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Changes to information in working memory depend
on distinct removal operations
Hyojeong Kim1, Harry R. Smolker2, Louisa L. Smith2, Marie T. Banich2 & Jarrod A. Lewis-Peacock 1✉

Holding information in working memory is essential for cognition, but removing unwanted

thoughts is equally important. Here we use multivariate pattern analyses of brain activity to

demonstrate the successful manipulation and removal of information from working memory

using different strategies including suppressing a specific thought, replacing a thought with a

different one, and clearing the mind of all thought. These strategies are supported by distinct

brain regions and have differential consequences for allowing new information to be encoded.
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The ability to actively hold information in mind, known as
working memory (WM), is a central component of cog-
nition necessary for guiding adaptive behavior. Due to the

limited capacity of WM1–3, the ability to remove irrelevant
information from mind is equally essential4, and deficits in this
ability characterize many psychiatric disorders including
depression, generalized anxiety disorder, post-traumatic stress
disorder (PTSD), and obsessive compulsive disorder5–7. Under-
standing the mechanisms by which people remove thoughts from
mind has been challenging, as it is difficult if not impossible to
confirm through participant self-report or indirect behavioral
measures that a thought has indeed been expunged in the brain.
Recent proposals suggest that the capacity limitations of WM can
be dealt with by either taking an item out of the focus of attention
within WM or by removing it entirely from mind8–10. This latter
process is proposed to free up capacity in WM which facilitates
the encoding of new information4.

Previous studies have proposed multiple ways that information
can be removed from WM, including passive decay11,12,
interference13,14, and the engagement of cognitive control
strategies15,16. To accomplish motivated forgetting of long-term
memories, inhibitory control processes in prefrontal cortex can
suppress awareness of unwanted memories either during encod-
ing or retrieval17. In related work, our previous study15 focused
on three distinct strategies for removing a thought from mind: to
replace that thought with another thought, to suppress that
specific thought, and to clear the mind of all thoughts. A mass-
univariate analyses of functional magnetic resonance imaging
(fMRI) data revealed that a hierarchy of brain regions involved in
cognitive control, including parietal, dorsolateral prefrontal, and
frontopolar regions, were engaged to varying degrees depending
on the way information was removed from WM. However, it is
not known how these distinct operations impact the neural
representations of the information being removed, nor what their
impacts are on subsequent encoding in WM.

Here we were motivated by recent advances in the marriage of
machine learning and neuroimaging18–20 to investigate the neural
consequences of distinct removal operations in WM. We recor-
ded fMRI data while participants encoded images from three
stimulus categories (faces, fruit, and scenes) into WM and then
performed cognitive operations on them (maintain, replace,
suppress, and clear) (Fig. 1). Using machine learning approaches
we analyzed these data with three primary objectives: (1) to
demonstrate a differentiation between multivariate neural pat-
terns associated with each method of removal; (2) to characterize
how well removal operations limit access to the representation of
the removed item; and (3) to quantify the degree to which the
removal operations reduce the strength of the removed item so as
to facilitate encoding of subsequent items.

To anticipate, we provide evidence that indeed information can
actively be removed from WM and that there are at least three
distinct ways to do so. Furthermore, we show that some of these
ways (replacing and clearing) appear to act by taking an item out
of the focus of attention, which deactivates its neural repre-
sentation but leaves the information intact, while another way
(suppressing) acts by expunging an item thus freeing up WM
capacity for encoding other information.

Results
Neural dissociation of removal operations. With regards to our
first objective, which was to determine whether indeed the four
operations of interest—maintain, replace, suppress, and clear—
are distinct, we trained fMRI pattern classifiers on whole-brain
data from each trial of the central study to determine if patterns
of brain activation could differentiate the four different cognitive

operations (Fig. 2a). As expected, all operations were reliably
classified (area under the ROC (AUC): averaged across opera-
tions, M= 0.74, SEM= 0.016; one-sample T-test: all effects were
more reliable than T(49)= 12.25, P= 1.11e−16, d= 1.733, 95%
CI [0.17, 0.24], see Supplementary Table 1 for the full statistics),
and distinguishable from one another, in line with our hypothesis
that these operations indeed have dissociable neural origins.
Importantly, although both suppress and clear require that
nothing be held in mind, they were highly differentiable from
each other (classifier accuracy, T(99)= 12.46, P < 0.001, d=
1.246, 95% CI [0.25, 0.34]). Moreover, both were differentiable
from replace (T(149)= 22.42, P < 0.001, d= 1.831, 95% CI [0.33,
0.45]), suggesting that participants were indeed engaging in dif-
ferent strategies to implement these different removal instruc-
tions. The classifier importance maps21 for these operations
shown in Fig. 2b indicate that unique regions distributed across
frontal, parietal, and occipital regions were critical for identifying
the engagement of each operation. These regions are consistent
with those identified via a prior univariate fMRI analysis15, and
the pattern of which was replicated in a univariate fMRI analysis
of the current data set (see Supplementary Fig. 1). We replicated
these within-subject classification results using between-subject
classifiers (accuracy M= 0.4, SEM= 0.012, all effects are more
reliable than T(48)= 6.4, P= 6.2e−08, d= 0.914, 95% CI [0.06,
0.12], Fig. 2a, right, Supplementary Table 1) in which all indivi-
duals’ voxels in MNI space were aligned anatomically. The suc-
cess of this procedure, combined with the group-level univariate
results and classifier importance maps, demonstrates that similar
neural processes were recruited for each operation across
participants.

Changes to information being removed. With regards to our
second objective, which was to determine the degree to which
each of these removal operations limits access to the repre-
sentation of information in WM, we also utilized machine-
learning classifiers. In this case, however, the classifiers were
trained not on the operation performed but rather with regards to
the nature of the information in WM, that is, the (visual) cate-
gories from which our items were drawn. To create these classi-
fiers, participants performed a separate functional localizer task in
the MRI scanner prior to performing the central study. Partici-
pants were presented with the same items used in the central
study, one at a time. To promote attention towards the stimuli,
they rated the desirability of each item on a four-point scale (see
the “Methods” section for details). Importantly, images belonged
to three categories (faces, fruits, and scenes) with three sub-
categories within each category (face: actor/politician/musician;
fruit: apple/grape/pear; scene: beach/mountain/bridge). Brain
activity patterns evoked by these images were successfully dif-
ferentiated by applying multivariate pattern analyses at the
category-, subcategory-, and item-specific levels (Fig. 3, see the
“Methods” section and Supplementary Table 2 for details), and
therefore these data could be used to evaluate changes in the
representation of items within WM during the central study.

Once the pattern of activity for each category had been
identified in the localizer data, these patterns could then be
applied to the central study data. Prior work has demonstrated
that using neural pattern classifiers to decode the status of
information in WM reveals only the subset of information in
WM that is currently in the focus of attention8,10. Unattended
information in WM may not exert a sustained neural signature,
but this information is nonetheless in WM as it can be identified
using external stimulation methods or by redirecting internal
attention to that information22,23. Therefore, the results for
decoding representational status that are described next are best
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interpreted as reflecting the attentional state of an item in WM,
rather than the presence or absence of that item in WM. The
latter issue is addressed by additional analyses evaluating
consequences of various methods of removal on subsequent
encoding of new items.

As would be expected if participants could differentially
manipulate items, when participants were instructed to replace
an item, that item’s neural category representation dropped to
baseline more quickly than when they were instructed to
maintain the item (windows 1–5, more reliable than T(49)=
3.55, P= 8.50e−04 (FDR corrected), d= 0.503, 95% CI [0.003,
0.03], Fig. 4a, Supplementary Table 3). Furthermore, an increase
in classifier evidence was observed for the category of the new
item to which individuals switched their attention on replace
trials. To statistically evaluate this increase, we compared it with
an empirical baseline of classifier evidence for an irrelevant
category from suppress and clear trials. This baseline was
computed separately for each participant by randomly sampling
an irrelevant stimulus category from each suppress and clear trial
(there were no differences between these trial types for all time
windows, less reliable than T(49)= 1.80, P= 0.390, d= 0.255,
95% CI [−0.01, 0.04], and thus suppress and clear trials were
averaged for the baseline). For example, if Anne Hathaway (a

face) was suppressed, we would select randomly the fruit or scene
category evidence from that trial to contribute to the baseline. On
replace trials, the increase in classifier evidence for the
replacement item rose significantly above this baseline (windows
4 and 5, more reliable than T(49)= 6.73, P= 4.39e−08, d=
0.951, 95% CI [0.03, 0.09], Fig. 4a, Supplementary Table 3). This
verifies that evidence of replacement of one item with another
was found only for replace trials, and not for either suppress or
clear trials.

Additionally, the three removal operations (replace, clear,
suppress) had unique impacts over time on the representation of
the item being removed. These differences are highlighted by
depicting the time course of removal of information for each
operation relative to the maintain condition (Fig. 4b, top).
Qualitatively, the representation decoding trajectory for clear
trials falls in between replace and maintain. Somewhat para-
doxically the trajectory for suppress is quite similar to that for
maintain, suggesting that a representation must be within the
focus of attention in order for it to be suppressed24.

Note that we decoded the item-specific neural patterns being
represented rather than neural activation intensity per se.
Interestingly, the univariate neural activation in the ventral
stream was decreased for suppress compared to maintain, while
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Fig. 1 Behavioral paradigm and fMRI procedures. a In the central study, on each trial, participants viewed a picture (a face, fruit, or scene) for 2.76 s.
While images of famous faces (actors, musicians, and politicians) were used in the experiment, the authors’ faces are featured in the figures instead. Next,
a screen appeared for 2.76 s indicating which one of four different cognitive operations (maintain, replace, suppress, clear) should be applied to the just-
viewed image. This screen was followed by a screen with a fixation cross whose duration varied from 2.3 to 4.41 s. b Brain data from a perceptual localizer
task (left) were used for multi-voxel pattern analysis (MVPA) for stimulus category-level and subcategory-level decoding, and item-level representational
similarity analyses (RSA) of voxel activity in the ventral visual stream (VVS) ROI. These analyses were then applied to brain data from the central study to
enable decoding of information within the focus of attention in working memory (WM). Note that whole brain data was used for the subcategory classifier
to capture semantic differences across subcategories (e.g., actors vs. musicians). Additionally, whole brain data from the central study was used for pattern
classification of the cognitive operation being performed on each trial.
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the multivariate results were equivalent for these two operations.
This pattern suggests that suppression may promote sharpening
of the representation to selectively suppress the target. Repeated
presentations of a stimulus, which produces a reduction of
activation as assessed by univariate approaches, has been shown
to be associated with either increased multivoxel pattern classifier
evidence (i.e., representational sharpening), or with decreased
evidence25,26. Critically, our results propose that suppression may
actively identify and target the representation of the item in WM
that is to be removed rather than simply inhibiting WM activity
in general. This finding is consistent with our recent study
demonstrating that intentional forgetting of a picture stimulus
produced stronger (sharper) multivariate representations of the
targeted item during the forgetting attempt24.

Data were evaluated for five 1.38 s (3 TR) time windows
beginning at the onset of the manipulation instruction at 2.76 s
after stimulus onset and extending to 9.66 s post-stimulus onset.

Results show that replace had the largest drop in category
classifier evidence for the WM item, followed by clear and then
suppress. Pairwise comparisons indicate that replace was reliably
lower than clear (windows 2–5, more reliable than T(49)= 3.38,
P= 0.002, d= 0.479, 95% CI [0.01, 0.03]) and suppress (all 5
windows, more reliable than T(49)= 3.8, P= 3.95e−04, d=
0.538, 95% CI [0.01, 0.03]). Differences between clear and
suppress only emerged towards the end of the trial (windows 4
and 5, more reliable than T(49)= 2.64, P= 0.011, d= 0.373, 95%
CI [0.003, 0.03]). These analyses were repeated using item-level
decoding (Fig. 4b, bottom) which revealed a similar ordering of
results for the degree of removal (replace > clear > suppress; all
pairwise are more reliable than T(49)= 3.71, P= 5.35e−04, d=
0.524, 95% CI [0.02, 0.05] for significant time windows, see
Supplementary Table 3 for the full statistics).

In addition to the degree to which classifier evidence drops, we
can also examine when that drop becomes significant. In Fig. 4b,
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significance markers (triangles) indicate the initial time window
in which the classifier evidence for the memory target in one of
the removal conditions is statistically below the classifier evidence
from maintain. At the category-level (top row), replace shows the
earliest onset of removal (window 1: 2.76–4.14 s; one-sample T-
test, T(49)= 3.55, P= 8.50e−04, d= 0.503, 95% CI [0.01, 0.03]),
followed by clear (window 2: 4.14–5.52 s; T(49)= 2.96, P= 0.006,
d= 0.419, 95% CI [0.003, 0.02]) and then suppress (window 4:
6.9–8.28 s; T(49)= 3.97, P= 0.001, d= 0.562, 95% CI [0.01,
0.03]). Complementary item-level decoding analyses were then
performed on these data using a weighted representational
similarity analysis (RSA; see the “Methods” section). Estimates of
the onset for removal of information from the focus of attention
differed for the item-level analysis (bottom row), in which
suppress showed the earliest indication of removal (window 2:
4.14–5.52 s; T(49)= 2.97, P= 0.008, d= 0.42, 95% CI [0.01,
0.03]). The discrepancies between the item-level vs. category-level
analyses regarding onset of removal from attentional focus might
be due to reduced sensitivity in these two types of analyses.
However, they might also reflect a meaningful cognitive
difference such that suppression first impacts item-level details
of a stimulus before impacting its general category-level
information. Further research is needed to differentiate between
these two possibilities.

Taken together, these brain decoding analyses demonstrate
that there are at least three unique cognitive operations that can
be invoked to remove an item from WM. By tracking the
attentional focus of WM during the removal attempts, we found
that replacing an item had the largest impact on that item’s
attentional status, reducing it at both the category and item levels.
Clearing the mind of all thought yielded similar results to that of
replace but to a lesser degree. The difference between these two
conditions may arise because in replace, a new representation
overrides the prior representation in the focus of attention, or
because in the clear condition attentional focus is more diffusely
removed as to apply to all thought. Finally, suppress had the least
impact on the item’s attentional status, having minimal effects at

the category level, while subtly reducing the degree to which the
stimulus representation remains in the focus of attention at the
item level. This result suggests that, similar to recent findings in
directed forgetting, it may be necessary to maintain at least some
information about an item in order to target it for suppression24.

Impacts on encoding after removal. With regards to our third
objective, we evaluated the degree to which these operations show
distinct consequences on encoding of subsequent items into WM.
As discussed above, the WM representation decoding results in
Fig. 4 reflect the attentional state of the items in WM, not their
mnemonic state. It is possible for a WM item to become removed
from the focus of attention, thus un-decodable from brain
activity, but not forgotten and easily retrieved back into the focus
of attention4. Therefore, to address the question of whether an
item has truly been removed from WM, and not just neurally
deactivated, we investigated the impact of these different removal
operations on subsequent encoding of new information, which
should reflect the status of the information that was to be
removed. The logic here is that if an item has indeed been
removed from WM, it should not interfere with the encoding of
new information. However, if the item was not removed from
WM, it should produce proactive interference during the sub-
sequent encoding of new information. Proactive interference27

occurs when previously learned information interferes with new
learning, leading to longer response times (RTs) and more false
alarms28,29. The ability to encode multiple items into WM at the
same time is limited by the extent to which those items are
represented by separate neural populations30. Based on the idea
that similar items in semantic memory involve somewhat over-
lapping representations31,32, proactive interference should limit
the ability to clearly encode a subsequently presented item that is
semantically similar. Thus, to the degree that an item is indeed
removed from WM, it should facilitate encoding of subsequent
items by reducing proactive interference33. For example, effec-
tively removing an image of Anne Hathaway from WM should
impact the subsequent encoding of Bernie Sanders more than

WM representation classifier from localizer: 5-fold (run) cross-validation
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subsequent encoding of an apple because the representations of
Anne Hathaway and Bernie Sanders have more overlapping
features and neural representations than do Anne Hathaway and
the apple30.

We examined the impact of the different operations on
subsequent encoding via the brain decoding results. Our
approach was to use item-level decoding via RSA to compute
the encoding fidelity for each image that was viewed in the central
study. This measure reflects the correspondence between the
average response pattern to a given image during the functional
localizer task and the neural response pattern for an image viewed
during the central study (Fig. 5a, see the “Methods” section). This
measure was then examined for the image presented in each trial
based on two features of the previous trial: the category of the
previous image (same or different) and the operation performed
on that previous image (Fig. 5b). To the degree that the
representation of the item in the prior trial lingers in WM, it

should reduce the encoding fidelity of related items on the
subsequent trial (i.e., those in the same category) and produce
proactive interference (i.e., worse encoding fidelity for same
category vs. different category images). However, if it has indeed
been removed from WM, such proactive interference should be
reduced, and potentially even reversed34.

Providing evidence that such proactive interference can indeed
occur, following maintain trials, there was a reduction in encoding
fidelity for new items that were of the same category as the item that
was maintained relative to items from a different category (T(49)=
2.96, P= 0.005, d= 0.418, 95% CI [0.01, 0.05]; Fig. 5b). This result
confirms that holding an item in mind without deliberately
expunging it leads to proactive interference when encoding new
information into WM. Both replace and clear also produced
proactive interference effects (more reliable than T(49)= 2.35, P=
0.023, d= 0.332, 95% CI [0.003, 0.05], Supplementary Table 4) of
similar magnitude, suggesting that neither of these mechanisms
removed the information of the initial item from WM. Note that
results for replace here are with respect to the first item on those
trials, reflecting only those trials in which the next item was from a
different category than the replacement item from that trial (e.g.,
replace trial N: Category 1⇒ switch to Category 2; trial N+ 1:
{Category 1 (for same) or Category 3 (for different category)}).
Results for replace trials with respect to the replacement item also
show evidence of proactive interference on the next trial (see the
“Methods” section). Critically, for suppress trials this interference
was eliminated, suggesting that the suppress operation is effective in
removing or reducing information in WM.When comparing across
operations, the same-minus-different encoding fidelity was sig-
nificantly higher for suppress than the other operations (one-way
ANOVA, F(3, 147)= 11.76, P= 6.00e−07, η2= 0.193;35 pairwise
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(green), the item being replaced on replace trials (blue), the item that
serves as a replacement on replace trials (light blue), and an empirical
baseline of trial-irrelevant items selected randomly from suppress and clear
trials (gray). Data between discrete data points at each TR (460ms) were
interpolated and are presented as ribbons whose width represent the mean
± 1 SEM for n= 50 participants. Triangle indicates the replace-new start
point defined as the first 3-TR window (1.38 s) in which the decoding
evidence for the replace-new item was reliably greater than baseline.
b Category-level (top) and item-level (bottom) decoding evidence for each
of the three removal operations, replace (blue), suppress (red), and clear
(orange), subtracted from that for maintain trials at each timepoint.
Deviations below zero indicate a reduction in information in brain activity
below maintenance of the to-be-removed item. Triangles indicate the
removal start point for each condition, defined as the first 3-TR window
(1.38 s) in which the decoding evidence for one of the trial types was
reliably below zero (start point for classifier evidence: replace, P= 8.5e
−04; clear, P= 8.73e−04; suppress, P= 0.001; for RSA: suppress, P=
0.008; replace, P= 0.002; clear, P= 0.002). Width of the data ribbons
indicates the mean ± 1 SEM for n= 50 participants. Statistical comparisons
between conditions are indicated in the charts below each plot with dark
gray cells indicating statistical significance, *P < 0.05, two-sided, repeated
measures pair-wise T-tests (FDR corrected). For the category-level
trajectories of classifier evidence, the statistical comparisons were Ps <
3.95e−04 for replace vs. suppress across the significant windows, Ps <
0.002 for replace vs. clear, and Ps < 0.028 for clear vs. suppress. In the
item-level trajectories of RSA correlations, the statistical comparisons were
Ps < 4e−04 for replace vs. suppress, P= 4.41e−04 for replace vs. clear,
and P= 5.35e−04 for clear vs. suppress. See Supplementary Table 3 for full
statistics. Source data are provided as a Source Data file.
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comparisons with Tukey–Kramer correction, more reliable than
T(49)= 4.73, P= 1.11e−04, d= 0.669, 95% CI [0.04, 0.09]) with no
differences across the other operations (less reliable than P= 0.968,
d= 0.065, 95% CI [−0.03, 0.04]). Note that there were no reliable
differences for the different-category encoding fidelity across
operations indicating an equivalent baseline (less reliable than
P= 0.096, d= 0.335, 95% CI [0.003, 0.03]), with differences only
observed for the same-category analysis (more reliable than P=
7.22e−04, d= 0.588, 95% CI [0.02, 0.06]). This pattern of results is
consistent with prior work showing that engaging memory
suppression through directed forgetting can reduce proactive
interference in WM, an effect believed to result from the
attenuation of the representation of the to-be-forgotten informa-
tion33. In fact, suppression here led to a relative advantage for
encoding information from the same-category as compared to a
different-category on the next trial (T(49)= 4.41, P= 5.66e−05,
d= 0.624, 95% CI [0.02, 0.06]). While speculative, this proactive
facilitation may result from lingering categorical information in
WM that has been stripped of item-specific details from the
suppress operation. This generic category information may then be
more easily repurposed to encode the new same-category stimulus
with high fidelity.

These encoding fidelity results might be considered surprising
based on the WM representation decoding results from Fig. 4b,

which show that replace and clear led to the greatest reduction in
information corresponding to the item being removed from WM.
Yet, these operations did not reduce proactive interference on the
subsequent trial. It was only the suppress operation that reduced
interference, and in fact, facilitated subsequent encoding for
related information.

While this pattern may seem paradoxical, it likely indicates that
suppression is a process which modifies the active representation
of an item in some way that successfully reclaims the neural
resources used to keep the representation active in WM24.
Together, these results suggest that for an item to be truly
removed from WM, that mere deactivation of its neural
representation (and hence downgrading of its attentional status)
is insufficient. This dovetails with recent ideas about a temporary
removal process4 by which an item can be removed from the
focus of attention in WM but remains dormant so as to be easily
accessed and reactivated. This process reflects only the temporary
inattention to an item, rather than its removal per se. Instead, an
additional process—here invoked by an instruction to suppress
that item—is required to reduce its representation in WM and
eliminate its interference on future processing. This finding is in
line with the idea of a permanent removal process involving the
active unbinding of an item from its context in WM that truly
eliminates the information from mind4,36.

Encoding fidelity: item-level RSA decoding
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Behavioral consequences of removal. In the neuroimaging study
we specifically did not want to query an individual’s memory of
an item after it was manipulated. We made this design decision
because inserting such a query as that would have precluded us
from examining how the removal operations influenced
encoding on the subsequent trial (i.e., that query would have
been an intervening and confounding event). Hence, a separate
behavioral study was designed to examine how each of the
removal operations influences the ability to make a subsequent
WM decision about an item that was manipulated. We evaluated
the behavioral consequences of the three removal operations by
measuring the RT to recognition probes after each operation
(Fig. 6; see the “Methods” section). Briefly, on each trial, two
target pictures were encoded for 2.76 s. Next a cue appeared for
1.76 s indicating how one of the items (which randomly varied
between the left and right) was to be manipulated, followed by a
delay period of 1 s. Next a recognition probe lasting 1 s was
shown and participants responded as to whether the probe had
been presented at the beginning of the trial. Half of the probes
consisted of a target item (either the manipulated or the non-
manipulated item) and required a Yes response, while the other

half consisted of a foil from a recent trial or a novel stimulus,
both of which required a No response. Task instructions made
explicit that participants should respond Yes to items that
belonged to each trial regardless of whether or not the item was
manipulated. We excluded participants (N= 50) with accuracy
lower than 75% on any trial type to ensure that we did not
analyze data from participants who may have been confused
about the task. The remaining participants (N= 208) performed
exceedingly well on the task (~95% accuracy), and no statisti-
cally significant differences in accuracy were noted across con-
ditions. Only data from positive probes (i.e., those requiring a
Yes response) are analyzed in the current study. As expected, in
the maintain condition, RTs for correct Yes responses were
faster on recognition probes of items that were maintained
(T(70)=−2.47, P= 0.016, d= 0.29, 95% CI [−30.92, −3.32]),
compared to non-manipulated items from the same set of trials.
This pattern was also observed for items that were designated to
be replaced (T(207)=−2.47, P= 0.014, d= 0.17, 95% CI
[−16.44, −1.85]), compared to baseline items that were not
manipulated in that condition. This effect, however, was
reversed for suppressed items, which yielded slower RTs relative
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to baseline (T(69)= 2.30, P= 0.025, d= 0.27, 95% CI [2.28,
32.32]), suggesting that indeed suppressing representations of
these items made them more difficult to access. There was no
distinction between the two items on clear trials (as both items
were to be cleared), so this within-condition comparison was not
possible for cleared items. In addition, there were no differences
for non-manipulated items across the other three conditions
F(2, 184.18)= 0.126, P= 0.881, η2=−7.4e−07), indicating that
the baselines against which these effects were calculated did not
differ between conditions. Nonetheless, there was a significant
difference between manipulated items across conditions (F(3,
347.98)= 5.211, P= 0.002, η2= 0.01), with planned pairwise
comparisons demonstrating a significant difference for maintain
vs. suppress (T(133.94)=−2.30, P= 0.023, d= 0.39, 95% CI
[−58.56, −4.40]) and suppress vs. clear (T(122.53)= 2.01, P=
0.047, d= 0.31, 95% CI [0.33, 49.43]), but no difference for
maintain vs. replace (F(1, 101.5)= 2.92, P= 0.09, η2= 0.001,
95% CI [−2.14, 30.99]). Additionally, there were significant
interactions between operation and probe type (manipulated,
non-manipulated) on RTs for suppress vs. maintain (F(1,139)=
11.35, P= 0.001, η2= 0.01) and suppress vs. replace (F
(1,345.06)= 9.30, P= 0.002, η2= 0.005]). Hence, maintaining
an item in WM or having it targeted for replacement with
another item allows participants to more quickly endorse having
encoded the item on the current trial. Importantly, only sup-
pressing an item slows the recognition judgment for that item.
Combined with the neural finding that only suppression reduces
proactive interference, this finding suggests that suppression
produces the most effective removal of information from WM.
Together with the neural results showing a selective reduction in
proactive interference from suppression (Fig. 5), the selective
slowing of recognition for suppressed items demonstrates the
precise impact that suppression has on the contents of WM.
This contrasts with more broad consequences from the sup-
pression of episodic memory retrieval, which can produce for-
getting of unrelated experiences in close temporal proximity to
the time of suppression37. Understanding the relationship
between these unique forms of memory suppression is an
exciting area of ongoing research.

Discussion
Altogether, this study demonstrates that applying multivariate
analyses to brain activity patterns allows researchers (a) to verify
that people have indeed removed information from mind, (b) to
identify the consequences to the representation of the informa-
tion being removed, and (c) to assess its impact on future pro-
cessing. Whereas switching to a new thought or clearing the mind
of all thoughts will reduce the attentional focus on the unwanted
item, only by deliberately suppressing that item will its repre-
sentational shadow be removed from the WM system thus freeing
up those neural resources for encoding new information
into WM.

These results have important implications for understanding
basic cognition. First, they demonstrate that there at least three
different methods of removing information from WM—replace,
suppress, and clear—that have distinct effects on the repre-
sentation of the information being manipulated. Second, as dis-
cussed above, the subsequent encoding fidelity results suggest that
information in WM may be either temporarily removed from the
focus of attention, which still incurs a cost via proactive inter-
ference on subsequent encoding, or more permanently removed
from WM, thereby eliminating proactive interference and facil-
itating new learning. Third, they also suggest the possibility that
different levels of representations for an item in WM—e.g., spe-
cific item information and general category information—may be

differentially affected by cognitive control operations (Fig. 4b), a
dissociation which has been previously demonstrated in the
updating of episodic memories38,39.

These results are also likely to have important implications for
understanding the etiology and treatments of psychiatric dis-
orders. While intrusive thoughts are generally associated with
PTSD—and are captured by the intrusions cluster of the diag-
nostic criteria40—they occur in many psychiatric disorders.
Depression is characterized by intrusive negative thoughts and
memory41, anxiety by repetitive intrusive concerns about future
negative events42, obsessive-compulsive disorder (OCD) by
thoughts of contamination and/or harm to self or others43, and
schizophrenia by intrusions of semantic and sensory informa-
tion44. Hence one question for future research is the degree to
which the cognitive operations examined in the current study are
impaired or disrupted in such populations.

In addition, our results have implications for considering the
degree to which suppression of thoughts is disadvantageous. For
example, in PTSD suppression of the long-term memory of the
traumatic event is thought to preclude it from being manipulated
or modified to lessen the linkage of it and its attributes (e.g., loud
noises) to fear. A common intervention, exposure therapy, is
designed to bring the thought to mind so that the linkage of
emotional information (e.g., fear) to information in episodic or
semantic memory can be altered or re-structured45.

Our results suggest that considering the role of WM processes
in such disorders may also be fruitful. Once a memory has
reached consciousness and entered WM, suppressing a thought
may be advantageous, as this process allows for the complete
removal of the information from mind. In comparison clearing or
replacing that information may only temporarily shift attention
away from it, with a trace of the information still existing in
memory4. These findings might suggest a tiered approach to
interventions regarding control over thought. It may be that
training an individual to shift their attention by redirecting (i.e.,
replacing) thought or through mindfulness techniques (i.e.,
clearing thoughts) could be a fruitful first step followed by
training to exert cognitive control to suppress the thought, and
thereby reduce its potency. Further work will need to explore
these ideas, but our results, nonetheless, point the way to
potentially fruitful translation to clinical practice.

Methods
Participants. A total of 60 participants (20 male; age, M= 22.97, SD= 4.77,
handedness: right= 60) were recruited from the Boulder, CO, area for the fMRI
study. Five participants failed to remain awake throughout all phases of the study
and were excluded. An additional five participants were excluded due to poor fMRI
classifier performance for the four cognitive operations in the central study
(chance-level performance on AUC= 0.5), which indicates lack of engagement or
inability to perform the different mental operations. The remaining 50 participants
(17 male; age, M= 23.52, SD= 4.93) were included in all analyses. All participants
had normal or corrected-to-normal vision, provided informed consent, and were
compensated $75. The study was approved by the University of Colorado Boulder
Institutional Review Board (IRB protocol # 16-0249).

A total of 259 participants (166 female; age, M= 19.25, SD= 2.15) took part in
the behavioral study. One participant was excluded due to equipment failure, and
50 participants were excluded due to poor task performance (<75% accuracy for
positive and/or negative), resulting in a final sample of 208 participants (70
Suppress, 67 Clear, 71 Maintain, 208 Replace; 135 female; age, M= 19.17, SD=
1.34). All participants had normal or corrected-to-normal vision, provided
informed consent, and reported no history of brain injury, neurological or
psychiatric disorder, nor severe cognitive or psychological problems. The study was
approved by the University of Colorado Boulder Institutional Review Board (IRB
protocol #18-0571). Participants were collected via convenience sampling as
psychology students participating for course credit at the University of Colorado
Boulder. Power analyses indicated that small effect sizes of 0.2, 0.3, and 0.4 could be
detected with 0.8 power and an alpha of 0.05 with sample sizes of 277, 126, and 73
participants, respectively. As we expected to lose subjects due to stringent quality
assurance procedures, we enrolled as many participants as possible. We determined
that our final sample size (N= 208) was adequate to detect small effects, and the
sample size was consistent with, or larger than, similar studies33,37.
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Stimuli. Stimuli for the fMRI study consisted of colored images (920 × 920 pixels)
from three categories with three subcategories each: faces (actor/, musician, /
politician), fruit (apple, grape, pear), and scenes (beach, bridge, mountain). Faces
were recognizable celebrities and scenes were recognizable locales (e.g., a tropical
beach) or famous landmarks. Images were obtained from various resources
including the Bank of Standardized Stimuli46 and Google Images. Six images from
each subcategory were used, for a total of 18 images per category and 54 images in
total. All images were used for both the localizer and study phases of the
experiment.

Stimuli for the behavioral study consisted of colored images of familiar faces
(e.g. Ellen DeGeneres) and scenes (e.g. Golden Gate Bridge) that were obtained
from various resources including Google Images. There were 252 unique items per
category (504 images total). Importantly none of the images was ever repeated
across trials. To prevent stimulus-specific effect (e.g., familiarity), the images were
fully randomized across trials, conditions, and participants. For replace trials, a
subset of the images was used as replacement items (i.e., 24 items per category) and
this set was consistent across participants.

fMRI procedure. The experiment consisted of two phases completed in order: a
functional localizer and a central study. Prior to completing both tasks in the MRI
scanner, participants received training on the tasks outside of the scanner,
including nine trials of the functional localizer task (three of each category of
stimuli) and four self-paced trials of the central study (one trial per condition).
Both tasks involved presenting participants with the same set of color images,
though the tasks differed in what the participants were asked to do when presented
with these images. All stimuli were presented on a black background with task-
related words and fixation crosses shown in a white font. All stimuli were presented
via E-Prime (version 2.0.10.356)47.

The functional localizer task allowed for the characterization of multivariate
patterns of brain activity associated with attending to the different categories and
subcategories of visual stimuli. Participants were presented with images, one at a
time, and asked to rate the desirability of each image on a four-point scale. If the
image was a face, participants were asked to rate “How much you would like to
meet this person?”, if the images was a fruit, participants were asked to rate “How
much would you like to eat this fruit?”, and if the image was a scene, participants
were asked to rate “How much would you like to visit this place?”. The first 7
participants to complete the study made category judgments on these stimuli
instead. Participants were asked to make these ratings to promote attention
towards the stimuli. Note that the same 54 images were used in each operation, so
there was no bias of preference rating or stimulus-specific effects in any of the
operations. This design choice precluded obtaining behavioral data on specific
items. Additionally, to promote encoding of these stimuli, we informed participants
that they would be asked to recall the images during the subsequent study phase.
Across the entirety of the localizer task, participants completed five runs (6.17 min
each, 30.85 min total) for a total of 270 trials, 90 trials of each category, 30 trials of
each subcategory, with five trials of each image exemplar. A trial consisted of 3 TRs
(1.38 s) of a given image, followed by a jittered inter-trial interval ranging between
5 and 10 TRs (2.3–4.6 s), consisting of a white fixation cross on a black background.
Trials were grouped into subcategory-specific triplets (e.g., three actor/face image
trials in a row), with each image exemplar shown once per run, resulting in six
subcategory-specific triplets for each category within a single run. Each triplet was
followed by a 13 TR (5.98 s) fixation block and each run began with 13 TR (5.98 s)
instruction reminder screen. The order of subcategory-specific triples was
optimized for BOLD deconvolution using optseq248.

The central study was designed to allow us to track the representational status
of a WM item while it was being manipulated using five distinct cognitive
operations: maintaining an image in WM (maintain), replacing an image in WM
with the memory of an image from a different subcategory of the same
superordinate category (e.g., replacing an actor with a politician; replace
subcategory), replacing an image in WM with the memory of an image from a
different category (e.g., replacing an actor with an apple; replace category),
suppressing an image in WM (suppress), and clearing the mind of all thought
(clear). Note that results for replace subcategory and replace category trials were
nearly identical, and thus only replace category data are presented in the main
paper. We focused on category-level neural decoding (subcategory-level decoding
was insufficiently powered) and replace subcategory trials were not suited for this
analysis. For this reason, and to avoid biasing the operation classifiers, we excluded
replace subcategory data rather than combining it with replace category data. On
each trial (see Fig. 1a), participants were presented with an image for 6 TRs (2760
ms) followed by another 6 TRs of an operation screen instructing participants how
to manipulate the item in WM, and then a jittered inter-trial fixation lasting
between 5 and 9 TRs (2300–4140 ms), consisting of a white fixation cross centered
over a black background. The operation screen consisted of two words in the top
and bottom halves of the screen, presented over a black background. For the
maintain, suppress, and clear operations, the two words were the same: maintain,
suppress, or clear, respectively. In the two replace conditions, the word in the top
half was switch, whereas the word in the bottom half indicated the subcategory of
image that the participant should switch to (e.g., apple). During practice and before
the beginning of the task, participants were instructed to only switch to thinking
about an image that had previously been shown during the functional localizer

task. For example, if a participant was instructed to switch to thinking about an
apple, that apple should be one of the apples that was presented to them during the
localizer. Participants completed 6 runs of this task (9.01 min each, 54.05 min
total), resulting in a total of 360 trials: 72 trials per operation, of which 24 trials
were image category-specific trials per each operation condition. Each run had 40
TR long (18.4 s) fixation blocks at the beginning and end of the run. Within a
single run, 12 trials were presented for each of the five operations, resulting in a
total of 60 trials per run. Each image exemplar appeared at least once per operation
condition across the entirety of the task. Trials were ordered pseudo-randomly
within runs, with the order of trials optimized for BOLD deconvolution using
optseq248.

Behavioral procedure. The behavioral study design consisted of a mixed within-
and between-subjects design to measure the effects of the different WM operation
conditions with unique items across trials. Participants were assigned to one of
three groups that differed in the WM operation required: maintain, suppress, or
clear. All participants additionally completed trials with the replace operation.
Prior to the main task, participant completed a familiarization task for the repla-
cement items to ensure that the items could be retrieved based on their names. In
this familiarization task, on each trial, a single image appeared at the center of the
screen along with two item–name options below the image for 4 s. Participants
responded to the name that matched the image using their left or right index finger.

In the main task, participants in each group performed two blocks of trials, one
requiring their group-specific operation (e.g., maintain) and the other requiring the
replace operation. Order of operations was counterbalanced across participants
(i.e., half of participants completed the replace condition first). Participants
received practice trials prior to each block. Each operation consisted of 72 trials for
a total of 144 trials, and the task lasted ~30 m. On each trial (see Fig. 6a), two items
(i.e., one face and one scene) were presented for 2.76 s, one to each side of a central
fixation cross with position counterbalanced, followed by an instruction screen for
1.76 s with an operation cue on one side of the central fixation. The location of the
cue indicated which item had to be manipulated with the given operation. This
item is the manipulated item while the un-cued item is the non-manipulated item.
Cues for the clear operation appeared in the middle of the screen as both items
were to be cleared from WM. The cues appeared in different colors and shapes
depending on operations as following: green O for maintain, blue <item name of
the replacement item> for replace, red X for suppress, and orange cloud for clear.
Position of the cue for the maintain, replace, and suppress conditions varied
randomly between the right and left. A 1-s retention interval followed with a
central fixation cross. Afterwards, a probe picture was presented at the center of the
screen for 1 s. Participants had to indicate, within 2.5 s, whether the probe had
appeared at the beginning of the trial (regardless of whether the item was
manipulated or not) with their right or left index fingers, with response mappings
counterbalanced across participants. The next trial began after a 1.5 s blank inter-
trial interval. Valid probes appeared on 50% of the trials, which consisted of either
a manipulated or non-manipulated item. Negative probes consisted of 66.6% items
seen during the previous trial and 33.3% novel items. All stimuli were presented via
Psychopy2 1.93.1 using Python3.

Data acquisition. MRI data were acquired on a Siemens PRISMA 3.0 Tesla
scanner at the Intermountain Neuroimaging Consortium on the campus of the
University of Colorado Boulder. Structural scans were acquired with T1-weighted
sequence, with the following parameters: repetition time (TR)= 2400 ms, echo
time (TE)= 2.07 ms, field of view (FOV)= 256 mm, with a 0.8 × 0.8 × 0.8 mm3

voxel size, acquired across 224 coronal slices. Functional MRI (fMRI) scans for
both the functional localizer and central study were acquired using a sequence with
the following parameters: TR= 460 ms, TE= 27.2 ms, FOV= 248 mm, multiband
acceleration factor= 8, with a 3 × 3 × 3mm3 voxel size, acquired across 56 axial
slices and aligned along the anterior commissure-posterior commissure line. For
the functional localizer task, five runs were acquired in total, with each run con-
sisting of 805 echo planar images (EPI), for a total of 4025 images across the five
runs. For the central study, six runs were acquired in total, with each run consisting
of a 1175 EPIs, for a total of 7050 images across the six runs.

Regions of interest. To characterize the WM representations of the images used in
this study, we focused analyses on the ventral visual stream (VVS) in the occipi-
totemporal lobes49,50. This mask consisted of the following anatomically defined
regions, derived from the Harvard-Oxford Cortical atlas and thresholded at a 20%
probability: intracalcarine cortex, lingual gyrus, lateral occipital cortex (inferior),
occipital fusiform gyrus, occipital pole, parahippocampal gyrus (anterior and
posterior divisions), temporal fusiform cortex (anterior and posterior divisions),
temporal occipital fusiform cortex, inferior temporal gyrus (posterior and tem-
porooccipital), middle temporal gyrus (posterior, anterior, temporooccipital),
superior temporal gyrus (posterior and anterior), and temporal pole. To construct
this mask for each participant, thresholded masks of these regions (bilaterally) were
summed together and converted to individual’s native brain space. The whole-
brain mask consists of only gray matter that was segmented based on a high-
resolution structural brain image using FMRIB’s automated segmentation tool
(FAST) provided in FSL. The ROI masks were then binarized so that voxels within
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the mask had a value of 1 and voxels outside of the mask had a value of 0 (VVS:
M= 13,825, SD= 1514 voxels; whole brain: M= 37,343, SD= 2962, Fig. 1b).

Univariate fMRI analyses. fMRI preprocessing and analyses were carried out
using the FSL suite (version 5.0.10) (http://fsl.fmrib.ox.ac.uk). The first 10 EPI
volumes of each run were discarded to allow the MRI scanner to reach steady-state
stability. Preprocessing included motion correction via ICA-AROMA (version 0.3
beta)51, an independent component analysis method for removing motion, high-
pass filtering (100 s), and BET brain extraction52. Registration of EPI images into
subject- and standard-spaces was executed using FLIRT (version 6.0)53. Individual
subject EPI images were registered to that subject’s MPRAGE structural image via
linear Boundary-Based Registration54 and then registered to the MNI-152 template
via 12 degrees of freedom linear transformation. The resulting EPI images were
smoothed using an 8 mm full-width half-maximum Gaussian smoothing kernel.
FEAT (version 6.00) was used to model effects during the 6 TRs (2760 ms) during
which the manipulation of the item was occurring, with fixation blocks at the
beginning and end of each run serving as a baseline. The TRs during the pre-
sentation time of the stimulus and the TRs during the inter-trial interval fixations
both served as EVs of no interest. Following Banich et al. (2015)15, we examined
three main contrasts. We used a voxel-wise threshold of P < 0.0025 after permu-
tation testing of 10,000 iterations (calculated via Randomise (version 2.9) in FSL) as
well as a cluster-thresholding which was corrected for multiple comparisons by
using the null distribution of the maximum (across the image) cluster mass. Results
are presented in Supplementary Fig. 1 and Supplementary Tables 5–9.

Multivariate pattern classification. FSL (version 5.0.8) (http://fsl.fmrib.ox.ac.uk)
was used to preprocess the fMRI data. Functional volumes were corrected for
motion, aligned to the mean volume of the middle run, temporal high pass filtered
(128 s), and detrended. Timepoints with excessive motion were removed (frame-
wise displacement, threshold= 0.9 mm55; M= 11.4 TRs removed, SD= 17.8).
Before further analysis, the first 10 TRs of each run were trimmed to remove
unstable signals. The Princeton MVPA toolbox (www.pni.princeton.edu/mvpa) for
MATLAB (2019b) was used for all within-subject fMRI pattern classification
analyses18,20,56 with L2-regularized, non-multinomial (one-vs.-others, for each
category) logistic regression. All classifiers were trained and tested within each
participant in their native brain space. Two sets of fMRI classifiers were built: (1)
WM representation classifiers trained on functional localizer task data, and (2)
WM operation classifiers trained on central study data. To validate classifier per-
formance, k-fold leave-one-out cross-validation was performed across all runs: five
runs of localizer data for WM representation classifiers (M= 4.86 runs, with a few
runs missing across participants), and six runs of study data for WM operation
classifiers (M= 5.72). Feature selection was performed for each training set using a
voxel-wise ANOVA across classes (threshold: P= 0.05) with the regressors shifted
forward 4.6 s (10 TRs) to account for hemodynamic lag. To find the optimal L2
penalty value for each classifier’s best fitting model, the cross-validation was done
with different penalties in two steps: (1) eight iterations with a broad range of
penalties (from 0 to 10,000 with exponential increase) and then (2) 10 iterations in
a narrow range around the best penalty value from the first step. A single penalty
was chosen for each subject based on the maximum generalization performance
from this iterative penalty search.

The WM representation classifiers were trained on preprocessed data from the
functional localizer task. Data from the VVS ROI were used to build category-level
classifiers (3 classes: face/fruit/scene), and whole brain data were used to build
subcategory-level classifiers (9 classes: actor/musician/politician/apple/grape/pear/
beach/bridge/mountain). Trial regressors were modeled with a mini-block boxcar
(3 trials from a single subcategory per mini-block, 14.26 s (31 TRs)) and shifted
forward 4.6 s (10 TRs) to account for hemodynamic lag. Across the cross-validation
folds, the feature-selected voxels contained 55.83% of original voxels under each
individual’s VVS ROI for category (M= 7747, SD= 1642) and 69.93% of whole-
brain mask for subcategory (M= 26,145, SD= 5441). Classifier accuracy was
obtained from 5-fold cross-validation across localizer runs using the optimal
penalty for each participant (category: M= 1196.81, SD= 4427.01; subcategory:
M= 194.14, SD= 806.59). To verify the accuracy of the classifier, the one-sample
T-test was conducted for each class (i.e., category or operation). We used an alpha
level of 0.05 with two-tailed for all statistical tests. The accuracy of the WM
representation classifiers were reliably above chance at the category level (averaged
across categories: M= 0.81, SEM= 0.013, chance= 0.33, more reliable than
T(49)= 27.02, P < 0.001, d= 3.822, 95% CI [0.39, 0.45]) and at the subcategory
level (M= 0.33, SEM= 0.012, chance= 0.11, T(49)= 8.77, P= 1.31e−11, d=
1.240, 95% CI [0.12, 0.19], Fig. 3a, Supplementary Table 2). Classifier area under
the receiver operating characteristic (ROC) curve (AUC) scores were significantly
above baseline (0.5) at the category level (M= 0.91, SEM= 0.009, T(49)= 33.14,
P < 0.001, d= 4.687, 95% CI [0.35, 0.4]) and at the subcategory level (M= 0.75,
SEM= 0.010, T(49)= 12.21, P= 2.22e−16, d= 1.727, 95% CI [0.17, 0.24]).
Additionally, the WM representation classifier was replicated with a single penalty
value of 50 across participants, and the classifier accuracy and sensitivity remained
reliably above chance at the category level (accuracy: M= 0.80, SEM= 0.014, T
(49)= 26.74, P < 0.001, d= 3.781, 95% CI [0.38, 0.45]; AUC: M= 0.91, SEM=
0.009, T(49)= 32.76, P < 0.001, d= 4.632, 95% CI [0.35, 0.4]) and at the
subcategory level (accuracy: M= 0.32, SEM= 0.012, T(49)= 8.43, P= 4.27e−11,

d= 1.192, 95% CI [0.12, 0.19]; AUC: M= 0.75, SEM= 0.010, T(49)= 12.18, P=
2.22e−16, d= 1.723, 95% CI [0.17, 0.24]).

Data from all localizer runs were then used to re-train the WM representation
classifiers and decode the central study data. Training was done with an
individualized optimal penalty derived from the cross-validation analysis, and a
new feature selection was performed (category: 57.81% of the original voxels; M=
8021 voxels, SD= 1653; subcategory: 71.79% of the original voxels; M= 26,615
voxels, SD= 5268). These classifiers were reliably accurate at the category level
(M= 0.80, SEM= 0.012, more reliable than T(49)= 28.16, P < 0.001, d= 3.983,
95% CI [0.35, 0.4]) and the subcategory level (M= 0.28, SEM= 0.008, T(49)= 9.7,
Ps < 5.48e−13, d= 1.372, 95% CI [0.08, 0.12], Supplementary Table 2). These
classifiers were used to decode every timepoint to construct trial-averaged decoding
time series. A 13.8 s time window (30 TRs, unshifted, from the onset of each trial)
was used to evaluate the trajectory of the average classifier evidence for the WM
item’s category in each condition (Fig. 4a). The data were baseline corrected by
removing the mean target classifier evidence, separately for each condition, from
the first 2.76 s (6 TRs) from all subsequent time points. This procedure had no
effect on any statistical comparisons between conditions but centered the data at
trial onset to 0 rather than 0.45 (classifier evidence, ranging from 0 to 1). To
highlight the removal of information from WM, we then recoded these data using
the classifier evidence from maintain as a baseline by subtracting these values from
the classifier evidence values for the three removal conditions (Fig. 4b). For
statistical tests, we focused on a 6.9 s (15 TR) time window beginning at the onset
of the operation (TR 7) through the end of the longest fixation period (TR 21). This
analysis window was then segmented into five contiguous blocks (1.38 s [3 TRs] per
block) and a repeated-measure one-way ANOVA and pair-wise T-tests with false
discovery rate (FDR) for multiple comparison correction was applied to the
averaged target category classifier evidence scores in each block. To identify the
removal start point for each condition, one-sample T-tests were used in each block
to compare the classifier evidence scores against zero.

The WM operation classifiers were trained on preprocessed data from the
central study. Trial regressors for the five operations (maintain/replace
subcategory/replace category/suppress/clear) selected data on each trial during the
operation period (2.75 s, 6 TRs) and the subsequent fixation period (jittered from
2.3 to 4.41 s, 5–9 TRs) and shifted forward 4.6 s (10 TRs) to account for
hemodynamic lag. We included the fixation period in the regressor because we
found informative signals from a separate analysis in which the classification was
trained with small training time window (2.3 s, 5 TRs) to decode the middle time
point in that window (sliding-time-window classification). For example, the signal
on TR 3 was decoded with the classifier trained with {1–5} TRs window. The
training window was slid to decode the time points from the onset of each trial to
the end of the longest trial period (14.2 s, 31 TRs), when the regressor was shifted
forward by 4.6 s to account for hemodynamic lag. The WM operation classifier
with sliding-time-window was significantly high for all five operations in the
fixation period after adjusting for hemodynamic lag (10.58–14.2 s, 23–31 TRs;
averaged across conditions: M= 0.29 with chance level of 0.2, SEM= 0.011; one-
sample T-test, more reliable than T(49)= 4.76, P= 1.78e−05, d= 0.673, 95% CI
[0.03, 0.08]). To verify that the classifier accuracy in the fixation window, which
was partially overlapped with the next trial, reflects only the operation signals from
the current trial, we removed back-to-back trials that involved the same operation,
and the results were consistent (M= 0.29, SEM= 0.011, more reliable than
T(49)= 4.31, P= 7.87e−05, d= 0.609, 95% CI [0.03, 0.08]).

In the WM operation classifier, the feature-selected voxels were 59.60% of each
individual’s whole-brain mask (M= 22,325, SD= 5052). Classifier accuracy was
obtained from the 6-fold leave-one-run-out cross-validation with individualized
optimal penalty (M= 1459.22, SD= 338.67) derived iteratively as described above.
The classifiers were reliably accurate (M= 0.42, SEM= 0.016; one-sample T-test
vs. chance (0.2), more reliable than T(49)= 10.27, P= 8.28e−14, d= 1.452, 95%
CI [0.18, 0.27]), and sensitive (AUC: M= 0.72, SEM= 0.013; one-sample T-test vs.
chance (0.5), T(49)= 12.83, P < 0.001, d= 1.815, 95% CI [0.17, 0.24],
Supplementary Table 1) across all operations. We found that the replace
subcategory (M= 0.34, SE= 0.010) and replace category (M= 0.33, SE= 0.009)
was not distinguishable from each other at the operation level (paired T-test for
target vs. nontarget, less reliable than T(99)= 1.42, P= 0.16, d= 0.142, 95% CI
[−0.004, 0.03] for accuracy and evidence), thus we removed the replace-
subcategory condition from the main results. With the regressors for the four
operations (maintain/replace/suppress/clear), the voxels identified from feature
selection were 54.55% (M= 20,431, SD= 4882) of the whole-brain mask. The
cross-validation classification with optimal penalty (M= 653.27, SD= 2546.52)
also showed reliable accuracy (M= 0.51, SEM= 0.021, more reliable than T(49)=
10.26, P= 8.55e−14, d= 1.451, 95% CI [0.2, 0.3], Fig. 2a) and sensitivity (AUC:
M= 0.74, SEM= 0.016; T(49)= 12.25, P= 1.11e−16, d= 1.733, 95% CI [0.17,
0.24], Supplementary Table 1) across all operations. Paired T-tests were applied to
test target vs. non-target categories of classifier predictions for the comparisons
between suppress vs. clear and replace vs. the two removal operations. Finally, we
replicate the cross-validation with a single penalty value (penalty= 50), and the
classifier were still reliably accurate and sensitive (accuracy: M= 0.51, SEM=
0.021, more reliable than T(49)= 10.07, P= 1.62e−13, d= 1.424, 95% CI [0.18,
0.26]; AUC: M= 0.74, SEM= 0.016, T(49)= 12.16, P= 2.22e−16, d= 1.72, 95%
CI [0.17, 0.24], Supplementary Table 1). The classifier confusion matrix for all
classifiers (Figs. 2a and 3a) were generated with Python seaborn v0.8.057.
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To identify brain areas that contributed to the identification of each operation,
we generated classifier importance maps21. For each individual, positive and
negative importance maps were generated in subject native space. Positive maps for
an operation consisted of voxels whose: (a) mean z-scored fMRI activity for that
operation was positive, and (b) classifier weight was positive. These voxels
contributed to the identification of the operation when their activity was higher
than average. Negative maps consisted of voxels whose: (a) mean z-scored fMRI
activity for that operation was negative, and (b) classifier weight was negative.
These voxels contributed to the identification of the operation when their activity
was lower than average. Per the method described in McDuff et al. 21, voxels whose
mean fMRI activity and weight had opposing polarities were assigned an
importance value of zero and were ignored. Individual importance maps were then
z-scored, normalized to the Montreal Neurological Institute (MNI, 3 × 3 × 3mm3)
template. When z-scoring, both positive and negative values combined as absolute
values to normalize the values within a single distribution and were then separated
to their original maps. These maps were then combined across subjects and the top
5% of importance values were selected for the group-level positive maps and the
negative maps. These maps were then corrected with cluster-extent thresholding
(10 voxels) and smoothed with a 12 mm FWHM Gaussian kernel using FSL and
visualized using FreeSurfer (version 5.3)58 (Fig. 2b).

Classification between subjects. The BrainIAK toolbox59 with Python was used
for between-subject pattern classification analyses with L2-regularized (penalty=
50), non-multinomial (one-vs.-others, for each category) logistic regression. All
data from all participants (N= 50) were normalized to MNI standard brain space
and concatenated, so that all voxels are anatomically aligned across participants.
The first half of all runs was used for feature-selection, and the other half of the
data was used for training and testing the classifier. One participant was excluded
from this analysis due to missing half of their central study data, thus N= 49
participants contributed to this analysis. The top 10,000 voxels were first feature-
selected from the whole-brain gray mask segmented from standardized MNI brain
(17.13% of 58,229 voxels, ANOVA threshold: P < 0.001), and the feature dimen-
sions were then reduced to 70 components using principal component analysis
(PCA) provided in BrainIAK. This number of components was selected as the
optimal value to maximize classification accuracy using a repeated cross-validation
testing scheme. The same feature-selected voxels of the testing data were trans-
formed to component space and used for N-fold leave-one-participant-out cross-
validation across all participants, with the operation regressor shifted forward 4.6 s
to account for hemodynamic lag.

We also conducted another version of between-subject classification with
functionally aligned data using the hyperalignment procedure60 in BrainIAK. The
first half of the data was used for feature selection (top 5000 voxels per hemisphere
in each individual’s native brain space, 26.71% of M= 37,436 voxels, ANOVA
threshold: P < 0.005) and hyperalignment, and the other half was used for
classification. To create the template (i.e., common space) for each hemisphere to
which all participants’ voxels were aligned, we performed two steps. First, each
individual’s voxels were aligned to a reference, which was the first participant with
a full dataset, using Procrustean transformation. Then, for each step in this iterative
procedure, the reference was updated by averaging the current reference with the
newly aligned participant. In the second step, each individual’s voxels were aligned
again to the reference that was obtained from the completion of the first step. Then,
all individual’s features in the common space were averaged, and this group-
averaged feature set served as the final reference template. Finally, we obtained
transformation parameters for each participant, using this final template, and then
transformed the feature-selected voxels of testing data into the hyperaligned
common space. The hyperaligned features were then reduced using PCA (70
components, which was also the optimal value) and then used for cross-validation
classification. The classifier accuracy was reliably above chance for both of the
anatomically aligned (M= 0.403, SEM= 0.012, one-sample T-test: more reliable
than T(48)= 6.4, P= 6.2e−08, d= 0.914, 95% CI [0.06, 0.12], Fig. 2a,
Supplementary Table 1) and hyperaligned between-subject classifiers (M= 0.378,
SEM= 0.014, T(48)= 4.9, P= 1.13e−05, d= 0.7, 95% CI [0.05, 0.12]) across all
operations.

Representational similarity analysis. To decode the neural representation of
individual stimuli in the central study, we applied RSA19 with custom code in
MATLAB (2017a). Each stimulus in the central study was also viewed in the
localizer task (5 exposures per item across 5 runs). We defined a template pattern
of activity for each item (54 items total) from the localizer data and used this to
identify item-specific representations in the study data. To choose voxels for this
analysis, we performed a two-step procedure to identify category-selective voxels
and then item-selective voxels for each stimulus. Within the VVS ROI, we modeled
beta estimates using SPM12 for three categories (face, fruit, scene) in the localizer
data with boxcar regressors on mini-blocks (3 trials per mini-block, 14.26 s: 31
TRs) and motion parameters in a general linear model (GLM), utilizing a canonical
hemodynamic response function. To select voxels for each category within this
mask, a target vs. non-targets contrast (t-contrast in SPM) was computed (e.g. face
vs. {fruit, scene}). Voxels were selected that passed threshold (uncorrected P < 0.05)
and cluster correction (voxel extent= 10). Across the three categories, the total

number of voxels selected were 15.18% of original mask (M= 2125, SD= 434; face:
M= 2164, SD= 716; fruit: M= 1757, SD= 1007; scene: M= 2453, SD= 833).

The first round of feature selection for each item was to choose the appropriate
category-specific voxels from this GLM. The second round involved weighting the
voxels in an item’s category-specific mask based on GLM fits for that item. This
was done by specifying a unique regressor for each item in a single GLM (LS-A in
ref. 61). Item-specific beta estimates were computed by contrasting each item with
the 53 other items (e.g., t-contrast: item 1 vs. {items 2…54}; M= 0.69, SEM=
0.013 t-contrast betas). Each item appeared once in each of the five localizer runs.
The mean voxel activity pattern for an item was computed by averaging across the
five repetitions and weighting it with the item-specific t-contrast values. These
weighted item template patterns served as the reference to quantify the encoding
fidelity (i.e., the pattern similarity) of these items in the central study. To verify the
decodability of item-specific activity patterns in the localizer data, we correlated
data across the five repetitions of all six exemplars for each stimulus subcategory
(Fig. 3b). For RSA scores, correlation coefficients (Pearson r) were computed and
then converted using Fisher’s z transformation for statistical analysis. Clustering of
high-correlation scores along the diagonals of these matrices confirms that item-
specific patterns were more similar to repeated presentations of the same item
(M= 0.3, SEM= 0.015) than to other items within a single subcategory (M= 0.09,
SEM= 0.007) across all subcategories (paired T-test, T(49)= 24.78, P < 0.001, d=
3.504, 95% CI [0.2, 0.23], Fig. 3b). Across all 54 items, the RSA scores for the same
items were significantly higher than other items from the same category (M= 0.08,
SEM= 0.006, T(49= 23.6, P < 0.001, d= 3.338, CI [0.21, 0.25]) and other items
from different categories (M= 0.04, SEM= 0.002, T(49)= 20.54, P < 0.001. d=
2.905, 95% CI [0.24, 0.29]) after Tukey–Kramer correction (one-way ANOVA, F(2,
98)= 448.89, P= 4.57e−50, η2= 0.902).

To decode the probability of the specific item signal during study data with
RSA, the study pattern was also weighted with the item-specific t-contrast values
(e.g., item 1 decoding= RSA between item 1 template from the localizer and the
study pattern weighted with item 1’s t-contrast beta). To calculate RSA scores
between template patterns from the localizer data and central study weighted
patterns, the correlation coefficient (Pearson r) was computed and then converted
using Fisher’s z transformation for statistical analysis. The sensitivity of this
analysis is verified in Fig. 5a which shows the mean correlation for items presented
in the central study. These data correspond to the 2.76 s (6 TRs) of item
presentation on each trial, shifted forward by 4.6 s (10 TRs) to account for
hemodynamic lag). The RSA scores for the presented items (target, M= 0.17,
SEM= 0.011) were statistically higher than other items from the same category as
the target item (related, M= 0.13, SEM= 0.009, T(49)= 12.49, P= 1.11e−16,
d= 1.767, 95% CI [0.03, 0.05]) and other items from different categories (others,
M= 0.02, SEM= 0.004, T(49)= 16.57, P < 0.001, d= 2.343, 95% CI [0.14, 0.18])
after Tukey–Kramer correction (one-way ANOVA, F(2, 98)= 263.88, P= 3.51e
−40, η2= 0.843). We refer to the target RSA score as the ‘encoding fidelity’ of a
given item. This RSA procedure was then used to decode item-level activity
patterns at each time point of the study data (Fig. 4b, bottom, Supplementary
Table 3).

RSA was also used to evaluate the impact of the removal operations on
subsequent encoding. We hypothesized that when a target item was removed from
WM, this should reduce proactive interference for encoding a new item into WM.
Moreover, this reduction in proactive interference should be greatest when the new
item is related to the previous item, as these representations would share the most
neural resources30. For each operation, we separated trials based on the
correspondence between the category of the item on the current trial (item N) and
the item on the next trial (item N+ 1). We computed the encoding fidelity of each
trial and compared same category trials (when items N and N+ 1 are the same
stimulus category) to different category trials. One-sample T-test and one-way
ANOVA for repeated measures compared same-minus-different encoding fidelity
scores for each operation separately and across operations with Tukey–Kramer
correction for multiple comparisons. The encoding fidelity was only positive (M=
0.041, SEM= 0.009) and significantly higher for suppress than the other operations
(all paired T-test were more reliable than P= 1.11e−04, d= 0.669, 95% CI= [0.04,
0.09], Fig. 5b, Supplementary Table 4). Across same and different categories, the
number of trials varied (same: M= 19.29, SD= 4.32; different: M= 48.09, SD=
7.27 trials). In the replace condition, we removed the trials when the new-item,
which acted as a replacement of the item N, and the item N+ 1 are the same
category (same–new-item; M= 22.7 trials out of M= 45.6 total, Fig. 5b) to isolate
the effect from the new-item on the subsequent encoding. These trials were only
subset of different category condition because new-item was always different
category from the target item. Encoding fidelity for the items N+ 1 were
significantly lower for the same–new-item trials than the other trials in different
categories (T(49)= 2.29, P= 0.027, d= 0.323, 95% CI [−0.002, 0.05]). Consistent
with our hypothesis, this also suggests the proactive interference of the current
information on the subsequent encoding.

In a separate analysis, we ran a bootstrap resampling analysis (1000 iterations)
to replicate this RSA result (Fig. 5b) with the same number of trials across same vs.
different conditions and operations (sample= 15 trials with replacement). The
resampled data with replacement was normalized across conditions
(Anderson–Darling normality test, Ps > 0.052). Bootstrap results were consistent
with our main results showing that the same-minus-different encoding fidelity
score of item N+ 1 for the suppress condition was significantly higher than other
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operations (Ps < 0.001) with no differences for other operations to each other (Ps >
0.317). Additionally in the bootstrap analysis, we only used the removed trials in
the replace condition as the same condition (i.e., new-item and next-item were the
same category) and compared them with the trials in the different condition (e.g.,
trial N: Category 1⇒ switch to Category 2; trial N+ 1: {Category 2 (for same
category) or Category 3 (for different category)}). The results showed the same
pattern as the original results, suggesting that the prior item in WM proactively
interferes with the next item when they share categorical features (same < different,
P= 0.036).

Behavioral data analyses. To measure the impact of each operation on the items
being manipulated, reaction times (RTs) in the probe task were calculated for
correct trials only. RTs below 200 ms or >2.5 standard deviations above the
within-subject mean RT were excluded (M= 1.49% of trials, SEM= 0.09%).
First, statistical tests were conducted on the individual mean RT values. Paired-
sample T-tests were applied to compare recognition RTs for manipulated verses
non-manipulated items for each operation (Fig. 6b). Mixed-effects models
testing condition effects were run separately on RTs for manipulated and
non-manipulated items. Because all participants completed the replace condition
as well as one other condition, subject intercepts were included as a random
factor. Follow-up pairwise comparisons were conducted for maintain verses
suppress and for suppress verses clear (independent-samples T-tests) and for
mainntain verses replace (mixed effects model including subject as a random
effect). No corrections were made for multiple comparisons. Mixed-effects
models incuding subject as a random effect were also used to test fixed effect
interactions between operation and manipulation (manipulated verses non-
manipulated). All analyses were carried out in R (version 3.6.2). Mixed-effects
models were conduced using lme4 (version 1.1-21) and T-tests were conduted
using stats (version 3.6.2). Effect sizes for T-tests were calculated using the
cohens_d function from the apa library (version 0.3.3). Effect sizes for mixed-
effects model effects were determined using the DEE method describbed in
Correll, Mellinger, and Pedersen (under revision)62. The results were visualized
with the YaRrr63 package in R.

Statistics and reproducibility. The fMRI experiment was performed once by each
participant, and the behavioral experiment was performed once by a separate group
of participants. No replication of either experiment was conducted.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Deidentified data are available from the authors upon request. Source data are provided
with this paper.

Code availability
All analysis code is available in GitHub. https://github.com/LewisPeacockLab/
NCOMMS1930876B
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