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Shared mechanisms underlie the control of 
working memory and attention

   
Matthew F. Panichello1 & Timothy J. Buschman1,2 ✉

Cognitive control guides behaviour by controlling what, when, and how information 
is represented in the brain1. For example, attention controls sensory processing; 
top-down signals from prefrontal and parietal cortex strengthen the representation 
of task-relevant stimuli2–4. A similar ‘selection’ mechanism is thought to control the 
representations held ‘in mind’—in working memory5–10. Here we show that shared 
neural mechanisms underlie the selection of items from working memory and 
attention to sensory stimuli. We trained rhesus monkeys to switch between two tasks, 
either selecting one item from a set of items held in working memory or attending to 
one stimulus from a set of visual stimuli. Neural recordings showed that similar 
representations in prefrontal cortex encoded the control of both selection and 
attention, suggesting that prefrontal cortex acts as a domain-general controller. By 
contrast, both attention and selection were represented independently in parietal and 
visual cortex. Both selection and attention facilitated behaviour by enhancing and 
transforming the representation of the selected memory or attended stimulus. 
Specifically, during the selection task, memory items were initially represented in 
independent subspaces of neural activity in prefrontal cortex. Selecting an item 
caused its representation to transform from its own subspace to a new subspace used 
to guide behaviour. A similar transformation occurred for attention. Our results 
suggest that prefrontal cortex controls cognition by dynamically transforming 
representations to control what and when cognitive computations are engaged.

To study the control of working memory and attention, we trained two 
monkeys to switch between two tasks. First, a retrospective (‘retro’) 
task required monkeys to select one of two items held in working 
memory (Fig. 1a). On each retro trial, the monkeys remembered the 
colours of two squares (colours drawn randomly from colour wheel) 
(Methods). After a memory delay, the monkeys were given a cue indi-
cating whether to report the colour of the ‘upper’ or ‘lower’ square 
(now held in working memory). This cue was followed by a second 
memory delay, after which the monkeys reported the colour of the 
cued square by looking at the matching colour on a colour wheel (which 
was randomly rotated on each trial to prevent motor planning). There-
fore, to perform the task, the monkeys held two colours in working 
memory, selected the colour of the cued square, and then used it to 
guide their response.

Monkeys performed the task well; the mean absolute angular 
error between the presented and reported colour was 51.8° (Fig. 1b, 
c, Extended Data Fig. 1a, b). As expected11–13, the error was reduced 
when only one item was presented (Fig. 1b, c, Extended Data Fig. 1d; 
the error was 38.1° for one item and 51.8° for two items (P < 0.001, 
randomization test)). The increased error with two items in memory 
is thought to be due to interference between the items14–17, which is 
reduced when an item is selected from working memory18,19. Consistent 
with this theory, the error was smaller when selection occurred earlier 
in the trial (Extended Data Fig. 1e, f; linear regression, β = 4.67° s−1 ± 1.08 
(s.e.m.), P < 0.001, bootstrap).

In addition, monkeys performed a prospective (‘pro’) task. On pro 
trials, the cue was presented before the coloured squares, allowing 
the monkey to attend to the location of the to-be-reported stimulus 
(Fig. 1a). Consistent with attention reducing interference between 
stimuli20,21 and modulating what enters working memory22, mem-
ory reports were more accurate in the pro task than the retro task  
(Fig. 1b, c, Extended Data Fig. 1d; 46.1° versus 51.8°; P < 0.001, randomi-
zation test) and increasing the number of stimuli from one to two led to 
a smaller increase in error on pro trials (9.01° versus 13.7° for pro versus 
retro; P < 0.001, bootstrap). These results highlight the functional 
homology between selection and attention, as both forms of control 
mitigate interference between representations14,20,23.

Control of memory and attention
To understand the neural mechanisms of selection, and their rela-
tionship to attention, we simultaneously recorded from four regions 
involved in working memory and attention (Fig. 2a): lateral prefrontal 
cortex (LPFC; 682 neurons), frontal eye fields (FEF; 187 neurons), pari-
etal cortex (Brodmann area 7a/b; 331 neurons), and intermediate visual 
area V4 (341 neurons). Consistent with previous work in humans9,24,25, 
neurons in all four regions carried information about which item was 
selected from working memory (that is, upper or lower) (Extended Data 
Fig. 2a, b). To quantify this information, we trained a logistic regression 
classifier to decode the location of selection from the firing rates of 
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populations of neurons recorded in each region (Fig. 2b, Methods). The 
classifier found significant information about the location of selection 
in all four regions, emerging first in LPFC and then in posterior regions 
(Fig. 2c; 175 ms post-cue in LPFC, 245 ms in FEF, 285 ms in parietal, and 
335 ms in V4). The emergence of information in LPFC was significantly 
earlier than in parietal and V4 (P = 0.005 and P = 0.048, respectively; ran-
domization test), but statistically indistinguishable from FEF (P = 0.371). 
These results did not depend on the number of neurons recorded in 
each region and were not due to differences in neural responsiveness 
or noise (Extended Data Figs. 2, 3, Supplementary Table 1). Together, 
these results suggest that control of selection emerges first in prefrontal 
cortex and propagates to parietal and visual cortex.

Motivated by the functional homology between selection and atten-
tion5, we tested whether they were encoded in a shared population 
representation. Specifically, we tested whether the classifiers trained 
to decode the location of selection could generalize to decode the 
location of attention (and vice versa) (Fig. 2b, Methods). Consistent 
with a shared representation of selection and attention in LPFC, the 
ability of the classifiers to generalize in this way was significantly 
above chance and followed the time-course of the selection classifier 
(Fig. 2c). Individual LPFC neurons also generalized, representing the 
location of selection and attention similarly (Extended Data Fig. 4a–c; 
r(586) = 0.09, P = 0.036).

By contrast, selection and attention were independently represented 
in FEF, parietal, and V4. Generalization was weaker in FEF and trended 
towards being delayed relative to LPFC (Fig. 2c; P = 0.12, randomization 
test). There was no significant generalization in parietal or V4 (Fig. 2c; 
this was not due to an inability to decode attention, Extended Data 
Fig. 4d, e). Consistent with different representations, the represen-
tations of selection and attention were uncorrelated in FEF, V4, and 
parietal neurons (Extended Data Fig. 4a–c; FEF: r(169) = 0.04, P = 0.617; 
V4: r(318) = −0.04, P = 0.513; parietal: r(301) = 0.03, P = 0.612), although 
a positive correlation emerged later in FEF.

These results suggest that LPFC may act as a ‘domain-general’  
controller, with a shared population representation that encodes both 
the selection of items from working memory and attention to sen-
sory inputs. This could allow behaviours to generalize across working 
memory and sensory stimuli. By contrast, the task-specific represen-
tations seen in FEF and parietal (and partially in LPFC) could allow the 
specific control of memories or sensory stimuli. A combination of 
generalized and task-specific representations might balance the need 
to learn task-specific and generalized behaviours26,27 (Supplementary 
Discussion 1).

Selection and attention enhance memories
Next, we explored how selection and attention affected the neural  
representation of items in working memory. Single neurons in LPFC, 
FEF, parietal, and V4 all carried information about the colour of the 
upper or lower item (LPFC: n = 387 of 607 cells; FEF: 114 of 178; pari-
etal: 181 of 307; V4: 245 of 323; all P < 0.001, binomial test) (Methods, 
Extended Data Fig. 5a). In all four regions, information about the colour 
of the stimuli emerged during stimulus presentation and was main-
tained throughout the trial (Fig. 3, Extended Data Fig. 5b, Supplemen-
tary Discussion 2). These memory representations were related to 
behaviour: LPFC and V4 carried more information about the reported 
colour than the presented colour (Extended Data Fig. 6a; P < 0.001, 
randomization test).

Consistent with previous work in humans6,8, selection strengthened 
memories in prefrontal and parietal cortex. In LPFC, colour information 
about the selected memory was greater than the information about 
the non-selected memory, starting 475 ms after cue onset (Fig. 3; also 
above pre-cue baseline, Extended Data Fig. 7a). Similar enhancements 
were seen in FEF and parietal (at 715 and 565 ms, respectively) (Fig. 3, 
Extended Data Fig. 7a).

The selective enhancement of a memory was related to behaviour in 
all four regions (Extended Data Fig. 7b, c). When memory reports were 
inaccurate, the effect of selection was absent in LPFC, FEF, and parietal. 
Although selection did not affect memory representations in V4 overall 
(Fig. 3b), information about the selected item was increased on trials 
with high memory accuracy and information about the non-selected 
item was increased on low-accuracy trials. These results suggest that 
memory errors occurred when the monkey failed to select an item or 
selected the wrong item.

Similar to selection, attention increased information about the 
attended stimuli, which suggests that similar mechanisms strengthen 
memory and sensory representations in prefrontal and parietal cortex 
(Extended Data Fig. 6b). However, in contrast to attention2,28, selection 
did not reduce information about the non-selected memory in LPFC and 
parietal (Extended Data Fig. 7a; but information did slightly decrease in 
FEF), which suggests that selection might not engage the competitive 
mechanisms that suppress unattended stimuli29.

Selection and attention transform memories
Finally, we were interested in how the changing task demands during 
retro trials affected memory representations. Early in the trial, before 
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(lines) (Methods) for single item trials (grey), retro trials (blue), and pro trials 
(orange). As previously shown30, errors reflected both unsystematic error and 
systematic biases (Extended Data Fig. 1c). c, Bootstrapped distribution of mean 
absolute error in the retro, pro, and single-stimulus conditions (n = 8,620, 
8,169, and 4,207 trials, respectively). ***P < 0.001, two-sided uncorrected 
randomization test.
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selection, colour memories must be maintained in a form that allows 
the monkey to select the cued item (that is, colours are bound to a loca-
tion). Later in the trial, after selection, only the colour of the selected 
item is needed to guide the visual search of the colour wheel and the 

monkey’s response. Next, we show how selection transformed memory 
representations to match these changing task demands.

Before selection, the colour of each item in memory was represented 
in separate subspaces in the LPFC neural population. Figure 4a shows 
the representation of the colour of the upper and lower item, before 
selection (projected into a reduced 3D space) (Methods). Colour infor-
mation showed a clear organization; the responses to four categories of 
colour were well separated and in colour order for both the upper and 
lower item (that is, neighbouring colours in colour space had neigh-
bouring representations). Colour representations for each item were 
constrained to a ‘colour plane’, consistent with a 2D colour space (Meth-
ods). As seen in Fig. 4a, the upper and lower colour planes appeared 
to be independent from one another, suggesting that colour informa-
tion about the upper and lower items was separated into two different 
item-specific subspaces in the LPFC population (before selection).

Consistent with the existence of separate subspaces, the median 
angle between the upper and lower colour planes was 79.1° (Fig. 4b; 
interquartile range (IQR), 71.4–85.1°; Methods), which suggests that 
they were almost orthogonal before selection. This was not because the 
two items were encoded by separate populations of neurons. Rather, 
representations in LPFC overlapped27, with a significant proportion 
of neurons encoding both items (31% and 35% of neurons encoding 
the upper or lower item also encoded the other item; P = 1.21 × 10−4, 
binomial test) (Extended Data Fig. 8a, b). The colour planes were not 
completely orthogonal, as the representations of the upper and lower 
items were anti-correlated (Fig. 4c; for example, the N-neuron popula-
tion vectors of ‘red upper’ and ‘red lower’ were anti-correlated; mean 
r = −0.067 for −300 to 0 ms pre-selection, P = 0.009, bootstrap). This 
modest anti-correlation might improve differentiation when the two 
items have similar colours.

Further supporting the existence of independent upper and lower 
subspaces before selection, colour representations of an item were 
less separated when they were projected onto the other subspace 
(Fig. 4d; each item’s subspace was defined as the 2D space that maxi-
mally captured colour information in the full N-dimensional neural 
space; Methods). To quantify the separability of colours, we measured 
the area of the quadrilateral defined by the four colour representations. 
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This ‘colour area’ was greater when colour representations were pro-
jected into their own subspace rather than the other subspace (reflect-
ing greater separation in their own subspace; 86.1 versus 35.2 units2, 
P = 0.041, bootstrap; all subspaces defined on held-out data).

After selection, memory representations in LPFC were transformed 
into a different subspace (as previously theorized7). Reflecting this, 
the separation of colours in the pre-selection subspace collapsed by 
the end of the second memory delay (Fig. 4e (left), Extended Data 
Fig. 8c). Accordingly, colour area tended to decrease over time, from 
74.1 to 39.4 units2 in the pre-selection subspace (Extended Data Fig. 8d; 
P = 0.076, bootstrap). Instead, after selection, colours were repre-
sented in a new ‘post-selection’ subspace (Fig. 4e (right), Extended 
Data Fig. 8c, d; colour area in post-selection subspace increased from 
27.8 to 261.9 units2 over time, P < 0.001, bootstrap).

Whereas pre-selection subspaces were independent, the 
post-selection subspaces of the upper and lower items were aligned 
(Fig.  4a). The upper and lower colour planes were now parallel  
(angle between the planes was 20.1°; IQR, 11.6–29.0°). The cosine of 
the angle between the upper and lower colour planes increased after 
selection (Fig. 4b; P = 0.006, bootstrap test of logistic regression). 
Furthermore, the representations of the selected item’s colour shifted 
from being anti-correlated before selection to positively correlated 
after selection (Fig. 4c; mean r = 0.139 for −300 to 0 ms before target 

onset, P < 0.001 versus zero and versus pre-cue, bootstrap). Finally, 
colour representations of an item were now well separated when they 
were projected onto the other colour subspace (Fig. 4d; colour area 
increased from 35.2 to 94.0 units2 over time, P = 0.010, bootstrap). 
Together, these results suggest that selection transformed memories 
from independent item-specific subspaces to a common subspace that 
represented the colour of the selected item, regardless of its original 
location. Reflecting the importance of this transformation, the strength 
of alignment of colour spaces in LPFC was correlated with behaviour: 
when memory reports were inaccurate, the cosine of the angle between 
the two colour planes was reduced (Extended Data Fig. 9f, P = 0.027, 
randomization test).

The degree of transformation iteratively decreased in FEF, parietal, 
and V4 (Extended Data Fig. 9c, d). This decrease might reflect a gradi-
ent in the flexibility of neural responses across regions, with dynamic, 
integrative, representations in prefrontal cortex and more static, local-
ized, representations in visual cortex.

Selection also transformed the non-selected memories in LPFC, 
although to a lesser degree: the colour planes of the non-selected items 
tended to become aligned (IQR, 61.4–83.7° to 15.5–39.7°; P = 0.085, 
bootstrap) but the post-cue representations were not significantly 
correlated (P = 0.202 against zero) (Extended Data Fig. 9a–d). Critically, 
the non-selected item remained nearly orthogonal to the selected item 
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before and after selection (IQR: 80.1–85.5° to 75.7–82.4° for pre- and 
post-cue; P = 0.287, bootstrap) (Extended Data Fig. 9a, c, d), which 
could avoid interference between the selected and unselected item. 
Notably, the transformations acting on the selected and non-selected 
representations partially generalized to the other item, suggesting  
that the transformation had a common component that acted on  
both items simultaneously (Extended Data Fig. 9e, Supplementary 
Discussion 3).

As noted above, the dynamic re-alignment of neural representations 
reflects the changing task demands during the trial: independently 
encoding items before selection but aligning items after selection, 
abstracting over item location. Consistent with the transformation of 
memories being driven by task demands, memory representations were 
aligned immediately after stimulus presentation on pro trials. In LPFC, 
the representations of the upper and lower colours were positively cor-
related after stimulus offset on pro trials (Extended Data Fig. 10a–d). In 
addition, the upper and lower colour planes were well aligned through-
out the trial (Fig. 4f, Extended Data Fig. 10e; early: median angle 34.5°, 
IQR 22.1–51.4°; late: median angle, 30.4°, IQR 18.5–46.2°; no change 
with time, P = 0.449; there was a trend towards an interaction between 
pre/post and pro/retro, P = 0.067, bootstrap).

The same aligned subspace seemed to be used in retro and pro trials: 
there was a weak, but significant, correlation between colour represen-
tations at the end of the delay on pro and retro trials (Extended Data 
Fig. 10f, mean ρ = 0.06, P = 0.015, bootstrap). This correlation did not 
exist before selection (mean ρ = −0.01, P = 0.634) and increased with 
time (P = 0.027, bootstrap).

The task-dependent dynamic transformations we have observed 
might allow the cognitive control of behaviour. In the retro task, selec-
tion transformed colour information from independent, item-specific 
subspaces to a shared ‘template’ subspace (Fig. 4g). From the perspec-
tive of a neural circuit decoding information from the template sub-
space to guide visual search, the transformation abstracts over location 
and allows the selected item to guide the monkey’s response. As the 
item-specific and non-selected subspaces are orthogonal to the tem-
plate subspace, this circuit would be unaffected by those representa-
tions. In this way, the timing of the transformation determines when 
this circuit is engaged (for example, after selection in the retro task 
or immediately in the pro task). Thus, cognitive control may dynami-
cally transform representations to control what and when cognitive 
computations are engaged.
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Methods

Subjects
Two adult (8–9 years old) male rhesus macaques (Macaca mulatta) 
participated in the experiment. Monkeys 1 and 2 weighed 12.1 and 
8.9 kg, respectively. All experimental procedures were approved by 
the Princeton University Institutional Animal Care and Use Commit-
tee and were in accordance with the policies and procedures of the 
National Institutes of Health.

The subject number was chosen to be consistent with previous work. 
Both monkeys performed the same experiments and so no randomiza-
tion or blinding of monkey identity was necessary. As detailed below, 
conditions within each experiment were chosen randomly and experi-
menters were blind to experimental conditions when pre-processing 
the data.

Behavioural task
Stimuli were presented on a Dell U2413 LCD monitor positioned at a 
viewing distance of 58 cm using Psychtoolbox and MATLAB (Math-
works). The monitor was calibrated using an X-Rite i1Display Pro col-
orimeter to ensure accurate colour rendering. During the experiment, 
subjects were required to remember the colour of either 1 or 2 square 
stimuli presented at two possible locations. The colour of each sample 
was drawn randomly from 64 evenly spaced points along a photo-
metrically isoluminant circle in CIELAB colour space. This circle was 
centred at (L = 60, a = 6, b = 14) and the radius was 57 units. Colours 
were independent across locations. The stimuli measured 2° of visual 
angle (DVA) on each side. Each stimulus could appear at one of two 
possible spatial locations: 45° clockwise or anticlockwise from the 
horizontal meridian (in the right hemifield; stimuli are depicted in the 
left hemifield in Fig. 1 for ease of visualization) with an eccentricity of 
5 DVA from fixation. To perform the retrospective task, the monkey 
had to remember which colour was at each location (that is, the ‘upper’ 
and ‘lower’ colours).

The monkeys initiated each trial by fixating a cross at the centre of 
the screen. On retro trials, after 500 ms of fixation, one (20% of trials) 
or two (80% of trials) stimuli appeared on the screen. The stimuli were 
displayed for 500 ms, followed by a memory delay of 500 or 1,000 ms. 
Next, a symbolic cue was presented at fixation for 300 ms. This cue 
indicated which sample (upper or lower) the monkey should report to 
get a juice reward. The location of the selected memory was randomly 
chosen on each trial. Two sets of cues were used in the experiment to 
dissociate the meaning of the cue from its physical form. The first set 
(cue set 1) consisted of lines oriented 45° clockwise and anticlockwise 
from the horizontal meridian (cueing the lower and upper stimulus, 
respectively). The second set (cue set 2) consisted of a triangle or a 
circle (cueing the lower or upper stimulus, respectively). Cues were 
presented at fixation and subtended 2 DVA. After the cue, there was 
a second memory delay (500–700 ms), after which a response screen 
appeared. The response screen consisted of a ring 2° thick with an outer 
radius of 5°. The monkeys made their response by breaking fixation 
and saccading to the section of the colour wheel that corresponded 
to the colour of the selected (cued) memory. In previous work using 
human subjects, observers are typically free to foveate the colour wheel 
and fine-tune their selection, so differences in performance between 
monkeys and humans30 may in part reflect task design. The colour ring 
was randomly rotated on each trial to prevent motor planning or spatial 
encoding of memories. The monkeys received a graded juice reward 
that depended on the accuracy of their response. The number of drops 
of juice awarded for a response was determined according to a circular 
normal (von Mises) distribution centred at 0° error with a standard 
deviation of 22°. This distribution was scaled to have a peak amplitude 
of 12, and non-integer values were rounded up. When response error was 
greater than 60° for monkey 1 (40° for monkey 2), no juice was awarded 
and the monkey experienced a short time-out of 1–2 s. Responses had to 

be made within 8 s, although, in practice, this restriction was unneces-
sary as response times were on the order of 200–300 ms.

Pro trials were similar to retro trials, except that the cue was  
presented 200–600 ms before the stimuli. After the coloured squares, 
a single continuous delay occurred before the onset of the response 
screen (1,300–2,000 ms for monkey 1 and 1,000–2,000 ms for monkey 
2). For behavioural analyses and all neural analyses around the response 
epoch, we analysed only trials with a minimum delay of 1,300 ms to 
match the total delay range for pro and retro trials.

Condition (retro or pro) and cue set were manipulated in a blocked 
fashion. Monkeys transitioned among three different block types:  
(1) pro trials using cue set 1, (2) retro trials using cue set 1, and (3) retro 
trials using cue set 2. The sequence of blocks was random. Transitions 
between blocks occurred after the monkey had performed 60 correct 
trials of block type 1 (pro) or 30 correct trials for block types 2 and 3 
(retro), balancing the total number of pro and retro trials. All electro-
physiological recordings were done during this task.

In addition, both monkeys completed a second behavioural 
experiment (experiment 2) without electrophysiological recordings 
(Extended Data Fig. 1e). In experiment 2, all trials were a variant of the 
retrospective load 2 condition, the total stimulus–target delay was fixed 
to 2,400 ms, and the stimulus–cue delay was randomly selected to be 
500, 1,000, or 1,500 ms. This manipulation allowed us to test whether 
the timing of the retrocue affected the accuracy of memory, thereby 
isolating the effect of selection on the contents of working memory.

The eye position of the monkeys was continuously monitored at  
1 kHz using an Eyelink 1000 Plus eye-tracking system (SR Research). The 
monkeys had to maintain their gaze within a 2° circle around the central 
cross during the entire trial until the response. If they did not maintain 
fixation, the trial was aborted, and the monkey received a brief timeout.

We analysed all completed trials, defined as any trial on which the 
monkey successfully maintained fixation and made a saccade to the 
colour wheel, regardless of accuracy. Monkey 1 completed 9,865 trials 
over 10 sessions and monkey 2 completed 11,131 trials over 13 sessions.

As shown in Extended Data Fig. 1, the behaviour of the two monkeys 
was qualitatively similar and so we pooled data across monkeys for 
all analyses.

Surgical procedures and recordings
Monkeys were implanted with a titanium headpost to immobilize the 
head and with two titanium chambers for providing access to the brain. 
The chambers were positioned using 3D models of the brain and skull 
obtained from structural MRI scans. Chambers were placed to allow 
electrophysiological recording from LPFC, FEF, parietal, and V4.

Epoxy-coated tungsten electrodes (FHC) were used for both 
recording and microstimulation. Electrodes were lowered using a 
custom-built microdrive assembly that lowered electrodes in pairs 
from a single screw. Recordings were acute; up to 80 electrodes were 
lowered through the intact dura at the beginning of each recording 
session and allowed to settle for 2–3 h before recording. This enabled 
stable isolation of single units over the session. Broadband activity  
(sampling frequency, 30 kHz) was recorded from each electrode (Black-
rock Microsystems). We performed 13 recording sessions with monkey 
2 and 10 sessions with monkey 1.

After recordings were complete, we confirmed electrode locations 
by performing structural MRIs after lowering two electrodes in each 
chamber into the cortex. Using the shadows of these two electrodes, 
the positions of the other electrodes in each chamber could be recon-
structed. Electrodes were categorized as falling into LPFC, FEF, parietal, 
or V4 based on anatomical landmarks.

In separate experiments, we identified which electrodes were located 
in FEF using electrical microstimulation. On the basis of previous work31, 
we defined FEF sites as those for which electrical stimulation elicited a 
saccadic eye movement. Electrical stimulation was delivered in 200-ms 
trains of anodal-leading biphasic pulses with a width of 400 μs and 



an inter-pulse frequency of 330 Hz. Electrical stimulation was deliv-
ered to each electrode in the frontal well of each monkey and FEF sites 
were identified as those sites for which electrical stimulation (<50 μA)  
consistently evoked a saccade with a stereotyped eye movement vector 
at least 50% of the time. Untested electrode sites (for example, from 
recordings on days with a different offset in the spatial distribution of 
electrodes) were classified as belonging to FEF if they fell within 1 mm 
of confirmed stimulation sites and were positioned in the anterior bank 
of the arcuate sulcus (as confirmed via MRI).

Signal preprocessing
Electrophysiological signals were filtered offline using a 4-pole 300 
Hz high-pass Butterworth filter. For monkey 1, to reduce common 
noise, the voltage time series x recorded from each electrode was 
re-referenced to the common median reference32 by subtracting the 
median voltage across all electrodes in the same recording chamber 
at each time point.

The spike detection threshold for all recordings was set equal to 
−4σn, in which σn is an estimate of the standard deviation of the noise 
distribution:

σ
x

= median
0.6745n








Time points at which x crossed this threshold with a negative slope 
were identified as putative spiking events. Repeated threshold cross-
ings within 32 samples (1.0667 ms) were excluded. Waveforms around 
each putative spike time were extracted and were manually sorted into 
single units, multi-unit activity, or noise using Plexon Offline Sorter 
(Plexon).

For all analyses, spike times of single units were converted into 
smoothed firing rates (sampling interval, 10 ms) by representing each 
spiking event as a delta function and convolving this time series with 
a causal half-Gaussian kernel (σ = 200 ms).

Statistics and reproducibility
Experiments were repeated independently in two monkeys and data 
were combined for subsequent analysis after we confirmed that behav-
iour was similar across monkeys (Extended Data Fig. 1). Tests were 
not corrected for multiple comparisons unless otherwise specified. 
Nonparametric tests were performed using 1,000 iterations; therefore, 
exact P values are specified when P ≥ 0.001.

Analyses were performed in MATLAB (Mathworks).

Mixture modelling of behavioural reports
Behavioural errors on delayed estimation tasks are thought to be due 
to at least three sources of errors12,13: imprecise reports of the cued 
stimulus, imprecise reports of the uncued stimulus, and random guess-
ing (that is, from ‘forgotten’ stimuli). To estimate the contribution of 
each of these sources of error, we used a three-component mixture 
model to model behavioural reports13:

p θ γ B ϕ θ θ γ
π

B
m

ϕ θ θ( )̂ = (1 − − ) ( ˆ− ) +
1

2
+

1
( ˆ− *)σ σ

in which θ is the colour value of the cued stimulus in radians, θ̂ is the 
reported colour value, θ* is the colour value of the uncued stimulus, γ 
is the proportion of trials on which subjects responded randomly (that 
is, probability of guessing, P(guess)), B is the proportion of trials on 
which subjects reported the colour of the uncued stimulus (that is, 
probability of ‘swapping’, P(swap)), and ϕσ is a von Mises distribution 
with a mean of zero and a standard deviation σ (inverse precision). All 
parameters were estimated using the Analogue Report Toolbox (https://
www.paulbays.com/toolbox/index.php). Bootstrapped distributions 
of the maximum likelihood values of the free parameters γ, B, and σ 

were generated by fitting the mixture model independently to the 
behavioural data from each session (n = 23) and then resampling the 
best-fitting parameter values with replacement across sessions. In this 
way, the distribution shows the uncertainty of the mean parameters 
across sessions.

As noted in the main text, if the monkey was able to select an item 
from memory earlier in the trial, then this reduced the error in the 
monkey’s behavioural response (Extended Data Fig. 1e). Behavioural 
modelling showed that earlier cues improved the precision of mem-
ory reports (Extended Data Fig. 1e, β = 3.95 ± 1.88 s.e.m., P = 0.012,  
bootstrap) but did not significantly change the probability of forgetting 
(that is, random responses; β = 0.03 ± 0.03 s.e.m., P = 0.126, bootstrap). 
Furthermore, we found that memory reports were more accurate in the 
pro condition than in the retro condition (Fig. 1b, c). Here, behavioural 
modelling showed that the improvement on pro trials was due to an 
increase in the precision of memory reports and a reduction in forget-
ting (that is, fewer random reports) (Extended Data Fig. 1d).

Entropy of report distributions
To quantify whether colour reports were more clustered than expected 
by chance, we used a simple clustering metric30. This metric relies on 
the fact that entropy is maximized for uniform probability distribu-
tions. By contrast, probability distributions with prominent peaks will 
have lower entropy. Because the target colours are drawn from a  
circular uniform distribution, the entropy of the targets H(Θ) will be 
relatively high. If responses are clustered, their entropy H θ( )̂ will  
be relatively low. Taking the difference of these two values yields a 
clustering metric C. Negative values of C indicate greater clustering: 
C H θ H Θ= ( )̂ − ( ), in which H x f x log f x dx( ) = − ∑ ( ) ( )x=1

360
2 . The signifi-

cance of the clustering metric versus zero was assessed with a boot-
strapping process that randomly resampled trials with replacement.

Calculation of cued location d′
We used d′ to describe how each neuron’s firing rate was modulated 
by cuing condition (‘upper’ or ‘lower’), defined as:

d
μ μ

σ σ
′ =

−

( + )

upper lower

1
2 upper

2
lower
2

in which μupper and μlower are a neuron’s mean firing rate on trials in which 
the upper or lower stimulus was cued as task relevant, respectively, 
and σupper

2  and σ lower
2  are the variance in firing rate across trials in each 

condition. d′ was either computed using trials pooled across all retro 
trials (Extended Data Fig. 2b) or calculated separately for each of the 
three block types (Extended Data Fig. 4a; pro with cue set 1, retro with 
cue set 1, and retro with cue set 2, see above). This analysis included all 
neurons that were recorded for at least ten trials per cued location. 
The significance of each neuron’s d′ (Extended Data Fig. 2b) was 
assessed by comparing to a null distribution of values generated by 
randomly permuting location labels (upper or lower) across trials 
(1,000 iterations). To test whether a region had more significant neu-
rons than expected by chance, the percentage of significant neurons 
was compared to that expected by chance (the α-level, 5%).

To understand whether cells displayed similar selectivity across 
cue sets and task conditions, we computed a ‘selection’ correla-
tion, measured as the Pearson’s correlation coefficient between  
the d′ to retro cue set 1 and the d′ to retro cue set 2, and a ‘generalization’  
correlation, measured as the Pearson’s correlation coefficient 
between pro cue set 1 and retro cue set 2 (Extended Data Fig. 4a–c). 
Significance against zero was tested by randomly resampling cells 
with replacement.

Classification of cued location
We used linear classifiers to quantify the amount of information about 
the location of the cued stimulus (upper or lower) in the population 
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of neurons recorded from each brain region (Fig. 2b, c). This analy-
sis included all neurons that were recorded during at least 60 trials 
for each cueing condition (upper or lower) in each block type (pro 
with cue set 1, retro with cue set 1, and retro with cue set 2, see above). 
On each of 1,000 iterations, 60 trials from each cueing condition 
and block type were sampled from each neuron with replacement.  
The firing rate from those trials, locked to cue onset, was assembled 
into a pseudo-population by combining neurons across sessions such 
that pseudo-trials matched both block and cue condition. For each time 
step, a logistic regression classifier (as implemented by fitclinear.m in 
MATLAB) with L2 regularization (λ = 1/60) was trained to predict the 
cueing condition (upper or lower) using pseudo-population data from 
one block (for example, retro with cue set 1) and tested on held-out 
data from another block (for example, retro with cue set 2). Classifica-
tion accuracy (proportion of correctly classified trials) was averaged 
across reciprocal tests (for example, train on retro with cue set 2, test 
on retro with cue set 1).

We used a randomization test to test for significant differences in the 
onset time of above-chance classification accuracy between regions. 
For each pair of regions, we computed the difference in time of first 
significance (‘lag’, P < 0.05, using the bootstrap procedure described 
above). To generate a null distribution of lags, we randomly permuted 
individual neurons between the two regions (without changing the size of 
the population associated with each region) and then repeated the above 
bootstrap procedure to determine the lag in above-chance classification 
for each permuted dataset. One thousand random permutations were 
used for each pair of regions. Significance was assessed by computing 
the proportion of lags in the null distribution that were greater than the 
observed lag. This randomization procedure controls for differences in 
the number of features (neurons) across regions, so differences in the 
number of neurons recorded across regions cannot explain our results.

To assess the discriminability of the upper and lower pro conditions 
(Extended Data Fig. 4e), we calculated the tenfold cross-validated clas-
sification accuracy (averaged across folds). To provide an estimate 
of variability we repeated this analysis 1,000 times, each time with a 
different partition of trials into training and testing sets.

Neuron dropping analyses for classification of cued location
To further test whether classification performance depended on the 
number of neurons recorded in each region, we performed ‘neuron 
dropping’ analyses33 (Extended Data Fig. 2). To do this, we repeated the 
classification procedure described above, but limited the analysis to 
subsets of neurons drawn from the full population of neurons recorded 
in each region (n = 1,000 iterations per subset size). In the first version 
of this analysis, the neurons that composed each subpopulation were 
drawn at random (Extended Data Fig. 2c). In the second version of this 
analysis, the neurons that composed each subpopulation were drawn 
at random, subject to the condition that they displayed a significant 
evoked response to the presentation of the cue (Extended Data Fig. 2d). 
Specifically, across trials, neurons with evoked responses were taken 
as those with a higher mean firing rate during the 500-ms epoch after 
the cue compared to the 300-ms epoch before the cue (one-tailed 
t-test). In the third version of this analysis, neurons were added to the 
analysis in a fixed order determined by their ability to support classi-
fication (Extended Data Fig. 2e, f). For the selection classifier (which 
was trained to discriminate the cued location on retro cue set 1 trials 
and tested on retro cue set 2 trials, and vice-versa), neurons entered 
the analysis based on the magnitude of their d′ values for both retro 
cue sets. To quantify this, we projected the d′ values for the two cue 
sets onto the identity line (schematized in Extended Data Fig. 2e) and 
took the absolute value of the resulting vector. Cells with large absolute 
projection values entered the analysis first. Our ordering procedure for 
the generalization classifier was the same as for the selection classifier, 
except that it was based on pro cue set 1 and retro cue set 2 d′, as these 
were the training and testing sets for this classifier.

For each subpopulation of neurons in each of these analyses, we 
measured four statistics: (1) selection classification accuracy after 
cue onset (300 ms post-cue); (2) generalized classification accuracy 
after cue onset (300 ms post-cue); (3) time to 55% selection classifica-
tion accuracy; and (4) time to 55% generalized classification accuracy.

When subpopulations were drawn at random from all neurons in 
each region or all neurons that displayed an evoked response (Extended 
Data Fig. 2c, d), dropping curves for each of these statistics were well 
described by two-parameter power functions. Power functions were 
fit using the Matlab function fit.m and 95% prediction intervals for 
each statistic at the maximum population size recorded in LPFC were 
generated using predint.m. The distance of the measured statistic in 
LPFC from these predicted values (in units of standard error of the 
prediction interval) were measured and used to calculate P values.

When subpopulations were drawn in a fixed order (Extended Data 
Fig. 2e, f), dropping curves for each of these statistics were well 
described by linear functions. Linear functions were fit using the Mat-
lab function fit.m and 95% confidence intervals for linear fits at each 
measured value were generated using predint.m. Subpopulations that 
never reached 55% classification accuracy were excluded from curve 
fitting for statistics 3 and 4.

Finally, to assess the discriminability of visual information in 
each region we trained two classifiers to discriminate either the two 
upper cues or two lower cues (on retro trials). Classification accuracy  
was averaged across tenfold cross-validated sets (Extended Data  
Fig. 2g, h). The accuracies of both the upper-cue and lower-cue classi-
fiers were then averaged to estimate the amount of information about 
low-level visual features of the cue while holding other factors constant 
(for example, cued location). We then computed neuron dropping curves 
for (1) accuracy early after cue onset (300 ms post-cue) and (2) time to 
55% classification accuracy, as above (Extended Data Fig. 2h).

Signal and noise for classification of cued location
To assess whether classification performance was driven by increases 
in signal, decreases in noise, or both, we analysed the distribution of 
classifier confidence for ‘upper’ and ‘lower’ test trials (Extended Data 
Fig. 3a). Classifier confidence was quantified as the probability that a 
given test trial was an upper trial, as estimated by the trained model. 
Signal was quantified as the distance between the means of the confi-
dence distributions for upper and lower trials and noise was estimated 
as the average standard deviation of the confidence distributions. 
Repeating these calculations for each of the 1,000 resamples yielded 
bootstrapped distributions of values (Extended Data Fig. 3b).

Noise correlations and variance-to-mean ratio during cue epoch
To determine whether differences in variance and covariance might 
drive differences in classification performance across regions, we calcu-
lated variance-to-mean ratios and noise correlations for single-neuron 
firing rates around the time of the selection cue.

Variance-to-mean ratio across trials was calculated by first calculat-
ing each neuron’s trial-wise firing rate during the period after cue onset 
(0–500 ms post-cue). Next, for each trial type (pro cue set 1 upper, 
pro cue set 1 lower, retro cue set 1 upper, retro cue set 1 lower, pro cue 
set 2 upper, pro cue set 2 lower), we divided the variance of these fir-
ing rates across trials by their mean. Finally, we took the average of 
these variance-to-mean ratios across the six trial types (Extended Data 
Fig. 3d).

Calculation of noise correlations also began by first calculating each 
neuron’s trial-wise firing rate during the period after cue onset (0–500 ms  
post-cue). Next, for each trial type (pro cue set 1 upper, pro cue set 1 
lower, retro cue set 1 upper, retro cue set 1 lower, pro cue set 2 upper, pro 
cue set 2 lower), we adjusted each neuron’s pool of firing rates to have 
a mean of zero. Finally, we computed the average correlation between 
the mean-zeroed firing rates of all pairs of neurons within a region, 
and then averaged these average correlation values across the six trial 



types (Extended Data Fig. 3c). As expected, given our pseudopopulation 
approach, noise correlation values were low and did not differ across 
regions.

Quantification of colour information
We adapted previous work34 to define a colour modulation index  
(MIcolour) that describes how each neuron’s firing rate was modulated by 
the colours of the remembered stimuli. Critically, this statistic avoids 
strong assumptions about the structure of tuning curves (for example, 
it does not assume unimodal tuning). After dividing colour space into 
N = 8 bins, MIcolour is defined as:

z Nz
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∑ log( )
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in which zc is a neuron’s normalized mean firing rate rc across trials 
evoked by colours in the c-th bin:
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MIcolour is a normalized entropy statistic that is 0 if a neuron’s mean 
firing rate is identical across all colour bins and 1 if a neuron fires only in 
response to colours from one bin. To control for differences in average 
firing rate and number of trials across neurons, we z-scored this metric 
by subtracting the mean and dividing by the standard deviation of a null 
distribution of MI values. To generate this null distribution, the colour 
bin labels were randomly shuffled across trials and the MI statistic was 
recomputed (1,000 times per neuron).

Z-scored colour modulation indices were computed separately for 
each time point, trial type (pro or retro), and stimulus type (selected, 
non-selected, attended or non-attended) (Fig. 3b, Extended Data 
Fig. 6). This analysis included neurons that were recorded for at least 
ten trials in each of these conditions. Selectivity for colour was com-
puted without respect to the spatial location of the stimulus (upper or 
lower). Computing selectivity for colours presented only at a neuron’s 
preferred location did not qualitatively change the results. Z-scored 
modulation indices were compared to zero or across conditions by 
t-test (Fig. 3b). We corrected for multiple comparisons over time using 
a cluster-correction35. In brief, the significance of contiguous clusters 
of significant t-tests was computed by comparing their cluster mass 
(the sum of the t-values) with what would be expected by chance (ran-
domization test). In addition, to summarize changes in selected and 
non-selected colour information after cue onset, we averaged colour 
information for each neuron in two time periods (−300 to 0 ms pre-cue 
and 200 to 500 ms post-cue) and tested the difference between these 
values (post–pre) against zero by bootstrapping the mean difference 
in colour information across neurons (Extended Data Fig. 7a).

To determine whether a neuron displayed significant selectivity for 
the colour at one particular location (upper/lower), we calculated the 
z-scored information about the cued colour at each time point over the 
interval from 0 to 2.5 s after stimulus onset independently for each loca-
tion. Colour selectivity was measured across all conditions, including 
pro, retro, and single-item trials. As described above, we used a cluster 
correction to correct for multiple comparisons across time. Neurons 
with significant colour selectivity (P < 0.05) at any point during this 
interval were deemed colour selective. Binomial tests compared the 
proportion of neurons with significant colour selectivity for at least 
one of the two locations to a conservative null proportion of 10% (for 
two tests with an α of 0.05, one test for each location).

To determine whether independent populations of LPFC neurons 
encoded the upper and lower colours during the pre-cue period 
of retro trials, we counted the number of neurons with significant 
cluster-corrected selectivity during the 500-ms period before cue 
onset. Of the 607 LPFC neurons that entered the analysis, 112 (18.5%) 

carried information about the upper colour and 99 (16.3%) carried infor-
mation about the lower colour. Of these, 35 (5.8%) carried information 
about both the upper and lower colour. A binomial test compared this 
proportion (5.8%) to that expected by random assignment of top- and 
bottom-selectivity (that is, 18.5% × 16.3% ≈ 3.0%). To visualize selectivity 
in a non-binary manner, we also plotted the distribution of z-scored 
information about the colour of each item for all LPFC neurons, aver-
aged during the 500-ms pre-cue period (Extended Data Fig. 8a).

In addition to the z-scored colour modulation index, we also quan-
tified colour selectivity using per cent explained variance (PEV) 
(Extended Data Fig. 5b). As with the z-scored colour modulation index, 
firing rates for each time point were binned by the colour of the stimulus 
of interest (selected or non-selected) into eight colour bins. A linear 
model with a constant term and eight categorical predictors (one for 
each colour bin) was then constructed to predict firing rates (using 
fitlm.m in MATLAB). PEV was then calculated as the r2 of the fit model 
× 100. To avoid inflated PEV values due to overfitting, we subtracted 
the mean PEV during the 200-ms epoch before stimulus onset. The 
resulting traces were analysed using cluster-corrected t-tests, as 
described above. The results were similar to those obtained with the 
colour modulation index.

Quantification of reported colour information
To quantify the amount of information each neuron carried about the 
monkey’s reported colour, we followed the same approach as for stimu-
lus colour, except that responses were binned by the colour reported 
by the monkey rather than by the colour of the cued or uncued stimulus 
(Fig. 3).

Modulation of colour information by task and behavioural 
performance
To compare the amount of colour information in firing rates across 
the pro and retro conditions (Extended Data Fig. 6b, c), we computed 
the z-scored colour modulation indices as described above for each of 
the four conditions of interest (selected, non-selected, attended, and 
non-attended colours). Trial counts were matched across these four 
conditions to avoid biases in the colour information statistic. To assess 
relative information about cued (selected and attended) and uncued 
(non-selected and non-attended) colour information, we computed 
the difference in colour information between each pair of conditions, 
for each neuron. The average difference across all neurons was then 
tested against zero, using the cluster correction described above to 
correct for multiple comparisons across time35.

To compare the amount of colour information in firing rates when 
behavioural performance was relatively accurate or inaccurate 
(Extended Data Fig. 7), we divided retro trials into two groups accord-
ing to the accuracy of the behavioural report. Trials within each session 
were split by the median accuracy for that session. Z-scored colour 
modulation indices were computed separately for each split-half of 
trials. As above, the same number of trials were used for all four condi-
tions (more or less accurate × selected or non-selected). In addition, to 
quantify the effect of selection, the difference in colour information 
for selected and non-selected colours was computed for each group 
of trials separately (more or less accurate). This selected–non-selected 
difference was then tested against zero to measure the effect of selec-
tion and tested between the two groups of trials to measure the effect 
of behavioural accuracy. Comparisons were done with a t-test across all 
neurons, with cluster correction to correct for multiple comparisons 
across time35.

Measuring the angle between upper and lower colour planes
As described in the main text, we were interested in understanding 
the geometry of mnemonic representations of colour across the two 
possible stimulus locations (upper or lower). To explore this, we exam-
ined the response of the population of neurons as a function of the 
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colour and location of the stimulus of interest (either cued or uncued). 
The fidelity of these population representations depended on the 
behavioural performance of the monkey. Therefore, for all principal 
component analyses, we divided trials on the basis of the accuracy of 
the behavioural report (median split for each session, as above) and 
separately analysed trials with lower angular error (higher accuracy, 
Fig. 4) and higher angular error (lower accuracy, Extended Data Fig. 9f).

Trials were sorted into B = 4 colour bins and L = 2 locations (top or bot-
tom), yielding B × L = M, eight total conditions. To visualize these popu-
lation representations, we projected the population vector of mean 
firing rates for each of these eight conditions into a low-dimensional 
coding subspace (Fig. 4a, Extended Data Fig. 9a, b, similar to previous 
work36). For each time step, we defined a population activity matrix X 
as an M × N matrix, in which M is the number of conditions (eight) and 
N is the number of neurons:
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Here, r(cB,L) is the mean population vector (across trials) for the con-
dition corresponding to colour bin B and location L, and r is the mean 
population vector across the M conditions (that is, the mean of each 
column is zero).

The principal components of this matrix were identified by decom-
posing the covariance matrix C of X using singular value decomposition 
(as implemented by pca.m in MATLAB): C = PDPT, in which each column 
of P is an eigenvector of C and D is a diagonal matrix of corresponding 
eigenvalues. We constructed a reduced (K = 3)-dimensional space whose 
axes correspond to the first K eigenvectors of C (that is, columns of P, 
PK, assuming eigenvectors are ordered by decreasing explained vari-
ance). These first three eigenvectors explained an average of 65% of 
the variance in the mean population response across all examined time 
points. We then projected the population vector for a given condition 
into this reduced dimensionality space: z P c= ( ( ) − )K K B L

T
,r r , in which zK 

is the new coordinate along axis K in the reduced dimensionality space.
We observed that, when visualized in the reduced-dimensionality 

space, the population representations for each colour bin B within 
a given location L tended to lie on a plane, referred to as the ‘colour 
plane’ in the main text (Fig. 4a). To identify the best-fitting plane, we 
defined a new population activity matrix YL for each location L with 
dimensions B × K:
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in which z(cB,L) is the population vector for the condition correspond-
ing to colour bin B and location L in the reduced dimensionality space, 
and Lz  is the mean population vector across colour bins for that location 
(that is, the mean of each column is zero). The principal components 
of this matrix were calculated in the same manner as above and the 
first two principal components were the vectors that defined the 
plane-of-best-fit to the points defined by the rows of YL. These planes 
explained more than 97% of the variance of each set of points in the 3D 
subspace.

If the vectors defining the plane-of-best-fit for the upper item are v1 
and v2 and those for the lower item are v3 and v4, then the cosine of the 
angle between these two colour planes can be calculated as:

θcos( ) = ( × ) × ( × )1 2 3 4v v v v

For all analyses, population vectors were based on pseudo-populations 
of neurons combined across sessions. Pseudo-populations were created 
by matching trials across sessions according to the colour and location 

of the stimulus of interest (either cued or uncued), as described above 
(and following previous work27). This analysis included only neurons 
that were recorded for at least ten trials for each conjunction of colour 
and location. Confidence intervals of cos(θ) were calculated using a 
bootstrapping procedure. On each of 1,000 iterations, 10 trials from 
each of the 8 conditions were sampled from each neuron with replace-
ment. The average firing rates across these sampled trials provided the 
mean population vector for that condition on that iteration. To assess 
how cos(θ) changed around cue onset (Fig. 4b, Extended Data Fig. 9f), 
we used a logistic regression model of the form:

cos θ
β β t

( ) =
1

1 + exp(− ( + ))0 1

in which t is time relative to cue onset. This model was fit to values of 
cos(θ) computed at each time point in the interval from 500 ms before 
to 1,000 ms after cue onset on each bootstrap iteration (described 
above). This yielded a bootstrapped distribution of β1 estimates that 
could be compared to zero or across the two groups of trials with more 
and less accurate behavioural responses (Extended Data Fig. 9f).

Defining the colour subspaces for the upper and lower items in 
the full-dimensional space
To define the colour subspace in the full neuron-dimensional space, we 
defined B = 4 × N mean population activity matrices for each location 
L in the full space:
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The colour subspace was defined as the first two principal compo-
nents of WL.

These subspaces were used for two analyses. First, we projected the 
population vectors of colour responses from one item into the colour 
subspace for the other item (Fig. 4d). For example, the population 
vector response to colours of the upper item were projected into the 
colour subspace of the lower item, defined as the first two principal 
components of Wlower, and vice versa (Fig. 4d). Second, by defining 
the colour subspace of each item at different time points ti, we could 
examine how colour representations evolved during the trial (Fig. 4e, 
Extended Data Fig. 8c, d).

Measuring the separability of colours in a subspace
Next, we were interested in quantifying the separability of colours in 
a given subspace. As seen in Fig. 4d, e, the population representation 
of the four colour conditions, projected into the subspace, form the 
vertices of a quadrilateral with the edges of the quadrilateral connecting 
adjacent colours on the colour wheel (for example, Fig. 4d). To measure 
separability of the colours, we computed the area of this quadrilateral 
(polyarea.m function in MATLAB). Bootstrapped distributions of these 
area estimates were obtained by resampling trials with replacement 
from each condition before re-computing WL.

Similarity of transforms for the upper and lower stimulus
We were interested in testing whether the transformation of selected 
(‘cued’) items was the same as non-selected (‘uncued’) items (on retro 
trials). To this end, we examined how the population representation for 
the colour of the selected and non-selected stimuli changed over time. 
For both a pre-cue (150 to 350 ms post-stimulus offset) and post-cue 
(−200 to 0 pre-target onset) time epoch, we defined an N × B popula-
tion activity matrix A, in which N is the number of neurons, B = 4 colour 
bins, and the elements of the matrix reflect the mean firing rate of each 
neuron across trials in which the colour of the stimulus of interest fell 
in colour bin b.



We computed Apre and Apost separately for four different stimulus 
types of interest: cued upper stimuli, cued lower stimuli, uncued 
upper stimuli, and uncued lower stimuli. Then, for each stimulus type,  
we identified the N  ×  N matrix X that transformed the pre-cue  
representation to its post-state:

A X A_ = _ _post,cued upper cued upper pre,cued upper

A X A_ = _ _post,cued lower cued lower pre,cued lower

A X A_ = _ _post,uncued upper uncued upper pre,uncued upper

A X A_ = _ _post,uncued lower uncued lower pre,uncued lower

To assess how similar these transforms were, we applied transforms 
from one condition (for example, cued upper) to held-out (split half) 
pre-cue neural data (Apre

withheld) from a different condition (for example, 
cued lower) and compared how similar the predicted post-cue  
data (Apost

predicted) were to the actual (held-out) post-cue data (Apost
withheld). 

Reconstruction error was measured as the Euclidean distance between 
the predicted and actual population vectors ( A A−post

withheld
post
predicted ),  

averaged across all colours. Low reconstruction error indicates similar 
transforms.

This procedure allowed us to determine how similar the transforms 
were across locations and cue types by testing whether the transfor-
mation, defined in one condition for one item, generalized to another 
condition and/or another item. For example, for the ‘cued upper’ con-
dition, the reconstruction errors of different forms of generalization 
were computed as follows:

f A X A

Error(same condition, same item)

= ( _ − _ _ )post,cued upper
witheld

cued upper pre,cued upper

f A X A

Error(same condition, different item)

= ( _ − _ _ )post,cued upper
witheld

uncued lower pre,cued upper

f A X A

Error(different condition, same item)

= ( _ − _ _ )post,cued upper
witheld

uncued upper pre,cued upper

f A X A

Error(different condition, different item)

= ( _ − _ _ )post,cued upper
witheld

cued lower pre,cued upper

in which f is the mean root sum of squares across columns (that is, 
the mean Euclidean distance between the actual and reconstructed 
population vectors for each colour bin b). Similar reconstruction errors  
were estimated for the other three conditions (cued lower, uncued 
upper, and uncued lower).

Applying the estimated transform to held-out data from the same 
condition and the same item provides a lower bound on reconstruc-
tion error due to variance across trials and indicates whether the 
transformations are stable within a condition. Applying transforms 
to the response to the other item in the same cuing condition (same 
condition, different location) allows us to test whether the selected 
and non-selected items are transformed in similar ways by comparing 
reconstruction error to (1) chance and (2) the error within condition 
and within item (same condition, same item). Finally, to control for 
any similarity in transforms due to a non-condition-specific effect of 
the cue (for example, time during the task), we can apply transforms 
based on items in the other cueing condition, either to the same item 
(different condition, same item) or the other item (different condi-
tion, different item).

We computed the four types of reconstruction error by averaging 
across all four conditions of interest (cued upper, cued lower, uncued 
upper, uncued lower). To estimate the distribution of reconstruc-
tion error, we bootstrapped with replacement across trials. Chance 
levels of reconstruction error were estimated by repeating the boot 
strapping procedure but permuting the condition label (cued upper, 
cued lower, uncued upper, uncued lower) assigned to each colour 
population vector.

Correlation of colour representations
We wanted to understand how similarly colour was represented across 
the upper and lower locations over the course of the trial. To investi-
gate this, we binned retro or pro trials according to the colour and  
location of the stimulus of interest (cued or uncued) and then randomly  
partitioned into two halves. These split halves were used to estimate the 
degree of noise in the data (Extended Data Fig. 10b–d, described below). 
Specifically, trials were sorted into B = 4 colour bins, L = 2 locations (top 
or bottom), and H = 2 halves, yielding B × L × H = M total conditions. For 
each of these conditions, at a given time point of interest, we computed 
the average population vector r(cB,L,H).

We then computed the average correlation between each population 
vector and the population vectors corresponding to the same colour 
bin at the other location (Fig. 4c, Extended Data Figs. 9c, 10b–d):

r r r r∑ ∑ ∑ρ
B H

c c c c=
1
2

corr( ( ) − ⟨ ( )⟩ , ( ) − ⟨ ( )⟩ )
i

H

j

H

b

B

b i B i B b j B j Bcross
=1 =1 =1

,1, ,1, ,2, ,2,

in which ⟨•⟩B is the average across the set of colour bins B. In other words, 
for each set of B population vectors corresponding to a particular half 
of the data H and location L, we subtracted the mean across bins to 
centre the vector endpoints around zero. Thus, ρcross quantifies to what 
extent colour representations are similarly organized around their 
mean across the two locations.

To obtain an upper bound on potential values of ρcross given the degree 
of noise in the data, we also computed the average correlation of each 
population vector with itself across the two halves:
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Finally, to understand how similarly colour was represented across 
the two cueing conditions, trials were sorted into B = 4 colour bins,  
L = 2 locations (top or bottom), and C = 2 cuing conditions (pro and 
retro). For each of these conditions, at a given time point of interest, 
we computed the average population vector r(cB,L,C). We then com-
puted the average correlation between each population vector and the 
population vectors corresponding to the same colour bin at either the 
same or different location in the other task (Extended Data Fig. 1 0f ) :
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To compare the similarity of colour representations on retro trials 
to pre-target pro colour representations, we computed this corre-
lation between (1) the response on pro trials, for all time points fall-
ing within the interval from −300 ms to 0 ms before the onset of the 
response wheel, and (2) the response on retro trials at two different time  
points: before selection (from −300 to 0 ms before the cue) and after 
selection (from −300 to 0 ms before the onset of the response wheel). 
Correlation was measured between each time point across windows 
and then averaged across all pairs of time points.

As above, population vectors were pseudo-populations of neurons 
combined across sessions, in which trials across sessions were matched 
according to colour bin and location27. This analysis included only neu-
rons that were recorded for at least ten trials for each conjunction of 
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colour and location. Confidence intervals for ρcross, ρself, and ρatt,sel were 
calculated with a bootstrap. On each of 1,000 iterations, and for each 
neuron and condition (colour–location–half conjunction), the entire 
population of trials in that condition was resampled with replacement. 
The average firing rates across these sampled trials provided the mean 
population vector for that condition on that iteration. As with principal 
components analyses, we divided trials on the basis of the accuracy 
of the behavioural report (median split of trials for each session) and 
the presented results reflect analysis of trials with lower angular error, 
unless otherwise noted.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data supporting all figures are included with the manuscript. Raw 
electrophysiological and behavioural data are available from the cor-
responding author upon reasonable request. Source data are provided 
with this paper.

Code availability
Behavioural code and custom Matlab analysis functions are publicly 
available at https://github.com/buschman-lab/. All other code is avail-
able from the authors upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Behaviour was consistent across monkeys and 
selection mitigated the decay of memories over time. a, b, Mean absolute 
angular error (a) and mean mixture model parameter fits (b) in the main 
experiment (experiment 1) (Fig. 1a) for each monkey (Methods). Violin plots 
depict bootstrapped distribution across sessions (n = 10 for monkey 1 and n = 13 
for monkey 2). Lines indicate pairwise comparisons. Although monkey 1 
performed slightly better than monkey 2, they displayed similar patterns of 
performance across conditions. c, Distribution of reported colours and 
absolute angular error as a function of target colour in experiment 1 for each 
monkey for pro and retro trials. The distributions of reported colours for each 
condition and monkey were significantly non-uniform (entropy of report 
distribution significantly lower than entropy of the target distribution, all 
P < 0.001, bootstrap across n = 3,873 (pro) and 3,943 (retro) trials for monkey 1 
and n = 4,440 and 4,769 trials for monkey 2). Details of this behaviour have 
previously been published30. d, Mixture model parameter fits of behaviour 

pooled across monkeys for experiment 1 (bootstrap across n = 23 sessions).  
e, Top, in a separate behavioural experiment (experiment 2), we fixed the total 
memory delay of the retro condition and systematically varied the length of  
the delay between stimulus offset and cue onset. Bottom, increasing the time 
before selection (x-axis) increased mean absolute angular error (53.1°, 54.4°, 
and 57.8° for 0.5 s, 1 s, and 1.5 s post-stimulus, respectively; distributions are 
1,000 bootstrap resamples across n = 3,306, 3,287, and 3,322 trials, 
respectively). f, Mixture model parameter fits, pooled across monkeys  
(1,000 bootstrap resamples across n = 24 sessions), for experiment 2. Linear 
regression showed that earlier cues improved the precision of memory reports 
in experiment 2 (β = 3.95 ± 1.88 (s.e.m.), P = 0.012, bootstrap) but did not 
significantly change the probability of forgetting (that is, random responses; 
β = 0.03 ± 0.03 (s.e.m.), P = 0.126, bootstrap). Bars and asterisks in all panels 
reflect two-sided uncorrected randomization tests: ·P < 0.1, *P < 0.05, **P < 0.01, 
***P < 0.001.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Population size and neural responsiveness do not 
explain differences in classification performance across regions. a, Firing 
rate of an example LPFC neuron around cue onset when the upper (grey) or 
lower (green) stimulus was cued in the retro (top) and pro (bottom) conditions. 
Shaded regions are s.e.m. across trials (n = 161 retro upper, 124 retro lower, 150 
pro upper, and 121 pro lower trials). Insets, cues used for retro and pro trials.  
b, Percentage of neurons in each region of interest with firing rates that were 
significantly modulated by the selected location after cue onset on retro trials 
(trials pooled across cue sets 1 and 2). For each neuron, we quantified location 
selectivity using d′ (Methods) and compared this value to a null distribution by 
permuting location labels across trials. All four regions showed strong 
selectivity: LPFC had 159 out of 590 neurons selective; FEF, 37 of 169; parietal, 
49 of 301; V4, 62 of 318; all P < 0.001 against chance of 5% (two-sided 
uncorrected binomial test). c, Mean classification accuracy (top, taken at 
300 ms post-cue) and mean time to 55% classification accuracy (bottom) for 
the selection (left) and generalized (right) classifiers as a function of the 
number of neurons used for classification. This analysis controls for the total 
number of neurons recorded in each region. For each subpopulation of a 
specific size (x-axis), circles reflect average across 1,000 iterations using 
different randomly selected subpopulations of that size. Lines reflect best-
fitting two-parameter power function (Methods). Error bars are 95% prediction 
intervals. For classifier accuracy (top row): n = 35, 10, 19, and 22 unique 
population sizes for LPFC, FEF, parietal and V4, respectively. For classifier 
timing (bottom left and right): n = 35/32, 10/8, 19/4, and 21/20 for selection/
generalization in LPFC, FEF, parietal and V4, respectively. The reduction in the 
number of data points in the bottom plots reflects the fact that, for some 
neuron counts, classifiers never reached 55% classification accuracy on any 
iteration. Asterisks indicate significance of projected classification for a given 
region compared to the measured classification in LPFC at the maximum 
number of neurons (two-sided z-test, not corrected for multiple comparisons). 
Selection classification accuracy: FEF P = 2.18 × 10−10; parietal P = 1 × 10−16; V4 
P < 1 × 10−16. Generalization classification accuracy: FEF P < 1 × 10−16; parietal 
P < 1 × 10−16; V4 P < 1 × 10−16. Selection classification timing: FEF P = 0.054; parietal 
P = 1.02 × 10−4; V4 P < 6.94 × 10−8. Generalization classification timing: FEF 
P = 0.203; parietal P = 1.11 × 10−13; V4 P < 1 × 10−16. d, Neuron dropping curves as in 
c, except analysis was restricted to neurons with a significant evoked response 
to cue onset to control for potential differences in responsiveness across 
regions (Methods). For classifier accuracy (top row): n = 23, 5, 8, and 8 unique 
population sizes for LPFC, FEF, parietal and V4, respectively. For classifier 
timing (bottom left and right): n = 23/22, 5/4, 8/0, and 8/8 for selection/
generalization in LPFC, FEF, parietal and V4, respectively. Selection 
classification accuracy: FEF P < 1 × 10−16; parietal P < 1 × 10−16; V4 P < 1 × 10−16. 
Selection classification timing: FEF P < 1 × 10−16; parietal P < 1 × 10−16; V4 

P < 1 × 10−16. Generalization classification accuracy: FEF P = 0.001; parietal 
P = 0.021; V4 P = 0.002. Generalization classification timing: FEF P < 1 × 10−16;  
V4 P < 1 × 10−16. e, To determine whether there were sub-populations of selective 
neurons in a region with greater selectivity than the overall population, we 
ranked neurons in each region by their ability to support the selection (left) or 
generalized (right) classifier (Methods). Neurons with firing rates that yielded 
large magnitude (and sign consistent) d′ values for the cued location (upper or 
lower) across both retro cue sets will support selection classifier performance 
(left). We quantified this by projecting these two d′ values onto the identity (red 
lines) and taking the absolute value of the resulting vector. Neuron 1 is ranked 
higher than neuron 2 because of its larger magnitude projection onto the 
identity. A similar procedure can be used to rank neurons for generalization 
from pro to retro trials (right) by repeating the procedure on the basis of 
selectivity for ‘pro cueset 1’ and ‘retro cueset 2’. f, Neuron dropping curves (as in 
c), except that neurons are added to the analysis on the basis of their selectivity 
or generalization, as described in d. Shaded region is 95% confidence intervals 
of best linear fit (which fit better than power functions) (Methods). Even when 
selecting ideal subpopulations from each region, no region significantly 
exceeded LPFC performance. Performance now decreases as n increases 
because, owing to our ranking procedure, later cells are by design less able to 
support performance on withheld cues (whether within selection or across 
selection or attention). These later neurons may still be weighted heavily by the 
classifier (owing to good performance on the training set) and so negatively 
affect performance at test. This is exemplified by the projections onto one axis, 
as indicated by the vertical dashed lines in d, showing a greater weighting for 
neuron 2, despite it not facilitating generalization. For classifier accuracy (top 
row): n = 35, 10, 19, and 22 unique population sizes for LPFC, FEF, parietal and V4, 
respectively. For classifier timing (bottom left and right): n = 35/35, 10/10, 
19/18, and 22/22 for selection/generalization in LPFC, FEF, parietal and V4, 
respectively. g, To examine ‘bottom-up’ information flow about low-level 
sensory aspects of the cue, we trained classifiers to discriminate the variants of 
each cue, using cross-validation across subsets of trials (Methods). h, Neuron 
dropping curves (as in c) for these ‘cue appearance’ classifiers. Cue appearance 
classifiers yielded a qualitatively different pattern of performance, with V4 
showing superior classification performance at cue offset (left) and faster 
classification onset (right). Asterisks indicate significance of projected 
classification for a given region compared to the measured classification in 
LPFC at the maximum number of neurons (two-sided z-test, not corrected for 
multiple comparisons). n = 35, 10, 19, and 22 unique population sizes for LPFC, 
FEF, parietal and V4, respectively. Classification accuracy: FEF P = 0.282, 
parietal P < 1 × 10–16, V4 P < 1 × 10–16. Classification timing: FEF P = 0.005, parietal 
P = 4.24 × 10–16, V4 P = 2.27 × 10–8. ·P < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Successful classification was driven by increases in 
signal. a, Example histogram of classifier confidence across ‘upper cued’ and 
‘lower cued’ trials for the LPFC selection classifier in the 500 ms after cue onset. 
Classifier confidence measures the distance of neural activity from the 
hyperplane identified by the classifier. Signal is the difference between the 
means of the two trial distributions; noise is their average s.d. b, For both the 
‘selection’ and ‘generalization’ classifiers, signal (top row) tracks classification 
performance (Fig. 2) much better than noise (bottom row), suggesting that 
classifier performance was due to an increase in signal and not a decrease in 
noise. Shading shows s.e.m. Distribution estimated from 1,000 iterations of 

classifiers trained and tested on random samples of n = 60 trials (Methods).  
c, Mean noise correlation among neurons entering the ‘selection’ and 
‘generalization’ analyses described in Fig. 2. Noise correlations were based on 
mean firing rates over the interval from 0 to 500 ms after the cue. There were 
no significant differences between regions. d, Fano factor (σ2/μ) of single-
neuron firing rates across trials (averaged from 0 to 500 ms after the cue). The 
ratio was significantly larger in LPFC than V4 but no other comparisons were 
significant (horizontal bar; two-sided uncorrected t-test). c, d, Violin plots 
show distribution of values based on 1,000 bootstrapped resamples of n = 60 
trials (Methods). Red crosses indicate mean.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Neural responses in prefrontal cortex were similar 
across cue sets and tasks. a, Distribution of selectivity across neurons for the 
selected location (top row) and for the selected and attended location (bottom 
row). Selectivity was taken as the normalized difference in firing rate (d′) 
between ‘upper’ and ‘lower’ trials evoked by the two retro cue sets (top) and by 
pro cue set 1 and retro cue set 2 (bottom) (Methods). Firing rate was computed 
at the end of the cue period (300 ms after cue onset). Positive d′ values 
indicated that the neuron was more active when the upper sample was cued. 
Rose plots in the background show the histogram of neurons binned by angle 
(grey circle indicates scale; density = 0.1). Bar plots along axes show histogram 
of marginal distributions (grey ticks on axes indicate scale; density = 0.2). 
Statistical tests are Pearson’s r. b, Selection correlation values (as in a) 
computed over time around cue onset. Bars along top indicate correlations 
greater than zero: P < 0.05, 0.01, and 0.001 for thin, medium, and thick lines, 

respectively (one-sided uncorrected bootstrap; n = 1,000 resamples of trials). 
c, Generalization correlation values computed over time around cue onset, as 
in b. d, Schematic of classifier trained to discriminate the neural response to 
two cue conditions on pro trials. Performance was calculated as the cross-
validated classification accuracy (tenfold cross-validation on each of 1,000 
random resamples of trials) (Methods). e, Mean ± s.e.m. classification accuracy 
of the pro cues, relative to cue onset, for all four brain regions. Distribution was 
defined across 1,000 random resamples of trials. This analysis captures a 
mixture of information about the control of attention (up or down) and 
information about the visual appearance of the cue itself. These results show 
that these two conditions are separable in all brain regions, and so any failure in 
cross-classification performance (Fig. 2d, purple traces) is not due to poor 
separability of the attention conditions.



Extended Data Fig. 5 | Single neurons encoded the colours of remembered 
items. a, Mean firing rates for example neurons during the retro condition, 
binned by the colour (indicated by line colour) of the selected (solid) or 
non-selected (dashed) stimulus. Example neurons are shown for all four brain 
regions (labelled at top left). b, Mean ± s.e.m. selectivity of neurons in all four 
regions for the colour of the selected and non-selected stimulus (in light and 
dark blue, respectively) in each brain region, averaged across neurons. 
Selectivity is measured using a PEV statistic (Methods) and shows similar 

results to when using an entropy statistic (Fig. 3). LPFC: 574 neurons, FEF:  
163 neurons, parietal: 292 neurons, V4: 311 neurons. Horizontal bars indicate 
significant information for the selected item (light blue), the non-selected item 
(dark blue), and a significant difference in information about the selected and 
non-selected items (black). Bar width indicates significance: P < 0.05, 0.01, and 
0.001 for thin, medium, and thick, respectively (two-sided cluster-corrected 
t-tests).
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Comparison of information about the reported/
presented colour, the attended/unattended item, and the memory of 
items on prospective and retrospective trials. a, Mean z-scored colour 
information for the reported colour (grey) and the colour of the presented, 
selected, item (light blue). Information was calculated on firing rates in a  
200-ms window before onset of the response colour wheel for all neurons. 
Distributions show bootstrapped estimates of the mean across neurons  
(LPFC: 570 neurons, FEF: 163 neurons, parietal: 292 neurons, V4: 311 neurons). 
Horizontal lines indicate pairwise comparisons. *P < 0.05, **P < 0.01, 
***P < 0.001 (two-sided uncorrected randomization tests). b, Mean ± s.e.m.  
z-scored colour information for the attended and non-attended colour on pro 
trials. LPFC: 543 neurons, FEF: 160 neurons, parietal: 272 neurons, V4: 300 
neurons. Horizontal bars indicate significant information for the attended 

item (light orange), the non-attended item (dark orange), and significant 
differences in information about the attended and non-attended items (black). 
Bar width indicates significance: P < 0.05, 0.01, and 0.001 for thin, medium, and 
thick, respectively (two-sided cluster-corrected t-tests). c, Mean ± s.e.m. 
difference in z-scored colour information between retro and pro trials for the 
cued item (selected − attended; light purple) and uncued item (non-selected −  
non-attended; dark purple). Positive values reflect more information about an 
item on retro trials. LPFC: 511 neurons, FEF: 146 neurons, parietal: 258 neurons, 
V4: 285 neurons. Horizontal bars indicate significant differences from zero 
(that is, differences between retro and pro) for the cued item (light purple) and 
the non-cued item (dark purple). Bar width indicates significance: P < 0.05, 
0.01, and 0.001 for thin, medium, and thick, respectively (two-sided cluster-
corrected t-tests).



Article

Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | The effect of selection on colour information was 
greater when memories were more accurate. a, Selection enhanced the 
representation of the selected item in frontal and parietal regions and reduced 
the representation of the unselected item in FEF. The y-axis shows the increase 
in colour information after selection (post-cue period: 200 to 500 ms after cue 
offset), relative to information before selection (pre-cue period: −300 to 0 ms 
before cue onset). Violin plots show the distribution of this difference, 
estimated by 1,000 bootstrapped resamples of neurons (LPFC: 577 neurons, 
FEF: 170 neurons, parietal: 299 neurons, V4: 316 neurons). *P < 0.05, **P < 0.01, 
***P < 0.001 (two-sided uncorrected paired t-tests). b, Mean ± s.e.m. z-scored 
colour information for the selected (light blue) and non-selected item (dark 
blue) on retro trials, for trials with more accurate behavioural responses (left; 
error was less than median error) and less accurate behavioural responses 
(right; error was greater than median error). LPFC: 457/472 neurons, FEF: 

134/135 neurons, parietal: 235/241 neurons, V4: 248/267 neurons for left/right, 
respectively. Plots follow Fig. 3. Horizontal bars indicate significant 
information for the selected item (light blue), the non-selected item (dark 
blue), and significant differences in information about the selected and non-
selected items (black). Bar widths indicate significance: P < 0.05, 0.01, and 
0.001 for thin, medium, and thick, respectively (two-sided cluster-corrected  
t-tests). c, Mean ± s.e.m. difference in z-scored colour information about the 
selected and non-selected items for more accurate and less accurate trials. 
LPFC: 435 neurons, FEF: 125 neurons, parietal: 221 neurons, V4: 240 neurons.  
As in b, trials were split on the basis of angular error (relative to median error). 
Positive values reflect more information about the selected item than the non-
selected item. Horizontal bars indicate significant differences between more 
and less accurate trials; width indicates significance: P < 0.05, 0.01, and 0.001 
for thin, medium, and thick, respectively (two-sided cluster-corrected t-tests).
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Extended Data Fig. 8 | Distributed representations of colour in prefrontal 
cortex were transformed over time. a, Mean z-scored colour information for 
the upper (x-axis) and lower ( y-axis) stimuli immediately before selection cue 
onset (average over −500 to 0 ms before the selection cue) for LPFC (583 
neurons). Most neurons carried some amount of information about both items 
(that is, neurons did not lie along the axes). b, To check whether neurons that 
primarily carried information about just one item were driving the 
orthogonality between the colour planes in LPFC before the selection cue, we 
re-computed the cosine of the angle between the colour planes (Methods) 
using populations of neurons with significant colour information about one 
item only or both items (see Methods for description of this test). Histograms 
show the distribution of the cosine of the angle between the best-fitting planes 
for the upper and lower stimuli during the pre-cue period for these ‘both’ and  
‘1 item’ populations of neurons (with each population subsampled to an equal 
number of neurons) (Methods). Distributions were estimated from 1,000 
resamples of trials. Green squares indicate median values. While the ‘both’ 
neurons did display slightly less orthogonality than the ‘1 item’ neurons, this 
difference was not significant (P > 0.4, two-sided bootstrap of difference). 

Cosine angles are not zero for ‘1 item’ neurons because ‘1 item’ neurons still 
contain subthreshold information (P > 0.05) about the other item, as seen in  
a, and subsampling cells in this way decreases statistical power, thereby 
inflating low cosine values. c, Population trajectories for lower colours, over 
time, as projected into the lower colour subspace defined either before or after 
selection (left and right, respectively). Follows Fig. 4e. The lower colour 
subspace was defined as a 2D space that maximally explained variance across 
the four lower colours (Methods). As for the upper colour (Fig. 4e), temporal 
cross-generalization was poor, suggesting that the colour information was 
represented in different subspaces before and after the selection cue. d, Before 
selection, colour representations in LPFC are better separated using the 
pre-selection subspace. After selection, colours are better separated in the 
post-selection subspace. Separability was measured as the area of the 
quadrilateral defined by the responses to colours (c, Fig. 4e), projected into 
either the pre-selection or post-selection subspaces (left and right columns in 
each plot; area averaged across upper and lower items). Violin plots show 
distributions estimated from 1,000 resamples of trials. *P < 0.05, **P < 0.01, 
***P < 0.001 (two-sided bootstrap of difference).



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | The alignment of selected items was greater in 
prefrontal cortex than other brain regions, was greater than the alignment 
of non-selected items, and was greater when memories were more 
accurate. a, Projected population responses for selected upper and non-
selected lower colours, computed as in Fig. 4a. The selected and non-selected 
colours remain orthogonal after the selection cue (main text). b, Projected 
population responses for non-selected upper and non-selected lower colours. 
As with the selected colour planes, the non-selected colour planes appear 
parallel after the selection cue. c, Mean correlation between the population 
representation of each colour in the upper and lower position during retro 
trials, when both items were selected (left), one item was selected and another 
item was non-selected (middle), and when both items were non-selected 
(right). Correlation was measured during an ‘early’ time period during the delay 
(dark grey; 150–350 ms after the offset of the stimulus) and a ‘late’ time period 
during the delay (light grey; 200–0 ms before the onset of the colour wheel). 
Correlation was measured after subtracting the mean response at each 
location (Methods). Violin plots show bootstrapped distributions estimated 
from 1,000 resamples of trials. Horizontal lines indicate pairwise comparisons 
(two-sided uncorrected bootstrap of difference). Lone asterisks denote two-
sided uncorrected bootstrap versus zero: *P < 0.05, **P < 0.01, ***P < 0.001.  
d, Cosine of the angle between the best-fitting planes for the upper and lower 
stimuli. Planes were fit to selected and non-selected items during both the 
early and late time periods (as in c). Histograms show full distribution, 
estimated from 1,000 resamples of trials; green lines indicate median values. 
Horizontal lines indicate pairwise comparisons: *P < 0.05, **P < 0.01, 
***P < 0.001 (two-sided uncorrected bootstrap of difference). e, To find out 

whether the selection process transformed the cued and non-cued item in 
similar ways, we estimated the transformation matrices that mapped pre-cue 
representations of an item onto their post-cue representation (Methods, 
Supplementary Discussion 3). Then, we tested whether these transformations 
were able to reconstruct representations on withheld trials. Transformations 
were tested on the same condition (withheld trials; first column); on the other 
item in a condition (for example, applying the transformation of a selected 
upper item to an non-selected lower item; second column); on the same item, 
but in a different condition (for example, applying the transformation of a 
selected upper item to an non-selected upper item; third column); and on the 
other item in a different condition (for example, applying the transformation of 
a selected upper item to an selected lower item; fourth column). Violin plots 
show distributions of these mean reconstruction errors estimated from 1,000 
resamples of trials. Red crosses indicate the distribution mean, dashed lines 
show reconstruction error expected by chance (estimated by random shuffle) 
(Methods). The results indicate a common component to the transformation of 
the selected and non-selected item in the same condition (second column) but 
there was also an item-specific transformation (reflected in the lower 
reconstruction error for the same item; first column). Horizontal lines show 
pairwise comparisons: ***P < 0.001 by two-sided uncorrected bootstrap of 
difference. f, The selected upper and selected lower colour planes do not align 
on inaccurate trials. Figure follows Fig. 4b, but shows data for trials in which 
absolute angular error was greater than the median error. Black markers show 
the cosine of the angle ( y-axis) between the two colour planes around the time 
of cue onset (x-axis) and black line shows the best-fitting logistic function.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Colour representations of the attended item were 
immediately aligned on prospective trials. a, Population responses 200 ms 
after stimulus offset on pro trials (projected into a reduced subspace for 
visualization). As in Fig. 4a, markers indicate mean position of population 
activity for each condition (binned by the colour and location of the attended 
item) in a subspace spanned by the first three principal components that 
explain the most variance across all eight conditions. b, Mean ± s.e.m. 
correlation of population vectors representing colours at the same location 
(self; red line) or between locations (cross-location; blue line) on pro trials. 
Correlations were measured after subtracting the mean vector at each location 
(as in Fig. 4c; Methods). Distribution was estimated from 1,000 resamples of 
trials. Self-correlation was computed on held-out trials and provides an upper-
bound on the between-location correlation values, given the noise level. Bars 
reflect uncorrected two-sided bootstrap (P < 0.05) for each correlation type 
against zero (red and blue) and between each other (black). c, As in b, but for 
retro trials. d, Mean correlation between the population representations of 
each colour in the upper and lower position during pro trials, when both items 
were attended (left), one item was attended and another item was non-
attended (middle), and when both items were non-attended (right). Correlation 
was measured during an ‘early’ time period during the delay (dark grey;  
150–350 ms after the offset of the stimulus) and a ‘late’ time period during the 
delay (light grey; 200–0 ms before the onset of the colour wheel). Correlation 

was measured after subtracting the mean response at each location (Methods). 
Violin plots show distributions, estimated from 1,000 resamples of trials. 
Horizontal lines indicate pairwise comparisons (two-sided uncorrected 
bootstrap of difference) and lone asterisks reflect two-sided uncorrected 
bootstrap against zero: *P < 0.05, **P < 0.01, ***P < 0.001. e, Cosine of the angle 
between the best-fitting planes for the upper and lower stimuli. Planes were fit 
to attended and non-attended items during both the early and late time 
periods, as in d. Histograms show full distribution, estimated from 1,000 
resamples of trials; green lines indicate median values. f, Mean correlation 
between the population representation for each colour during pro trials and 
the representations during the early or late time periods of retro trials. 
Correlation was computed between the colour representations taken from the 
300 ms before the onset of the response wheel on pro trials and the colour 
representations taken from either a pre-selection period (left distribution; 
−300 to 0 ms before cue) or a post-selection period (right distribution; −300 to 
0 ms before response wheel onset) on retro trials. Correlations were measured 
after subtracting the mean vector at each location, as in Fig. 4c (Methods). 
Violin plots reflect the distribution, estimated from 1,000 resamples of trials. 
Horizontal line indicates pairwise comparison (two-sided uncorrected 
bootstrap of difference) and lone asterisks reflect two-sided bootstrap  
against zero: *P < 0.05, **P < 0.01, ***P < 0.001.
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Sample size As detailed in the manuscript, a total of 1,541 neurons were recorded from 4 brain regions across 2 animal subjects. The number of subjects 
(2) and the number of neurons recorded per region (~180-680) follows previous work using similar approaches (e.g., Wessberg et al, 2000; 
Buschman and Miller, 2007; Mante et al, 2013; Siegel et al, 2015).

Data exclusions Neurons were excluded from a particular analysis if they were recorded for fewer than a fixed number of trials in any condition of interest for 
that analysis (typically 10 trials). This exclusion criterion was established in advance and is described specifically for each analysis in the 
methods.

Replication Independent experiments were performed in 2 animals, with 1,541 neurons recorded across 23 days. All data was included (except for 
exclusions noted above). There were no failed replication attempts (i.e., no animals failed to learn the task and no neural recordings were 
excluded). 

Randomization Each animal was exposed to every task manipulation. Within a session, task manipulations were randomized across trials. Neurons were 
recorded without bias, with electrodes placed to maximize signal-to-noise of the electrophysiological signal.

Blinding All animals were assigned to a single experimental group, and so blinding was not necessary or possible. However, experimenters were 
blinded to experimental conditions during recording of neurons and during sorting of waveforms into single neurons. 
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Laboratory animals Subjects were two 9 year old male rhesus macaques (Macaca mulatta). Animals were singly-housed in a large room that contained 
2-4 other male macaques of similar ages. 

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All experimental procedures were approved by the Princeton University Animal Care and Use Committee and were in accordance 
with the policies and procedures of the National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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