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Reinforcement learning (RL) is a concept that has been

invaluable to fields including machine learning, neuroscience,

and cognitive science. However, what RL entails differs

between fields, leading to difficulties when interpreting and

translating findings. After laying out these differences, this

paper focuses on cognitive (neuro)science to discuss how we

as a field might overinterpret RL modeling results. We too often

assume — implicitly — that modeling results generalize

between tasks, models, and participant populations, despite

negative empirical evidence for this assumption. We also often

assume that parameters measure specific, unique (neuro)

cognitive processes, a concept we call interpretability, when

evidence suggests that they capture different functions across

studies and tasks. We conclude that future computational

research needs to pay increased attention to implicit

assumptions when using RL models, and suggest that a more

systematic understanding of contextual factors will help

address issues and improve the ability of RL to explain brain

and behavior.
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Introduction
Reinforcement learning (RL) is an exploding field. In the

domain of machine learning, it has led to tremendous

progress in the last decade, ranging from the creation of

artificial agents that can beat humans at complex games,

such as Go [1] and StarCraft [2], to successful deployment

in industrial settings, such as the autonomous navigation
Current Opinion in Behavioral Sciences 2021, 41:128–137 
of internet balloons in the stratosphere [3]. In cognitive

neuroscience, RL models have been used successfully to

capture a broad range of latent learning-related phenom-

ena, at the level of both behavior [4,5] and neural signals

[6]. However, the impression that RL can help us identify

reasonable and predictive latent variables hides hetero-

geneity in what RL variables reflect, even within cogni-

tive neuroscience. The success of RL has fed a notion of

omniscience that RL can peer into the brain and behavior

and surgically isolate and measure essential functions. As

this notion grows with the popular uptake of RL methods,

it sometimes leads to overgeneralization and overinter-

pretation of findings.

Here, we argue that a more nuanced view is better

supported empirically and theoretically. We first discuss

how RL is used in distinct subfields, highlighting shared

and distinct components. Then, we examine where

cognitive neuroscience may be overstepping in its inter-

pretation, and conclude that, when properly contexua-

lized, RL models retain great value for the field.

RL in machine learning, psychology, and
neuroscience
In machine learning, RL is defined as a class of learning

problems and a family of algorithms that solve these

problems. An RL agent can be in any of a set of states,

take actions to change states, and receive rewards/punish-

ments (Figure 1, top-right). RL agents are designed to

optimize a specific objective: the expected sum of dis-

counted future rewards. A wide family of RL algorithms

offers solutions that achieve this objective [10], for exam-

ple model-free RL, which estimates the values of actions

based on reward prediction errors (Figure 2a, top).

In psychology, RL defines a psychological process and a

method for its study. RL occurs when an organism learns

to make choices (or predict outcomes) directly based on

experienced rewards/punishments (rather than indirectly

through instructions, for example). This includes simple

situations, such as those historically studied by behavior-

ists (classical [6,11�] and instrumental conditioning [12]),

as well as more complex ones, such as learning over longer

time horizons [13,14], meta-learning [15], and learning

across multiple contexts [16,17].

Neuroscientists investigating RL usually focus on a well-

defined network of regions that implements value
www.sciencedirect.com
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The meaning of ‘RL’ differs between neuroscience, machine learning, and psychology, reflecting a specific brain network, a family of problems

and algorithms, and a type of learning, respectively. The concepts are related: RL models successfully capture aspects of RL behavior and brain

signals, and some RL behaviors rely on the RL brain network. The dopamine reward prediction error hypothesis combines ideas from all three

fields. However, there are also significant discrepancies in what RL means across fields, such that activity in the brain’s RL network might not

relate to RL behavior and might not be captured by RL models (e.g. dopamine ramping in neuroscience). Importantly, RL behavior may rely on

non-RL brain systems and may or may not be captured by RL algorithms. Recent trends have aimed to increase communication between fields

and emphasize areas of mutual benefits [7�,8]. RL in neuroscience inset shows the neurosynth automated meta-analysis for ‘reinforcement

learning’ (x ¼ 10; y ¼ 4; z ¼ �8), highlighting striatal function [9]. RL in cognition inset shows that participants become more likely to select a

rewarded choice the more previous rewards they have experienced (data replotted from [5]). RL in machine learning shows the agent-environment

loop at the basis of RL theory [10,85–87].
learning. These include cortico-basal-ganglia loops, and

in particular the striatum (Figure 1a), thought to encode

RL values, and dopamine neurons, thought to signal

temporal-difference reward-prediction errors (RPEs;
Figure 2a) [6,9,18–21].

The meaning of ‘RL’ overlaps in these three communi-

ties (Figure 1), and RL algorithms from AI have been

successful at capturing biological RL behavior and neural

function. However, there are also important discrepan-

cies. For example, many functions of the brain’s RL

network do not relate to RL behavior, such as dopamine’s

role in motor control [22] or cognitive effort [23]. On the

other hand, some RL brain functions that do relate to RL

behavior are poorly explained by classic RL models, such

as dopamine’s role in value-independent learning [11�].
Furthermore, many aspects of learning from reward do

not depend on the brain’s RL network, whether they are

captured by RL algorithms or not. For example, hippo-

campal episodic memory [24,25] and prefrontal working

memory [26,27�,28] contribute to RL behavior, but are
www.sciencedirect.com 
often not explicitly modeled in RL, obscuring the contri-

bution of non-RL neural processes to learning.

Because of these differences in meaning, the term ‘RL’

can cause ambiguity and lead to misinterpretations.

Figure 2 provides an example in which an RL model

leads to conflicting conclusions as to how RL parameters

change with age when applied to two slight variants of the

same task. This conflict is reconciled, however, by recog-

nizing that working memory contributes most learning in

one variant, whereas RL does in the other [5].

BecauseRL’s meaning isambiguous, it isoftenunclearhow

RL model variables (e.g. parameters such as learning rates

or decision noise; reward prediction errors; RL values)

should be interpreted in models of human and animal

learning. In the following, we show that the field often

optimistically assumes that model variables are readily

interpretable and naturally generalize between studies.

We then show that these beliefs are oftentimes not well

supported, and offer an alternative interpretation.
Current Opinion in Behavioral Sciences 2021, 41:128–137
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Figure 2
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Fitting standard RL models can lead to the wrong impression that cognitive processing is purely based on RL. (a) Update equations for the RL-

WM model. QðajsÞ indicates the RL state-action value of action a in state s, which is updated based on the reward prediction error RPE. WðajsÞ
is the working-memory weight of a in s, and f is a forgetting parameter, b is the decision noise, and h the mixing parameter combining RL and

working memory processes. For model details, see [5,29]. (b) When separate standard RL models are fit to different contexts within the same task

(here, the number of stimuli [6]), they provide different answers as to how age affects RL model parameters (decision noise b, top; learning rate a,
bottom). Contexts with fewer stimuli (‘Set size 3’, left) suggest that age does not affect learning rates, whereas contexts with more stimuli (‘Set

size 5’, right) suggest that learning rates increase with age. Inset statistics show non-parametric Spearman correlation coefficients r and P-values
(N ¼ 187, * P < 0:05, ** P < 0:01, *** P < 0:001). (c)–(e) When using a model that fits all contexts jointly by combining RL processes with

working memory (‘RL-WM’ model), these discrepancies are resolved [5]. (c) The RL-WM model reveals that the relative contributions of RL

compared to working memory h differ between contexts. A standard RL model would falsely attribute working-memory processes in contexts with

small sizes to the RL system, in this example suggesting that learning rates do not change with age (a, set size 3). (d) Working memory capacity

in the RL-WM model was not related to participants’ ages, explaining why learning rates did not increase with age in (A, set size 3), in which

working memory contributed most to learning. (e) RL learning rates in the RL-WM model increased with age. Since RL contributed more to

learning in set size 5 (c), this was detected in the standard RL model of only set size 5 (b). Data reanalyzed from [5].

3 Emphasis added.
Interpretability and generalizability of RL
model variables
What do ‘cognitive’ models measure?

RL models attempt to approximate behavior by fitting

free parameters [30–33], and are used by most researchers

to elucidate cognitive and/or neural function (Box 1): RL

‘has emerged as a key framework for modeling and
Current Opinion in Behavioral Sciences 2021, 41:128–137 
understanding decision-making’3 [34]. The reason why

models of behavior are used as ‘cognitive models’ is that

they implement hypotheses about cognition. Therefore,

the good fit of a model to behavior implies that partici-

pants could have employed the modeled algorithm
www.sciencedirect.com



What do RL models measure? Eckstein, Wilbrecht and Collins 131

Box 1 Representative statements from the literature that imply

interpretability and generalizability4

� Interpretability: Computational models have been described as

‘illuminating [. . .] cognitive processes or neural representations
that are otherwise difficult to tease apart’ [37��]; clarifying ‘the

neural processes underlying decision-making’ [18]; and revealing

‘what computations are performed in neuronal populations that

support a particular cognitive process’5 [38]. This highlights the

common assumption that computational models can reveal cog-

nitive and neural processes and identify specific, ‘theoretically

meaningful’ [39] elements of (neuro)cognitive function.Models are

thereby often expected to provide the ‘linking propositions’ [40]

between cognition and neural function, ‘mapping latent decision-

making processes onto dissociable neural substrates’ [41��] and

‘link[ing] cognitive mechanisms to [clinical] symptoms’ [38].These

links are often assumed to be specific and one-to-one: ‘Dopamine

neurons code an error in the prediction of reward’ [20];

‘corticostriatal loops enable state-dependent value-based choice’

[27�]; ‘striatal areas [. . .] support reinforcement learning, and fron-

toparietal attention areas [. . .] support executive control

processes’ [42]; ‘individual differences in DA clearance and fron-

tostriatal coordination may serve as markers for RL’ [43]; and

‘BOLD activity in the VS, dACC, and vmPFC is correlated with

learning rate, expected value, and prediction error, respectively’

[44]. This shows that computational variables are often interpreted

as specific (neuro)cognitive functions, revealing an assumption of

interpretability.
� Generalizability: Empirical parameter distributions obtained in

one task were described as ‘fairly transferable’ [45] and used as

priors when fitting parameters to a new task [46], revealing the

belief that model parameters generalize between studies, tasks,

and models.

Many have aimed to find regularities in parameter findings between

studies: ‘[D]ifferential learning rates tend to be biased in the direction

of learning from positive RPEs’ [47]; ‘this finding [supports] previous
results on decreased involvement of the reinforcement learning

system when cortical resources [. . .] support task execution’ [42];

from our own work: ‘there was [. . .] a bias towards learning from

positive feedback, which is consistent with other work’ [5].
cognitively. Nevertheless, stronger conclusions are often

drawn: For example, the good fit of inference algorithms

to human behavior and brain function has been taken as

evidence that human brains implement inference [17].

However, there always is an infinite number of alternative

algorithms that would fit behavior equally well, such that

inferring participants’ cognitive algorithms through

model fitting is impossible [33,35,36�].

Interpretability and generalizability

This notion that computational models — astonish-

ingly — isolate and measure intrinsic (neuro)cognitive

processes from observable behavior has contributed to

their attractiveness as a research method. However, we
4 We acknowledge that these statements may not represent the full

complexity of researchers’ knowledge, as many are aware of modeling

limitations.
5 All emphases added.

www.sciencedirect.com 
believe we need to temper our optimism in two areas:

interpretability and generalizability (Figure 3).

Interpretability means that model variables (e.g. param-

eters, reward prediction errors) isolate specific, funda-

mental, and invariant elements of (neuro)cognitive pro-

cessing: Decomposing behavior into model variables is

seen as a way of carving cognition at its joints, producing

model variables that are of essential nature. Generaliz-

ability means that model variables capture inherent indi-

vidual characteristics (e.g. a person with a high learning

rate), such that we can robustly infer the same parameter

for the same person across different contexts, tasks, and

model variants.

Though rarely stated explicitly, assumptions about

interpretability and generalizability lie at the heart of much

current computational cognitive research (including our

own), as we show in the literature survey above (Box 1), and

play a consequential role in interpreting and guiding future

research. However, we also show that empirical support for

interpretability and generalizability is ambivalent at best,

and often negative. We highlight a recent multi-task

within-participants study from our group that explores

precisely when model parameters do and do not generalize

between tasks, and how dissimilar the cognitive processes

are they capture (interpretability).

Interpretability

Many research practices are deeply invested in the

interpretability of RL (Box 1). The computational neu-

rosciences, for example, aim to link computational vari-

ables to specific neural functions, searching for one-to-

one mappings that would allow the inference of one from

the other [6,12,43,48]. Prominent examples of interpretable
mappings are the links between the midbrain-dopamine

system and RL reward prediction errors [20,49,50], and

between striatal function and value learning [19,51–53].

Computational psychiatry aims to map model variables

onto psychiatric diagnoses or symptoms, in an effort to

obtain diagnostic tools and causal explanations of aberrant

processing [38,39,41��,54]. Developmental research aims

to map age-related changes in model variables onto

developing neural function and real-world behavior

[37��,55,56]. In sum, the conviction in model interpret-

ability is evident in the practice of interpreting model

variables as specific cognitive processes, unique neural

substrates, and well-delineated psychiatric symptoms.

Generalizability

Assumptions about parameter generalizability are also

widespread. In computational neuroscience, model vari-

ables are routinely expected to measure the same latent

neural substrates, even when the underlying task, model, or

participant samples differ [18–20,57–60]. For example,

fields studying individual differences, such as clinical

[38,39] and developmental psychology [37��,55,56], aim
Current Opinion in Behavioral Sciences 2021, 41:128–137
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Figure 3
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What model variables (e.g. parameters) measure in psychology and neuroscience. (a) View based on interpretability and generalizability. In this

view — implicitly taken by much current research — models are fitted in order to reveal individuals’ intrinsic characteristics, whereby model

parameters reflect clearly delineated, separable, and unique (neuro)cognitive processes. This concept of interpretability is shown in the figure in

that every model parameter captures one specific cognitive process (bidirectional arrows between parameter and process), and that cognitive

processes are separable from each other (no connections between processes). Specific task characteristics are neglected as irrelevant, a concept

we call generalizability, which is evident in that parameters of ‘any learning task’ (within reason) are expected to capture the same cognitive

processes. (b) In our empirical study [76��], participants worked on three learning tasks with similar structure (left), but slight differences (middle),

reflecting differences in the literature. We created three RL models that captured the behavior in each task [4,5,69]. Compared between tasks but

within participants, learning rate parameters showed poor interpretability and generalizability [76��]: Both absolute values and age trajectories

(right, bottom) differed vastly, and individual differences in one task could not be predicted by those in other tasks, as would be expected if they

were interpretable as the same (neuro)cognitive substrate. Other parameters, most notably decision noise (right, top), were more generalizable and

interpretable, in accordance with emerging patterns in the literature [37��], even though they also lacked a shared core of variance across tasks

(more for more dissimilar tasks). In contrast, the mappings between parameters and behavioral features were consistent across tasks, suggesting

that parameters generalized in terms of behavioral processes, but not cognitive ones. (c) Updated view that acknowledges the role of context in

computational modeling (e.g. task characteristics, model parameterization, participant characteristics). Which cognitive processes are captured by

each model parameter is influenced by the task (green, orange, blue), as shown by distinct connections between parameters and cognitive

processes. Different parameters within the same task can capture overlapping cognitive processes (not interpretable), and the same parameters

can capture different processes depending on the task (not generalizable). However, parameters likely capture consistent behavioral patterns

across tasks (thick vertical arrows).
to identify how model variables covary with other variables

of interest (e.g. age, traits, symptoms) in a systematic way

across studies, and review articles and discussion sections

confidently compare modeling variables between studies.
Current Opinion in Behavioral Sciences 2021, 41:128–137 
Evidence against interpretability and generalizability

However, meta-reviews suggest that interpretability and

generalizability might be overassumptions, common in

classic psychological research [61��] and RL modeling
www.sciencedirect.com
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[41��]. RL appears interpretable because multiple studies

have replicated mappings between RL variables and

specific neural function. However, these mappings are

not as consistent as expected: The famous mapping

between dopamine/striatal activity and reward prediction

errors, for example, supported by classic and recent

research [6,20], varies considerably between studies

based on details of the experimental protocol, as shown

in several recent meta-analyses [57,59,62]. Discrepancies

are also evident in the mapping between RL variables

and cognitive function. For example, learning rates are

often interpreted as incremental updating (dopamine-

driven neural plasticity) in classical conditioning [20],

but also as reward sensitivity [63], sampling from (hippo-

campal) episodic memory [25], the ability to optimally

weigh decision outcomes [64], or approximate inference

[4], in other tasks. There is substantial variance between

studies in terms of which neural and which cognitive

processes underlie the same RL variables, contradicting

the notion of interpretability.

Evidence for generalizability is also weak: Similar adult

samples have differed strikingly in terms of their average

estimated RL learning rates (0.05–0.7) [44,63,65,66] and

‘positivity bias’ [47,67,68�], depending on the underlying

task and model parameterization. In developmental sam-

ples, the trajectories of RL learning rates have shown

increases [5,63,69], decreases [70], U-shaped trajectories

[4], or no change [71] in the same age range. Similar

discrepancies have also arisen in the computational psy-

chiatry literature [38,39,72,73]. These inconsistencies

would not be expected if model variables were an inher-

ent property of participants that could be assessed inde-

pendently of study specifics, that is, if models were

generalizable.

Many in our community have noticed such discrepancies

and invoked methodological differences between studies

to explain them [12,37��,44,62,74,75]. However, this

insight has rarely been put into practice, and model

variables keep being compared between studies

(Box 1). To remedy this, we assessed interpretability

and generalizability empirically, comparing RL parame-

ters from three tasks performed by the same subjects in a

developmental sample (291 subjects aged 8–30;

Figure 3b) [4,5,69,76��]. We found generalizability but

poor interpretability for decision noise, and a fundamen-

tal lack of both interpretability and generalizability for

learning rates (Figure 3c).

A likely reason why generalizability and interpretability

are lacking in many cases is that computational models are

fundamentally models of behavior, and not cognition.

Because participants — reasonably — behave differently

in different tasks (e.g. repeating non-rewarded actions in

stochastic tasks, but not in deterministic ones [76��]),
estimated parameters (e.g. learning rates) differ as well.
www.sciencedirect.com 
Such differences do not necessarily reflect a failure of

computational models to measure intrinsic processes, but

likely the fact that the same parameters capture different

behaviors and different cognitive processes when applied

to different tasks (Figure 3b,c) [76��].

Another reason for lacking generalizability and interpret-

ability is that the design of computational models, a

researcher degree of freedom [35,36�], can impact

parameters severely, as recent research has highlighted

[47, 67,68�]. Because the same models can be parameter-

ized differently [77], and models with different equations

can approximate similar processes [4], model differences

are a ubiquitous feature of computational modeling.

To explain parameter discrepancies, others have argued

that participants adapt their parameter values to tasks

based on optimality [37��], or that task characteristics

(e.g. uncertainty) influence neural processing (e.g.

dopamine function), which is reflected in differences

in model variables (e.g. reward prediction errors)

[78,79]. Whether choices are aligned with participants’

goals also fundamentally impacts neural RL processes

[80�], and so do other common task characteristics [59].

This shows that small task differences impact behavior,

neural processing, and computational variables. Even

though RL models might successfully capture behavior

in each task, parameters likely capture different aspects

each time, leading to a lack of interpretability and

generalizability.

Conclusion and outlook
A tremendous literature has shown RL’s potential and

successes — this opinion piece emphasizes some caveats,

showing that RL is not a single concept and that RL

models are a broad family that reflects a range of cognitive

and neural processes.

A lack of interpretability and generalizability has major

implications for the comparison of model variables

between tasks, a practice that forms the basis for many

review articles, meta-analyses, introduction and discus-

sion sections of empirical papers, and for directing future

research. Evidence suggests that in many cases, param-

eters cannot directly be compared between studies, and

capture different (neuro)cognitive processes depending

on task characteristics. Future research needs to deter-

mine which model variables do and do not generalize,

over which domain, and what the determining factors are.

In the meantime, researchers should be more nuanced

when comparing results between studies, and acknowl-

edge contextual factors that might limit generalizability.

Lastly, what model variables measure might differ for

each task, and researchers should validate variables on a

task-by-task basis, relating them to behavioral measures

or individuals’ traits, and using simulations to determine

their precise role in specific tasks.
Current Opinion in Behavioral Sciences 2021, 41:128–137
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Another solution is to explicitly model variability

between features that should be generalized over, includ-

ing task characteristics (Figure 2), models, participants,

and potentially even neural processes [61��]. Several

studies have made strides in this direction, incorporating

features that are intrinsic to participants (e.g., working

memory [5,29], attention [28], development [37��,81,56]),
or extrinsic (e.g., task time horizon [13,14], context

changes [16]), thus broadening the domain over which

models generalize. However, infinitely many features

likely affect RL processes, rendering entirely general

models infeasible. Researchers therefore need to select

a domain of interest for each model, and acknowledge this

choice. As authors, reviewers, and editors, we should

balance our excitement about general statements with

our knowledge about the inherent limitations of all mod-

els, including RL. Future research needs to determine

whether similar issues arise for other model families, such

as sequential sampling [82,83], Bayesian inference

[4,28,84], and others.

We hope that this explicit discussion of assumptions and

overassumptions will help our field solve the mysteries of

the brain as modeling — with its limitations — is

embraced by a growing audience.
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