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Attributing outcomes to your own actions or to external causes is essential for appropriately learning which actions lead to
reward and which actions do not. Our previous work showed that this type of credit assignment is best explained by a
Bayesian reinforcement learning model which posits that beliefs about the causal structure of the environment modulate
reward prediction errors (RPEs) during action value updating. In this study, we investigated the brain networks underlying
reinforcement learning that are influenced by causal beliefs using functional magnetic resonance imaging while human partic-
ipants (n= 31; 13 males, 18 females) completed a behavioral task that manipulated beliefs about causal structure. We found
evidence that RPEs modulated by causal beliefs are represented in dorsal striatum, while standard (unmodulated) RPEs are
represented in ventral striatum. Further analyses revealed that beliefs about causal structure are represented in anterior
insula and inferior frontal gyrus. Finally, structural equation modeling revealed effective connectivity from anterior insula to
dorsal striatum. Together, these results are consistent with a possible neural architecture in which causal beliefs in anterior
insula are integrated with prediction error signals in dorsal striatum to update action values.
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Significance Statement

Learning which actions lead to reward—a process known as reinforcement learning—is essential for survival. Inferring the
causes of observed outcomes—a process known as causal inference—is crucial for appropriately assigning credit to one’s own
actions and restricting learning to effective action–outcome contingencies. Previous studies have linked reinforcement learn-
ing to the striatum, and causal inference to prefrontal regions, yet how these neural processes interact to guide adaptive
behavior remains poorly understood. Here, we found evidence that causal beliefs represented in the prefrontal cortex modu-
late action value updating in posterior striatum, separately from the unmodulated action value update in ventral striatum pos-
ited by standard reinforcement learning models.

Introduction
We live in an uncertain environment where making flexible pre-
dictions about the occurrence of positive and negative events is
necessary for maximizing rewards and minimizing punishments.
Predictions are most accurate, and feedback most useful, when
our own actions are responsible for the outcomes we receive.

Thus, drawing inferences about the causes of outcomes is a criti-
cal component of credit assignment for learning.

We recently demonstrated that causal inferences can lead
to asymmetric learning from positive and negative outcomes
(Dorfman et al., 2019). Specifically, participants down-
weighted outcomes when they could be attributed to the
intervention of a hidden agent. If the participants knew that the
agent’s interventions tended to produce negative outcomes, then
participants learned less from negative relative to positive outcomes.
Conversely, if they knew that the interventions of the agent tended
to produce positive outcomes, then participants learned less from
positive relative to negative outcomes. These results demonstrate
that people modulate the extent to which they learn depending on
their beliefs about latent causes, and that these beliefs can be experi-
mentally manipulated to produce learning biases.

The learning asymmetries reported in the study by Dorfman
et al. (2019) could be explained by a Bayesian model that
assigns credit based on probabilistic inference over latent
causes. Mechanistically, the model hypothesizes that reward
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prediction errors (RPEs) are weighted by the probability that
the outcome was generated by the participant’s choice
(rather than the hidden agent intervention). The research
reported here sought to test this mechanistic hypothesis
using functional MRI.

Prior work in rodents, primates, and humans has shown that
RPEs, which represent the difference between expected and
received rewards, are encoded by dopaminergic neurons in the
midbrain (Schultz et al., 1997), and prediction error information
is projected to the striatum and frontal cortex (for review, see
Niv, 2009). In human neuroimaging, RPE signals are found in
regions of the striatum, prefrontal cortex (PFC), and orbitofron-
tal cortex (McClure et al., 2003; O’Doherty et al., 2003). Several
lines of evidence suggest that striatal RPEs in particular may be
sensitive to causal inference. For example, the caudate (dorsome-
dial striatum) and nucleus accumbens [ventral striatum (VS)]
are sensitive to rewards that are chosen rather than passively
received (Zink et al., 2004), and both the ventral and dorsal stria-
tum (DS) are preferentially recruited during anticipation of a
controllable outcome (compared with an uncontrollable out-
come; Leotti and Delgado, 2011; Stolz et al., 2020). Previous
work has also shown diminished activation in the putamen
(dorsolateral striatum) for trials where people believed they
caused a loss (Späti et al., 2015).

To more directly investigate the interplay between causal in-
ference and error-driven updating in the striatum, we measured
brain activity in humans while they performed the task devel-
oped by Dorfman et al. (2019). We used a combination of
model-based univariate analyses and structural equation model-
ing to map the information-processing architecture posited by
the Bayesian model.

Materials and Methods
Participants and data inclusion. Participants were recruited from the

University of California, Riverside, study pool system (SONA Systems).
A total of 38 right-handed adults consented to the study, but 7 of these
individuals were not included because of unavoidable technical issues
that resulted in missing and corrupted data, leaving 31 total participants
for the current analyses (age range, 18–24 years; mean age, 19.4 years; 13
males, 18 females). Individual runs were evaluated for excessive head
movement (.4 mm) over the duration of the run, but no runs were
excluded for movement.

Experimental design and statistical analysis. The task was presented
using PsychoPy software version 1.85.2 (Peirce, 2007) and was dis-
played on a screen visible through a mirror attached to the head
coil. Behavioral responses were collected with an MRI-compatible
button box, and all participants used the index and middle finger of
their right (dominant) hand to make responses. Before entering the
scanner, participants received verbal instructions and completed a
practice version of the task.

Participants completed a reinforcement learning task in which they
encountered multiple learning environments. This task was modified

from our previous behavioral task for use in the scanner (Fig. 1;
Dorfman et al., 2019). Participants were instructed to imagine that they
were mining for gold in the Wild West. On each trial, participants had
to choose between one of two different colored mines using the button
box. After making a decision (choice period, 2.5 s), a fixation interstimu-
lus interval (ISI; jittered between 1.5 and 2.5 s) was displayed.
Participants then viewed feedback of either a reward (gold) or loss
(rocks) for 1.5 s. One mine in a pair had a higher probability of produc-
ing a reward. Participants were instructed that each reward yielded a
small amount of bonus money, and each loss resulted in a subtraction of
bonus money. In actuality, all participants received a $5 bonus at the end
of the experiment.

Participants completed four blocks of 30 trials (120 total trials) in dif-
ferent “mining territories.” A single block was presented for each func-
tional run. Participants were instructed that different agents frequent
each territory: a bandit will occasionally steal gold from the mines and
replace it with rocks (adversarial condition), and a tycoon will occasion-
ally leave extra gold in the mines (benevolent condition). During the
task, participants completed two blocks of each condition, which were
interleaved in a pseudorandomized fashion. The agents intervened on
30% of the trials (or 9 of 30 trials), and participants were told this pro-
portion explicitly at the start of the task, though they did not know
unambiguously whether the agent intervened on any particular trial. For
example, the benevolent intervention produced rewards on 9 of 30 trials,
and the adversarial intervention produced losses on 9 of 30 trials,
regardless of the participant’s choice. On trials where the hidden
agent did not intervene, the underlying reward distribution for each
mine in a pair was either 70% or 30%. The fact that both the in-
tervention probability and reward probability are 30% is purely
coincidental and has no special significance. After feedback and the
presentation of a second ISI (2–4 s), participants were asked whether they
believed the outcome they received was a result of hidden agent interven-
tion (binary response of “Yes” or “No”; 3 s) and made their selection using
the button box. The stimulus choice and intervention guess periods would
end as soon as a button was pressed. Residual time from these periods was
added to the subsequent IRI (10 s plus residual) at the end of the run/
block.

Computational model.We used a computational model developed in
our earlier work (Dorfman et al., 2019) to analyze the behavioral and
neural data. The model proposes an update rule (Eq. 1), where u t is the
estimated value of a given action, rt is the reward outcome on each trial
t, and at is a parameter representing the learning rate that scales the
reward prediction error (rt � u tÞ. The learning rate and prediction error
are then scaled by a parameter that encodes the posterior probability of
beliefs about agency over outcomes, c , as follows:

u t11 ¼ u t 1 ðat rt � u tð ÞÞc t: (1)

The modulated learning rate is derived analytically to be consistent
with Bayesian updating (Dorfman et al., 2019). In particular, it depends
on beliefs about the two possible sources of the outcome: the intrinsic
reward distribution of the action and the intervention of the hidden
agent. The posterior belief c encodes the degree to which the outcome
should be attributed to the intrinsic reward distribution rather than to
the hidden agent, which is affected by the experimental condition,
whether feedback was positive or negative, as well as the trial history.

Figure 1. Task schematic. At the start of each run, participants were told which territory they were in (benevolent, “Tycoon”; or adversarial, “Bandit”). Trial components consist of a choice
between two stimuli (2.5 s), a fixation ISI (1.5–2.5 s), feedback (win, “Gold”; or loss, “Rocks”; 1.5 s), a fixation ISI (2–4 s), and an intervention guess (3 s). At the end of each run, a fixation
inter-run interval was presented for 10 s plus the residual amount of time from the stimulus choice and intervention guess events.
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From now on, we will omit the trial subscript t to keep the notation
uncluttered.

We use the indicator random variable z to denote whether the hid-
den agent intervened (z ¼ 1) or did not intervene (z ¼ 0) on any given
trial. In our experimental task, with probability Pðz ¼ 0Þ, the decision
maker receives a reward from the intrinsic distribution Pðrjz ¼ 0Þ, or
with probability Pðz ¼ 1Þ they receive a reward from a distribution
determined by the hidden agent intervention Pðrjz ¼ 1Þ. A rational ob-
server who is familiar with the task structure (as our participants are)
can use this to infer the posterior probability that a hidden agent did not
intervene on a given trial, P z ¼ 0jrð Þ, which is given by Bayes’ rule, as
follows:

P zjrð Þ ¼ PðrjzÞPðzÞX
z9
Pðrjz9ÞPðz9Þ

: (2)

For simplicity, we summarize the posterior P zjrð Þ as the single quan-
tity c ¼ P z ¼ 0jrð Þ, which reflects a trial-by-trial estimate of the deci-
sion maker’s belief that they caused the outcome, conditional on the
history of actions and rewards for the relevant task block. In the study by
Dorfman et al. (2019), we showed that the Bayes-optimal learning rate
should be proportional to c , and that c depends on the task condition,
the trial outcome, and the value of the chosen option (for more details,
refer to the supplemental material in Dorfman et al., 2019).

Intuitively, the Bayesian models predict that the participant should
discount learning about the reward probabilities when they believe that
the outcome was generated by an external force. In other words, the
learning rate is calculated by integrating one’s cumulative past beliefs
about agency into one’s value estimate of a particular choice. Critically,
the learning rate will differ in magnitude for positive and negative out-
comes depending on how much agency the participant believes they
have. For example, when the agent is adversarial, positive outcomes
can only be generated from the intrinsic reward probabilities,
whereas negative outcomes can be generated by either the hidden
agent or the intrinsic reward probabilities. Consequently, negative
outcomes are less informative about the reward probabilities in this
scenario, leading to a lower learning rate.

We fit three candidate models and compared them based on partici-
pant behavior (Table 1). In one model, we fixed the prior probability
of hidden agent intervention at 30% to replicate the instructions that
participants received in the task, while in another model, we set the prior
probability of intervention as the mean of the participant’s subjective
intervention judgments. The former we will refer to as the “fixed Bayesian
model,” and the latter as the “empirical Bayesian model.” We hypothe-
sized that either the fixed or empirical Bayesian models would best fit the
behavior of our participants when compared with a four-learning rate
model that fits separate learning rates for positive and negative prediction
errors in each condition (e.g., positive benevolent, negative benevolent,
positive adversarial, and negative adversarial).

To demonstrate how the Bayesian models predict different patterns
of behavior for each outcome-by-condition scenario, we performed
model simulations for the empirical Bayesian model and compared
them to patterns of data from a previously published study as well as the
current study (Fig. 2; Dorfman et al., 2019). The simulations (N=1000)
reveal how c is differentially modulated dependent on the value of the
chosen option, the task condition, and the trial outcome. In this case, we
have plotted c as a function of a model-agnostic proxy for the value of

the chosen option by calculating the percentage of trials that were
rewarded for that option. This allows us to compare patterns across the
simulations and the participant data. We found that c is higher for
simulated trials where the hidden agent intervened compared with simu-
lated trials where the hidden agent did not intervene (t(999) = 58.03,
p, 0.0001, d= 0.69, 95% CI = 0.67, 0.72), providing confirmation that
the Bayesian models are capable of correctly inferring hidden-agent
interventions. We used two samples of participant data, one from the
current study (n= 31) and one from a large, previously published sample
(n= 255) where participants were given the same task instructions. A
subset of this larger sample included a preregistered replication. All sub-
sequent results reported in this article use only the current imaging sam-
ple (n=31) unless otherwise noted.

Behavioral model comparison. We selected models for analyzing the
neural data based on their fit to the behavioral data. We compared the
empirical and fixed Bayesian models with the four-learning rate model
using random-effects Bayesian model selection (Stephan et al., 2009;
Rigoux et al., 2014). This procedure treats each participant as a random
draw from a population-level distribution over models, which it esti-
mates from the sample of model evidence values for each model. We
approximated the log model evidence (LME) for each participant as
LME = �0.5 * BIC, where BIC is the Bayesian information criterion
based on maximum-likelihood estimation of the free parameters of the
given model. For our comparison metric, we report the protected
exceedance probability (PXP), the probability that a particular model is
more frequent in the population than all other models under considera-
tion, taking into account the possibility that some differences in model
evidence are because of chance.

fMRI data acquisition and preprocessing. Imaging data were col-
lected on a 3.0 T Magnetom Prisma MRI scanner with the vendor 32-
channel head coil (Siemens Healthcare) at the University of California,
Riverside Center for Advanced Neuroimaging. A T1-weighted high-
resolution multiecho magnetization-prepared rapid-acquisition gra-
dient echo (ME-MPRAGE) anatomic scan (van der Kouwe et al.,
2008) of the whole brain was acquired for each participant before
any functional scanning (208 sagittal slices, voxel size = 0.8 � 0.8 �
0.8 mm, TR = 2400ms, TE = 2.72ms, TI = 1060ms, flip angle = 8°,
FOV = 256 mm). Functional images were acquired using a T2*-weighted
echoplanar imaging pulse sequence. In total, four functional runs were
collected for each participant, with each run corresponding to a
single task block, two for each condition (78 interleaved axial–
oblique slices per whole-brain volume, voxel size = 1.5� 1.5� 1.5
mm, TR = 2000ms, TE = 32ms, flip angle = 74°). Functional slices
were oriented to a 30° tilt toward coronal from anterior commis-
sure–posterior commissure alignment.

Functional data were preprocessed and analyzed using SPM12
(Wellcome Department of Imaging Neuroscience, London, UK). Each
functional scan was realigned to correct for small movements between
scans. The high-resolution T1-weighted ME-MPRAGE images were
then coregistered to the mean realigned images, and the gray matter was
segmented and normalized to the gray matter of a standard Montreal
Neurological Institute (MNI) reference brain (resampled voxel size, 2
mm 343 isotropic). The functional images were then spatially smoothed
with an 8 mm full-width at half-maximum Gaussian kernel, high-pass
filtered at 1/128Hz, and corrected for temporal autocorrelations using a
first-order autoregressive model.

fMRI analysis. General linear models (GLMs) included impulse
regressors that were convolved with the hemodynamic response func-
tion. Feedback onsets were modeled as the regressor of interest. All trial

Table 1. Computational model descriptions and model comparison results

Model name Four-learning rate model Fixed Bayesian model Empirical Bayesian model

Description RL model with different learning rate for each
outcome valence � condition combination

RL model with learning rate modulated
by trial-by-trial causal inferences

RL model with learning rate modulated
by trial-by-trial causal inferences

Prior probability of intervention N/A Ground truth (30%) Average of subjective
intervention judgments

PXP 0.001 0.17 0.82

N/A, Not available; RL, reinforcement learning.
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events in addition to the regressor of interest for a particular GLM were
included as nuisance regressors, as well as motion estimates derived
from the realignment procedure and run-specific intercepts. Trial-by-
trial parameters from the computational models were included in rele-
vant GLMs as parametric modulators, modeled at the time of feedback
(Table 2, GLM details).

All group-level reported results are t-maps that have been whole-
brain corrected at a voxel-wise threshold of p, 0.001 and cluster cor-
rected at p, 0.05, familywise error (FWE). Region labels are based on
the Harvard-Oxford Cortical and Subcortical Atlases and the SPM
Automated Anatomical Labeling Atlas (Tzourio-Mazoyer et al., 2002;
Rolls et al., 2015). Voxel coordinates are reported in MNI space. Regions
of interest (ROIs) for c from GLM 2 were defined as 4 mm spheres
around the peak voxels in the corrected c contrast.

Neural model comparison. Following our previous work, we com-
pared GLMs using the same random-effects Bayesian model selection
approach that we used for behavioral model comparison (Rigoux et al.,
2014; Tomov et al., 2018). For voxel-wise Bayesian model selection, we
computed log posterior odds maps, which are similar to posterior proba-
bility maps (Rosa et al., 2010). For each voxel, we performed random-
effects Bayesian model selection using the BICs from that voxel alone,
which gave us the (expected) posterior probabilities r of the two GLMs
we compared, rRPE (GLM 1, unmodulated RPE) and rRPE*c = 1 – rRPE
(GLM 3, agency-modulated RPE). We then computed the log posterior
odds for each voxel as log(rRPE/rRPE*c ). This produced a brain map with
an interpretable scale: 0 means a voxel does not distinguish between the
models; positive values mean the voxel favors unmodulated RPE repre-
sentation (GLM 1); and negative values mean the voxel favors agency-
modulated RPE representation (GLM 3). We thresholded the absolute

values at 1.097, corresponding to a �0.75 posterior probability favoring
one model over the other. For subsequent analyses, ROIs for VS and
dorsal striatum [posterior putamen (Put), a subregion of dorsal striatum]
were defined as unions of bilateral 4 mm spheres around the peak voxels
in the log posterior odds map for the corresponding regions. We chose
to abbreviate the dorsal striatal ROI as Put since the peak voxels were in
posterior putamen.

Effective connectivity. For the update-specific effective connectivity
analysis, we performed structural equation modeling (Spirtes, 2005;
Ramsey et al., 2010). We extracted a beta series for feedback-onset events
using a GLM that was nearly identical to GLM 1, except that there was a
separate feedback-onset regressor on each (nontimeout) trial, and there
was no parametric modulation. Using a beta series at feedback onset as
opposed to the entire BOLD time course ensures that (1) we are only
investigating functional coupling related to updating in response to feed-
back; and (2) our data points are relatively independent, which is a key
assumption in structural equation modeling. Based on the univariate
results reported below, we were interested in functional connectivity
among four ROIs: the c ROIs in right inferior frontal gyrus (IFG) and
right anterior insula (AI) from the c contrast in GLM 2, as well as the
RPE ROI in bilateral VS and the RPE * c ROI in bilateral Put from the
neural model comparison of GLMs 1 and 3.We also included the follow-
ing three input variables: RPE, RPE * c , and c .

To explore the space of possible connectivity patterns, we used the
IMaGES (independent multiple-sample greedy equivalence search) algo-
rithm (Ramsey et al., 2010; Poldrack et al., 2011) from the TETRAD soft-
ware package for causal modeling (Scheines et al., 1998). IMaGES is a
modification of a greedy equivalence search (GES) algorithm (Meek,
1997), which starts with an empty causal graph and incrementally adds

Figure 2. Influence of beliefs about agency on choice behavior. A–D, Left panels, Simulations of the empirical Bayesian model (N= 1000) demonstrate that the c parameter is differentially
modulated depending on the value of the chosen option (calculated as a percentage of the trials rewarded), the task condition, and the trial outcome (A, wins, benevolent; B, wins, adversarial;
C, losses, benevolent; D, losses, adversarial). Right panels, Participant data from both the current study (N= 31; orange) and a previously published study using the same task (N= 255; blue)
illustrates similar patterns when looking at participants’ subjectively reported beliefs about agency. Error bars represent the SEM. Some error bars are too small to be visible.
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edges until it finds a graph that best fits the data according to the BIC.
IMaGES adapts GES to modeling multiple datasets, such as multiple
subjects in fMRI, by taking an average BIC across subjects (the IMscore).

We added the following required edges as prior knowledge for
IMaGES: RPE ! VS, RPE * c ! Put, c ! IFG, c ! AI, since those
ROIs were selected based on the corresponding input variables. This
ensures that there is no circularity in the analysis (Kriegeskorte et al.,
2009) and that any inferences about effective connectivity are not based
on correlations between the variables used in the ROI selection proce-
dure. We forbade the discovery of any edges between the input variables.
We also restricted the search space to graphs that are compatible with
our behavioral and computational modeling work. In particular, we only
allowed edges between ROIs that represent variables that rely on one
another for their computation, as follows: VS ! Put, IFG ! Put, AI!
Put, IFG! AI, AI! IFG.

We followed up with a confirmatory analysis using random-effects
Bayesian model selection (Rigoux et al., 2014) on a restricted set of
structural equation models that specifically test our hypotheses with
respect to the winning causal graph identified by the IMaGES proce-
dure. Fitting was performed using the semopy toolbox (Igolkina and
Meshcheryakov, 2020) using Wishart maximum likelihood estimation,
which assumes that the variables follow a multivariate normal distribu-
tion and their covariance follows a Wishart distribution. We then used
the resulting BICs to perform random-effects Bayesian model selection,
as described previously. Note that this is a different kind of random-
effects analysis than the one used by the IMaGES algorithm and there-
fore provides a complementary way of assessing and quantifying the
result.

It is worth noting that structural equation modeling cannot establish
causal relations from associations alone (Bollen and Pearl, 2013). Rather,
structural equation modeling is a statistical method to evaluate the con-
sequences of a set of causal assumptions (corresponding to a particular
structural equation model) and to measure how well they fit the data.
Different sets of causal assumptions (corresponding to different struc-
tural equation models) lead to different predictions that are more or less
consistent with the data. While this does not prove or disprove any of
the causal assumptions, it can lend credence to some causal assumptions
over others, which can guide the design of intervention studies to specifi-
cally test these assumptions. In the context of our study, we motivate our
causal assumptions with prior literature as well as the results from our
modeling and behavioral work. In the rest of the article, we refer to
causal relations between pairs of regions favored by this analysis as
“functional coupling” or “effective connectivity,” as is standard in the
field (Poldrack et al., 2011), with the explicit understanding that this is
only suggestive of possible anatomic connectivity and corresponding in-
formation flow.

We would also like to distinguish causality in the context of our
structural equation modeling analysis, which refers to information flow
between different brain regions (and is inferred by us, the researchers),
from causality in the context of our modeling and behavioral analysis,
which refers to the participant’s ability to control the outcome (and is
inferred by the participant).

Results
Behavior and computational model
To verify that participants made attribution judgments consistent
with the experimental manipulation, we examined hidden agent
intervention judgments by outcome valence (win, loss) and condi-
tion (adversarial, benevolent). There was a significant condition
by outcome valence interaction (F(1,30) = 76.83, p, 0.0001), where
participants were more likely to believe that the hidden agent had
intervened after negative compared with positive outcomes in the
adversarial condition, and after positive compared with negative
outcomes in the benevolent condition. Providing further evidence
that participants understood the structure of the task, we found
that participants’ binary intervention judgments were posi-
tively correlated with the objective truth about intervention
on a particular trial (x 2(1, N = 31) = 140.35, p, 0.0001).
Replicating results from our previous work (Dorfman et al.,
2019; Cohen et al., 2020), we also found that across all condi-
tions, participants were more likely to believe that negative
outcomes were caused by the hidden agent compared with
positive outcomes (F(1,30) = 12.65, p, 0.001).

We found that the empirical Bayesian model (PXP = 0.82)
was superior to both the fixed Bayesian model (PXP = 0.17)
and the four-learning rate model (PXP = 0.001). The model
demonstrates our predicted two-way asymmetry between va-
lence and condition driven by inferences about hidden agent
intervention, replicating our previous studies. We therefore
used the empirical Bayesian model in all subsequent fMRI
analyses.

To further interrogate our model, we also tested how the
model predictions correspond to the subjective intervention
judgments, which were not used for fitting or model comparison.
We found that the model-predicted learning rates were signifi-
cantly lower for trials where participants believed that the hidden
agent intervened, compared with trials where they believed that
the hidden agent did not intervene (t(30) =�6.49, p, 0.0001, d =
�1.17). In addition, participants’ judgments about intervention
also showed a significant median point-biserial correlation with
the intervention belief predicted by the model (r=0.424,
p, 0.0001), and this intervention belief was also significantly

Table 2. GLM details

Regressor name Event Which trials

GLM 1: RPE Feedback onset Nontimeouts
Feedback onset Timeouts
Trial onset All
Reaction time/trial offset All
Intervention guess onset All
Intervention guess offset All

GLM 2: w Feedback onset Nontimeouts
Feedback onset Timeouts
Trial onset All
Reaction time/trial offset All
Intervention guess onset All
Intervention guess offset All

GLM 3: RPE * w Feedback onset Nontimeouts
Feedback onset Timeouts
Trial onset All
Reaction time/trial offset All
Intervention guess onset All
Intervention guess offset All

GLM 4: RPE and RPE *w Feedback onset Nontimeouts
Feedback onset Timeouts
Trial onset All
Reaction time/trial offset All
Intervention guess onset All
Intervention guess offset All

GLM 5: losses and win trials for
benevolent and adversarial trialsa

Feedback onset
Feedback onset

Nontimeouts
Timeouts

Losses, benevolent; wins, benevolent; Trial onset All
losses, adversarial; and wins, adversarial Reaction time/trial offset All

Intervention guess onset All
Intervention guess onset All

Regressor of interest is reported in regular text; nuisance regressors are reported in italicized text.
aInteraction contrast: (win trials, adversarial condition 1 loss trials, benevolent condition) . (loss trials,
adversarial condition 1 win trials, benevolent condition).
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greater for trials where the participants believed that the hidden
agent did not intervene compared with trials where they believed
intervention occurred (t(30) = 7.39, p, 0.0001, d=2.12).

In addition to the model comparison, we performed several
model-agnostic analyses that demonstrate that the participants’
beliefs and behavior are consistent with our Bayesian model.
First, the Bayesian model predicts that agency beliefs should
depend on the value of the chosen option, the task condition,
and the trial outcome in a characteristic way (Fig. 2, left panels).
We found that the participants’ subjective beliefs about agency
show a similar pattern, both in our current study and in a previ-
ously published behavioral study using the same task and a larger
sample size (Fig. 2, right panels). This pattern of beliefs arises for
the following reasons. In the benevolent condition, a loss (Fig.
2C) could be caused only by the participant, which results in a
high value of c in the model, corresponding to the high subjec-
tive agency beliefs in the participants. A similar pattern holds for
wins in the adversarial condition (Fig. 2B). The other two pat-
terns are subtler. In the benevolent condition, a win (Fig. 2A)
could be caused either by the participant or by the hidden agent. If

the chosen option has a low value (i.e., was rewarded on a lower
percentage of trials), then this option likely is intrinsically unre-
warding, and hence it is more likely that the win was caused by
the hidden agent rather than the participant. This would result in
a lower c and a correspondingly low subjective agency belief.
Conversely, high-value options are more likely to deliver rewards
because of their intrinsic reward distributions, and hence it is
more likely that the win was caused by the participant rather
than the hidden agent. This would result in a higher c and a
correspondingly high subjective agency belief. The opposite
pattern holds for losses in the adversarial condition (Fig. 2D).

Second, to investigate the influence of agency beliefs on
choice, we calculated participants’ average number of repeated
choices and compared this choice behavior within subjective
intervention judgments and feedback valence (Fig. 3). The model
predicts that participants should repeat rewarding choices and
avoid unrewarding choices when they believe they caused them,
more so than when they believe they did not cause them.

Consistent with this prediction, in the
current sample (n=31), there was a sig-
nificant interaction between the effects of
feedback valence (positive or negative) and
subjective agency judgments (self or other)
on repeated choice behavior (F(1,30) = 8.57,
p, 0.01). However, post hoc, pairwise t
tests revealed no significant differences
between conditions, likely because of
reduced power. To corroborate these find-
ings, we conducted the same analysis in a
sample from our previous study (Dorfman
et al., 2019) using the same task (n=255).
Using this larger sample, we also find a sig-
nificant interaction effect (F(1,255) = 29.65,
p, 0.0001), as well as significant differen-
ces between conditions, showing that par-
ticipants repeat choices more when they
attribute negative outcomes to the hidden
agent instead of to themselves (t(252) = 2.96,
p=0.003, d=0.19, 95% CI = 0.06, 0.31),
and repeat choices more when they attrib-
ute positive outcomes to themselves com-
pared with the hidden agent (t(249) =
�1.99, p=0.048, d = �0.13, 95% CI =
�0.25, 0.00), consistent with the structure
of the task.

All model-based fMRI analyses used trial-by-trial regressors
extracted from the empirical Bayesian model (Tables 1, 2).

Reward prediction error signals in striatum and medial
prefrontal cortex
We first sought to verify that our task elicited the canonical
striatal and prefrontal activation associated with RPEs. By
entering a trial-by-trial RPE signal from the winning compu-
tational model (empirical Bayesian model) as a parametric
modulator at feedback onset into a whole-brain GLM (Table
2, GLM 1) we found robust activation in ventral striatum,
which extended to the ventromedial PFC (vmPFC; Fig. 4A,
Table 3).

Our computational model posits that the RPE is scaled
by the agency belief c to obtain an agency-modulated RPE
(RPE * c ), which is used to update action values.
Furthermore, previous studies in humans, nonhuman pri-
mates, and rodents have shown that different subregions of

Figure 3. Relationship between beliefs about agency and repeated choice behavior. Mean
repeated choice is plotted as a function of feedback valence (negative or positive) and subjec-
tive agency beliefs (self or other). Bars represent data from the current imaging sample
(n= 31), and points represent data from a previously published study using the same task
(n= 255). Error bars represent the SEM.

Figure 4. Reward prediction errors. A, B, Group-level statistical maps from GLM 1 (A) and GLM 3 (B) showing brain
regions tracking unmodulated (A) and agency-modulated (B) reward prediction errors, respectively (single voxels thresholded
at p, 0.001; whole-brain cluster FWE corrected at a = 0.05).
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the striatum receive dopamine inputs encoding different
kinds of RPEs or value signals (Balleine et al., 2007;
Matsumoto and Hikosaka, 2009; Watabe-Uchida et al.,
2012; Menegas et al., 2015). This led us to hypothesize that
different brain regions, and in particular different parts of
the striatum, might be encoding the agency-modulated RPE
(RPE * c ) and the unmodulated RPE. We therefore per-
formed a similar whole-brain analysis with model-derived trial-
by-trial estimates of RPE * c (Table 2, GLM 3), which yielded a
similar set of regions in ventral striatum and ventromedial pre-
frontal cortex (Fig. 4B, Table 4). This analysis rules out the possi-
bility that neither RPE nor RPE * c are represented in striatum;
however, it leaves open the question of which (if any) of the two
signals dominates in which subregions of striatum.

To directly test the hypothesis that different parts of the stria-
tum might be computing the unmodulated and agency-modu-
lated RPEs, we entered both regressors into a single GLM (Table
2, GLM 4) and looked at the contrast between the two regressors
(RPE – RPE * c ). However, no voxels survived after correcting
for multiple comparisons. This was true even when looking at
the contrast for each regressor in isolation and is likely because
of the fact that the two regressors are highly correlated (average
Pearson correlation, p= 0.81) and are trading off with each other
(Mumford et al., 2015). While at first glance these results seem to

suggest that the signals are not distinguishable using fMRI, the
univariate analyses reported in this section may not be suffi-
ciently sensitive to uncover a functional dissociation.

Differential sensitivity of RPEs to causal beliefs in ventral
and dorsal striatum
An alternative approach to testing whether a given brain region
is sensitive to unmodulated versus agency-modulated RPEs is to
perform model comparison between relevant GLMs (GLM 1,
RPE; GLM 3, RPE * c ; GLM 4, RPE and RPE * c ). First, we
sought to answer the question of whether both RPE signals are
represented in overlapping subregions of striatum. For each
voxel in the striatum, we performed a random-effects Bayesian
model comparison (Rosa et al., 2010) among GLMs 1, 3 and 4.
We found that none of the voxels in striatum favored GLM
4 (maximum posterior probability,,0.03; maximum PXP,
,0.0001), thus ruling out the possibility that the same vox-
els represent both unmodulated and agency-modulated
RPEs.

Table 3. BOLD Activation for RPE

Region label Extent t Value

MNI coordinates

x y z

Right accumbens 10,142 11.405 10 6 �10
Left cerebral cortex 10,142 8.972 �14 4 �12
Right amygdala 10,142 7.477 24 �6 �14
Left cerebellum 3592 6.357 �38 �74 �34
Left cerebellum 3592 6.166 �26 �48 �26
Left inferior temporal gyrus 3592 6.135 �56 �50 �16
Right superior occipital gyrus 2518 5.794 22 �78 40
Left cuneus 2518 5.396 �12 �78 40
Left precuneus 2518 5.177 �6 �62 36
Left superior frontal gyrus 732 5.583 �18 24 54
Left superior frontal gyrus 732 5.203 �20 36 52
Left middle frontal gyrus 732 4.693 �32 24 58
Right superior frontal gyrus 645 5.554 20 34 52
Right superior frontal gyrus 645 4.863 28 44 46
Right superior frontal gyrus 645 4.264 18 50 40
Precentral gyrus 638 5.216 20 �24 58
Right postcentral gyrus 638 4.720 24 �46 68
Postcentral gyrus 638 4.286 24 �36 60
Right cerebellum 168 4.909 42 �72 �36
Right cerebellum 168 3.733 48 �64 �38
Left middle frontal gyrus 560 4.831 �48 48 6
Left middle frontal gyrus 560 4.636 �44 46 24
Left superior frontal gyrus 560 4.625 �12 68 10
Left precentral gyrus 527 4.752 �26 �30 66
Left precentral gyrus 527 4.491 �22 �22 72
Precentral gyrus 527 4.458 �14 �30 62
Left angular gyrus 354 4.684 �40 �60 38
Left angular gyrus 354 4.447 �44 �70 30
Left angular gyrus 354 4.024 �40 �68 46
Right cerebellum 203 4.608 18 �68 �28
Cerebellar vermis 203 4.042 4 �74 �30
Left precuneus 2518 3.563 �8 �70 38
Right rectal gyrus 10,142 3.648 14 28 �10
Left precentral gyrus 527 3.719 �22 �28 70

Up to three subpeaks for the largest cluster are included. Voxel coordinates are reported in MNI space. All
results have been whole-brain corrected at a voxel-wise threshold of p, 0.001 and cluster-corrected at
p, 0.05, FWE.

Table 4. BOLD activation for RPE * w

Region label Extent t Value

MNI coordinates

x y z

Right caudate 4766 8.204 10 6 �8
Left putamen 4766 7.407 �14 6 �10
Right hippocampus 4766 6.899 24 �8 �14
Right inferior occipital gyrus 802 6.685 30 �92 �8
Right inferior occipital gyrus 802 5.268 50 �80 0
Right inferior occipital gyrus 802 4.489 38 �88 0
Left cerebellum 2197 6.405 �36 �76 �34
Left cerebellum 2197 5.937 �26 �46 �26
Left inferior occipital gyrus 2197 5.078 �28 �94 �4
Right inferior temporal gyrus 976 5.672 62 �10 �30
Right cerebellum 976 5.165 36 �40 �26
Right inferior temporal gyrus 976 5.110 62 �30 �16
Left putamen 167 5.641 �26 �4 18
Left putamen 167 4.351 �30 �4 8
Right superior frontal gyrus 340 5.075 20 36 52
Right superior frontal gyrus 340 4.531 28 44 46
Right superior frontal gyrus 340 3.930 18 50 46
Left inferior temporal gyrus 331 5.074 �56 �42 �14
Left inferior temporal gyrus 331 4.122 �58 �54 �12
Left middle temporal gyrus 331 3.642 �64 �46 �4
Right thalamus 275 5.032 14 �16 18
Right caudate nucleus 275 4.731 18 �4 24
Right caudate nucleus 275 3.498 10 �4 16
White matter 393 4.935 26 �28 48
White matter 393 4.770 20 �28 58
Right postcentral gyrus 393 4.583 26 �42 70
Right precuneus 1048 4.808 4 �62 42
Left cingulate 1048 4.804 �14 �44 38
Left precuneus 1048 4.766 �8 �58 36
Left superior frontal gyrus 376 4.746 �20 28 58
Left superior frontal gyrus 376 4.394 �16 50 46
Left middle frontal gyrus 376 3.968 �32 24 58
Right superior occipital gyrus 171 4.621 22 �78 40
Right superior occipital gyrus 171 4.189 26 �70 50
Left postcentral gyrus 247 4.222 �22 �34 68
Left precentral gyrus 247 4.207 �28 �24 58
Left paracentral lobule 247 4.170 �16 �20 70
Left fusiform gyrus 2197 3.528 �44 �66 �10

Up to three subpeaks for the largest cluster are included. Voxel coordinates are reported in MNI space. All
results have been whole-brain corrected at a voxel-wise threshold of p, 0.001 and cluster-corrected at
p, 0.05, FWE.

6898 • J. Neurosci., August 11, 2021 • 41(32):6892–6904 Dorfman et al. · Causal Striatal Learning



This left us with the possibility that the two RPE signals
are represented in different subregions of striatum, or the
possibility that only one of them is represented and the other
is simply picking up the signal because of the strong correla-
tion. To directly test the differential representation of the
two RPE signals, we once again performed a random-effects
Bayesian model comparison for each voxel in the striatum
(Rosa et al., 2010), this time only between GLMs 1 and 3. To
visualize the comparison, we computed the log posterior
odds as log(rRPE/rRPE*c ), where rRPE is the posterior proba-
bility of GLM 1 (unmodulated RPE) and rRPE*c is the poste-
rior probability of GLM 3 (agency-modulated RPE). This
resulted in a log posterior odds map quantifying the extent to
which each voxel favors unmodulated RPE (GLM 1) over
agency-modulated RPE (GLM 3) representation, with posi-
tive values favoring unmodulated RPE, negative values favor-
ing agency-modulated RPE, and zero indicating the
indifference point. We thresholded the map to only show
voxels where the posterior probability of either model is
�0.75. This revealed a graded pattern of RPE representation
across striatum, with anterior ventral regions favoring
unmodulated RPE representation (Fig. 5A) and posterior
dorsolateral regions favoring agency-modulated RPE repre-
sentation (Fig. 5B).

As an alternative way to quantify the same result, we per-
formed model comparison in these ROIs. We defined a ventral
striatum region as the union of two 4 mm spheres around the

peak positive voxel (i.e., favoring
unmodulated RPE), one in each hemi-
sphere (MNI coordinates [�16, 8, �14]
and [14, 8, �12]; we refer to this ROI as
VS). We similarly defined a dorsal stria-
tum region as the union of two 4 mm
spheres around the peak negative voxel (i.
e., favoring agency-modulated RPE), one
in each hemisphere (MNI coordinates
[�28, 2, 2] and [28, �14, 2]; we refer to
this ROI as Put, since these voxels fall in
posterior putamen). We then performed
random-effects Bayesian model selection
comparing GLM 1 and GLM 3 in those
two ROIs (note that this is not an inde-
pendent confirmatory analysis, but
rather a complementary way to quan-
tify this same result, which additionally
takes into account the probability of the
null hypothesis that there is no difference
between GLM 1 and GLM 3). We found
that ventral striatum favored unmodulated
RPE representation (PXP for GLM
1=0.95; PXP for GLM 3 = 0.05), while
dorsal striatum favored agency-modulated
RPE representation (PXP for GLM
1=0.13; PXP for GLM 3 = 0.87).

Causal beliefs in anterior insula and inferior frontal gyrus
We next sought to identify regions that parametrically tracked
c , the model quantity that quantifies the degree to which partici-
pants believe they caused each outcome. To do so, we fitted a
whole-brain GLM that included a parametric modulator for
the belief about causal structure at feedback onset (c Þ.
Specifically, the quantity c represents (one minus) the pos-
terior over hidden causes, with higher values for c account-
ing for a stronger sense of agency over the previous
outcome. Using c as a single parametric modulator (Table
2, GLM 2), a whole-brain analysis revealed a cluster in the
right hemisphere with the following two subpeaks (Table
5): one in right anterior insula (Fig. 6A; 157 voxels; peak
[36, 16, 6]), and another in the triangular region of right in-
ferior frontal gyrus (Fig. 6A; 157 voxels; peak [42, 24, 24]).
We defined two ROIs as 4 mm spheres around the corre-
sponding peak voxels and henceforth refer to them as AI
and IFG, respectively. These ROIs were then used for effec-
tive connectivity analyses, as discussed below.

To investigate brain regions that are active during causal beliefs
in a way that is agnostic to our computational model, we computed
a whole-brain, two-way interaction contrast between feedback va-
lence and condition (win trials, adversarial condition – loss trials,
adversarial condition – win trials, benevolent condition 1 loss tri-
als, benevolent condition; Table 2, GLM 5). For clarity, this contrast
can be equivalently written as follows: (win trials, adversarial condi-
tion 1 loss trials, benevolent condition) . (loss trials, adversarial
condition 1 win trials, benevolent condition). Importantly, this
analysis allowed us to interrogate which regions are associated with
task trials where it was possible that the hidden agent intervened (i.
e., losses in the adversarial condition and wins in the benevolent
condition) compared with trials where it was not possible (i.e., wins
in the adversarial condition and losses in the benevolent condition),
providing a model-agnostic proxy for the agency parameter (c )
from our computational model. Results confirm those from the

Figure 5. Log posterior odds of unmodulated versus agency-modulated RPEs. A, B, Log posterior odds map comparing
GLM 1 (unmodulated RPE) and GLM 3 (agency-modulated RPE) showing striatal regions favoring unmodulated RPEs in ven-
tral striatum (red voxels; A) and agency-modulated RPEs in dorsal striatum (blue voxels; B). Single voxels thresholded at pos-
terior probability of�0.75 (log odds = 1.097). Color scales represent log posterior odds = log(rRPE/rRPE*c ), where rRPE is the
posterior probability of GLM 1 and rRPE*c is the posterior probability of GLM 3.

Table 5. BOLD activation for belief about w

Region label Extent t Value

MNI coordinates

x y z

Right inferior frontal gyrus (pars triangularis) 157 4.306 42 24 24
Right insula 157 4.170 36 16 6

Up to three subpeaks for the largest cluster are included. Voxel coordinates are reported in MNI space. All
results have been whole-brain corrected at a voxel-wise threshold of p, 0.001 and cluster-corrected at
p, 0.05, FWE.
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model-based analysis, with a cluster of acti-
vation with subpeaks in both the right ante-
rior insula and right inferior frontal gyrus
(Fig. 6B; 224 voxels; peak [38, 16, 10]; peak
[42, 26, 16]), as well as two additional clus-
ters in the bilateral anterior cingulate cortex
(153 voxels, peak [�8, 38, 6]) and left fusi-
form gyrus (135 voxels; peak [�42, �54,
�14]; Table 6, all subpeaks).

Effective connectivity from anterior
insula to dorsal striatum but not from
ventral striatum to dorsal striatum
during updating
Our computational model posits that
causal beliefs (c ) and RPEs are computed
separately and then combined (RPE * c )
to compute the action value update.
Having identified regions that are associ-
ated with these quantities, we next sought
to characterize the flow of information
between those regions during updating.
There are different possible patterns of
connectivity between these regions of in-
terest that would be consistent with our
model and with different hypotheses about
corticostriatal architectures that have been
put forward in the literature. In particular,
actor-critic models of the basal ganglia
favor parallel striatal architectures where
state–value and action–value RPEs are
computed independently in ventral stria-
tum and dorsal striatum, respectively (Joel et al., 2002). This pre-
dicts that there will be no effective connectivity from ventral
striatum to dorsal striatum in our data. Conversely, some authors
have reported evidence favoring a serial striatal architecture
(Haber et al., 2000; Voorn et al., 2004; Ikeda et al., 2013) accord-
ing to which results from computations in one part of the stria-
tum are passed to another. This predicts that there will be
ective connectivity from ventral striatum to dorsal striatum,
with dorsal striatum integrating information about RPEs
from ventral striatum. Similarly, dorsal striatum might be
integrating information about agency beliefs from either or
none of the prefrontal regions associated with c .

To arbitrate between these hypothesized mappings, we per-
formed effective connectivity analysis using structural equation
modeling (Spirtes, 2005; Ramsey et al., 2010; Igolkina and
Meshcheryakov, 2020) with a beta series extracted from feedback-
onset events. We searched the space of possible effective connec-
tivity patterns using the IMaGES algorithm (see Materials and
Methods) and found that in the pattern most consistent with the
data, dorsal striatum (abbreviated Put, since the peak voxels were
in posterior putamen, a subregion of dorsal striatum) receives
input from anterior insula, but not from ventral striatum or infe-
rior frontal gyrus (Fig. 7A). Additionally, there is effective connec-
tivity between anterior insular and inferior frontal gyrus, although
the direction cannot be inferred from the data. Formally, there are
two effective connectivity patterns (structural equation model 1A:
IFG ! AI, AI ! Put; structural equation model 1B: AI ! IFG,
AI ! Put) that correspond to causal graphs that are part of the
same Markov equivalence class and hence cannot be disambig-
uated from our data. We confirmed this using Bayesian model
selection (Rigoux et al., 2014) with the two equivalent structural

equation models (Fig. 7B; PXP for model 1A=0.57; PXP for
model 1B = 0.43).

We performed additional model comparisons with modifica-
tions of the winning model to explicitly quantify the strength of
the evidence favoring the above hypotheses (Fig. 7C,D). In par-
ticular, we considered structural equation models where dorsal
striatum receives input from ventral striatum (VS ! Put), con-
sistent with a serial striatal architecture (model 2A and 2B). We
also considered structural equation models where dorsal striatum
receives no input from the cortical regions (models 3A and 3B)
or where it receives input from inferior frontal gyrus instead
(models 4A and 4B). Splitting these into two model comparisons
to account for the ambiguity between structural equation models
1A and 1B, we found that in both cases, the original winning
structural equation model was favored (PXP for model

Figure 6. Beliefs about causal structure. A, Group-level statistical maps from GLM 2 showing brain regions tracking pos-
terior beliefs about agency, c ; single voxels thresholded at p, 0.001; and whole-brain cluster FWE corrected at a =
0.05). Color scales represent t values. Left, AI (peak [36, 16, 6]). Right, IFG (peak [42, 24, 24]). B, Group-level statistical
maps from GLM 5 showing brain regions activated for a valence-by-condition interaction, a model-agnostic measure of
beliefs about agency. Single voxels thresholded at p, 0.001; whole-brain cluster FWE corrected at a = 0.05). Color scales
represent t values. The same slice is shown across regions for purposes of comparison, but peak coordinates differ. Left, AI
(peak [38, 16, 10]). Right, IFG (peak [42, 26, 16]).

Table 6. BOLD Activation for feedback-by-condition interaction

Region label Extent t Value

MNI coordinates

x y z

Right insula 224 5.144 38 16 10
Right inferior frontal gyrus (pars triangularis) 224 4.826 32 32 8
Right inferior frontal gyrus (pars triangularis) 224 3.559 42 26 16
Left anterior cingulate cortex 153 4.705 �8 38 6
Right anterior cingulate cortex 153 4.528 8 32 12
Right anterior cingulate cortex 153 3.935 8 38 24
Left fusiform gyrus 135 4.396 �42 �54 �14
Left fusiform gyrus 135 3.899 �32 �46 �20

Up to three subpeaks for the largest cluster are included. Voxel coordinates are reported in MNI space. All
results have been whole-brain corrected at a voxel-wise threshold of p, 0.001 and cluster-corrected at
p, 0.05, FWE.
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1A=0.78; PXP for model 2A = 0.18; PXP for model 3A = 0.02;
PXP for model 4A = 0.02; PXP for model 1B = 0.79; PXP for
model 2B = 0.18; PXP for model 3B = 0.02; PXP for model 4B =
0.02). These results are in line with a hypothetical architecture
where dorsal striatum computes agency-modulated RPEs based
on input about causal beliefs from anterior insula.

Discussion
The present study used fMRI to uncover the neurobiological
mechanisms that determine how causal beliefs modulate learning
from positive and negative feedback. We measured differences in
brain activation during a reinforcement learning task that
manipulated participants’ causal beliefs about feedback. Whole-
brain analyses revealed that AI and IFG represent causal beliefs,
and that the striatum encodes both unmodulated and agency-
modulated RPEs. However, a voxel-wise model comparison
demonstrated that casual gating of RPEs follows an anatomic
gradient, with VS representing unmodulated RPEs and DS repre-
senting agency-modulated RPEs. Finally, we analyzed alternative
routes of how causal inference from cortical regions guides
action selection in striatum using structural equation modeling
and found effective connectivity from AI to DS, but not from VS

to DS, suggesting a corticostriatal network for agency-modulated
reinforcement learning.

These results replicate our prior research and recapitulate
canonical neural signatures of feedback learning. First, we repli-
cated our previous behavioral findings, showing increased learn-
ing for reward outcomes relative to loss outcomes in the adversa-
rial condition and for loss outcomes relative to reward outcomes
in the benevolent condition, and that participant choice behavior
was best explained by our hypothesized empirical Bayesian
model. We also replicated our previous results, which demon-
strated that, collapsed across conditions, participants were more
likely to believe that they caused positive outcomes and the hid-
den agent caused negative outcomes, which is consistent with a
self-serving bias (the attribution of good outcomes to oneself and
bad outcomes to external forces; Campbell and Sedikides, 1999;
Hughes and Zaki, 2015). Using the RPE from our winning
model, we also found robust activation of the striatum and
vmPFC during feedback, demonstrating that participants are
exhibiting prediction error activation consistent with the previ-
ous literature.

While these results reiterate that the striatum is integral for
simple reinforcement learning, it was unclear whether additional
regions contribute to a process of agency-modulated

Figure 7. Effective connectivity analysis. A, Winning connectivity pattern found by IMaGES algorithm using TETRAD. B, Bayesian model selection with the two equivalent structural equation
models (SEMs) from A. C, D, Bayesian model selection comparing modifications to SEM 1A (C) and SEM 1B (D). Gray nodes and edges indicate input variables. Undirected edges indicate that
the either direction is consistent with the data.
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reinforcement learning. To investigate how causal beliefs influ-
ence feedback learning, we first conducted an exploratory whole-
brain analysis using the model parameter c as a parametric
modulator to identify regions associated with agency beliefs. We
found that activation in both AI and IFG was associated with
increased self-agency beliefs. We confirmed these results
using a model-agnostic, whole-brain analysis that tested the
interaction between feedback valence and task condition.
These results showed significant clusters of activation in AI
extending to IFG.

A wealth of evidence implicates both AI and IFG in a variety
of functions related to causal inference. In particular, the insula
is recruited during agency judgments (Farrer and Frith, 2002;
David et al., 2008; Sperduti et al., 2011), and both the insula and
IFG are activated when rewards are personally chosen versus
when they are chosen by a computer (Romaniuk et al., 2019).
There is also evidence that these regions are especially sensitive
to negative self-attributions (Cabanis et al., 2013), personally
undesirable estimation errors (Sharot et al., 2011), and both self-
generated and externally generated errors (Cracco et al., 2016).
The IFG has also been shown to represent action–outcome likeli-
hoods, and observed and executed goals or actions (Iacoboni et
al., 1999; Heiser et al., 2003).

While AI and IFG seem to play a role in the representation of
causal beliefs, our findings shed light on the specific computa-
tional processes associated with these regions during causal and
latent state inference. Previously, we demonstrated that causal
beliefs and their updating track with activation of the right AI
and bilateral IFG, respectively, when participants made infer-
ences about the causal relationships among cues, contexts,
and outcomes (Tomov et al., 2018). In addition, representa-
tions of the belief about causal structure in the AI tracked
with variability in behavioral sensitivity to the true causal
structure of the environment (Tomov et al., 2018). Similarly,
we previously reported an overlapping region of right AI that
tracks likelihood estimates of group membership (Lau et al.,
2020). Importantly, this estimate is calculated by gauging
how similar the participant is to each of the possible group
members, necessitating some form of self-representation.
Indeed, a recent study reports that AI and IFG activation are
associated with causal structure in a self-concept network
(Elder et al., 2020). Together, these results suggest that AI and
IFG represent inferences about the structure of the environ-
ment by calculating, integrating, and comparing information
using the self as a reference point. Both AI and IFG have been
associated with a number of self-referential and self-related
processes, including interoceptive awareness (Critchley et al.,
2004; Mutschler et al., 2009), error awareness (Klein et al.,
2013), mismatch detection, subjective confidence (Sherman et
al., 2016), and self-awareness or consciousness (Karnath et al.,
2005; Craig, 2009; Braun et al., 2018).

Our finding that dorsal and ventral subdivisions of the stria-
tum encode different RPEs dovetails with literature suggesting
various action-related functional distinctions between these
regions. Studies have overwhelmingly implicated the DS in
instrumental learning tasks, which involve outcome-linked, self-
generated actions (O’Doherty et al., 2004; Tricomi et al., 2004).
However, DS not only tracks underlying reward–outcome con-
tingencies, it also tracks information about beliefs regarding
these contingencies. For example, DS is activated for self-serving
attributions, when participants believe they cause positive out-
comes and someone or something else causes negative outcomes
(Blackwood et al., 2003; Seidel et al., 2010).

Our results also provide a possible explanation for how causal
beliefs in the insula integrate with agency-modulated RPEs in
DS. Specifically, we found that AI is functionally coupled to DS,
which is consistent with anatomic studies showing white matter
tracts between these regions (Ghaziri and Nguyen, 2018; Tian
and Zalesky, 2018). This coupling suggests that beliefs about
causal structure might be passed from AI to DS to compute the
agency-modulated RPE that is ultimately used for updating
action values. Additionally, this analysis did not favor coupling
between VS and DS. This is consistent with an architecture in
which the two striatal regions receive RPE signals independently
from each other (e.g., from midbrain dopaminergic neurons),
rather than VS passing the unmodulated RPE to DS. This inter-
pretation is consistent with theories of parallel striatal architec-
tures, which posit that ventral and dorsal striatum compute
different types of RPEs in parallel (Joel et al., 2002), rather than
theories of serial striatal architectures, which suggest that RPE in-
formation is passed from some parts of the striatum to others in
a serial fashion (Haber et al., 2000; Voorn et al., 2004; Ikeda et
al., 2013).

The current study also demonstrated functional connectivity
between IFG and AI during feedback, which is consistent with
studies of white matter connectivity in humans (Deen et al.,
2011; Cerliani et al., 2012). However, our analysis was unable to
distinguish the direction of connectivity, so it remains unclear
whether IFG computes causal beliefs and passes them to AI, or
vice versa. This could be investigated in future studies using per-
turbation techniques such as transcranial magnetic stimulation
and transcranial direct current stimulation. If the locus of the
computation lies in the IFG, then perturbing both regions should
have the same effect on behavior. Alternatively, if the locus of the
computation lies in AI, then only perturbing AI should have an
effect. Such interventional studies would circumvent the limita-
tions of structural equation modeling and other methods for
determining neural connectivity from observational data, which
are suggestive of true underlying anatomic connectivity or infor-
mation flow.

One limitation of our study is that it was not designed to dis-
entangle RPE from feedback valence. Consequently, feedback is
highly correlated with RPE in our design, and including it as a
nuisance regressor in our GLMs eliminates all effects of RPE and
RPE * c . This points to an alternative interpretation of our find-
ings, namely that feedback (rather than RPE) modulated by
causal belief is represented in dorsal striatum, and unmodulated
feedback is represented in ventral striatum. However, RPE cod-
ing in striatal BOLD is a well established finding (Berns et al.,
2001; Breiter et al., 2001; Knutson et al., 2001; Pagnoni et al.,
2002; McClure et al., 2003; O’Doherty et al., 2003, 2004), and,
like many studies of reward learning, we sought to directly build
on these findings, rather than to replicate what is already known.
Future work could address this limitation by augmenting the ex-
perimental design with additional conditions with positive/nega-
tive RPEs crossed with positive/negative feedback.

In summary, these results build on our previous behavioral
and modeling work to shed light on the brain networks that
underpin agency-modulated reinforcement learning. Our results
point to AI and IFG as possible origin regions of causal beliefs
about agency, which DS then integrates with RPE signals. This
agency-modulated RPE is distinct from and computed in parallel
with the unmodulated RPE represented in VS. Together, these
results bridge the gap between the rich literature grounding rein-
forcement learning in basal ganglia circuitry and recent evidence
of causal structure learning in the PFC. By linking these regions
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in a way that is consistent with their prescribed combinational
role, our findings pave the way to characterizing the neural cir-
cuits that allow humans to properly attribute outcomes to them-
selves or to external causes, and to use that knowledge for
rational reward-based learning.
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