
Behavioral/Cognitive

Finding Distributed Needles in Neural Haystacks

Christopher R. Cox1 and Timothy T. Rogers2
1Department of Psychology, Louisiana State University, Baton Rouge, Louisiana 70803, and 2Department of Psychology, University of Wisconsin,
Madison, Wisconsin 53706

The human cortex encodes information in complex networks that can be anatomically dispersed and variable in their micro-
structure across individuals. Using simulations with neural network models, we show that contemporary statistical methods
for functional brain imaging—including univariate contrast, searchlight multivariate pattern classification, and whole-brain
decoding with L1 or L2 regularization—each have critical and complementary blind spots under these conditions. We then
introduce the sparse-overlapping-sets (SOS) LASSO—a whole-brain multivariate approach that exploits structured sparsity to
find network-distributed information—and show in simulation that it captures the advantages of other approaches while
avoiding their limitations. When applied to fMRI data to find neural responses that discriminate visually presented faces
from other visual stimuli, each method yields a different result, but existing approaches all support the canonical view that
face perception engages localized areas in posterior occipital and temporal regions. In contrast, SOS LASSO uncovers a net-
work spanning all four lobes of the brain. The result cannot reflect spurious selection of out-of-system areas because decod-
ing accuracy remains exceedingly high even when canonical face and place systems are removed from the dataset. When used
to discriminate visual scenes from other stimuli, the same approach reveals a localized signal consistent with other methods
—illustrating that SOS LASSO can detect both widely distributed and localized representational structure. Thus, structured
sparsity can provide an unbiased method for testing claims of functional localization. For faces and possibly other domains,
such decoding may reveal representations more widely distributed than previously suspected.
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Significance Statement

Brain systems represent information as patterns of activation over neural populations connected in networks that can be
widely distributed anatomically, variable across individuals, and intermingled with other networks. We show that four wide-
spread statistical approaches to functional brain imaging have critical blind spots in this scenario and use simulations with
neural network models to illustrate why. We then introduce a new approach designed specifically to find radically distributed
representations in neural networks. In simulation and in fMRI data collected in the well studied domain of face perception,
the new approach discovers extensive signal missed by the other methods—suggesting that prior functional imaging work
may have significantly underestimated the degree to which neurocognitive representations are distributed and variable across
individuals.

Introduction
Cognitive neuroscience is embracing a network-based view: cog-
nition arises from the propagation of activity over weighted con-
nections among neural populations spanning multiple cortical
areas (Sporns, 2011). Information inheres in the similarities
among distributed activity patterns rather than the mean activa-
tion of local neural populations (Haxby et al., 2014). This raises a
statistical challenge for functional neuroimaging, where various
technologies yield thousands of measurements per second: cog-
nitive structure must be encoded jointly over some subset of
measurements, but the number of possible subsets is prohibi-
tively large. How can the theorist find those that encode structure
of interest? We propose a new answer motivated by neural net-
work models (Rogers and McClelland, 2014) and show that it
can lead to dramatically different conclusions about the neural
bases of cognition even in well studied domains.
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Neural network models propose that cognitive representa-
tions are patterns of activity distributed over neural popula-
tions or units (Rumelhart and McClelland, 1986). The
patterns arise as units communicate their activity through
weighted connections that determine the effect of a sending
unit on a receiving unit. Pools of similarly connected units
function as a representational ensemble that encodes a partic-
ular cognitive structure (e.g., phonological, semantic, visual).
Network topography is initially specified, but learning shapes
the connection weights that generate patterns over ensembles.
Cognitive processing arises from the flow of activity through
the network. Such models have proven useful for understand-
ing the neural bases of healthy (McClelland et al., 2010;

Rabovsky et al., 2018), disordered (Lambon Ralph et al.,
2017), and developing (Saxe et al., 2019) cognition, but chal-
lenge functional imaging because they suggest that neural sys-
tems can encode information in ways that elude many
statistical approaches (Fig. 1), as follows:

1. Unit activations may not be independently interpretable. If
units in an ensemble jointly encode information of interest,
independent analysis of each via univariate statistics can
obscure critical signal.

2. Neighboring units need not encode the same information in
the same way. Adjacent units in a distributed code may
express different components of a represented structure or
may express the same component through either increased

Figure 1. Challenges to functional brain imaging posed by network-based views of cognition. A, Example network that maps visual and auditory inputs to ensembles expressing similarity in
shape, meaning, or word sound. B, Hypothetical contributions of two units to the representation of meaning in such a network across four different training runs. Jointly, the two units always
encode the same distances among birds, goats, cars, and boats (top row). Considered independently each unit appears to show a different response pattern both within and across runs (middle
row). Consequently, when the unit activations are spatially averaged within a run, or averaged across runs for each unit, their contributions to semantic structure are obscured (bottom row). C,
Variation in fine-grained connectivity. All three depicted networks have the same connectivity as that shown in A and so will function the same way despite having a more complex spatial lay-
out. The same coarse topography is expected across individuals but the finer-grained spatial layout—exactly where the green, yellow, and pink units lie within a given spatial volume—may
vary, challenging approaches that average within region or across individuals.
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or decreased activation. Thus, spatial averaging within sub-
jects may destroy signal.

3. Single units can vary arbitrarily in their responses across indi-
viduals even when ensembles encode the same structure. Many
different weight configurations can compute the same input/
output mapping, so a particular unit in a given network can ex-
hibit arbitrary patterns of responding across training runs in
the same environment. In this case, response averaging across
subjects at a given anatomical location will destroy a signal.

4. Representational ensembles need not be anatomically contigu-
ous. Units with similar connectivity function as a representational
ensemble—responding to the same inputs and contributing to
the same outputs—even if situated in different cortical regions.
Approaches that analyze different regions independently will
miss information distributed in this way.

5. Fine connectivity varies across individuals. While coarse
connectivity is innate, learning tunes individual weights,
rendering precise unit-to-unit alignment across individuals
impossible. Cross-subject averaging may therefore destroy
information even with sophisticated alignment techniques.

To understand how contemporary methods address these
challenges, Study 1 used a neural network model to generate
simulated neuroimaging data. The model specifies which units
carry information, allowing comparison of methods in their abil-
ity to discover different kinds of signal. Each has critical blind
spots that suggest a new approach based on structured sparsity
(Huang et al., 2011), developed in Study 2. Study 3 compares the
different approaches when applied to functional magnetic reso-
nance imaging (fMRI) data in a domain that has highlighted fun-
damental questions about neurocognitive representation: visual
face processing. Each yields a different results, but established
approaches all suggest that face processing arises within posterior
temporal and occipital regions. The new approach uncovers a
radically distributed network spanning all four lobes of the brain.
The Discussion considers implications of these results for claims
of functional localization from brain imaging data more broadly.

Study 1: assessing established approaches in
simulation
The goal of Study 1 was to compare established statistical meth-
ods in their ability to discover representational signal encoded by

units in a neural network under different assumptions about the
nature of the neural code and the spatial (anatomic) layout of
the units. To this end, we generated simulated imaging data from
the simple auto-encoder network shown in Figure 2A. The
model was trained 10 times under identical conditions except for
weight initialization to reproduce 72 input patterns over the out-
put units. Items were sampled equally from two categories (A
and B) corresponding to some cognitive distinction of interest
(e.g., faces vs places). Each trained model is analogous to an indi-
vidual in an fMRI study, with the BOLD signal at a single voxel
simulated as the activation of the unit perturbed by independ-
ently sampled noise.

Two subsets of units encode category information in different
ways. Informative input/output (IIO) units adopt an independ-
ent code: each is weakly but reliably more active on average for
items in one category (A or B) than the other. Informative hid-
den (IH) units connect informative input to output units, and
thus learn a distributed code: after training, items from the same
category always evoke similar patterns across units, but individ-
ual units vary arbitrarily in their independent correlations with
category structure within and across networks. The model also
includes arbitrary input-output and arbitrary hidden (AH) units
that respond to stimuli but do not encode category information,
and irrelevant units that take low random values.

We considered two anatomic layouts for the network (Fig.
2A), corresponding to two different assumptions about how
units coding a distributed representation can be spatially organ-
ized. Both layouts situated the IO units of a given type (A, B, ar-
bitrary) within a contiguous spatial region localized in the same
way across model individuals, analogous to early perceptual areas
known to have the same topographic organization across indi-
viduals. The localized layout also grouped hidden units by type
(IH, AH, irrelevant) in this way (localized identically across
model individuals) consistent with the common view that layers
in a neural network model correspond approximately to contigu-
ous cortical regions in the brain. The dispersed layout arranged
hidden units in four anatomically distal “regions” containing a
mix of IH, AH, and irrelevant units, with unit locations shuffled
within region for each model subject. This condition represents
the possibility suggested by neural network models that neural
populations jointly contributing to a representation may be ana-
tomically distal from one another, somewhat variable in their
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Figure 2. Cross-validation procedure. Multiple hyperparameter configurations are attempted in a nested cross-validation loop completely isolated from a primary validation set. The optimal
configuration is used to fit a model to all but the primary validation set. The primary step is repeated holding out a different set of items each time, and each time gp, l p is optimized
through nested cross-validation.
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spatial location across individuals, and intermingled with popu-
lations contributing to other representations. All models had the
same connectivity—the layouts differed only in hypothesized
spatial locations of the units.

We then applied the following four common statistical meth-
ods to find units that encode the A/B category structure: univari-
ate contrast (Friston et al., 1994), searchlight multivariate pattern
classification (MVPC; Kriegeskorte et al., 2006; Pereira et al.,
2009), and whole-brain pattern classification (Lemm et al., 2011)
regularized with either the L1 (Tibshirani, 1996) or the L2 (Hoerl
and Kennard, 1970) norm. A good method should detect all in-
formative units regardless of spatial layout and should indicate
the code direction: more active for A versus B for IIO units and
the heterogeneous code for IH units.

Methods
Simulations were conducted using the Light Efficient Network
Simulator (Rohde, 1999) with minor revisions to support mod-
ern Tcl/Tk libraries (https://github.com/crcox/lens/releases/tag/
v1.0) for software and networks files. The model was trained
using backpropagation to minimize cross-entropy error with a
learning rate of 0.1, a momentum (“Doug’s”) of 0.9, and weight
decay of 0.001. The model achieved near-zero error with 1000
weight updates, each following a batch containing all 72 pat-
terns. The model was fit 10 times with different initial weights
sampled from a uniform distribution in [�1,1] to simulate 10
individuals in a brain imaging study. We computed the activa-
tion of every unit for each item in each model, then distorted
this with i.i.d. (independent and identically distributed)
Gaussian noise (mean= 0, SD= 1) to simulate the BOLD
response to a stimulus at each voxel. The simulated activation
patterns were extended with 28 irrelevant units (zero baseline
activity and the same noise profile), which serve two important
functions. Conceptually, they represent neural populations that
are independent from the representations of interest and not
involved with the task. Statistically, they allow us to evaluate the
false alarm rate of our methods and construct tests of reliable
unit selection.

Statistical analysis
Separate analyses were conducted for the localized and dispersed
layouts. All methods used the same uncorrected but conservative
criterion for significance (a = 0.002).

Univariate contrast spatially smooths data, then identifies
voxels whose mean activation across individuals at a given spatial
location reliably differs for A versus B items (Friston et al., 1994).
Smoothing used a boxcar average over a three unit window.
Analysis then involved a two-tailed independent-samples t test
(A vs B items) at each unit.

Searchlight MVPC seeks distributed representations by gen-
erating information maps across the cortex (Kriegeskorte et al.,
2006; Pereira et al., 2009). At each voxel in each subject, a classi-
fier is trained to discriminate items from different categories,
based on the neural response evoked in neighboring voxels
within a “searchlight” of fixed radius. Holdout accuracy is stored
at the center voxel, and univariate tests across subjects then indi-
cate which searchlights perform reliably above chance. Thus, in-
formation must be expressed within the searchlight radius and
localized similarly across individuals. The model analysis lever-
aged the SearchMight toolbox (Pereira and Botvinick, 2011)
for MATLAB and involved centering a searchlight of fixed radius
on each unit. A support vector machine classifier was fit to
unsmoothed unit activity within each searchlight with sixfold

cross-validation. Unit groups were padded with noise units so
that all searchlights contained the same number of units and a
searchlight never encompassed units in different “regions.” The
mean cross-validation accuracy was stored at each searchlight
center, and the mean accuracy over model subjects at each unit
was compared against chance using a two-tailed t test. We
assessed the performance of searchlights ranging in radius from
3 to 14 units and report the best performing searchlight (size 7)
together with the smallest and largest.

Whole-brain MVPC with regularized regression
This approach fits and evaluates a single classifier per subject
using all voxels and avoids overfitting by finding classifier coeffi-
cients b that jointly minimize prediction error and a regulariza-
tion penalty (Lemm et al., 2011), as follows:

argmin
b

1� lð Þf ðb Þ1l hðb Þ� �
; (1)

where f(b ) is the classifier prediction error, h(b ) is the regu-
larization penalty, and l [ [0,1] is a free hyperparameter that
scales the error versus regularization costs. The approach does
not consider voxel location at all and so in principle can find
nonlocal information. We used logistic loss for the error and
considered two common regularization penalties: ridge regres-

sion, which increases with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

b 2
q

, and LASSO, which

increases with
X

jb j.
Analyses were conducted using the Whole-Brain Imaging

with Sparse Correlations (WISC) workflow (https://github.com/
crcox/WISC_MVPA/releases/tag/FirstMajor). The same proce-
dure was used for all regularized regression analyses, so we will
describe it in detail here.

Each analysis involves two rounds with different aims. In the
performance round, the aim is to assess how accurately a decod-
ing model, fit to a subset of data, can then classify held-out test
items. In this evaluation, it is important that the data used to fit
model parameters and hyperparameters are independent of
those used to evaluate the fitted model. To this end, we adopted
the nested cross-validation procedure shown in Figure 2. Data
were divided into n partitions. One partition was held out as a
final test set. The remaining partitions were used as a training set
to find good model parameters in an inner cross-validation loop.
In the inner loop, a series of models was fit to 80% of the training
data using different values for l , with each evaluated on a held-
out 20% of the training data, and iterating over different holdout
sets. This loop searched many hyperparameter values, seeking
the one that yields the best mean accuracy across the inner-loop
holdouts. A final model is then fit to all training data at the
selected l , and this model is evaluated for accuracy on the final
completely held-out test set. This procedure is conducted for
each of the n partitions, yielding n estimates of decoding accu-
racy on completely held-out items; the expected decoding accu-
racy is then taken as the mean of those n estimates.

While the performance round indicates the expected accuracy
of a decoding model, it does not provide a clear picture of which
features the model exploits, since the procedure fits n different
decoding models (one for each partition), each specifying its
own set of coefficients. We therefore conducted an importance
mapping round with the aim of assessing which features (units
or voxels) a decoding model selects as “important” for classifica-
tion. In this round, we select the hyperparameter that yielded the
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highest test accuracy in the performance round, then fit a decoding
model to all data using the selected hyperparameter. This yields a
single decoding model for each subject, which specifies one coeffi-
cient for each feature. This decoder was not evaluated for classifica-
tion accuracy (since it was fit to all data) but was analyzed to assess
which features reliably attract large or nonzero coefficients for a
decoding model fit at the optimal hyperparameter.

For LASSO, it is straightforward to determine which features
are selected: the regularizer pressures as many coefficients to 0 as
possible, so any feature with a nonzero coefficient has been selected.
To determine which features are selected in true data more often
than expected from random data, we conducted a permutation
analysis: the full procedure was run for each model subject on 1000
permutations, identical in all respects to the analysis above but with
the category labels shuffled randomly each time. For each permuta-
tion, on every unit, we count how often the unit was selected across
the 10 model subjects, providing a null distribution for probability
of overlap across model subjects. We then count a unit as being reli-
ably selected if the overlap across model subjects observed in the
true data is higher than that observed in the permutation distribu-
tion with p, 0.002.

For ridge regression, all features always receive nonzero
coefficients, so it can be unclear how to determine which
are “selected” by the classifier. We adopted the common
approach of treating units with large coefficients—specifi-
cally, those with an absolute value in the top quartile for
each model—as having been selected by the classifier. To
assess which units reliably attracted large coefficients across
model runs, we tabulated, for each unit, the number of
times its coefficient was in the top quartile by magnitude
across model subjects, then computed the binomial proba-
bility of achieving this number or greater from 10 model
runs given the base probability of landing in the top quartile
by chance (0.25). We counted a unit as being reliably
selected when this probability was ,0.002.

The performance-round and importance-mapping round
were conducted for L1 and L2 approaches using six data
partitions.

Results
Simulation results are shown in Figures 3 and 4. We found the
following. Univariate contrast (UC) uncovered the independent
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Figure 3. Simulation results for univariate and searchlight. A, Model architecture. Arrows in the left panel indicate connectivity, which is the same in localized and dispersed layouts. Blue
shading indicates anatomically contiguous units. B–D, Results for univariate and searchlight. Colored circles indicate units reliably identified by the method. Blue/red indicates the direction of
the effect for univariate contrast; searchlight results are shown in green because the method does not indicate direction of effect. Hidden units in localized and dispersed conditions have been
laid out in the same way to facilitate comparison. For each plot, a successful method will identify all units in the three leftmost boxes and no units in the remaining boxes. For the dispersed
layout, the arrow indicates the column of irrelevant units that were intermixed with arbitrary and systematic hidden units. Bar plots show how accurately each method discriminates signal car-
rying from arbitrary and irrelevant units for input/outputs (red/blue), localized (green bar), and dispersed (green/yellow bar) hidden units.
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code and code direction in IIO units but missed the distributed
code over IH units in both layouts. Searchlight MVPC, at the
best performing radius, discovered half of the independent
code in IIO units and almost all of the distributed code in the
localized layout, but missed the distributed code in the dis-
persed layout and always obscured the code direction for indi-
vidual units (since information maps only reveal classifier
accuracy). Smaller searchlight sizes performed similarly, while
larger sizes obscured the distributed code even in the localized
layout. Whole-brain MVPC with regularized regression showed
qualitatively different results depending on the regularization
penalty (Fig. 4B). With the L2 norm (ridge regression), the clas-
sifier showed above-chance holdout accuracy (mean= 59.2%,
t(9) = 5.36, p, 0.001) but placed nonzero coefficients on all
units, making it difficult to discriminate informative from arbi-
trary and irrelevant units. The strategy of selecting units with
large coefficients did not identify signal-carrying units, which
were no more likely to attract large weights in the classifier than
expected by chance.

Regularizing with the L1 norm produced a classifier with
equally good holdout accuracy (mean= 57.2%, t(9) = 2.34, p,
0.05; Ridge vs LASSO paired, t(9) = 0.626, n.s.) and a much
sparser solution. Only three units (two IH and one IIO) reliably
received nonzero coefficients, with no false alarms. Thus, con-
ventional regularization either missed substantial signal (L1) or
selected everything (L2).

Study 2: whole-brain MVPC with structured
sparsity
We have suggested that structured sparsity (Jacob et al., 2009;
Jenatton et al., 2011) can provide an avenue for preserving the
strengths of established methods while avoiding their weak-
nesses. On this approach, a single classifier is fit to data from all
subjects while a regularization penalty encourages desired spar-
sity patterns among the coefficients. In functional imaging, the
solution should (1) clearly delineate selected and unselected vox-
els, (2) allow heterogeneous codes among neighboring units
within and across individuals, (3) reveal code direction where
this is consistent, (4) identify distal units that jointly express rep-
resentational structure, (5) capitalize on shared location across
subjects, where this exists, but also (6) tolerate individual varia-
tion in signal location.

In prior work, we defined the sparse-overlapping-sets (SOS)
LASSO to meet these criteria (Rao et al., 2013, 2016). Voxels
from all subjects are projected into a common reference space
without interpolation or averaging. Sets are defined for grid
points in the space, each encompassing all voxels within and
across subjects that fall within a specified radius. Sets are analo-
gous to searchlights in many respects; each includes all voxels
within a spatially contiguous radius of a center point. As with
searchlights, each voxel belongs to several sets, and sets overlap
in the voxels they contain. The central difference lies in how this
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Figure 4. Simulation results for regularized regression. A, Model architecture. Arrows in the left panel indicate connectivity, which is the same in localized and dispersed
layouts. Blue shading indicates anatomically contiguous units. B, C, Whole-brain classification with L2 or L2 regularization (Study 1) and the SOS LASSO (Study 2). Colored
circles indicate units identified by the method. Circle size indicates the number of times the unit received a nonzero coefficient across 10 model runs. Color indicates the pro-
portion of coefficients that are positive. Hidden units in localized and dispersed cases have been laid out in the same way to facilitate comparison. For each plot, a successful
method will always identify all units in the three leftmost boxes (large colored circles) and no units in the remaining boxes. For the dispersed layout, the arrow indicates the
column of irrelevant units that were intermixed with arbitrary and systematic hidden units. Bar plots show how accurately each method discriminates signal-carrying from
arbitrary and irrelevant units for input/outputs, localized (green bar), and dispersed (green/yellow bar) hidden units.
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information about spatial grouping is used in model fitting.
Rather than fitting a different decoder to each searchlight/set in-
dependently, all sets instead contribute simultaneously to the
regularization cost h in Equation 1 as follows:

hðS; b Þ ¼
X
S

1� gð Þ
X

i

jb s;ij1g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

b 2
s;i

r !
; (2)

where S defines the grouping of voxels into sets, i indexes
model coefficients within a set, and g [ [0,1] is a free parameter.
The total cost is a sum over sets. The cost for each set is the pro-
portional weighted sum of the LASSO sparsity penalty and a
grouping penalty formulated as the root of the sum of squared
coefficients. Because this root is taken over units within a set, the
penalty is smaller when nonzero coefficients occupy the same set
than when they occupy different sets (Rao et al., 2013). Thus,
SOS LASSO (https://zenodo.org/record/3609239) encourages
sparse solutions where selected voxels tend to occupy the same
sets. The free hyperparameter g controls the relative weighting
of the sparsity versus grouping penalties within set. When g = 0,
the penalty reduces to LASSO. The optimization is convex and
returns a unique solution for a given pair of hyperparameters (g
and l ). These are tuned via nested cross-validation on holdout
error just as described for L1 and L2 regularization (Fig. 2).

SOS LASSO captures the spirit of searchlight analysis in seek-
ing a whole-brain information map that identifies local regions
where many signal-carrying voxels reside. The grouping penalty
in the SOS LASSO cost function pressures the optimization to
place nonzero coefficients in regions where information is local-
ized similarly across participants. Yet, because SOS LASSO fits a
single model to all data simultaneously, it can “see” all search-
lights at once, and so can capitalize on information that may be
distributed across multiple anatomically distal areas but not dis-
cernable within any single region (either because local correla-
tions are weak or because information across regions must be
combined for accurate decoding). Moreover, because the hyper-
parameter on the grouping penalty is tuned by data, the
approach can down-weight or even ignore set membership if
doing so leads to better prediction in the decoder. For instance, if
signal-carrying voxels were not anatomically grouped within or
across subjects, the optimization would select a value near 1 for
the sparsity parameter (and near 0 for the grouping parameter),
leading to a sparse solution that can be completely different in
each participant.

SOS LASSO also has one property in common with L1 and
L2 regularization that contrasts with searchlight MVPC: it
returns a single whole-brain classifier for each individual subject.
The holdout accuracy of this single classifier can be evaluated
against chance to assess whether reliable signal has been found in
each subject individually, without punishing correction for mul-
tiple comparisons and without assumption about homogeneity
of signal location across subjects. While it is technically possible
to conduct single-subject analyses using the searchlight proce-
dure, this approach requires thousands of statistical tests in each
participant to evaluate the classification accuracy of each search-
light. Thus, accuracy must be exceedingly high to survive correc-
tion for multiple comparisons. Consequently, the most common
searchlight application involves testing the mean classification
accuracy across subjects against chance at each voxel/location,
which in turn relies on the assumption that important signal is
localized similarly across individuals.

In these ways, SOS LASSO captures strengths while avoiding
the limitations of other multivariate approaches. We also note

that the approach is related to, but distinct from, other sparsity-
based approaches that have been applied to neural decoding. The
elastic net regularizes a whole-brain classifier with the weighted
sum of the L1 and L2 norms (calculated across all model coeffi-
cients; Zou and Hastie, 2005). This is closely related to the regu-
larization cost per set in SOS LASSO, but the set-wise evaluation
of the cost has an important consequence: since the full cost is a
sum over sets, the optimization seeks to have as many “empty
sets” (all coefficients zero) as possible. Thus, SOS LASSO enfor-
ces a hard distinction between selected and unselected voxels
(those with/without a nonzero coefficient). In contrast, elastic
net, like ridge regression, often places small nonzero values on all
features, and there exists no principled way of deciding which
are important and which not. Our approach is also related to,
and in fact generalizes, the overlapping group lasso, a common
approach to multitask learning (Jacob et al., 2009) in which all
features (e.g., voxels) in a selected group are constrained to have
the same coefficient, and sparsity patterns are predefined. Our
formulation allows different coefficients within set (so that solu-
tions can vary across individual participants) and does not
require a prespecified sparsity pattern. These relationships, to-
gether with mathematical analysis of the regularizer, are
explained further in the studies by Rao et al. (2013, 2016).

Computational efficiency
It is worth noting that SOS LASSO demands considerably more
computational resources than simple regularization with the L1
or L2 norm, for two reasons. First, it requires search over two in-
dependent hyperparameters, squaring the number of iterations
that must be conducted during the inner loop of the nested
cross-validation. Second, because the approach conducts a single
optimization on data from all subjects simultaneously, then the
full dataset must be transferred to each worker node for each
model fit—that is, the approach cannot conduct separate analy-
ses on each participant dataset in parallel. This exerts significant
memory and data transfer demands. Yet, much of the workflow
we have described is embarrassingly parallel—for instance, all
steps of the inner loop cross-validation, including model fitting
for each combination of hyperparameters on every fold, can be
conducted in parallel on a high-throughput network such as
Open Science Grid. Thus, while the analyses we report would
require years of computing time on a single workstation, they
typically complete overnight on the large HTCondor system
deployed at the University of Wisconsin-Madison.

Statistical analyses
Decoding model data with the SOS LASSO was implemented
using the same WISC workflow, cross-validation procedures,
and permutation testing described for regularized regression in
Study 1. To fit the SOS LASSO decoding models, each unit was
assigned to one or more sets, with each set containing 14 consec-
utive units (analogous to searchlight radius 7 in this one-dimen-
sional dataset), and with seven units overlapping between
adjacent set pairs. The grouping and sparsity hyperparameters
(g and l ) were tuned using nested cross-validation with 10 data
partitions. Decoding accuracy was evaluated in a performance
round as described earlier, while feature selection was evaluated
in an importance mapping round, also as described for Study 1.
As with LASSO, the importance-mapping procedure returned a
single decoder for each model “subject,” with many coefficients
pressured to zero. Thus, we again treated any unit in any model
receiving a nonzero coefficient as having been selected by the
method and used permutation testing to assess which units are
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selected in true data more often than expected from random
data.

Results
Applied to model data, SOS LASSO achieved the best holdout ac-
curacy (68.3%), significantly better than the next best method
(LASSO, paired t(9) = 4.869, p, 0.001) while uncovering much
of the independent code and almost all of the distributed code in
both layouts (Fig. 4C). The sign of the classifier coefficients
revealed the consistent code direction in IIO units and code het-
erogeneity in IH units. SOS LASSO alone discovered the ana-
tomically dispersed distributed signal, while preserving the
strengths of the other methods.

Study 3: finding distributed representation of
faces in neural data
The simulations suggest that functional brain imaging studies
may have missed important distributed signal even in well stud-
ied domains where multiple contemporary approaches have
been applied. Study 3 assessed this possibility for visual face per-
ception. We applied univariate contrast, searchlight MVPC,
LASSO, and SOS LASSO to fMRI data collected in an unrelated
study (Lewis-Peacock and Postle, 2008) where 10 participants
evaluated 90 images depicting people, scenes, or objects (30
each). The study used a slow event-related design estimating the
peak BOLD response to each image at each voxel without decon-
volution. We applied each method to these data to find voxels
whose activations discriminate face (people) from nonface (place
and object) stimuli.

Methods
The fMRI data (Lewis-Peacock et al., 2018) were collected by a
different group in an independent study that reports the full
methodology and image acquisition details (Lewis-Peacock and
Postle, 2008). In a slow event-related design, subjects viewed 30
images from each of three categories (celebrities, famous loca-
tions, objects) in permuted order while their brains were scanned
with fMRI. Images were acquired with a gradient echo, echopla-
nar sequence with 2000ms repetition time (TR) and 50ms echo
time to acquire data sensitive to the BOLD signal within a
64� 64 matrix (30 axial slices coplanar with the T1 acquisition,
3.75� 3.75� 4 mm). With button press on a 4 point Likert scale,
they indicated their liking for the celebrity/location or familiarity
with the object. Each trial consisted of a cue (2 s), stimulus (5 s),
and judgment period (3 s) followed by an arithmetic task (16 s)
to reduce interference between trials. Each stimulus appeared
once. Functional data for each subject were masked to exclude
noncortical voxels. The response to each stimulus at every voxel
was taken as the BOLD signal recorded at the fifth TR following
stimulus onset, without time-series deconvolution.

Univariate analysis
Functional images from the fifth TR following stimulus onset
were projected to Talairach space using the T1 data with a
combination of manual landmark identification (anterior and
posterior commissures) and automated affine transformation
obtained using 3dvolreg in AFNI (Analysis of Functional
NeuroImages). The response to each stimulus was smoothed
with 4 mm FWHM Gaussian kernel and downsampled to the
original resolution. At each voxel, we computed the mean
response for face and nonface stimuli for each subject. In a
whole-brain analysis, we tested for a group-level difference

between these means at each voxel with a two-tailed depend-
ent-samples t test (clusterwise a = 0.05). In a region of interest
(ROI) analysis, we computed, for each subject, the difference
in BOLD response to faces versus nonfaces averaged across
voxels in the “right fusiform face area” (rFFA) mask from the
study by Julian et al. (2012), then conducted a one-tailed t test
(faces. nonfaces) against zero across subjects.

Searchlight MVPC
We used SearchMight (Pereira and Botvinick, 2011) with a linear
support vector machine classifier to generate native-space infor-
mation maps for each subject using both a standard 9 mm and a
larger 12 mm searchlight. Holdout accuracy for each searchlight
was measured as the average of the hit and correct rejection rates,
a metric with range [0,1] and chance performance of 0.5, corre-
sponding to 50% accurate categorization, regardless of the num-
ber of items in each category. Throughout, we refer to accuracy
in percentage rather than proportional terms. Data for all sub-
jects were projected to Talairach space, spatially smoothed, and
downsampled to native resolution as in the univariate analysis. A
one-tailed t test against 0 (true positives . false positives) was
conducted on the mean of this metric across subjects (clusterwise
a = 0.05).

For whole-brain MVPC with L1 regularization, we evaluated
holdout accuracy separately for each subject in a performance
round using nested 10-fold cross-validation exactly as described
for the simulation (Fig. 2). For each subject, the model was fit
using all cortical voxels without any ROI or voxel preselection.
This analysis allowed us to assess how accurately a classifier fit
with L1 regularization could discriminate faces from nonfaces in
each subject considered independently.

We then assessed whether decoding models across partici-
pants place nonzero coefficients in common regions using the
same procedure used in the simulation. For each subject, we fit a
single decoding model to all data, using the best performing
hyperparameter discovered in initial assessment of decoding ac-
curacy. This final model returned a single coefficient at each
cortical voxel for every subject (with, of course, many coefficients
set to 0). The classifier coefficients for each subject were pro-
jected to Talairach space with linear interpolation, smoothed
with a 4 mm FWHM Gaussian kernel, and downsampled to the
original resolution. We then counted how often each common-
space voxel was selected across the 10 subjects. To statistically
threshold this group map, we conducted a permutation test in
which the identical procedure was followed, but with stimulus
labels randomly permuted. From 1000 permutations, we esti-
mated the base probability of selection under the null hypothesis
for each voxel, then used this probability and the binomial distri-
bution to threshold the group map of the true data at p, 0.002
uncorrected. For instance, if the probability of selection from
permutations was 0.15, the voxel would exceed threshold if, in
the true data, it was selected in �6 of the 10 participants (bino-
mial probability,;0.0014).

SOS LASSO model fitting followed a similar procedure. To
estimate decoding accuracy, we fit decoding models to all subject
data simultaneously using the SOS LASSO optimization. Voxels
were spatially aligned within Talairach coordinates without
blurring or linear interpolation (i.e., we simply adjusted the
spatial coordinates of each voxel based on the subject-to-
common-space affine transform). Voxels within and across
subjects were then assigned to multiple overlapping sets by
tiling Talairach space with 18-mm-diameter cubes, overlap-
ping by 9 mm along each axis. This diameter was chosen to
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be comparable to the 9 mm radius commonly used in search-
light. We note, however, that SOS LASSO is less sensitive to
the group size than searchlight because (1) groups overlap,
(2) voxels can be selected from multiple groups simultane-
ously, and (3) solutions can be sparse within groups. We
again applied nested 10-fold cross-validation to estimate
decoding accuracy in each subject. To determine whether
selected voxels accumulate in similar regions across subjects,
we conducted an importance-mapping round as described
earlier, yielding a single decoding coefficient for each voxel
in every subject. To visualize the spatial/anatomic distribu-
tion of these coefficients across subjects, we flagged selected
voxels with a binary mask (1 for voxels with a nonzero coeffi-
cient, 0 otherwise), then spatially smoothed the mask with a
truncated 4 mm FWHM Gaussian kernel.

Because SOS LASSO fits all subjects simultaneously, selection
of a voxel in one subject alters the probability of selection in a
nearby region in other subjects. Thus, the binomial assumption
of independence across subjects adopted to threshold the LASSO
analysis is violated in the SOS LASSO case. We instead adopted a
stricter criterion for significance based on permutation sampling.
For each permutation round, the entire SOS LASSO pipeline was
conducted using randomly shuffled category labels in the model
fit. Selected voxels were subjected to a binary threshold and spa-
tially smoothed in the identical way. For each voxel in the com-
mon space, we then counted how many subjects received a
nonzero value in the smoothed map after applying the thresh-
old. Across 1000 such analyses with randomly permuted labels
and ;10,000 common-space voxels, no voxel was ever
selected in more than seven subjects. We therefore masked the

SOS LASSO maps to show voxels selected in eight or more
subjects in the true data. Since all permutations are independ-
ent, this establishes a lower significance bound of p, 0.001
uncorrected. All follow-up analyses with SOS LASSO used the
same procedure.

Results
Figure 5 shows canonical “face” and “place” systems from the
study by Julian et al. (2012) together with results for the current
data from univariate contrast and searchlight methods. The uni-
variate approach revealed significantly less activation for faces
around parahippocampus bilaterally (p, 0.05 cluster cor-
rected), while the ROI analysis found greater activation for
faces in the right rFFA (p, 0.05). Searchlight MVPC with a 9
mm radius identified areas near the FFA bilaterally (p, 0.05
cluster corrected) and in lateral occipitotemporal regions of
both hemispheres, while a 12 mm radius identified similar areas
with a broader anatomic spread (p, 0.05 cluster corrected). As
noted for simulations, this approach was unable to reveal code
direction.

Results for whole-brain decoding with sparse regularization
are shown in the top panel of Figure 6. The decoding models fit
with LASSO and SOS LASSO showed equally high holdout ac-
curacy in the performance round (LASSO, 88.6%; SOS, 86.8%;
t(9) =1.23, SE = 0.015, n.s. for within-subjects contrast). Analysis
of final model coefficients for LASSO yielded a group result
similar to searchlight: voxels selected in the group map more
often than expected from permutations resided near FFA bilat-
erally, in right lateral occipitotemporal cortex, and small area
in left occipitotemporal cortex (p, 0.002 uncorrected). In

12mm

9mm

Figure 5. Functional imaging results with univariate and searchlight. Univariate: the canonical face and place systems (top) and results for the current data (bottom). Searchlight: Significant
regions are shown in green since the code direction is undetermined in this approach. The top row shows results with a 9 mm searchlight radius, the bottom with 15 mm. n.f., Not face.
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contrast with searchlight, the classifier
coefficients indicated a consistent topo-
graphic code, with faces predicted by
reduced activity around parahippocampus
and elevated activity in lateral ventrotempo-
ral regions of both hemispheres and in right
occipitotemporal regions. Thus, these three
approaches suggest similar but nonidentical
conclusions about face representation in cor-
tex, each with precedent in prior work: the
UC result suggests that faces selectively acti-
vate the right FFA (Kanwisher et al., 1997);
searchlight identifies localized bilateral signal
around the FFA (Rivolta et al., 2014); and
LASSO reveals a nonface-to-face gradi-
ent bilaterally in these regions plus a
right-lateralized occipital face region
(Martin, 2007).

Results from SOS LASSO differed strik-
ingly. Colored areas in Figure 6 (top, bottom
row) show regions consistently selected
across participants more often than
occurred in permutation testing. The hue
depicts the proportion of participants
receiving a positive coefficient in the
corresponding region; positive coeffi-
cients signify that elevated BOLD response is associated with
higher probability that the stimulus is a face. In addition to
the canonical face and place systems, the results implicate
regions spanning anterior temporal, frontal, and parietal cor-
tex. Face stimuli were predicted by increased activity
throughout the canonical face system, bilaterally in temporal
poles and superior medial frontal areas, and in right inferior
prefrontal cortex; and by decreased activity in parahippo-
campus, the dorsal visual stream, and left premotor cortex.
Heterogeneous codes appeared in left occipito-temporo-pa-
rietal and lateral prefrontal cortices, and bilaterally in poste-
rior fusiform.

How is the stark difference between SOS LASSO and other
solutions to be interpreted? One possibility is that the approach
exploits real signal within the canonical occipitotemporal face
and place systems, but also places nonzero coefficients on voxels
outside this system that do not carry actual signal—perhaps
because they suppress correlated noise within the signal-carrying
system (Henriksson et al., 2015) or for some other spurious rea-
son. If that were so, the distributed-seeming signal revealed by
SOS LASSO would be highly misleading. We therefore con-
ducted two follow-up analyses to assess whether SOS LASSO can
detect real signal outside of the canonical face and place systems.

In the first, we divided the data into the following two sets: a
within-system set, defined as the canonical face and place system

Figure 7. Decoding accuracy and sparsity for different hyperparameters. The left plot shows the mean classifier holdout
accuracy during the inner loop of the performance round, for each of 15 different values of the grouping parameter g (dif-
ferent lines) and across 100 values of the regularization parameter l (x-axis). Pink curves have a low value on the grouping
parameter and high sparsity; white curves equally weight grouping and sparsity; cyan curves strongly weight grouping with
little weight on sparsity. Each curve peaks at a similar accuracy, indicating that there are many pairs of hyperparameters [g ,
l ] that lead to similar decoding accuracy. The right panel shows the mean number of voxels selected per subject (x-axis) for
the best performing model at each value of g . Models that do comparably well all tend to select between 200 and 400 vox-
els per subject. Thus, the various hyperparameter pairs that produce the best decoding accuracy all tend to find solutions at
a comparable level of sparsity.

Decode faces

SOS
LASSO

SOS
LASSO

LASSO

Decode places

Figure 6. Decoding with sparse whole-brain pattern classification. Top, Regions reliably selected across participants by LASSO and SOS LASSO for classifiers discriminating faces from other
stimuli. Bottom, Regions reliably selected by SOS LASSO for classifiers discriminating places from other stimuli. Hue indicates the proportion of nonzero classifier coefficients that were positive.
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ROIs dilated by 7 mm and then eroded by 5 mm with AFNI
3dmask_tool (effective dilation, ;3 mm in all directions while
filling holes after back-projecting to 3 � 3 � 3.75 mm resolution
in each subject with AFNI 3dfractionize); and an out-of-system
set containing all remaining voxels. We used SOS LASSO to fit
separate decoding models for each data subset. If the whole-brain
result succeeds solely by decoding information contained within
the canonical face and place systems (and selects out-of-system
voxels for spurious reasons), then the within-system decoder
should show better holdout accuracy than the out-of-system de-
coder. Instead, the reverse result was obtained: out-of-system
classifiers showed significantly higher holdout accuracy (87%)
than within-system classifiers (83%; two-tailed within-subjects
test: t(9) = 2.4, SE = 0.015, p, 0.05).

To address the possibility that good classification accuracy
was still driven solely by signal within a temporo-occipital net-
work (Haxby et al., 2000), we next used SOS LASSO to fit a
decoding model using voxels in the parietal and frontal lobes
only. Holdout classification accuracy remained high (85.52%).
The analogous analysis with LASSO achieved 82.21% accuracy,
clearly well above chance but reliably worse than SOS LASSO
(two-tailed within-subjects test: t(9) = 2.4, SE= 0.014, p= 0.039).
Note that LASSO shows this good performance among a group
of voxels that whole-brain LASSO did not initially select—clearly
indicating that the strong emphasis on sparsity in LASSO can
lead it to miss signal-carrying voxels.

Finally, if the widely distributed signal that SOS LASSO iden-
tifies arises because of correlated noise suppression or for other
artifactual reasons, then a similarly distributed pattern should
obtain regardless of the kind of stimulus being decoded. To
assess whether this is so, we fit SOS LASSO decoding models
using all cortical voxels to discriminate place from nonplace
stimuli, applying procedures identical to those described earlier.
The resulting models showed high test-set classification accu-
racy (79.3%), but from a very different distribution of selected
voxels. As shown in the bottom panel of Figure 6, voxels dis-
criminating place from nonplace stimuli were anatomically
localized in a manner consistent with the canonical view of
place representation in the brain (Epstein and Kanwisher, 1998;
Epstein et al., 2003). The analysis demonstrates that SOS
LASSO can yield anatomically localized solutions, and hence
that the widely distributed result for faces is not artifactual.
Together, these analyses suggest that the SOS maps differ from
those produced by other methods, not because the method
selects uninformative voxels, but because it detects reliable sig-
nal missed by other approaches.

Finally, we considered to what extent the SOS LASSO behavior
depends on a particular choice of hyperparameters. Specifically,
we examined the mean decoding accuracy for each pair of hyper-
parameter values evaluating during the performance round of
model fitting, as well as the number of voxels selected for the best
performing models selected at each level of the grouping parame-
ter g . These data are shown in Figure 7.

The left panel of Figure 7 shows that, for each level of the
grouping parameter (the different lines), the decoding accuracy
first rises as l increases, then declines to chance (as the weight
on the regularizer takes precedence over model accuracy). Each
such curve peaks at a similar value, indicating that there are
many pairs of parameters [g , l ] that produce comparable
decoding accuracy. The right panel of Figure 7 shows, however,
that most such pairs find solutions of comparable sparsity. The
plot shows holdout accuracy for the best-performing models at
each level of g , plotted against the number of selected voxels per

subject. All models that show decoding accuracy comparable to
the best also select a comparable number of voxels (;300).

General discussion
Four contemporary approaches to functional image analysis
have difficulties discovering distributed signal that are remedied
by a new approach based on structured sparsity, the SOS LASSO.
All yielded different results when applied to fMRI data collected
while participants judged images of faces, places, or objects, but
prior approaches supported the common view that face percep-
tion engages posterior temporal and occipital cortices. SOS
LASSO uncovered a broader network encompassing anterior
temporal, frontal, and parietal regions. The result does not solely
reflect the selection of spurious voxels: the approach discrimi-
nated face from nonface stimuli with high accuracy even when
fit only to voxels outside temporal and occipital cortices and
yielded a more localized solution when discriminating place
from nonplace stimuli. Nor does the result reflect idiosyncrasies
of the stimuli or task since the same dataset yielded canonical
results when analyzed using established methods. SOS LASSO
was the only method capable of finding distributed signal in sim-
ulation, and the only one to reveal a radically distributed network
for face perception in the brain.

Many aspects of the SOS LASSO result cohere with standard
views of face/place perception and the broader literature.
Positive coefficients picked out the canonical face system and
social-cognitive areas including the temporal poles (Olson et al.,
2007), right orbito-frontal cortex (Adolphs, 2002), and superior
medial-frontal cortex (Amodio and Frith, 2006). Negative coeffi-
cients picked out areas that encode less socially critical informa-
tion, including scenes (parahippocampal place area; Epstein and
Kanwisher, 1998) and object-directed action (dorsal visual
stream, left dorsal premotor area; Kalénine et al., 2010). Other
regions received mixed coefficients, indicating that distributed
patterns can represent stimulus category in a manner that varies
within and across individuals. These results echo recent work
suggesting that neural representations may be more broadly dis-
tributed than heretofore suspected, for face perception specifi-
cally (Hanson and Halchenko, 2008; Zhen et al., 2013; Nestor et
al., 2016) and for conceptual structure more generally (Huth et
al., 2016; Pereira et al., 2018).

The contrasting finding of distributed face versus more local-
ized place representations also accords with recent literature.
Whereas early observations of a highly localized face area in right
posterior fusiform have given way to an elaborate network of
face-relevant regions, the same is not true for place processing in
the brain. A recent review from Epstein and Baker (2019) indi-
cates that the place system involves just three anatomically proxi-
mal regions—medial ventrotemporal cortex, lateral occipital
cortex, and medial occipital cortex—all of which are encom-
passed in the anatomically localized region identified by SOS
LASSO when decoding places.

The contrasting results have two important implications for
hypotheses about neural representation. First, even large (12
mm) searchlights missed the widely distributed signal, indicating
that it does not reside within local cortical regions considered in-
dependently. Thus, anatomically distal regions can jointly encode
multivariate representational structure. Second, SOS LASSO
assigned consistently positive or negative coefficients in regions
where UC yielded a null result. Whereas UC considers each
voxel independently, classifier coefficients indicate how the acti-
vation of a voxel contributes to classification when combined
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with those of other voxels. The contrast indicates that voxels can
jointly contribute to representational structure in a directionally
and locationally consistent manner even when they do not
appear to independently correlate with that structure. In both
cases, the joint contribution of multiple voxels or regions to rep-
resentational structure may arise simply through the linear com-
bination of correlations that are individually too weak to be
detected by univariate methods, or because the contribution of
one voxel or region to structure can be “masked” by the effects of
others (e.g., in partial correlation). As a linear model that does
not consider interactions, SOS LASSO cannot adjudicate these
possibilities yet; but in either case it is clear that the joint consid-
eration of multiple regions in parallel can uncover a broader
structure than the analysis of each region independently.

In addition to core posterior temporal and occipital areas,
maps of the extended face network often include anterior tempo-
ral cortex, inferior frontal cortex, and amygdala (Haxby et al.,
2000; Ishai, 2008; Kanwisher and Barton, 2011; Avidan et al.,
2014; Duchaine and Yovel, 2015). Our results with SOS LASSO
suggest an even broader network in which face perception gener-
ates elevated activity in social-cognitive networks overlapping
with the extended face network, reduced activity in networks rel-
evant to navigation and object-directed action, and heterogene-
ous patterns in parietal and frontal cortices. Elements of the full
pattern vary in the direction, independence, and localization of
their code, so previous methods each provide only a partial view.
Their agreement with canon arises because core and extended
face systems comprise parts of the pattern discoverable via multi-
ple methods—regions where information is encoded efficiently
and independently within circumscribed cortical regions, often
in a directionally consistent manner localized similarly across
subjects.

Relationship to prior work
The relationship between representations acquired by neural net-
work models and patterns of activation measured in the brain is
currently an active area of research, especially in visual neuro-
science (Kriegeskorte and Kievit, 2013; Cox and Dean, 2014;
Khaligh-Razavi and Kriegeskorte, 2014; Clarke et al., 2015;
Kriegeskorte, 2015; Cichy et al., 2016; Kheradpisheh et al., 2016;
Marblestone et al., 2016). The most common approach compares
the similarity structure arising in different layers of a neurocom-
putational model to those arising in different regions of the ven-
tral visual processing stream, using correlation or other
unsupervised methods. Such efforts have revealed important and
remarkable similarities between the representations observed in
real brains and those acquired by, for instance, deep convolu-
tional image classifiers (Kriegeskorte, 2015). Like our work, these
contributions illustrate how artificial neural network models pro-
vide a useful tool for bridging neural and computational levels of
explanation for cognitive phenomena. Focusing on individual
network layers and localized cortical regions, however, neglects
the critical possibility suggested by network models that repre-
sentation and processing can be distributed across anatomically
distal regions. The current work illustrates not only how such a
signal can be recovered in principle, but that radically distributed
representations of this kind arise in human cortex.

The work also elaborates the evolving distributed view of vis-
ual object representations in the brain. Early perspectives
emphasized a highly modular and localized view in which dif-
ferent brain regions were dedicated via evolutionary pressures
to representing distinct categories of objects (Kanwisher et al.,
1997; Caramazza and Shelton, 1998; Epstein and Kanwisher,

1998; Kanwisher, 2000; Downing et al., 2001). This began to
change with the pioneering application by Haxby et al. (2000)
of unsupervised multivariate methods to analysis of evoked pat-
terns of activation in the ventral processing stream, which
revealed a more distributed code localized within posterior ven-
tral temporal cortex. As new multivariate methods have devel-
oped, many studies have argued for distributed visual object
representations across occipital and posterior temporal regions
(Haxby et al., 2001; Kriegeskorte et al., 2008b; Connolly et al.,
2012), with some extending the face system up to anterior tem-
poral cortex (Kriegeskorte et al., 2007; Nestor et al., 2008; Tsao
et al., 2008; Rajimehr et al., 2009; Nestor et al., 2011; Collins
and Olson, 2014). Our work continues the general trend to sug-
gest that face representations are distributed even more
broadly, across temporal, parietal, and frontal lobes in both
hemispheres.

Zhen et al. (2013) reported a distributed network for face
processing that spans all four lobes of the brain, making it, to
the best of our knowledge, the one prior study that reports a
pattern of results that resembles our own. Notably, they con-
ducted a group constrained subject specific (GSS) univariate
analysis (Fedorenko et al., 2010). While this study provides an
important external validation of our results, it is worth noting a
key methodological difference. Because GSS is univariate, it
cannot detect information jointly encoded across voxels or
regions; and because tests of significance are based solely on
cross-group probabilities, it relies on common localization of
signal across individual participants. As we have emphasized,
SOS LASSO can exploit joint information across voxels, and
returns an information map for each participant. Thus, while it
is possible to inspect cross-subject consistency in location in a
group map as we have done, the method does not require signal
to be localized similarly across subjects. It therefore becomes an
empirical question whether the signal-carrying voxels across
subjects reside in similar anatomic locations. Perhaps because
of these differences, we found the radically distributed face
code with many fewer subjects (they included 42, 10 of whom
were scanned seven times each) much more consistently (in
80% of participants vs a maximum of 25%), and in key regions
not observed by Zhen et al. (2013) but known to be involved in
face processing, such as the left temporal pole (Gorno-Tempini
et al., 1998; Griffith et al., 2006).

We have focused on discriminating one experimental condition
from another with multivariate classifiers. Alternatively, representa-
tional similarity analysis (RSA) seeks voxel sets that jointly express a
target similarity structure (Kriegeskorte et al., 2008a), while
“generative” approaches predict whole-brain images from
externally derived stimulus features or experimental condi-
tion (Mitchell et al., 2008), each typically implemented in
ways that limit their ability to detect network-distributed sig-
nal. Structured sparsity may likewise provide new insights
for these kinds of problems (Oswal et al., 2016).

Other groups are also exploring the utility of structured spar-
sity for identifying distributed neuro-cognitive representations in
neuroimaging data (Carroll et al., 2009; Baldassarre et al., 2012;
Jenatton et al., 2012; Rish et al., 2012; Manning et al., 2014;
Cohen et al., 2017). Understanding the relations among these
approaches and SOS LASSO is a central goal for future research.

Data availability
The whole-brain imaging with Sparse Correlations (WISC)
MVPA tools and code for specifying simulations can be found at
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https://github.com/crcox/WISC_MVPA and https://github.com/
crcox/SOSLassoSimulations, respectively.
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