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Cogpnitive control guides behaviour by controlling what, when, and how information
is represented in the brain'. For example, attention controls sensory processing;
top-down signals from prefrontal and parietal cortex strengthen the representation
of task-relevant stimuli**. A similar ‘selection’ mechanism s thought to control the

representations held ‘in mind’—in working memory*>°. Here we show that shared
neural mechanisms underlie the selection of items from working memory and
attention to sensory stimuli. We trained rhesus monkeys to switch between two tasks,
either selecting oneitem from a set of items held in working memory or attending to
one stimulus from a set of visual stimuli. Neural recordings showed that similar
representations in prefrontal cortex encoded the control of both selection and
attention, suggesting that prefrontal cortex acts as a domain-general controller. By
contrast, both attention and selection were represented independently in parietal and
visual cortex. Both selection and attention facilitated behaviour by enhancing and
transforming the representation of the selected memory or attended stimulus.
Specifically, during the selection task, memory items were initially represented in
independent subspaces of neural activity in prefrontal cortex. Selecting anitem
caused its representation to transform fromits own subspace to a new subspace used
to guide behaviour. A similar transformation occurred for attention. Our results
suggest that prefrontal cortex controls cognition by dynamically transforming
representations to control what and when cognitive computations are engaged.

To study the control of working memory and attention, we trained two
monkeys to switch between two tasks. First, a retrospective (‘retro’)
task required monkeys to select one of two items held in working
memory (Fig.1a). On each retro trial, the monkeys remembered the
colours of two squares (colours drawn randomly from colour wheel)
(Methods). Afteramemory delay, the monkeys were given a cue indi-
cating whether to report the colour of the ‘upper’ or ‘lower’ square
(now held in working memory). This cue was followed by a second
memory delay, after which the monkeys reported the colour of the
cuedsquare by looking at the matching colour on a colour wheel (which
was randomly rotated on each trial to prevent motor planning). There-
fore, to perform the task, the monkeys held two colours in working
memory, selected the colour of the cued square, and then used it to
guide their response.

Monkeys performed the task well; the mean absolute angular
error between the presented and reported colour was 51.8° (Fig. 1b,
¢, Extended Data Fig. 1a, b). As expected™ 3, the error was reduced
when only one item was presented (Fig. 1b, ¢, Extended Data Fig. 1d;
the error was 38.1° for one item and 51.8° for two items (P < 0.001,
randomization test)). The increased error with two items in memory
is thought to be due to interference between the items™ ™, which is
reduced when anitemis selected from working memory'®*. Consistent
with thistheory, the error was smaller when selection occurred earlier
inthe trial (Extended DataFig.1e, f; linear regression, $=4.67°s"+1.08
(s.e.m.), P<0.001, bootstrap).

In addition, monkeys performed a prospective (‘pro’) task. On pro
trials, the cue was presented before the coloured squares, allowing
the monkey to attend to the location of the to-be-reported stimulus
(Fig.1a). Consistent with attention reducing interference between
stimuli?®* and modulating what enters working memory*, mem-
ory reports were more accurate in the pro task than the retro task
(Fig.1b, c, Extended DataFig.1d; 46.1° versus 51.8°; P< 0.001, randomi-
zationtest) and increasing the number of stimulifrom one totwo led to
asmallerincreaseinerror on protrials (9.01° versus 13.7° for pro versus
retro; P<0.001, bootstrap). These results highlight the functional
homology between selection and attention, as both forms of control
mitigate interference between representations'*2°2,

Control of memory and attention

To understand the neural mechanisms of selection, and their rela-
tionship to attention, we simultaneously recorded from four regions
involved in working memory and attention (Fig. 2a): lateral prefrontal
cortex (LPFC; 682 neurons), frontal eye fields (FEF; 187 neurons), pari-
etal cortex (Brodmannarea7a/b; 331 neurons), and intermediate visual
area V4 (341 neurons). Consistent with previous work in humans®?*%,
neurons in all four regions carried information about which item was
selected fromworking memory (thatis, upper or lower) (Extended Data
Fig.2a,b). To quantify thisinformation, we trained alogistic regression
classifier to decode the location of selection from the firing rates of
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Fig.1|Monkeys use selection and attention to control the contents of
working memory. a, Time course of retro and pro tasks. Cuesindicated
whether the monkey should select the upper or lower item from working
memory (retro task) or attend to the upper or loweritem (pro task) and report
thatitem after a delay. Reward was graded by error, calculated as the angular
deviationbetween the cued and reported colour (dashed and solid lines
ininset). Onasubsetofretroand protrials, asingleitem was presented

populations of neuronsrecordedin eachregion (Fig. 2b, Methods). The
classifier found significantinformation about the location of selection
inallfour regions, emerging firstin LPFC and thenin posterior regions
(Fig.2c; 175 ms post-cue in LPFC, 245 ms in FEF, 285 msin parietal, and
335msinV4). The emergence of informationin LPFC was significantly
earlierthanin parietaland V4 (P=0.005and P=0.048, respectively; ran-
domizationtest), butstatistically indistinguishable from FEF (P=0.371).
These results did not depend on the number of neurons recorded in
eachregion and were not due to differences in neural responsiveness
or noise (Extended Data Figs. 2, 3, Supplementary Table 1). Together,
these results suggest that control of selection emergesfirstin prefrontal
cortex and propagates to parietal and visual cortex.

Motivated by the functional homology between selection and atten-
tion®, we tested whether they were encoded in a shared population
representation. Specifically, we tested whether the classifiers trained
to decode the location of selection could generalize to decode the
location of attention (and vice versa) (Fig. 2b, Methods). Consistent
with a shared representation of selection and attention in LPFC, the
ability of the classifiers to generalize in this way was significantly
above chance and followed the time-course of the selection classifier
(Fig. 2¢). Individual LPFC neurons also generalized, representing the
location of selection and attention similarly (Extended DataFig. 4a-c;
r(586)=0.09,P=0.036).

By contrast, selection and attention wereindependently represented
inFEF, parietal, and V4. Generalization was weaker in FEF and trended
towards being delayedrelative to LPFC (Fig. 2¢; P=0.12, randomization
test). There was no significant generalization in parietal or V4 (Fig. 2c;
this was not due to an inability to decode attention, Extended Data
Fig. 4d, e). Consistent with different representations, the represen-
tations of selection and attention were uncorrelated in FEF, V4, and
parietal neurons (Extended DataFig. 4a-c; FEF: r(169) = 0.04, P=0.617;
V4:r(318) =-0.04, P=0.513; parietal: r(301) = 0.03, P= 0.612), although
apositive correlation emerged later in FEF.

These results suggest that LPFC may act as a ‘domain-general’
controller, with ashared population representation that encodes both
the selection of items from working memory and attention to sen-
sory inputs. This could allow behaviours to generalize across working
memory and sensory stimuli. By contrast, the task-specific represen-
tations seen in FEF and parietal (and partially in LPFC) could allow the
specific control of memories or sensory stimuli. A combination of
generalized and task-specific representations might balance the need
tolearn task-specific and generalized behaviours®**? (Supplementary
Discussion1).

2 | Nature | www.nature.com

Angular error (degrees)

(notshown). b, Distribution of error (circles) with best-fitting mixture models
(lines) (Methods) for single item trials (grey), retro trials (blue), and pro trials
(orange). As previously shown®, errors reflected both unsystematic error and
systematic biases (Extended DataFig. 1c). ¢, Bootstrapped distribution of mean
absoluteerrorintheretro, pro, and single-stimulus conditions (n=8,620,
8,169,and 4,207 trials, respectively). ***P<0.001, two-sided uncorrected
randomization test.

Selection and attention enhance memories

Next, we explored how selection and attention affected the neural
representation of items in working memory. Single neurons in LPFC,
FEF, parietal, and V4 all carried information about the colour of the
upper or lower item (LPFC: n =387 of 607 cells; FEF: 114 of 178; pari-
etal: 181 of 307; V4: 245 of 323; all P< 0.001, binomial test) (Methods,
Extended DataFig. 5a). Inall four regions, information about the colour
of the stimuli emerged during stimulus presentation and was main-
tained throughout the trial (Fig. 3, Extended Data Fig. 5b, Supplemen-
tary Discussion 2). These memory representations were related to
behaviour: LPFC and V4 carried more information about the reported
colour than the presented colour (Extended Data Fig. 6a; P< 0.001,
randomization test).

Consistent with previous work in humans®®, selection strengthened
memoriesin prefrontal and parietal cortex. In LPFC, colour information
about the selected memory was greater than the information about
the non-selected memory, starting 475 ms after cue onset (Fig. 3; also
above pre-cue baseline, Extended Data Fig. 7a). Similar enhancements
were seen in FEF and parietal (at 715 and 565 ms, respectively) (Fig. 3,
Extended Data Fig. 7a).

The selective enhancement of amemory was related tobehaviourin
allfour regions (Extended Data Fig. 7b, c). When memory reports were
inaccurate, the effect of selection was absent in LPFC, FEF, and parietal.
Although selection did not affect memory representationsin V4 overall
(Fig. 3b), information about the selected item was increased on trials
with high memory accuracy and information about the non-selected
item was increased on low-accuracy trials. These results suggest that
memory errors occurred when the monkey failed to select anitem or
selected the wrongitem.

Similar to selection, attention increased information about the
attended stimuli, which suggests that similar mechanisms strengthen
memory and sensory representations in prefrontal and parietal cortex
(Extended Data Fig. 6b). However, in contrast to attention>?, selection
didnotreduceinformationabout the non-selected memoryin LPFC and
parietal (Extended Data Fig. 7a; butinformation did slightly decreasein
FEF), which suggests that selection might not engage the competitive
mechanisms that suppress unattended stimuli®®.

Selection and attention transform memories

Finally, we were interested in how the changing task demands during
retrotrials affected memory representations. Early in the trial, before
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Fig.2|Selectionis observedfirstinprefrontal cortexandsharesa
populationcode with attention. a, Schematic of locations of neural
recordings. b, Schematic of classifiers used to quantify information about
whether the upper or lower item was selected from population firing rates
(Methods). ‘Selection’ classifier accuracy was measured within retro trials (top)
onheld-outdata. ‘Generalization’ classifier accuracy was measured across
retro and pro trials (bottom). ¢, Time course of classifier accuracy for each
brainregion (labelled in top left). Lines and shading show mean +s.e.m.
classificationaccuracy around cue onset for the selection (blue) and
generalization classifiers (purple). Distribution reflects 1,000 iterations of
classifiers, trained and tested on n=60 randomly sampled trials. Horizontal
bars (top right of each plot) indicate above-chance classification (P<0.05,0.01,
and 0.001 for thin, medium, and thick lines, respectively; one-sided
uncorrected bootstrap).

selection, colour memories must be maintained in a form that allows
the monkey to select the cued item (that is, colours arebound to aloca-
tion). Later in the trial, after selection, only the colour of the selected
itemis needed to guide the visual search of the colour wheel and the

monkey’s response. Next, we show how selection transformed memory
representations to match these changing task demands.

Beforeselection, the colour of eachitemin memory was represented
inseparate subspaces in the LPFC neural population. Figure 4a shows
the representation of the colour of the upper and lower item, before
selection (projectedintoareduced 3D space) (Methods). Colour infor-
mationshowed a clear organization; the responses to four categories of
colour were well separated and in colour order for both the upper and
lower item (that is, neighbouring colours in colour space had neigh-
bouring representations). Colour representations for eachitem were
constrainedtoa‘colour plane’, consistent witha2D colour space (Meth-
ods). As seenin Fig. 4a, the upper and lower colour planes appeared
tobeindependent fromone another, suggesting that colour informa-
tionabout the upper and lower items was separated into two different
item-specific subspaces in the LPFC population (before selection).

Consistent with the existence of separate subspaces, the median
angle between the upper and lower colour planes was 79.1° (Fig. 4b;
interquartile range (IQR), 71.4-85.1°; Methods), which suggests that
they were almost orthogonal before selection. This was not because the
two items were encoded by separate populations of neurons. Rather,
representations in LPFC overlapped?, with a significant proportion
of neurons encoding both items (31% and 35% of neurons encoding
the upper or lower item also encoded the other item; P=1.21x107*,
binomial test) (Extended Data Fig. 8a, b). The colour planes were not
completely orthogonal, as the representations of the upper and lower
itemswere anti-correlated (Fig. 4c; forexample, the N-neuron popula-
tion vectors of ‘red upper’ and ‘red lower’ were anti-correlated; mean
r=-0.067 for =300 to O ms pre-selection, P=0.009, bootstrap). This
modest anti-correlation might improve differentiation when the two
items have similar colours.

Further supporting the existence of independent upper and lower
subspaces before selection, colour representations of an item were
less separated when they were projected onto the other subspace
(Fig. 4d; eachitem’s subspace was defined as the 2D space that maxi-
mally captured colour information in the full N-dimensional neural
space; Methods). To quantify the separability of colours, we measured
the area ofthe quadrilateral defined by the four colour representations.
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Fig.3|Selection increases colour information in working memory. Lines and
shading show mean + s.e.m. z-scored colour information for the selected and
non-selected colour (light and dark blue, respectively) in each brain region,
averaged across neurons (LPFC, n=570; FEF, n=163; parietal, n=292;V4,n=311
neurons). Information was quantified by the circular entropy of each neuron’s
response to colours (Methods). Horizontal bars at tops of plots indicate
significant information for the selected (light blue) and non-selected item (dark

Time, relative to task events (s)

blue) and asignificant difference ininformation about the selected and
non-selected items (black). Bar thickness indicates significance: P<0.05, 0.01,
and 0.001 for thin, medium, and thick, respectively; two-sided cluster-corrected
t-test. Stimulus colour information tended to emerge firstin V4 (at 85 ms
post-stimulus) and flow forward to LPFC (145 ms), FEF (185 ms), and then parietal
(275 ms; V4 < parietal, P= 0.035; FEF < parietal, P= 0.054; randomization tests).
By contrast, selection increased colour information in LPFC first (main text).
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Fig.4|Selection transforms memory informationinatask-dependent
manner. a, Populationresponse in LPFC for the colour of the selected item
(binnedinto four coloursindicated by marker colour; upperand lower
indicated by marker shape). Population response is taken as the vector of the
mean firing rate of neurons before the cue (pre-cue, left; 400 ms before cue)
and after the cue (post-cue, right; before target onset). Responses are
projectedintoareduced dimensionality subspace defined by the first three
principal components (PCs) of all eight colour-location pairs. Grey lines
connectadjacentcoloursoncolour wheel. Grey shaded regions show best
fitting planes to eachitem.b, Cosine of the angle between the two colour
planes (a) over time. Higher numbers reflect better alignment. Black line shows
thebest-fittinglogistic function to n=150 time points. ¢, Mean correlation

This ‘colour area’ was greater when colour representations were pro-
jectedinto their own subspace rather than the other subspace (reflect-
ing greater separation in their own subspace; 86.1 versus 35.2 units?,
P=0.041, bootstrap; all subspaces defined on held-out data).

After selection, memory representations in LPFC were transformed
into a different subspace (as previously theorized’). Reflecting this,
the separation of colours in the pre-selection subspace collapsed by
the end of the second memory delay (Fig. 4e (left), Extended Data
Fig. 8c). Accordingly, colour area tended to decrease over time, from
74.1t039.4 units®in the pre-selection subspace (Extended DataFig. 8d;
P=0.076, bootstrap). Instead, after selection, colours were repre-
sented in a new ‘post-selection’ subspace (Fig. 4e (right), Extended
DataFig. 8c, d; colour areain post-selection subspace increased from
27.8t0261.9 units? over time, P<0.001, bootstrap).

Whereas pre-selection subspaces were independent, the
post-selection subspaces of the upper and lower items were aligned
(Fig. 4a). The upper and lower colour planes were now parallel
(angle between the planes was 20.1°; IQR, 11.6-29.0°). The cosine of
the angle between the upper and lower colour planes increased after
selection (Fig. 4b; P=0.006, bootstrap test of logistic regression).
Furthermore, therepresentations of the selected item’s colour shifted
from being anti-correlated before selection to positively correlated
after selection (Fig. 4c; mean r=0.139 for —-300 to O ms before target
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between upper and lower colour representations in LPFC over time (lineand
shading show mean +s.e.m.overn=1,000 bootstrap resamples of trials).

d, Colourrepresentationsin LPFC projected into the ‘lower’subspace, before
(left) and after (right) selection. Time points and markersasina.e, ‘Upper’
colour representationsin LPFC projected into the ‘upper’ subspace (x-y axes)
over time (z-axis, relative to selection). f, Histograms show distribution of the
cosine of the angle between the best-fitting planes for the upper and lower
stimuliinan ‘early’ (150-350 ms post-stimulus offset) and ‘late’ (200-0 ms
before target onset) time period for retro (left) and pro (right) tasks (n=1,000
bootstrap resamples of trials). Green lines indicate median. Horizontal lines
indicate pairwise comparisons.*P=0.016, two-sided uncorrected bootstrap.
g, Schematic of how selection transforms colour representations.

onset, P<0.001 versus zero and versus pre-cue, bootstrap). Finally,
colour representations of an item were now well separated when they
were projected onto the other colour subspace (Fig. 4d; colour area
increased from 35.2 to 94.0 units? over time, P= 0.010, bootstrap).
Together, these results suggest that selection transformed memories
fromindependentitem-specific subspaces toacommonsubspace that
represented the colour of the selected item, regardless of its original
location. Reflecting the importance of this transformation, the strength
of alignment of colour spaces in LPFC was correlated with behaviour:
whenmemory reports wereinaccurate, the cosine of the angle between
the two colour planes was reduced (Extended Data Fig. 9f, P=0.027,
randomization test).

The degree of transformationiteratively decreased in FEF, parietal,
and V4 (Extended Data Fig. 9¢, d). This decrease might reflect a gradi-
entinthe flexibility of neural responses across regions, with dynamic,
integrative, representationsin prefrontal cortex and more static, local-
ized, representations in visual cortex.

Selection also transformed the non-selected memories in LPFC,
althoughtoalesser degree: the colour planes of the non-selected items
tended to become aligned (IQR, 61.4-83.7° t015.5-39.7°; P=0.085,
bootstrap) but the post-cue representations were not significantly
correlated (P=0.202 against zero) (Extended Data Fig. 9a-d). Critically,
the non-selected item remained nearly orthogonal to the selected item



before and after selection (IQR: 80.1-85.5° to 75.7-82.4° for pre- and
post-cue; P=0.287, bootstrap) (Extended Data Fig. 9a, c, d), which
could avoid interference between the selected and unselected item.
Notably, the transformations acting on the selected and non-selected
representations partially generalized to the other item, suggesting
that the transformation had a common component that acted on
both items simultaneously (Extended Data Fig. 9e, Supplementary
Discussion 3).

Asnoted above, the dynamicre-alignment of neural representations
reflects the changing task demands during the trial: independently
encoding items before selection but aligning items after selection,
abstracting overitem location. Consistent with the transformation of
memories being driven by task demands, memory representations were
aligned immediately after stimulus presentation on pro trials. In LPFC,
therepresentations of the upper and lower colours were positively cor-
related after stimulus offset on pro trials (Extended Data Fig.10a-d). In
addition, the upper and lower colour planes were well aligned through-
outthetrial (Fig. 4f, Extended DataFig.10e; early: median angle 34.5°,
IQR 22.1-51.4°; late: median angle, 30.4°, IQR 18.5-46.2°; no change
with time, P=0.449; there was atrend towards aninteraction between
pre/post and pro/retro, P=0.067, bootstrap).

The samealigned subspace seemed tobe usedinretro and pro trials:
there was aweak, butsignificant, correlation between colour represen-
tations at the end of the delay on pro and retro trials (Extended Data
Fig.10f, mean p=0.06, P=0.015, bootstrap). This correlation did not
exist before selection (mean p =-0.01, P=0.634) and increased with
time (P=0.027, bootstrap).

The task-dependent dynamic transformations we have observed
might allow the cognitive control of behaviour. In the retro task, selec-
tiontransformed colourinformation fromindependent, item-specific
subspaces to ashared ‘template’ subspace (Fig. 4g). Fromthe perspec-
tive of a neural circuit decoding information from the template sub-
spacetoguide visual search, the transformation abstracts over location
and allows the selected item to guide the monkey’s response. As the
item-specific and non-selected subspaces are orthogonal to the tem-
plate subspace, this circuit would be unaffected by those representa-
tions. In this way, the timing of the transformation determines when
this circuit is engaged (for example, after selection in the retro task
orimmediately in the pro task). Thus, cognitive control may dynami-
cally transform representations to control what and when cognitive
computations are engaged.
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Methods

Subjects

Two adult (8-9 years old) male rhesus macaques (Macaca mulatta)
participated in the experiment. Monkeys 1 and 2 weighed 12.1 and
8.9 kg, respectively. All experimental procedures were approved by
the Princeton University Institutional Animal Care and Use Commit-
tee and were in accordance with the policies and procedures of the
National Institutes of Health.

The subject number was chosen to be consistent with previous work.
Both monkeys performed the same experiments and so no randomiza-
tion or blinding of monkey identity was necessary. As detailed below,
conditions within each experiment were chosen randomly and experi-
menters were blind to experimental conditions when pre-processing
the data.

Behavioural task

Stimuli were presented on a Dell U2413 LCD monitor positioned at a
viewing distance of 58 cm using Psychtoolbox and MATLAB (Math-
works). The monitor was calibrated using an X-Rite i1Display Pro col-
orimeter to ensure accurate colour rendering. During the experiment,
subjects wererequired toremember the colour of either1or 2 square
stimuli presented at two possible locations. The colour of each sample
was drawn randomly from 64 evenly spaced points along a photo-
metrically isoluminant circle in CIELAB colour space. This circle was
centred at (L =60, a= 6, b =14) and the radius was 57 units. Colours
wereindependentacross locations. The stimuli measured 2° of visual
angle (DVA) on each side. Each stimulus could appear at one of two
possible spatial locations: 45° clockwise or anticlockwise from the
horizontal meridian (in the right hemifield; stimuli are depicted in the
left hemifield in Fig.1for ease of visualization) with an eccentricity of
5 DVA from fixation. To perform the retrospective task, the monkey
had to remember which colour was at each location (thatis, the ‘upper’
and ‘lower’ colours).

The monkeys initiated each trial by fixating a cross at the centre of
the screen. Onretro trials, after 500 ms of fixation, one (20% of trials)
or two (80% of trials) stimuli appeared onthe screen. The stimuli were
displayed for 500 ms, followed by amemory delay of 500 or 1,000 ms.
Next, a symbolic cue was presented at fixation for 300 ms. This cue
indicated which sample (upper or lower) the monkey should report to
getajuicereward. Thelocation of the selected memory was randomly
chosen on each trial. Two sets of cues were used in the experiment to
dissociate the meaning of the cue from its physical form. The first set
(cueset1) consisted of lines oriented 45° clockwise and anticlockwise
from the horizontal meridian (cueing the lower and upper stimulus,
respectively). The second set (cue set 2) consisted of a triangle or a
circle (cueing the lower or upper stimulus, respectively). Cues were
presented at fixation and subtended 2 DVA. After the cue, there was
asecond memory delay (500-700 ms), after which aresponse screen
appeared. The response screen consisted of aring 2° thick with an outer
radius of 5°. The monkeys made their response by breaking fixation
and saccading to the section of the colour wheel that corresponded
to the colour of the selected (cued) memory. In previous work using
human subjects, observers are typically free to foveate the colour wheel
and fine-tune their selection, so differences in performance between
monkeys and humans*® may in part reflect task design. The colour ring
was randomly rotated on each trial to prevent motor planning or spatial
encoding of memories. The monkeys received a graded juice reward
that depended ontheaccuracy of their response. The number of drops
of juice awarded for aresponse was determined accordingtoacircular
normal (von Mises) distribution centred at 0° error with a standard
deviation of 22°. This distribution was scaled to have a peak amplitude
of12,and non-integer values were rounded up. Whenresponse error was
greater than 60° for monkey1(40° for monkey 2), no juice was awarded
andthe monkey experienced ashort time-out of1-2 s. Responses had to

bemade within 8 s, although, in practice, this restriction was unneces-
sary as response times were on the order of200-300 ms.

Pro trials were similar to retro trials, except that the cue was
presented 200-600 ms before the stimuli. After the coloured squares,
asingle continuous delay occurred before the onset of the response
screen (1,300-2,000 ms for monkey 1and 1,000-2,000 ms for monkey
2).Forbehavioural analyses and all neural analyses around the response
epoch, we analysed only trials with a minimum delay of 1,300 ms to
match the total delay range for pro and retro trials.

Condition (retro or pro) and cue set were manipulated in a blocked
fashion. Monkeys transitioned among three different block types:
(1) protrials using cue set 1, (2) retro trialsusing cue set1,and (3) retro
trialsusing cue set 2. The sequence of blocks was random. Transitions
betweenblocks occurred after the monkey had performed 60 correct
trials of block type 1 (pro) or 30 correct trials for block types 2 and 3
(retro), balancing the total number of pro and retro trials. All electro-
physiological recordings were done during this task.

In addition, both monkeys completed a second behavioural
experiment (experiment 2) without electrophysiological recordings
(Extended DataFig. 1e). In experiment 2, all trials were a variant of the
retrospectiveload 2 condition, the total stimulus-target delay was fixed
102,400 ms, and the stimulus—cue delay was randomly selected to be
500,1,000, or 1,500 ms. This manipulation allowed us to test whether
the timing of the retrocue affected the accuracy of memory, thereby
isolating the effect of selection on the contents of working memory.

The eye position of the monkeys was continuously monitored at
1kHz using an Eyelink 1000 Plus eye-tracking system (SR Research). The
monkeys had to maintaintheir gaze withina2°circle around the central
cross during the entire trial until the response. If they did not maintain
fixation, the trial was aborted, and the monkey received a brieftimeout.

We analysed all completed trials, defined as any trial on which the
monkey successfully maintained fixation and made a saccade to the
colour wheel, regardless of accuracy. Monkey 1 completed 9,865 trials
over 10 sessions and monkey 2 completed 11,131 trials over 13 sessions.

AsshowninExtended DataFig. 1, the behaviour of the two monkeys
was qualitatively similar and so we pooled data across monkeys for
all analyses.

Surgical procedures and recordings

Monkeys were implanted with a titanium headpost to immobilize the
head and with two titanium chambers for providing access to the brain.
The chambers were positioned using 3D models of the brain and skull
obtained from structural MRI scans. Chambers were placed to allow
electrophysiological recording from LPFC, FEF, parietal, and V4.

Epoxy-coated tungsten electrodes (FHC) were used for both
recording and microstimulation. Electrodes were lowered using a
custom-built microdrive assembly that lowered electrodes in pairs
from a single screw. Recordings were acute; up to 80 electrodes were
lowered through the intact dura at the beginning of each recording
session and allowed to settle for 2-3 h before recording. This enabled
stable isolation of single units over the session. Broadband activity
(sampling frequency, 30 kHz) was recorded from each electrode (Black-
rock Microsystems). We performed 13 recording sessions with monkey
2 and 10 sessions with monkey 1.

After recordings were complete, we confirmed electrode locations
by performing structural MRIs after lowering two electrodes in each
chamber into the cortex. Using the shadows of these two electrodes,
the positions of the other electrodesin each chamber could be recon-
structed. Electrodes were categorized as falling into LPFC, FEF, parietal,
or V4 based on anatomical landmarks.

Inseparate experiments, weidentified which electrodes were located
in FEF using electrical microstimulation. On the basis of previous work™,
we defined FEF sites as those for which electrical stimulation elicited a
saccadic eye movement. Electrical stimulation was delivered in200-ms
trains of anodal-leading biphasic pulses with a width of 400 ps and



aninter-pulse frequency of 330 Hz. Electrical stimulation was deliv-
eredtoeachelectrodeinthe frontal well of each monkey and FEF sites
were identified as those sites for which electrical stimulation (<50 pA)
consistently evoked asaccade with a stereotyped eye movement vector
atleast 50% of the time. Untested electrode sites (for example, from
recordings on days with adifferent offset in the spatial distribution of
electrodes) were classified as belonging to FEF if they fell within1mm
of confirmed stimulation sites and were positioned in the anterior bank
of the arcuate sulcus (as confirmed via MRI).

Signal preprocessing
Electrophysiological signals were filtered offline using a 4-pole 300
Hz high-pass Butterworth filter. For monkey 1, to reduce common
noise, the voltage time series x recorded from each electrode was
re-referenced to the common median reference® by subtracting the
median voltage across all electrodes in the same recording chamber
ateach time point.

The spike detection threshold for all recordings was set equal to
—-40,, inwhich g, is an estimate of the standard deviation of the noise
distribution:

0,= median( i j
" 0.6745

Time points at which x crossed this threshold with a negative slope
were identified as putative spiking events. Repeated threshold cross-
ings within 32 samples (1.0667 ms) were excluded. Waveforms around
each putative spike time were extracted and were manually sorted into
single units, multi-unit activity, or noise using Plexon Offline Sorter
(Plexon).

For all analyses, spike times of single units were converted into
smoothed firingrates (samplinginterval, 10 ms) by representing each
spiking event as a delta function and convolving this time series with
a causal half-Gaussian kernel (6 =200 ms).

Statistics and reproducibility

Experiments were repeated independently in two monkeys and data
were combined for subsequent analysis after we confirmed that behav-
iour was similar across monkeys (Extended Data Fig. 1). Tests were
not corrected for multiple comparisons unless otherwise specified.
Nonparametric tests were performed using 1,000 iterations; therefore,
exact Pvalues are specified when P> 0.001.

Analyses were performed in MATLAB (Mathworks).

Mixture modelling of behavioural reports

Behavioural errors on delayed estimation tasks are thought to be due
to at least three sources of errors'*"*: imprecise reports of the cued
stimulus, imprecise reports of the uncued stimulus, and random guess-
ing (that s, from ‘forgotten’ stimuli). To estimate the contribution of
each of these sources of error, we used a three-component mixture

model to model behavioural reports®:

pO)=(-y-B)g,0- 0)+y5+B-_,0-0)

in which @is the colour value of the cued stimulus in radians, § is the
reported colour value, 8*is the colour value of the uncued stimulus, y
isthe proportion of trials on which subjects responded randomly (that
is, probability of guessing, P(guess)), Bis the proportion of trials on
which subjects reported the colour of the uncued stimulus (that is,
probability of ‘swapping’, P(swap)), and ¢, is a von Mises distribution
with amean of zero and astandard deviation o (inverse precision). All
parameters were estimated using the Analogue Report Toolbox (https://
www.paulbays.com/toolbox/index.php). Bootstrapped distributions
of the maximum likelihood values of the free parameters y, B, and

were generated by fitting the mixture model independently to the
behavioural data from each session (n = 23) and then resampling the
best-fitting parameter values with replacement across sessions. In this
way, the distribution shows the uncertainty of the mean parameters
across sessions.

As noted in the main text, if the monkey was able to select an item
from memory earlier in the trial, then this reduced the error in the
monkey’s behavioural response (Extended Data Fig. 1e). Behavioural
modelling showed that earlier cues improved the precision of mem-
ory reports (Extended Data Fig. 1e, =3.95 +£1.88 s.e.m., P=0.012,
bootstrap) but did not significantly change the probability of forgetting
(thatis, randomresponses; $=0.03+0.03s.e.m., P=0.126,bootstrap).
Furthermore, we found that memory reports were more accuratein the
pro condition thanintheretro condition (Fig.1b, ¢). Here, behavioural
modelling showed that the improvement on pro trials was due to an
increasein the precision of memoryreports and areductionin forget-
ting (that is, fewer random reports) (Extended Data Fig. 1d).

Entropy of report distributions

To quantify whether colour reports were more clustered than expected
by chance, we used a simple clustering metric®. This metric relies on
the fact that entropy is maximized for uniform probability distribu-
tions. By contrast, probability distributions with prominent peaks will
have lower entropy. Because the target colours are drawn from a
circular uniform distribution, the entropy of the targets H(@) will be
relatively high. If responses are clustered, their entropy H(6) will
be relatively low. Taking the difference of these two values yields a
clustering metric C. Negative values of Cindicate greater clustering:
C =H(6) - H(0), in which H(x) =- Y% f(x)log,f (x)dx. The signifi-
cance of the clustering metric versus zero was assessed with a boot-
strapping process that randomly resampled trials with replacement.

Calculation of cued location d’

We used d’ to describe how each neuron’s firing rate was modulated
by cuing condition (‘upper’ or ‘lower’), defined as:

d’ = ”upper _ﬂlower
1,2 2
’Ji(aupper + olower)

inwhich p1,,,e, and py,,., are aneuron’s mean firing rate on trials in which
the upper or lower stimulus was cued as task relevant, respectively,
and aﬁppe, and 62, are the variance in firing rate across trials in each
condition. d’ was either computed using trials pooled across all retro
trials (Extended Data Fig. 2b) or calculated separately for each of the
three block types (Extended Data Fig. 4a; prowith cue set 1, retro with
cueset1,andretrowith cueset 2, see above). Thisanalysisincluded all
neurons that were recorded for at least ten trials per cued location.
The significance of each neuron’s d’ (Extended Data Fig. 2b) was
assessed by comparing to a null distribution of values generated by
randomly permuting location labels (upper or lower) across trials
(1,000 iterations). To test whether a region had more significant neu-
rons than expected by chance, the percentage of significant neurons
was compared to that expected by chance (the a-level, 5%).

To understand whether cells displayed similar selectivity across
cue sets and task conditions, we computed a ‘selection’ correla-
tion, measured as the Pearson’s correlation coefficient between
thed’toretrocuesetlandthed’toretrocueset2,anda‘generalization’
correlation, measured as the Pearson’s correlation coefficient
between pro cue set 1and retro cue set 2 (Extended Data Fig. 4a-c).
Significance against zero was tested by randomly resampling cells
with replacement.

Classification of cued location
We used linear classifiers to quantify the amount of information about
the location of the cued stimulus (upper or lower) in the population
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of neurons recorded from each brain region (Fig. 2b, ¢). This analy-
sisincluded all neurons that were recorded during at least 60 trials
for each cueing condition (upper or lower) in each block type (pro
with cueset1, retro with cue set1, and retro with cue set 2, see above).
On each of 1,000 iterations, 60 trials from each cueing condition
and block type were sampled from each neuron with replacement.
The firing rate from those trials, locked to cue onset, was assembled
into apseudo-population by combining neurons across sessions such
that pseudo-trialsmatched both block and cue condition. For each time
step, alogistic regression classifier (asimplemented by fitclinear.min
MATLAB) with L2 regularization (1=1/60) was trained to predict the
cueing condition (upper or lower) using pseudo-population datafrom
one block (for example, retro with cue set 1) and tested on held-out
datafromanotherblock (for example, retro with cue set 2). Classifica-
tion accuracy (proportion of correctly classified trials) was averaged
across reciprocal tests (for example, train on retro with cue set 2, test
onretrowith cuesetl).

We used arandomization test to test for significant differencesinthe
onset time of above-chance classification accuracy between regions.
For each pair of regions, we computed the difference in time of first
significance (‘lag’, P< 0.05, using the bootstrap procedure described
above). To generate a null distribution of lags, we randomly permuted
individual neurons between the tworegions (without changing the size of
the populationassociated with eachregion) and thenrepeated the above
bootstrap procedure to determine the lagin above-chance classification
for each permuted dataset. One thousand random permutations were
used for each pair of regions. Significance was assessed by computing
the proportionoflagsinthe null distribution that were greater thanthe
observedlag. Thisrandomization procedure controls for differencesin
the number of features (neurons) across regions, so differences in the
number of neurons recorded across regions cannot explain our results.

Toassess the discriminability of the upper and lower pro conditions
(Extended DataFig. 4e), we calculated the tenfold cross-validated clas-
sification accuracy (averaged across folds). To provide an estimate
of variability we repeated this analysis 1,000 times, each time with a
different partition of trials into training and testing sets.

Neuron dropping analyses for classification of cued location

To further test whether classification performance depended on the
number of neurons recorded in each region, we performed ‘neuron
dropping’ analyses® (Extended Data Fig. 2). To do this, we repeated the
classification procedure described above, but limited the analysis to
subsets of neurons drawn from the full population of neurons recorded
ineachregion (n=1,000 iterations per subsetsize).In the first version
ofthis analysis, the neurons that composed each subpopulation were
drawn atrandom (Extended Data Fig. 2c). In the second version of this
analysis, the neurons that composed each subpopulation were drawn
atrandom, subject to the condition that they displayed a significant
evoked response to the presentation of the cue (Extended Data Fig. 2d).
Specifically, across trials, neurons with evoked responses were taken
asthose with a higher mean firing rate during the 500-ms epoch after
the cue compared to the 300-ms epoch before the cue (one-tailed
t-test). In the third version of this analysis, neurons were added to the
analysis in a fixed order determined by their ability to support classi-
fication (Extended Data Fig. 2e, f). For the selection classifier (which
was trained to discriminate the cued location onretro cue set 1 trials
and tested on retro cue set 2 trials, and vice-versa), neurons entered
the analysis based on the magnitude of their d’ values for both retro
cue sets. To quantify this, we projected the d’ values for the two cue
sets onto the identity line (schematized in Extended Data Fig. 2e) and
took the absolute value of the resulting vector. Cells with large absolute
projection values entered the analysis first. Our ordering procedure for
the generalization classifier was the same as for the selection classifier,
except thatit was based on pro cueset1andretro cueset2d’, asthese
were the training and testing sets for this classifier.

For each subpopulation of neurons in each of these analyses, we
measured four statistics: (1) selection classification accuracy after
cue onset (300 ms post-cue); (2) generalized classification accuracy
after cue onset (300 ms post-cue); (3) time to 55% selection classifica-
tionaccuracy; and (4) time to 55% generalized classification accuracy.

When subpopulations were drawn at random from all neurons in
eachregionorallneurons that displayed an evoked response (Extended
DataFig. 2c, d), dropping curves for each of these statistics were well
described by two-parameter power functions. Power functions were
fit using the Matlab function fit.m and 95% prediction intervals for
each statistic at the maximum population size recorded in LPFC were
generated using predint.m. The distance of the measured statisticin
LPFC from these predicted values (in units of standard error of the
predictioninterval) were measured and used to calculate P values.

When subpopulations were drawn in a fixed order (Extended Data
Fig. 2e, f), dropping curves for each of these statistics were well
described by linear functions. Linear functions were fit using the Mat-
lab function fit.m and 95% confidence intervals for linear fits at each
measured value were generated using predint.m. Subpopulations that
never reached 55% classification accuracy were excluded from curve
fitting for statistics 3 and 4.

Finally, to assess the discriminability of visual information in
eachregion we trained two classifiers to discriminate either the two
upper cues or two lower cues (on retro trials). Classification accuracy
was averaged across tenfold cross-validated sets (Extended Data
Fig. 2g, h). The accuracies of both the upper-cue and lower-cue classi-
fiers were then averaged to estimate the amount of information about
low-level visual features of the cue while holding other factors constant
(forexample, cued location). We then computed neuron dropping curves
for (1) accuracy early after cue onset (300 ms post-cue) and (2) time to
55% classification accuracy, as above (Extended Data Fig. 2h).

Signal and noise for classification of cued location

To assess whether classification performance was driven by increases
in signal, decreases in noise, or both, we analysed the distribution of
classifier confidence for ‘upper’ and ‘lower’ test trials (Extended Data
Fig.3a). Classifier confidence was quantified as the probability thata
given test trial was an upper trial, as estimated by the trained model.
Signal was quantified as the distance between the means of the confi-
dencedistributions for upper and lower trials and noise was estimated
as the average standard deviation of the confidence distributions.
Repeating these calculations for each of the 1,000 resamples yielded
bootstrapped distributions of values (Extended Data Fig. 3b).

Noise correlations and variance-to-mean ratio during cue epoch
To determine whether differences in variance and covariance might
drive differencesin classification performance across regions, we calcu-
lated variance-to-mean ratios and noise correlations for single-neuron
firing rates around the time of the selection cue.

Variance-to-mean ratio acrosstrials was calculated by first calculat-
ingeach neuron’strial-wise firing rate during the period after cue onset
(0-500 ms post-cue). Next, for each trial type (pro cue set 1 upper,
procueset1lower, retro cue set 1upper, retro cue set 1lower, pro cue
set 2 upper, pro cue set 2 lower), we divided the variance of these fir-
ing rates across trials by their mean. Finally, we took the average of
these variance-to-meanratios across the six trial types (Extended Data
Fig.3d).

Calculation of noise correlations also began by first calculating each
neuron’strial-wisefiring rate during the period after cue onset (0-500 ms
post-cue). Next, for each trial type (pro cue set 1 upper, pro cue set 1
lower, retro cue set 1upper, retro cue set 1lower, pro cue set 2 upper, pro
cue set 2 lower), we adjusted each neuron’s pool of firing rates to have
amean of zero. Finally, we computed the average correlation between
the mean-zeroed firing rates of all pairs of neurons within a region,
and then averaged these average correlation values across the six trial



types (Extended DataFig.3c). As expected, given our pseudopopulation
approach, noise correlation values were low and did not differ across
regions.

Quantification of colour information

We adapted previous work?* to define a colour modulation index
(MI_,,.,) that describes how each neuron’s firing rate was modulated by
the colours of the remembered stimuli. Critically, this statistic avoids
strong assumptions about the structure of tuning curves (for example,
itdoes notassume unimodal tuning). After dividing colour spaceinto
N=8bins, Ml is defined as:

MI _ Z'Cv:lzc log(Nz,)

colour Iog(N)
in which z_is a neuron’s normalized mean firing rate r. across trials
evoked by coloursin the c-th bin:

25N
zc:1 rc

Ml 00 iS @ normalized entropy statistic that is 0 if a neuron’s mean
firing rateisidentical across all colour binsandlifaneuronfiresonlyin
response to colours fromone bin. To control for differencesin average
firing rate and number of trials across neurons, we z-scored this metric
by subtracting the mean and dividing by the standard deviation of a null
distribution of Ml values. To generate this null distribution, the colour
binlabels were randomly shuffled across trials and the Ml statistic was
recomputed (1,000 times per neuron).

Z-scored colour modulation indices were computed separately for
each time point, trial type (pro or retro), and stimulus type (selected,
non-selected, attended or non-attended) (Fig. 3b, Extended Data
Fig. 6). This analysis included neurons that were recorded for at least
ten trials in each of these conditions. Selectivity for colour was com-
puted without respect to the spatial location of the stimulus (upper or
lower). Computing selectivity for colours presented only ataneuron’s
preferred location did not qualitatively change the results. Z-scored
modulation indices were compared to zero or across conditions by
t-test (Fig.3b). We corrected for multiple comparisons over time using
acluster-correction®. Inbrief, the significance of contiguous clusters
of significant ¢-tests was computed by comparing their cluster mass
(the sum of the t-values) with what would be expected by chance (ran-
domization test). In addition, to summarize changes in selected and
non-selected colour information after cue onset, we averaged colour
information for each neuronintwo time periods (=300 to O ms pre-cue
and 200 to 500 ms post-cue) and tested the difference between these
values (post-pre) against zero by bootstrapping the mean difference
in colour information across neurons (Extended Data Fig. 7a).

Todetermine whether a neuron displayed significant selectivity for
the colour atone particular location (upper/lower), we calculated the
z-scored information about the cued colour at each time point over the
interval from 0to 2.5s after stimulus onsetindependently for eachloca-
tion. Colour selectivity was measured across all conditions, including
pro, retro, and single-item trials. As described above, we used a cluster
correction to correct for multiple comparisons across time. Neurons
with significant colour selectivity (P < 0.05) at any point during this
interval were deemed colour selective. Binomial tests compared the
proportion of neurons with significant colour selectivity for at least
one of the two locations to a conservative null proportion of 10% (for
two tests with an a of 0.05, one test for each location).

To determine whether independent populations of LPFC neurons
encoded the upper and lower colours during the pre-cue period
of retro trials, we counted the number of neurons with significant
cluster-corrected selectivity during the 500-ms period before cue
onset. Of the 607 LPFC neurons that entered the analysis, 112 (18.5%)

carriedinformation about the upper colour and 99 (16.3%) carried infor-
mationabout thelower colour. Of these, 35 (5.8%) carried information
aboutboththeupper andlower colour. Abinomial test compared this
proportion (5.8%) to that expected by random assignment of top-and
bottom-selectivity (thatis, 18.5% x16.3% = 3.0%). To visualize selectivity
in a non-binary manner, we also plotted the distribution of z-scored
information about the colour of each item for all LPFC neurons, aver-
aged during the 500-ms pre-cue period (Extended Data Fig. 8a).

In addition to the z-scored colour modulation index, we also quan-
tified colour selectivity using per cent explained variance (PEV)
(Extended DataFig. 5b). As with the z-scored colour modulationindex,
firing rates for each time point were binned by the colour of the stimulus
of interest (selected or non-selected) into eight colour bins. A linear
model with a constant term and eight categorical predictors (one for
each colour bin) was then constructed to predict firing rates (using
fitlm.min MATLAB). PEV was then calculated as the r* of the fit model
x100. To avoid inflated PEV values due to overfitting, we subtracted
the mean PEV during the 200-ms epoch before stimulus onset. The
resulting traces were analysed using cluster-corrected t-tests, as
described above. The results were similar to those obtained with the
colour modulation index.

Quantification of reported colour information

To quantify the amount of information each neuron carried about the
monkey’s reported colour, we followed the same approach as for stimu-
lus colour, except that responses were binned by the colour reported
by the monkey rather than by the colour of the cued or uncued stimulus
(Fig. 3).

Modulation of colour information by task and behavioural
performance

To compare the amount of colour information in firing rates across
the pro andretro conditions (Extended Data Fig. 6b, c), we computed
the z-scored colour modulationindices as described above for each of
the four conditions of interest (selected, non-selected, attended, and
non-attended colours). Trial counts were matched across these four
conditions toavoid biasesin the colour information statistic. To assess
relative information about cued (selected and attended) and uncued
(non-selected and non-attended) colour information, we computed
thedifferencein colourinformation between each pair of conditions,
for each neuron. The average difference across all neurons was then
tested against zero, using the cluster correction described above to
correct for multiple comparisons across time®.

To compare the amount of colour information in firing rates when
behavioural performance was relatively accurate or inaccurate
(Extended DataFig.7), we divided retro trialsinto two groups accord-
ingtotheaccuracy ofthebehavioural report. Trials within each session
were split by the median accuracy for that session. Z-scored colour
modulation indices were computed separately for each split-half of
trials. Asabove, the same number of trials were used for all four condi-
tions (more or less accurate x selected or non-selected). Inaddition, to
quantify the effect of selection, the difference in colour information
for selected and non-selected colours was computed for each group
of trials separately (more or less accurate). This selected-non-selected
difference was then tested against zero to measure the effect of selec-
tionand tested between the two groups of trials to measure the effect
ofbehaviouralaccuracy. Comparisons were done with a t-test across all
neurons, with cluster correction to correct for multiple comparisons
across time®,

Measuring the angle between upper and lower colour planes

As described in the main text, we were interested in understanding
the geometry of mnemonic representations of colour across the two
possible stimulus locations (upper or lower). To explore this, we exam-
ined the response of the population of neurons as a function of the
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colour andlocation of the stimulus of interest (either cued or uncued).
The fidelity of these population representations depended on the
behavioural performance of the monkey. Therefore, for all principal
component analyses, we divided trials on the basis of the accuracy of
the behavioural report (median split for each session, as above) and
separately analysed trials with lower angular error (higher accuracy,
Fig.4)and higher angular error (lower accuracy, Extended Data Fig. 9f).

Trialswere sortedinto B=4 colourbinsand L =2locations (top or bot-
tom), yielding Bx L =M, eight total conditions. To visualize these popu-
lation representations, we projected the population vector of mean
firing rates for each of these eight conditions into a low-dimensional
coding subspace (Fig. 4a, Extended Data Fig. 9a, b, similar to previous
work?®). For each time step, we defined a population activity matrix X
asan Mx N matrix, in which Mis the number of conditions (eight) and
Nis the number of neurons:

r(c,) - F
X= :
I"(CB'L) - f

Here, r(cs,) isthe mean population vector (across trials) for the con-
dition corresponding to colour bin Band location L, and ¥is the mean
population vector across the M conditions (that is, the mean of each
columnis zero).

The principal components of this matrix were identified by decom-
posing the covariance matrix C of Xusing singular value decomposition
(asimplemented by pca.min MATLAB): C=PDP', in which each column
of Pisan eigenvector of Cand D is a diagonal matrix of corresponding
eigenvalues. We constructed areduced (K =3)-dimensional space whose
axes correspond to the first K eigenvectors of C (that is, columns of P,
P,, assuming eigenvectors are ordered by decreasing explained vari-
ance). These first three eigenvectors explained an average of 65% of
the variance inthe mean population response across all examined time
points. We then projected the population vector for agiven condition
into thisreduced dimensionality space: z; = P}(r(cB,L) -1),inwhichz,
isthe new coordinate along axis Kin the reduced dimensionality space.

We observed that, when visualized in the reduced-dimensionality
space, the population representations for each colour bin B within
agivenlocation L tended to lie on a plane, referred to as the ‘colour
plane’ in the main text (Fig. 4a). To identify the best-fitting plane, we
defined a new population activity matrix Y, for each location L with
dimensions Bx K:

z(c,)-7;
Y, = :
z(cg ) -7,

inwhichz(c,) is the population vector for the condition correspond-
ingtocolourbinBandlocationL inthereduced dimensionality space,
and z, is the mean population vector across colour bins for that location
(thatis, the mean of each column is zero). The principal components
of this matrix were calculated in the same manner as above and the
first two principal components were the vectors that defined the
plane-of-best-fit to the points defined by the rows of ¥,. These planes
explained more than 97% of the variance of each set of pointsin the 3D
subspace.

Ifthe vectors defining the plane-of-best-fit for the upperitemare v,
and v, and those for the loweritemare v;andv,, then the cosine of the
angle between these two colour planes can be calculated as:

€0s(8) = (V; X V,) X (V3X V)
Forallanalyses, populationvectorswerebased onpseudo-populations

of neurons combined across sessions. Pseudo-populations were created
by matchingtrials across sessions accordingto the colour and location

of the stimulus of interest (either cued or uncued), as described above
(and following previous work®). This analysis included only neurons
that were recorded for atleast tentrials for each conjunction of colour
and location. Confidence intervals of cos(6) were calculated using a
bootstrapping procedure. On each of 1,000 iterations, 10 trials from
each of the 8 conditions were sampled from each neuron withreplace-
ment. The average firing rates across these sampled trials provided the
mean population vector for that condition on thatiteration. To assess
how cos(6) changed around cue onset (Fig. 4b, Extended Data Fig. 9f),
we used alogistic regression model of the form:

cos(0) = 1
1+exp(= (B, +B,t)

inwhich tis time relative to cue onset. This model was fit to values of
cos(6) computed at each time pointin theinterval from 500 ms before
to 1,000 ms after cue onset on each bootstrap iteration (described
above). This yielded a bootstrapped distribution of 3, estimates that
couldbe compared to zero or across the two groups of trials with more
and less accurate behavioural responses (Extended Data Fig. 9f).

Defining the colour subspaces for the upper and lower itemsin
the full-dimensional space

To define the colour subspacein the full neuron-dimensional space, we
defined B=4 x Nmean population activity matrices for each location
Linthe full space:

r(cy ) -1
W= :
r(cg )~ 1,

The colour subspace was defined as the first two principal compo-
nents of W,.

These subspaces were used for two analyses. First, we projected the
population vectors of colour responses from one iteminto the colour
subspace for the other item (Fig. 4d). For example, the population
vector response to colours of the upper item were projected into the
colour subspace of the lower item, defined as the first two principal
components of W, .., and vice versa (Fig. 4d). Second, by defining
the colour subspace of each item at different time points ¢, we could
examine how colour representations evolved during the trial (Fig. 4e,
Extended Data Fig. 8c, d).

Measuring the separability of coloursinasubspace

Next, we were interested in quantifying the separability of colours in
agiven subspace. As seen in Fig. 4d, e, the population representation
of the four colour conditions, projected into the subspace, form the
vertices of a quadrilateral with the edges of the quadrilateral connecting
adjacent colours on the colour wheel (for example, Fig. 4d). To measure
separability of the colours, we computed the area of this quadrilateral
(polyarea.mfunctionin MATLAB). Bootstrapped distributions of these
area estimates were obtained by resampling trials with replacement
from each condition before re-computing W,.

Similarity of transforms for the upper and lower stimulus

We were interested in testing whether the transformation of selected
(‘cued’) items was the same as non-selected (‘uncued’) items (onretro
trials). To this end, we examined how the population representation for
the colour of the selected and non-selected stimuli changed over time.
For both a pre-cue (150 to 350 ms post-stimulus offset) and post-cue
(=200 to O pre-target onset) time epoch, we defined an N x B popula-
tionactivity matrix A, in which Nis the number of neurons, B=4 colour
bins, and the elements of the matrix reflect the mean firing rate of each
neuron across trials in which the colour of the stimulus of interest fell
in colour bin b.



We computed A, and A, separately for four different stimulus
types of interest: cued upper stimuli, cued lower stimuli, uncued
upper stimuli,and uncued lower stimuli. Then, for each stimulus type,
we identified the N x N matrix X that transformed the pre-cue
representation to its post-state:

Apost,cued_upper = Xcued_upperApre,cued_upper

A A

post,cued_lower _Xcued_lower pre,cued_lower

A

post,uncued_upper :Xuncued_upperApre,uncued_upper

Apost,uncued_lower = Xuncued_lowerApre,uncued_lower

To assess how similar these transforms were, we applied transforms
from one condition (for example, cued upper) to held-out (split half)
pre-cue neural data (ANis""'%) from a different condition (for example,
cued lower) and compared how similar the predicted post-cue
data (ABedieted) were to the actual (held-out) post-cue data (Aiheld),
Reconstruction error was measured as the Euclidean distance between
the predicted and actual population vectors (Ajin'd — gbredicted ),
averaged across all colours. Low reconstruction error indicates similar
transforms.

This procedure allowed us to determine how similar the transforms
were across locations and cue types by testing whether the transfor-
mation, defined in one condition for one item, generalized to another
condition and/or another item. For example, for the ‘cued upper’ con-
dition, the reconstruction errors of different forms of generalization

were computed as follows:

Error(same condition, same item)

— witheld _
_f(Apost,cued_upper Xcued_upperApre,cued_upper)

Error(same condition, different item)

_ witheld _
_f(Apost,cued_upper Xuncued_lowerApre,cued_upper)

Error(different condition, same item)

— witheld _
_f(Apost,cued_upper Xuncued_upperApre,cued_upper)

Error(different condition, different item)

— witheld _
_f(Apost,cued_upper Xcued_lowerApre,cued_upper)

in which fis the mean root sum of squares across columns (that is,
the mean Euclidean distance between the actual and reconstructed
population vectors for each colour bin b). Similar reconstruction errors
were estimated for the other three conditions (cued lower, uncued
upper, and uncued lower).

Applying the estimated transform to held-out data from the same
condition and the same item provides a lower bound on reconstruc-
tion error due to variance across trials and indicates whether the
transformations are stable within a condition. Applying transforms
to the response to the other item in the same cuing condition (same
condition, different location) allows us to test whether the selected
and non-selected items are transformed in similar ways by comparing
reconstruction error to (1) chance and (2) the error within condition
and within item (same condition, same item). Finally, to control for
any similarity in transforms due to a non-condition-specific effect of
the cue (for example, time during the task), we can apply transforms
based onitemsintheother cueing condition, either to the sameitem
(different condition, same item) or the other item (different condi-
tion, different item).

We computed the four types of reconstruction error by averaging
across all four conditions of interest (cued upper, cued lower, uncued
upper, uncued lower). To estimate the distribution of reconstruc-
tion error, we bootstrapped with replacement across trials. Chance
levels of reconstruction error were estimated by repeating the boot
strapping procedure but permuting the condition label (cued upper,
cued lower, uncued upper, uncued lower) assigned to each colour
population vector.

Correlation of colour representations
We wanted to understand how similarly colour was represented across
the upper and lower locations over the course of the trial. To investi-
gate this, we binned retro or pro trials according to the colour and
location of the stimulus of interest (cued or uncued) and then randomly
partitioned into two halves. These split halves were used to estimate the
degree of noise in the data (Extended Data Fig.10b-d, described below).
Specifically, trials were sorted into B=4 colour bins, L =2 locations (top
orbottom),and H=2 halves, yielding B x L x H=Mtotal conditions. For
each ofthese conditions, atagiven time point of interest, we computed
the average population vector r(cz ).

We then computed the average correlation between each population
vector and the population vectors corresponding to the same colour
bin at the other location (Fig. 4c, Extended Data Figs. 9c,10b-d):

H H B
Z > bZ corr(r(cy, 1, ) = <r(cg 1, ), ¥(Cp 2 ) _<r(CB,2,j)>B)
i=1 j=1b=1

CI’OSS

inwhich({«)zis the average across the set of colour bins B.In other words,
for each set of Bpopulation vectors corresponding to a particular half
of the data H and location L, we subtracted the mean across bins to
centre the vector endpoints around zero. Thus, p..., quantifies to what
extent colour representations are similarly organized around their
mean across the two locations.

Toobtainanupper bound on potential values of p,. given the degree
ofnoiseinthe data, we also computed the average correlation of each
population vector with itself across the two halves:

1 B L
Poeit = g1 g ;C(’”(r(cb,l, D =<rlcg,, 1)35, ¥(Cp,), 2) — (r(cg,, 2)33)

Finally, to understand how similarly colour was represented across
the two cueing conditions, trials were sorted into B =4 colour bins,
L =2locations (top or bottom), and C =2 cuing conditions (pro and
retro). For each of these conditions, at a given time point of interest,
we computed the average population vector r(cz, o). We then com-
puted the average correlation between each population vector and the
population vectors corresponding to the same colour binat either the
same or differentlocationin the other task (Extended Data Fig. 10f):

qu\

1 L B
Patt,sel = B2L ; g ; corr(r(cy,;,1) = <r(cg;, ), ¥(Cp,, ) ~ r(Cp;,2)))

To compare the similarity of colour representations on retro trials
to pre-target pro colour representations, we computed this corre-
lation between (1) the response on pro trials, for all time points fall-
ing within the interval from =300 ms to O ms before the onset of the
response wheel, and (2) the response onretro trials at two different time
points: before selection (from -300 to O ms before the cue) and after
selection (from-300 to 0 ms before the onset of the response wheel).
Correlation was measured between each time point across windows
and then averaged across all pairs of time points.

Asabove, population vectors were pseudo-populations of neurons
combined across sessions, in which trials across sessions were matched
according to colour binand location?. This analysis included only neu-
rons that were recorded for at least ten trials for each conjunction of
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colour andlocation. Confidence intervals for p ;o Oserr, AN Py o WETE
calculated with abootstrap. On each of 1,000 iterations, and for each
neuron and condition (colour-location-half conjunction), the entire
populationoftrialsinthat condition was resampled with replacement.
Theaverage firingrates across these sampled trials provided the mean
population vector for that condition on thatiteration. As with principal
components analyses, we divided trials on the basis of the accuracy
of the behavioural report (median split of trials for each session) and
the presented results reflect analysis of trials with lower angular error,
unless otherwise noted.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.
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Extended DataFig.1|Behaviour was consistent across monkeys and
selection mitigated the decay of memories over time. a,b, Mean absolute
angularerror (a) and mean mixture model parameter fits (b) in the main
experiment (experiment1) (Fig. 1a) for each monkey (Methods). Violin plots
depictbootstrapped distribution across sessions (n=10 for monkeyland n=13
for monkey 2). Linesindicate pairwise comparisons. Although monkey 1
performed slightly better than monkey 2, they displayed similar patterns of
performance across conditions. ¢, Distribution of reported colours and
absolute angularerrorasafunctionoftarget colourinexperiment1foreach
monkey for proand retro trials. The distributions of reported colours for each
condition and monkey were significantly non-uniform (entropy of report
distribution significantly lower thanentropy of the target distribution, all
P<0.001,bootstrap across n=3,873 (pro) and 3,943 (retro) trials for monkey 1
and n=4,440and 4,769 trials for monkey 2). Details of this behaviour have
previously been published®. d, Mixture model parameter fits of behaviour

pooled across monkeys for experiment1(bootstrap across n=23sessions).

e, Top,inaseparate behavioural experiment (experiment 2), we fixed the total
memory delay of the retro condition and systematically varied the length of
the delay between stimulus offset and cue onset. Bottom, increasing the time
before selection (x-axis) increased mean absolute angular error (53.1°, 54.4°,
and57.8°for 0.5s,1s,and 1.5s post-stimulus, respectively; distributions are
1,000 bootstrap resamples acrossn=3,306,3,287,and 3,322 trials,
respectively). f, Mixture model parameter fits, pooled across monkeys

(1,000 bootstrap resamples across n =24 sessions), for experiment 2. Linear
regression showed that earlier cuesimproved the precision of memory reports
inexperiment2($=3.95+1.88(s.e.m.),P=0.012, bootstrap) but did not
significantly change the probability of forgetting (thatis, random responses;
£=0.03+0.03(s.e.m.),P=0.126, bootstrap). Bars and asterisksin all panels
reflecttwo-sided uncorrected randomization tests:-P<0.1,*P<0.05,**P<0.01,
***P<0.001.
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Extended DataFig.2|Populationsize and neural responsiveness do not
explaindifferencesin classification performance acrossregions. a, Firing
rate of anexample LPFC neuronaround cue onset when the upper (grey) or
lower (green) stimulus was cued in the retro (top) and pro (bottom) conditions.
Shaded regionsares.e.m.across trials (n=161retro upper, 124 retro lower,150
proupper,and121pro lower trials). Insets, cues used for retro and pro trials.

b, Percentage of neuronsineachregionofinterest with firing rates that were
significantly modulated by the selected location after cue onset onretro trials
(trials pooled across cue sets 1and 2). For each neuron, we quantified location
selectivity using d’ (Methods) and compared this value to a null distribution by
permutinglocationlabels across trials. All four regions showed strong
selectivity: LPFC had 159 out of 590 neurons selective; FEF, 37 of 169; parietal,
49 0f 301; V4, 62 0f 318; all P< 0.001 against chance of 5% (two-sided
uncorrected binomial test). ¢, Mean classification accuracy (top, taken at

300 ms post-cue) and mean time to 55% classification accuracy (bottom) for
theselection (left) and generalized (right) classifiers as afunction of the
number of neurons used for classification. This analysis controls for the total
number of neuronsrecordedineachregion. For each subpopulation ofa
specificsize (x-axis), circlesreflectaverage across 1,000 iterations using
differentrandomly selected subpopulations of that size. Lines reflect best-
fitting two-parameter power function (Methods). Error bars are 95% prediction
intervals. For classifier accuracy (top row): n=35,10,19,and 22 unique
populationsizes for LPFC, FEF, parietal and V4, respectively. For classifier
timing (bottom left and right): n=35/32,10/8,19/4, and 21/20 for selection/
generalizationin LPFC, FEF, parietal and V4, respectively. The reductioninthe
number of data pointsinthe bottom plots reflects the fact that, forsome
neuron counts, classifiers never reached 55% classification accuracy onany
iteration. Asterisksindicate significance of projected classification foragiven
region compared to the measured classificationin LPFC at the maximum
number of neurons (two-sided z-test, not corrected for multiple comparisons).
Selection classification accuracy: FEF P=2.18 x107'%; parietal P=1x107'; V4
P<1x107*, Generalization classificationaccuracy: FEF P<1x107%; parietal
P<1x107%; V4 P<1x107', Selection classification timing: FEF P=0.054; parietal
P=1.02x107*V4 P<6.94 x1078, Generalization classification timing: FEF
P=0.203; parietal P=1.11x1073; V4 P<1x107%.d, Neuron dropping curves as in
c,exceptanalysis wasrestricted to neurons with asignificant evoked response
to cue onset to control for potential differences in responsiveness across
regions (Methods). For classifier accuracy (top row):n=23,5,8,and 8 unique
populationsizes for LPFC, FEF, parietal and V4, respectively. For classifier
timing (bottom leftand right): n=23/22,5/4,8/0,and 8/8 for selection/
generalizationin LPFC, FEF, parietal and V4, respectively. Selection
classification accuracy: FEF P<1x107'; parietal P<1x107%; V4 P<1x 107,
Selection classification timing: FEF P<1x107; parietal P<1x107'; V4

P<1x107", Generalization classificationaccuracy: FEF P=0.001; parietal
P=0.021; V4 P=0.002. Generalization classification timing: FEFP<1x107;

V4 P<1x107. e, To determine whether there were sub-populations of selective
neuronsinaregionwith greater selectivity than the overall population, we
ranked neuronsineachregion by their ability to support the selection (left) or
generalized (right) classifier (Methods). Neurons with firing rates that yielded
large magnitude (and sign consistent) d’ values for the cued location (upper or
lower) across bothretro cue sets will support selection classifier performance
(left). We quantified this by projecting these two d’ values onto theidentity (red
lines) and taking the absolute value of the resulting vector. Neuron 1is ranked
higher thanneuron2because of its larger magnitude projection onto the
identity. Asimilar procedure canbe used to rank neurons for generalization
from protoretrotrials (right) by repeating the procedure on the basis of
selectivity for ‘pro cueset1 and ‘retro cueset 2. f, Neuron dropping curves (asin
c), exceptthat neuronsare added to the analysis on the basis of their selectivity
orgeneralization, as described ind. Shaded regionis 95% confidence intervals
ofbestlinear fit (which fit better than power functions) (Methods). Even when
selectingideal subpopulations from each region, no region significantly
exceeded LPFC performance. Performance now decreasesasnincreases
because, owingto our ranking procedure, later cells are by design less able to
support performance on withheld cues (whether within selection or across
selection or attention). These later neurons may still be weighted heavily by the
classifier (owing to good performance on the training set) and so negatively
affect performance attest. Thisis exemplified by the projections onto one axis,
asindicated by the vertical dashed linesind, showing agreater weighting for
neuron?2, despite it not facilitating generalization. For classifier accuracy (top
row): n=35,10,19,and 22 unique population sizes for LPFC, FEF, parietaland V4,
respectively. For classifier timing (bottom left and right): n=35/35,10/10,
19/18,and 22/22 for selection/generalizationin LPFC, FEF, parietaland V4,
respectively. g, To examine ‘bottom-up’information flow about low-level
sensory aspects of the cue, we trained classifiers to discriminate the variants of
each cue, using cross-validation across subsets of trials (Methods). h, Neuron
droppingcurves (asin c) for these ‘cue appearance’ classifiers. Cue appearance
classifiersyielded a qualitatively different pattern of performance, with V4
showing superior classification performance at cue offset (left) and faster
classification onset (right). Asterisks indicate significance of projected
classification foragivenregion compared to the measured classificationin
LPFC at the maximum number of neurons (two-sided z-test, not corrected for
multiple comparisons).n=35,10,19,and 22 unique populationsizes for LPFC,
FEF, parietaland V4, respectively. Classificationaccuracy: FEF P=0.282,
parietal P<1x107,V4 P<1x107". Classification timing: FEF P=0.005, parietal
P=4.24x107%,V4P=2.27x10"%.-P<0.1,*P<0.05,**P< 0.0, ***P<0.001.
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Extended DataFig. 3 | Successful classification was driven by increasesin
signal. a, Example histogram of classifier confidence across ‘upper cued’ and

‘lower cued’ trials for the LPFC selection classifier in the 500 ms after cue onset.

Classifier confidence measures the distance of neural activity from the
hyperplaneidentified by the classifier. Signalis the difference between the
meansofthe twotrial distributions; noiseis their averages.d.b, Forboth the
‘selection’ and ‘generalization’ classifiers, signal (top row) tracks classification
performance (Fig. 2) much better than noise (bottom row), suggesting that
classifier performance wasduetoanincreaseinsignaland notadecreasein
noise.Shading shows s.e.m. Distribution estimated from 1,000 iterations of

classifiers trained and tested on random samples of n = 60 trials (Methods).

¢, Mean noise correlationamong neurons entering the ‘selection’ and
‘generalization’ analyses described in Fig. 2. Noise correlations were based on
mean firing rates over the interval from 0 to 500 ms after the cue. There were
nosignificant differences between regions. d, Fano factor (¢?/u) of single-
neuronfiringrates across trials (averaged from 0 to 500 ms after the cue). The
ratiowassignificantly larger in LPFC than V4 but no other comparisons were
significant (horizontalbar; two-sided uncorrected t-test). ¢, d, Violin plots
show distribution of values based on1,000 bootstrapped resamplesof n=60
trials (Methods). Red crossesindicate mean.
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Extended DataFig. 4 |Neural responsesin prefrontal cortex were similar
across cue sets and tasks. a, Distribution of selectivity across neurons for the
selectedlocation (top row) and for the selected and attended location (bottom
row). Selectivity was taken as the normalized difference in firing rate (d’)
between ‘upper’and ‘lower’ trials evoked by the two retro cue sets (top) and by
procuesetlandretrocueset2 (bottom)(Methods).Firing rate was computed
atthe end of the cue period (300 ms after cue onset). Positive d’ values
indicated that the neuron was more active when the upper sample was cued.
Rose plotsin the background show the histogram of neurons binned by angle
(grey circleindicates scale; density = 0.1). Bar plots along axes show histogram
of marginal distributions (grey ticks on axes indicate scale; density =0.2).
Statistical tests are Pearson’sr. b, Selection correlation values (asin a)
computed over time around cue onset. Bars along top indicate correlations
greater than zero: P<0.05,0.01,and 0.001 for thin, medium, and thick lines,

respectively (one-sided uncorrected bootstrap; n=1,000 resamples of trials).
¢, Generalization correlation values computed over time around cue onset, as
inb.d, Schematic of classifier trained to discriminate the neural response to
two cue conditionson protrials. Performance was calculated as the cross-
validated classification accuracy (tenfold cross-validation on each of1,000
random resamples of trials) (Methods). e, Mean +s.e.m. classificationaccuracy
ofthe pro cues, relative to cue onset, for all four brain regions. Distribution was
defined across1,000 random resamples of trials. This analysis capturesa
mixture of informationabout the control of attention (up or down) and
information about the visual appearance of the cueitself. These results show
that these two conditions are separablein all brain regions, and so any failurein
cross-classification performance (Fig. 2d, purple traces) is not due to poor
separability of the attention conditions.
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Extended DataFig. 5|Single neurons encoded the colours ofremembered
items. a, Mean firing rates for example neurons during the retro condition,
binned by the colour (indicated by line colour) of the selected (solid) or
non-selected (dashed) stimulus. Example neurons are shown for all four brain
regions (labelled at top left). b, Mean t+ s.e.m. selectivity of neurons in all four
regions for the colour of the selected and non-selected stimulus (inlight and
darkblue, respectively) ineachbrainregion, averaged across neurons.
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results towhen using an entropy statistic (Fig. 3). LPFC: 574 neurons, FEF:

163 neurons, parietal: 292 neurons, V4: 311 neurons. Horizontal barsindicate
significantinformation for the selected item (light blue), the non-selected item
(darkblue), and asignificant difference ininformation about the selected and
non-selected items (black). Bar widthindicates significance: P<0.05,0.01, and
0.001 for thin, medium, and thick, respectively (two-sided cluster-corrected
t-tests).
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Extended DataFig. 6 |See next page for caption.



Extended DataFig. 6| Comparison ofinformationabout the reported/
presented colour, the attended/unattended item, and the memory of
itemsonprospective and retrospective trials.a, Mean z-scored colour
information for the reported colour (grey) and the colour of the presented,
selected, item (light blue). Information was calculated on firing ratesina
200-mswindow before onset of the response colour wheel for all neurons.
Distributions show bootstrapped estimates of the mean across neurons
(LPFC:570 neurons, FEF:163 neurons, parietal: 292 neurons, V4: 311 neurons).
Horizontallines indicate pairwise comparisons.*P<0.05,**P<0.01,
***P<0.001 (two-sided uncorrected randomization tests). b, Mean +s.e.m.
z-scored colour information for the attended and non-attended colour on pro
trials. LPFC: 543 neurons, FEF:160 neurons, parietal: 272 neurons, V4:300
neurons. Horizontal bars indicate significantinformation for the attended

item (light orange), the non-attended item (dark orange), and significant
differencesininformationaboutthe attended and non-attended items (black).
Barwidthindicates significance: P<0.05,0.01,and 0.001 for thin, medium, and
thick, respectively (two-sided cluster-corrected t-tests).c, Mean £s.e.m.
differenceinz-scored colourinformation betweenretro and pro trials for the
cueditem (selected —attended; light purple) and uncueditem (non-selected -
non-attended; dark purple). Positive values reflect more information aboutan
itemonretrotrials. LPFC: 511 neurons, FEF: 146 neurons, parietal: 258 neurons,
V4:285 neurons. Horizontal bars indicate significant differences fromzero
(thatis, differences betweenretroand pro) for the cued item (light purple) and
the non-cueditem (dark purple). Bar width indicates significance: P<0.05,
0.01,and 0.001 for thin, medium, and thick, respectively (two-sided cluster-
corrected t-tests).
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Extended DataFig.7|See next page for caption.




Extended DataFig.7|The effect of selection on colourinformation was
greater when memories were more accurate. a, Selection enhanced the
representation of the selected itemin frontal and parietal regions and reduced
therepresentation of the unselected itemin FEF. The y-axis shows the increase
incolourinformation after selection (post-cue period: 200 to 500 ms after cue
offset), relative toinformation before selection (pre-cue period: 300 to O ms
before cue onset). Violin plots show the distribution of this difference,
estimated by 1,000 bootstrapped resamples of neurons (LPFC: 577 neurons,
FEF:170 neurons, parietal:299 neurons, V4: 316 neurons). *P<0.05,**P<0.01,
***P<(0.001 (two-sided uncorrected paired t-tests). b, Mean +s.e.m. z-scored
colourinformation for the selected (light blue) and non-selected item (dark
blue) onretro trials, for trials with more accurate behavioural responses (left;
error was lessthan median error) and less accurate behavioural responses
(right; error was greater than median error). LPFC: 457/472 neurons, FEF:

134/135neurons, parietal: 235/241 neurons, V4:248/267 neurons for left/right,
respectively. Plots follow Fig. 3. Horizontal bars indicate significant
information for the selected item (light blue), the non-selected item (dark
blue), and significant differences ininformation about the selected and non-
selected items (black). Bar widths indicate significance: P<0.05,0.01, and
0.001 for thin, medium, and thick, respectively (two-sided cluster-corrected
t-tests).c,Mean +s.e.m. differenceinz-scored colourinformation about the
selected and non-selected items for more accurate and less accurate trials.
LPFC:435neurons, FEF:125 neurons, parietal: 221 neurons, V4:240 neurons.
Asinb, trials were spliton the basis of angular error (relative to median error).
Positive values reflect more information about the selected item than the non-
selecteditem. Horizontal bars indicate significant differences between more
andlessaccuratetrials; width indicates significance: P<0.05,0.01,and 0.001
for thin, medium, and thick, respectively (two-sided cluster-corrected t-tests).
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Extended DataFig. 8| Distributed representations of colour in prefrontal
cortex were transformed over time. a, Mean z-scored colour information for
the upper (x-axis) and lower (y-axis) stimuliimmediately before selection cue
onset (average over -500 to 0 ms before the selection cue) for LPFC (583
neurons). Most neurons carried some amount of information about bothitems
(thatis, neurons did not lie along the axes). b, To check whether neurons that
primarily carried information about just oneitem were driving the
orthogonality between the colour planesin LPFC before the selection cue, we
re-computed the cosine of the angle between the colour planes (Methods)
using populations of neurons with significant colourinformation about one
itemonly or bothitems (see Methods for description of this test). Histograms
show thedistribution of the cosine of the angle between the best-fitting planes
for the upper and lower stimuli during the pre-cue period for these ‘both’and
‘litem’ populations of neurons (with each population subsampled to anequal
number of neurons) (Methods). Distributions were estimated from1,000
resamples of trials. Green squares indicate median values. While the ‘both’
neurons did display slightly less orthogonality than the ‘1item’ neurons, this
difference was not significant (P> 0.4, two-sided bootstrap of difference).

Cosine angles are not zero for ‘1item’ neurons because ‘1item’ neurons still
contain subthreshold information (P>0.05) about the otheritem, asseenin
a,and subsampling cells in this way decreases statistical power, thereby
inflating low cosine values. ¢, Population trajectories for lower colours, over
time, as projected into the lower colour subspace defined either before or after
selection (leftand right, respectively). Follows Fig. 4e. The lower colour
subspace was defined as a 2D space that maximally explained variance across
the four lower colours (Methods). As for the upper colour (Fig. 4e), temporal
cross-generalization was poor, suggesting that the colour information was
represented in different subspaces before and after the selection cue. d, Before
selection, colour representationsin LPFC are better separated using the
pre-selection subspace. After selection, colours are better separatedinthe
post-selection subspace. Separability was measured asthe area of the
quadrilateral defined by the responsesto colours (c, Fig. 4e), projected into
either the pre-selection or post-selection subspaces (left and right columnsin
eachplot; areaaveraged across upper and lower items). Violin plots show
distributions estimated from 1,000 resamples of trials. *P<0.05,**P<0.01,
***P<0.001 (two-sided bootstrap of difference).
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Extended DataFig.9|The alignment of selected items was greaterin
prefrontal cortex than other brainregions, was greater than the alignment
ofnon-selected items, and was greater when memories were more
accurate. a, Projected population responses for selected upper and non-
selected lower colours, computed asin Fig.4a. The selected and non-selected
coloursremainorthogonal after the selection cue (main text). b, Projected
populationresponses for non-selected upper and non-selected lower colours.
Aswiththeselected colour planes, the non-selected colour planes appear
parallel after the selection cue. ¢, Mean correlation between the population
representation of each colourintheupper and lower position duringretro
trials, whenboth items were selected (left), oneitem was selected and another
itemwas non-selected (middle),and whenboth items were non-selected
(right). Correlation was measured during an ‘early’ time period during the delay
(dark grey; 150-350 ms after the offset of the stimulus) and a ‘late’ time period
duringthe delay (light grey; 200-0 ms before the onset of the colour wheel).
Correlation was measured after subtracting the meanresponse at each
location (Methods). Violin plots show bootstrapped distributions estimated
from1,000 resamples of trials. Horizontal lines indicate pairwise comparisons
(two-sided uncorrected bootstrap of difference). Lone asterisks denote two-
sided uncorrected bootstrap versus zero: *P<0.05,**P<0.01, ***P< 0.001.

d, Cosine of the angle between the best-fitting planes for the upper and lower
stimuli. Planes were fit to selected and non-selected items during both the
early and latetime periods (asin c). Histograms show full distribution,
estimated from1,000 resamples of trials; greenlines indicate median values.
Horizontallines indicate pairwise comparisons: *P<0.05,**P<0.01,
***P<(0.001 (two-sided uncorrected bootstrap of difference). e, To find out

whether the selection process transformed the cued and non-cueditemin
similar ways, we estimated the transformation matrices that mapped pre-cue
representations of anitem onto their post-cue representation (Methods,
Supplementary Discussion 3). Then, we tested whether these transformations
were abletoreconstructrepresentations on withheld trials. Transformations
were tested on the same condition (withheld trials; first column); on the other
itemina condition (forexample, applying the transformation of aselected
upperitemto annon-selected lower item; second column); onthe sameitem,
butinadifferent condition (forexample, applying the transformation of a
selected upperitemto annon-selected upperitem; third column); and on the
otheritemin adifferent condition (for example, applying the transformation of
aselected upperitemto anselected lower item; fourth column). Violin plots
show distributions of these mean reconstruction errors estimated from1,000
resamples of trials. Red crossesindicate the distribution mean, dashed lines
show reconstruction error expected by chance (estimated by random shuffle)
(Methods). Theresultsindicateacommon componentto the transformation of
theselected and non-selected itemin the same condition (second column) but
there was also anitem-specific transformation (reflected in the lower
reconstruction error for the same item; first column). Horizontal lines show
pairwise comparisons: ***P<0.001 by two-sided uncorrected bootstrap of
difference.f, The selected upperand selected lower colour planes do not align
oninaccurate trials. Figure follows Fig. 4b, but shows data for trialsin which
absolute angular error was greater than the median error. Black markers show
the cosine of the angle (y-axis) between the two colour planes around the time
of cue onset (x-axis) and black line shows the best-fitting logistic function.
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Extended DataFig.10|Colourrepresentations of the attended item were
immediately aligned on prospective trials. a, Population responses 200 ms
after stimulus offset on pro trials (projected into areduced subspace for
visualization). As in Fig. 4a, markersindicate mean position of population
activity for each condition (binned by the colour and location of the attended
item) in asubspace spanned by the first three principal components that
explainthe most variance across all eight conditions.b, Mean+s.e.m.
correlation of population vectorsrepresenting colours at the same location
(self;redline) or betweenlocations (cross-location; blueline) on pro trials.
Correlations were measured after subtracting the mean vector ateachlocation
(asinFig.4c; Methods). Distribution was estimated from1,000 resamples of
trials. Self-correlation was computed on held-out trials and provides an upper-
boundonthe between-location correlation values, given the noise level. Bars
reflectuncorrected two-sided bootstrap (P<0.05) for each correlation type
againstzero (red and blue) and between each other (black). ¢, Asinb, but for
retrotrials.d, Mean correlation between the populationrepresentations of
each colourinthe upper and lower position during pro trials, when bothitems
were attended (left), one item was attended and anotheritem was non-
attended (middle), and whenbothitems were non-attended (right). Correlation
was measured during an ‘early’ time period during the delay (dark grey;
150-350 ms after the offset of the stimulus) and a ‘late’ time period during the
delay (lightgrey; 200-0 ms before the onset of the colour wheel). Correlation

was measured after subtracting the meanresponse ateachlocation (Methods).
Violin plots show distributions, estimated from 1,000 resamples of trials.
Horizontal lines indicate pairwise comparisons (two-sided uncorrected
bootstrap of difference) and lone asterisks reflect two-sided uncorrected
bootstrap against zero: *P< 0.05,**P<0.01, ***P< 0.001. e, Cosine of the angle
between the best-fitting planes for the upper and lower stimuli. Planes were fit
toattended and non-attended items during both the early and late time
periods, asind. Histograms show full distribution, estimated from1,000
resamples of trials; greenlinesindicate median values. f, Mean correlation
betweenthe population representation for each colour during pro trialsand
therepresentations during the early or late time periods of retro trials.
Correlation was computed between the colour representations taken from the
300 msbefore the onset of the response wheel on pro trials and the colour
representations taken from either a pre-selection period (left distribution;
-300to 0 ms before cue) or apost-selection period (right distribution; -300 to
0 msbeforeresponse wheelonset) onretrotrials. Correlations were measured
after subtracting the mean vector ateach location, asin Fig. 4c (Methods).
Violin plots reflect the distribution, estimated from1,000 resamples of trials.
Horizontal lineindicates pairwise comparison (two-sided uncorrected
bootstrap of difference) and lone asterisks reflect two-sided bootstrap
againstzero:*P<0.05,**P<0.01,***P<0.001.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

O O]

lXI The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

O 0O 0OX

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

K
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Stimuli were presented and behavioral responses registered using Psychtoolbox (version 3) and Matlab (version 2015a). Behavioral training
code is available upon request. Electrophysiogical data was collected using an amplifier from Blackrock Microsystems (Cerebus software,

version 7). Eye tracking data was collected using an EyeLink 1000 (SR Research, software version 5.09). Neuron waveforms were sorted using
Plexon's Offline Sorter (version 4).

Data analysis Data were analyzed using built-in functions and custom code written in Matlab. Built-in functions are noted in the associated methods section
(e.g., pca for dimensionality reduction; fitclinear for logistic regression). Equations for non-standard statistics are provided in the methods.
Code for custom functions are provided in the manuscript as a reference to the original source or are included in an online public repository
(https://github.com/buschman-lab/SelectionFromWorkingMemory). Full code is available upon reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data supporting all figures are included with the manuscript. Raw electrophysiological and behavioral data are available from the corresponding author upon
reasonable request.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size As detailed in the manuscript, a total of 1,541 neurons were recorded from 4 brain regions across 2 animal subjects. The number of subjects
(2) and the number of neurons recorded per region (~180-680) follows previous work using similar approaches (e.g., Wessberg et al, 2000;
Buschman and Miller, 2007; Mante et al, 2013; Siegel et al, 2015).
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Data exclusions  Neurons were excluded from a particular analysis if they were recorded for fewer than a fixed number of trials in any condition of interest for
that analysis (typically 10 trials). This exclusion criterion was established in advance and is described specifically for each analysis in the
methods.

Replication Independent experiments were performed in 2 animals, with 1,541 neurons recorded across 23 days. All data was included (except for
exclusions noted above). There were no failed replication attempts (i.e., no animals failed to learn the task and no neural recordings were

excluded).

Randomization  Each animal was exposed to every task manipulation. Within a session, task manipulations were randomized across trials. Neurons were
recorded without bias, with electrodes placed to maximize signal-to-noise of the electrophysiological signal.

Blinding All animals were assigned to a single experimental group, and so blinding was not necessary or possible. However, experimenters were
blinded to experimental conditions during recording of neurons and during sorting of waveforms into single neurons.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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OoOXOOO

Dual use research of concern

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Subjects were two 9 year old male rhesus macaques (Macaca mulatta). Animals were singly-housed in a large room that contained
2-4 other male macaques of similar ages.

Wild animals No wild animals were used in this study.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All experimental procedures were approved by the Princeton University Animal Care and Use Committee and were in accordance
with the policies and procedures of the National Institutes of Health.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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