all of the 
code used for the simulations (https://github.com/TomDonoghue/SimFOOOF), 
the EEG analyses (https://github.com/TomDonoghue/EEGFOOOF) and the MEG 
analyses (https://github.com/TomDonoghue/MEGFOOOF).
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Technical RepoRTNaTurE NEurosciENcE

Extended Data Fig. 1 | False oscillatory power changes and illusory oscillations. a, Here we took a real neural PSD (blue) and artificially introduced 
a change in the aperiodic exponent, similar to what is seen in healthy aging18. This PSD was then inverted back to the time domain (right panels). The 
exponent change manifests as amplitude differences in the time domain. This affects apparent narrowband power when an a priori filter is applied. This is 
despite the fact that the true oscillatory power relative to the aperiodic component is unaffected. b, Even when no oscillation is present, such as the case 
with the white and pink (1/f) noise examples here (blue and green, respectively), narrowband filtering gives rise to illusory oscillations where no periodic 
feature exists in the actual signal, by definition.
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Technical RepoRT NaTurE NEurosciENcE

Extended Data Fig. 2 | Algorithm performance on simulated data across a broader frequency range. a-c, Power spectra were simulated across the 
frequency range (1–100 Hz), with two peaks, one in a low range, and one in a high range (see Methods), across five distinct noise levels (1000 spectra 
per noise level). a, Example power spectra with simulation parameters as aperiodic [offset, knee, exponent] and periodic [center frequency, power, 
bandwidth]. b, Absolute error of algorithmically identified peak center frequency, separated for the low (3–35 Hz) and high range (50–90 Hz) peaks. c, 
Absolute error of algorithmically identified aperiodic parameters, offset, knee, and exponent. All violin plots show full distributions, where small white dots 
represent median values and small box plots show median, first and third quartiles, and ranges. Note that the error axis is log-scaled in b and c.
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Technical RepoRTNaTurE NEurosciENcE

Extended Data Fig. 3 | Algorithm performance on simulated data that violate model assumptions. a-c, Power spectra were simulated across a broader 
frequency range (1–100 Hz), with two peaks, one in a low range, and one in a high range (see Methods), across five distinct knees values (1000 spectra 
per knee value), with a fixed noise level (0.01). Power spectra were parameterized in the ‘fixed’ aperiodic mode (without a knee) to evaluate how sensitive 
performance is to aperiodic mode. a, Example power spectra with simulation parameters as aperiodic [offset, knee, exponent] and periodic [center 
frequency, power, bandwidth], showing spectra with knee values of 0 and 150, both fit in the ‘fixed’ aperiodic mode. b, Absolute error of algorithmically 
identified aperiodic exponent, across spectra with different knee values. Notably, exponent reconstruction is high when spectra with knees are fit without 
a knee parameter. c, The number of peaks fit by the model, across knee values. Note that all spectra in this group have two peaks, indicating here that 
the presence of knee’s in ‘fixed’ mode leads to overfitting peaks. d-f, A distinct set of simulations were created in which power spectra were created with 
asymmetric or skewed peaks (see Methods), across five distinct skew levels (1000 spectra per skew level). d, Example simulated spectra, showing two 
different skew levels. (e) Absolute error of algorithmically identified peak center frequency, across peak skewness values. f, The number of peaks fit by the 
model, across peak skewness. Note that all spectra in this set have one peak. g-i, A distinct set of simulations, in which time series were generated with 
asymmetric oscillations in the time domain, from which power spectra were calculated (see Methods), across five distinct levels of oscillation asymmetry 
(1000 spectra per asymmetry value). g, Example simulation of an asymmetric oscillation, simulated in the time domain, and the associated power 
spectrum. Note that the power spectrum displays harmonic peaks. h, Absolute error of algorithmically identified peak center frequency, across oscillation 
asymmetry values. i, The number of peaks fit by the model, compared across oscillation asymmetry values. Note that these simulations all contained one 
oscillation in the time domain. All violin plots show full distributions, where small white dots represent median values and small box plots show median, 
first and third quartiles, and ranges. Note that the error axis is log-scaled in b, e and h.
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Technical RepoRT NaTurE NEurosciENcE

Extended Data Fig. 4 | oscillation band occurrences and relative powers in the MEG dataset. a, The proportion of participants for whom an oscillation 
peak was fit, at each vertex, per band. b, The group level relative power, per band. For each participant, the oscillation power within the band was 
normalized between 0 and 1, and then averaged across all participants, such that a maximal relative power of 1 would indicate that all participants have 
the same location of maximal band-specific power. Note that alpha and beta have maximal values approaching 1, reflecting a high level of consistency 
in location of maximal power, whereas in theta the values are lower, reflecting more variability. The ‘oscillation score’ metric, as presented in Fig. 7, is the 
result of multiplying the occurrence probability map with the power maps.
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Technical RepoRTNaTurE NEurosciENcE

Extended Data Fig. 5 | Methods comparison of measures of the aperiodic exponent. a-c, Comparisons of spectral parameterization to a linear fit (in 
log-log space), as used in BOSC47, on simulated power spectra (1000 per comparison). a, Comparison of a linear fit and spectral parameterization on a low 
frequency range (2–40 Hz) with one peak. b, Comparison across the same range with multiple (3) peaks. c, Comparison across a broader frequency range 
(1–150 Hz) with two peaks and an aperiodic knee. In all cases (a–c), spectral parameterization outperforms the linear fit. d-f, Comparisons of spectral 
parameterization to IrASA48. Groups of simulations mirror those used in (a–c). Note that for these simulations, the data were simulated as time series 
(1000 per comparison) (see Methods). IrASA and spectral parameterization are comparable for the one peak cases (d), but spectral parameterization 
is significantly better in the other cases (e,f). Note that as IrASA has both greater absolute error and a systematic estimation bias (see Supplementary 
Modeling Note). g-i, Example of IrASA and spectral parameterization applied to real data. (g) The IrASA-decomposed aperiodic component, using 
default settings, in orange, is compared to the original spectrum, in blue. There are still visible non-aperiodic peaks, meaning IrASA did not fully separate 
out the periodic and aperiodic components. h, The IrASA-decomposed aperiodic component, with increased resampling. This helps remove the peaks, 
but also increasingly distorts the aperiodic component, especially at the higher frequencies, due to its multi-fractal properties (the presence of a knee). 
i, The isolated aperiodic component from spectral parameterization (computed as the peak-removed spectrum), showing parameterization can account 
for concomitant large peaks and knees, providing a better fit to the data. All violin plots show full distributions, where small white dots represent 
median values and small box plots show median, first and third quartiles, and ranges. Note that the error axis is log scaled in a–f. * indicates a significant 
difference in between the distributions of errors between methods (paired samples t-tests). Discussion of these methods and results are reported in the 
Supplementary Modeling Note.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Data analyzed and reported in this manuscript includes behavioral data and physiological measures, accessed from previous published 

studies, and from openly available databases. All data used in this study are quantitative. 

Research sample Human EEG dataset: data were analyzed from a previous study (Tran et al., 2016). N=31, split between two age groups (N=17 for 20-30 

year old group and, 8 female; N=14 for 60-70 year old group, 7 female).  

Human MEG dataset: data were accessed from the Human Connectome Project database, described in (Van Essen et al, 2012). N=80 

subjects, age range 22-35, 35 female.  

Monkey LFP dataset: 2 male rhesus monkey from a previous study (Lara & Wallis, 2014). 

Sampling strategy We did no sampling procedure of sampling size determination, as all data was accessed and analyzed from previous studies and open-

access databases. We used all subjects available from the available datasets. Data sizes of the analyzed datasets are consistent with 

typical sample sizes of used in prior investigations. 

Data collection No data collection was performed within the current study, as all data were accessed from openly available databases and previous 

studies. Details of the data collection for each dataset are available in the papers that describe the datasets.

Timing There was no timeline for data collection, as no data was collected for the current study.

Data exclusions For the human EEG dataset, all subjects were analyzed. One subject was excluded from the resting state analysis due do poor model fits 

during the analysis.  

For the human MEG dataset, the dataset reports that 95 subjects had at least some MEG data. Of this candidate group, we included 80 

subjects. Subjects were excluded based on predefined criteria, including missing resting state recordings, missing anatomical scans 

needed for source projection, or due to excessive artifacts. One subject was excluded from the subsequent analyses due do poor model 

fits during the analysis. 

For the monkey LFP dataset, all subjects were analyzed. 

Non-participation No participants dropped out, or refused to participate, as all data was taken from openly available datasets. 

Randomization There was no randomization, as all data was used from previous datasets, none of which included any group assignment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study
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Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 2 male rhesus monkeys (Maccaca Mulatta) from previously published results (Lara & Wallis, 2014)

Wild animals None.
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Field-collected samples None.

Ethics oversight UC Berkeley Animal Care and Use Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Quantitative EEG and visual working memory performance from previously published results (Tran et al., 2016)

Recruitment We did no recruitment for this study, as no new data was collected. 

Ethics oversight UC Berkeley Committee on Human Research

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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